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Chapter 1

Introduction

1.1 Program Synthesis

Program synthesis is an automated program construction method that

satisfies a given set of desired behaviours. By automating the develop-

ment process, it can significantly alleviate the burden of manual pro-

gramming, reducing both errors and the time required, especially for

complex programs. Various approaches to program synthesis are tai-

lored to specific types of specifications and application domains. These

approaches range from constraint-based synthesis, which relies on solving

logical constraints, to inductive synthesis, which learns from examples.

Among these various techniques, we will focus on deductive synthesis, a

method that heavily relies on logical foundations and a theorem-proving

approach (Manna and Waldinger, 1980).

1.2 Deductive Synthesis

A deductive synthesis is a specific approach that regards program syn-

thesis as a theorem-proving task. It relies on a theorem-proving method
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that combines the features of transformation rules, unification, and math-

ematical induction within a single framework to generate programs.

At its core, deductive synthesis translates high-level specifications into

executable code by systematically applying logical transformations. Each

transformation is rigorously verified through theorem proving to ensure

it adheres to the specified behaviour. This method leverages formal logic

to bridge the gap between specification and implementation, ensuring

that the resulting program performs the desired tasks and adheres to

specified correctness properties. In this work, we will be working with

the tool SUSLIK, which employs deductive synthesis framework.

1.3 Shortcomings of Deductive Synthesis

Despite being a powerful technique in synthesising recursive functions,

deductive synthesis has some critical flaws due to its over-reliance on the

precision and comprehensiveness of the specifications. Any ambiguity

in these premises could lead to incorrect code. Additionally, even with

the correct premises, the deductive synthesis might not always find the

most efficient solutions as the tool only focuses on the correctness of the

program, i.e. to satisfy the specification requirement. This shortcoming

becomes evident in cases where the time and/or space complexity of the

synthesised function could be hugely improved with introduction of new

parameters to the specification such as accumulators.
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1.4 Essence of an Accumulator

Functional programming, unlike imperative programming, emphasises

the concept of immutability and statelessness. It often leverages recur-

sion – a fundamental concept that allows the problem to be broken down

into smaller instances of the same problem – to iterate over data struc-

tures and perform repetitive tasks. However, it is challenging to maintain

state across these recursive calls without any mutable variables.

One solution to this problem is to introduce accumulators to the pro-

gram as an argument. The accumulator is parsed to each recursive call

and keeps track of the intermediate states by being updated with the

current computation results, accumulating a final result without mutat-

ing any external state. Accumulators can further optimise the recursive

functions into tail-recursive ones where the recursive call is the last op-

eration performed in the function. This optimization allows for efficient

memory usage and avoids stack overflow errors, making accumulator-

based recursive functions particularly suited for handling large datasets

or deeply nested recursive computations.

To illustrate the significance of accumulators in optimising the effi-

ciency of recursive programs, let us consider the task of flattening a bi-

nary tree into a singly linked list. The pseudocode examples in Figures

1.1 and 1.2 respectively demonstrate this process both with and without

the use of an accumulator.

The approach of flattenTree in Figure 1.1 involves recursively flat-

tening its left and right sub-trees, and then temporarily storing these re-

sults in singly linked lists named left_flattened and right_flattened. We

then concatenate these results with the root value of the tree tree.value.
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function flattenTree(tree)
if tree is empty

return []
else

left_flattened = flattenTree(tree.left)
right_flattened = flattenTree(tree.right)
return concatenate([tree.value], left_flattened,

right_flattened)

FIGURE 1.1: Flattening a Tree into a List without an Accu-
mulator

Even though this approach delivers functionally correct results, it incurs

a quadratic time complexity, Opn
2q, where n is the number of nodes in the

tree. This is due to the necessity of traversing the tree twice: once during

the flattening and once while concatenating.

However, if we employ an accumulator, we could accomplish this

task of flattening a binary tree into a linked list with just a linear time

complexity of Opnq as illustrated in Figure 1.2.

function flattenTreeWithAccumulator(tree, accumulator)
if tree is empty

return accumulator
else

accumulator.append(tree.value)
accumulator = flattenTreeWithAccumulator(tree.left,

accumulator)
accumulator = flattenTreeWithAccumulator(tree.right,

accumulator)
return accumulator

FIGURE 1.2: Flattening a Tree into a List with an Accumu-
lator

The approach in Figure 1.2 first instantiates an empty list as an ac-

cumulator and stores the root value inside. Afterward, the left subtree

is recursively flattened, and its results are appended to the accumulator.

Similarly, the right subtree is recursively flattened, and the results are
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also appended to the accumulator instance. Upon termination of the re-

cursive call to the right tree, the accumulator will have retained all the

nodes from the tree and is then returned, satisfying the program require-

ment. As such, this implementation ensures a single traversal of the tree,

and thereby, enhances the time complexity of the process to Opnq.

1.5 Problem Statement

As demonstrated above, we can see that the use of accumulators can re-

sult in more efficient programs. However, the current tool is not capable

of introducing an accumulator to its synthesis as it only focuses on pro-

ducing the correct program for the given requirement but not the most

efficient result.

1.6 Contributions

Through this work, we will attempt to provide a pipeline that would

provide the users with the option to synthesise programs using accumu-

lators. Since deductive synthesis heavily relies on the correctness and

completeness of the specifications, we implement a pipeline that could

help transform a user specification into an accumulator-based specifica-

tion and ensure that it is a correct one. Additionally, we explore how

SUSLIK could be guided to utilise accumulators in the “correct” manner

to synthesise the most efficient version possible.
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Chapter 2

Background

2.1 Separation Logic

Separation Logic, an extension of Hoare Logic, provides a formal frame-

work to reason about programs that manipulate a dynamically allocated

memory in a heap-like structure. According to this logic, memory is seg-

mented into distinct, disjoint regions, where each segment is “owned”

by different program elements. This principle of separation facilitates lo-

calised reasoning, allowing verification of program correctness in a given

memory region without needing to consider the entire heap’s state. Such

an approach is instrumental in verifying the safety properties of pro-

grams with complex pointer manipulations and dynamic memory allo-

cation (O’Hearn, 2012).

2.1.1 Specifications in Separation Logic

A specification or a synthesis goal formally outlines the desired behavior

or properties the synthesised program should exhibit. Among various

types of specifications, SUSLIK deals with declarative functional specifi-

cations which describe what the heap should look like before and after
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program execution, without saying how to get from one to the other (Po-

likarpova and Sergey, 2019).

A specification generally takes the form of a Hoare-triple tPu f p...q tQu.

The essence of such a specification is to formally assert that if the precon-

dition P is true, then after the execution of the program f , the postcondi-

tion Q will be true. Both assertions P and Q are further divided into two

segments: the pure and spatial parts. Specifically, P can be expressed as

a pair tf; Pu of pure part f and a spatial part P while Q is represented as

a combination of ty; Qu, encompassing pure part y and a spatial part Q

(Polikarpova and Sergey, 2019).

The pure part represents the logical constraints of the program about the

relationship between the variables. The spatial part is represented by a

collection of disjoint symbolic heap fragments called heaplets joined via

the separation conjunction operation ˚ which is both commutative and

associative Reynolds, 2002. The simplest kinds of heaplets are empty

heap assertions (emp) and points-to assertions taking the form of x Ñ e,

where x is a single memory address in the heap storing a payload of e

(Polikarpova and Sergey, 2019). Let us consider the following assertion:

tp ‰ q; x fiÑ p ˚ y fiÑ qu. Here, the spatial part denotes two separate, non-

overlapping memory segments x and y storing symbolic values a and b

respectively and the pure part states that p and q are distinct values.
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2.1.2 Inductive Predicates

In order to express linked data structures such as linked lists, binary trees,

and graphs, we can employ inductive heap predicates -– a fundamental

concept of Separation Logic. These predicates enable the recursive defini-

tion of data structures, capturing both their shape and content within the

heap. For example, a binary tree could be inductively defined as below:

(O’Hearn, 2012)

treepx, sq fi x “ 0 ñ ts “ H; empu

| x ‰ 0 ñ ts “ tvu Y sl Y sr;

rx, 3s ˚ x fiÑ v ˚ xx, 1y fiÑ l ˚ xx, 2y fiÑ r ˚

treepl, slq ˚ treepr, srqu

(2.1)

The above tree predicate recursively defines a binary tree rooted at ad-

dress x with a payload set s. It is defined in two parts: 1) the base case

and 2) the inductive case. The first clause represents the base case, when

the tree is empty and applies when the root pointer x is null. In this sce-

nario, the payload set s would also be empty. The second clause, the

inductive case describes a non-empty tree. In this scenario, a binary tree

node is conceptualised as a record occupying three contagious memory

slots, starting at address x. The first location at address x stores the node

value, v while the other two stores a pointer to the left and right subtrees:

l and r. The pure part of this second clause indicates that the payload of

the whole tree, s, is comprised of v and the payloads of the left and right

subtrees, s1 and s2 respectively.
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2.2 Synthetic Separation Logic

Synthetic Separation Logic(SSL), extending Separation Logic(SL), is a sys-

tem of deductive synthesis rules to provide a framework on decomposing

specifications of complex programs into simpler ones. The tool SUSLIK

is a deductive synthesiser for heap-manipulating programs and lever-

ages the principles of SSL. It takes in a specification of a function to be

synthesised, expressed in Separation Logic (SL) along with a library of

inductive predicates, a list of auxiliary function specifications (Polikar-

pova and Sergey, 2019).

Given a separation logic specification, the deductive synthesis will

construct a proof derivation tree by employing the rules stated in Fig-

ure.2.1 (Itzhaky et al., 2021).

EMP
$ f ñ y

tf; empu{ty; empu | skip

FRAME
tf; Pu{ty; Qu | c

tf; P ˚ Ru{ty; Q ˚ Ru | c

READ
y is fresh a R PV ry{astf; xx, iy fiÑ a ˚ Pu{ ry{astQu | c

tf; xx, iy fiÑ a ˚ Pu{tQu | let y “ ˚px ` iq; c

WRITE
Varspeq Ñ PV e ‰ e

1 tf; xx, iy fiÑ e ˚ Pu{ty; xx, iy fiÑ e ˚ Qu | c 
f; xx, iy fiÑ e

1 ˚ P
(
{ty; xx, iy fiÑ e ˚ Qu

ˇ̌
˚px ` iq “ e; c

FIGURE 2.1: Selected Separation Logic Rules

The rules in Figure 2.1 are basic inference rules that are employed

by SUSLIK to deduce simple functions that do not require a recursive

call. In order to understand how these rules work, we will consider the

implementation of swap, which is responsible for swapping two values

stored at distinct memory locations. The derivation of swap is shown in

Figure 2.2.
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READ

READ

WRITE

WRITE

FRAME

EMP tempu{tempu | skip!
x fiÑ b1 ˚ y fiÑ a1

)
{

!
x fiÑ b1 ˚ y fiÑ a1

) ˇ̌
ˇ skip

tx fiÑ b1 ˚ y fiÑ b1u{
!
x fiÑ b1 ˚ y fiÑ a1

) ˇ̌
ˇ ˚y “ a1

tx fiÑ a1 ˚ y fiÑ b1u{
 
x fiÑ b1 ˚ y fiÑ a1

( ˇ̌ *x = b1;
*y = a1

!
x fiÑ a1 ˚ y fiÑ b

)
{tx fiÑ b ˚ y fiÑ a1u

ˇ̌
ˇ

let b1 = *y;
*x = b1;
*y = a1

t x fiÑ a ˚ y fiÑ bu{tx fiÑ b ˚ y fiÑ au |
let a1 = *x;
let b1 = *y;

*x = b1;
*y = a1

FIGURE 2.2: Derivation of swap.

The derivation in Figure 2.2 starts with a pair of pre-and post condi-

tion assertions. Each inference rule in Figure 2.1 is applied to simplify

the synthesis goal until both the pre- and postheaps are empty. First, the

tool applies the READ rule twice, reading logical variables a and b from

locations x and y respectively, turning them into fresh program variables

a1 and b1 correspondingly. Afterward, the WRITE rule is applied twice

to write the value stored at b1 into x first, and then the value stored at a1

into y. At this stage, the pre- and postheap are equal. As such, the FRAME

rule, responsible for removing the shared sub-heaps in the pre- and post-

conditions to reduce the original synthesis goal into a smaller one, kicks

in, leaving EMP on both sides of the goal. This will trigger the terminal

rule EMP resulting in a trivial program skip and thereby concluding the

derivation (Polikarpova and Sergey, 2019).

2.2.1 Inference Rules for Inductive Predicates

In order to deal with inductive predicates and deducing recursive func-

tions, SSL features additional rules such as OPEN, CLOSE, CALL, and

ABDUCECALL rules as shown in Figure 2.3(Itzhaky et al., 2021). The
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OPEN and CLOSE rules are responsible for unfolding the inductive pred-

icates as per their definition while the CALL and ABDUCECALL rules can

synthesise recursive calls when the intermediate assertion can be unified

with the top-level goal or any previous intermediate assertions.

OPEN

G Ÿ @wjk ;
 

f ^ ej ^ cj ; Rj ˚ P
(
{Q

ˇ̌
cj for all j“1..rpapniq : ej ñ Dwjk.

 
cj; Rj

(
j“1..r P S wjk R VarspGq,GVptiq “ ?

G;
 

f; paptiq ˚ P
(
{Q

ˇ̌
if pe1q tc1uelse if pe2q tc2u else ¨ ¨ ¨

CLOSE

G Ÿ Dwjk ; P{
 

f ^ ej ^ cj ; Rj ˚ Q
( ˇ̌

cj for some j“1..rpapniq : ej ñ Dwjk.
 

cj; Rj

(
j“1..r P S wjk R VarspGq

G; P{
 

f; paptiq ˚ Q
( ˇ̌

c

CALL
 

f f ; P
(
{

 
y f ; S

( ˇ̌
f pxiq $ f ñ rssf f

 
f ^ rssy f ; rssS ˚ R

(
{tQu

ˇ̌
c

tf; rssP ˚ Ru{tQu | f pspxiqq; c

ABDUCECALL

F fi f pxiq :
 

f f ; Pf ˚ Ff

( 
y f ; Q f

(
P S

Ff has no predicate instances rssPf “ P Ff ‰ emp F
1 fi rssFf

S; G; tf; Fu{
 

f; F
1( ˇ̌

c1 S; G;
 

f; P ˚ F
1 ˚ R

(
{tQu

ˇ̌
c2

S; G; tf; P ˚ F ˚ Ru{tQu | c1; c2

FIGURE 2.3: More SSL Inference Rules for Recursive Func-
tions and Inductive Predicates.

To better understand the rules in Figure 2.3, we will consider the im-

plementation of sll_free which is responsible for deallocating a singly-

linked list sll. The specification of sll_free along with the inductive

predicate definition of sll are as follows:

tsllpx, squ void freeploc xq tempu (2.2)

sllpx, sq fi x “ 0 ñ ts “ H; empu

| x ‰ 0 ñ ts “ tvu Y s1; rx, 2s ˚

x fiÑ v ˚ xx, 1y fiÑ nxt ˚ sllpnxt, s1qu

(2.3)

The first synthesis step of implementing sll_free is by unfolding the

predicate instance of the goal in the pre-condition, i.e. sll as per the

inductive definition listed in Eq. 2.3. This step is complemented by the
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OPEN rule, generating two sub-goals, one for each clause of the predi-

cate:

tx “ 0 ^ s “ H; empu{ tempu | c1 (2.4)

tx ‰ 0 ^ rx, 2s ˚ x fiÑ v ˚ xx, 1y fiÑ nxt ˚ sllpnxt, s1qtempu | c2 (2.5)

We can combine the two programs c1 and c2 as if (x = 0) { c1 } else

{ c2 } to obtain the final program which satisfies the given specification in

Eq. 2.2. The first sub-goal (in Eq. 2.4) will be trivially resolved by the EMP

rule, resulting in a program skip. For the second subgoal (in Eq. 2.5),

the READ rule will kick in to transform the logical variable nxt into a

program variable n1 as follows:

tx ‰ 0 ^ rx, 2s ˚ x fiÑ v ˚ xx, 1y fiÑ n1 ˚ sll pn1, s1qu{ tempu (2.6)

Now, the new heaplet sll(n1, s1) can be unified with sll(x, s) from

the top-level specification in Eq. 2.2), and therefore the CALL rule is trig-

gered, synthesising the recursive call. Since the postcondition of sll_free

is emp, the goal becomes:

tx ‰ 0 ^ rx, 2s ˚ x fiÑ v ˚ xx, 1y fiÑ n1 ˚ empu{ tempu (2.7)

Finally, the FREE rule is applied to dispose of the two consecutive mem-

ory blocks stored at x, resulting in both pre and postheaps being emp,

and thus triggering the EMP rule for termination of synthesis. The syn-

thesised code for sll_free would be as shown in Figure 2.4.
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void sll_free (loc x) {
if (x == 0) {
} else {

let n = *(x + 1);
sll_free(n);
free(x);

}
}

FIGURE 2.4: Singly Linked List (sll) free program synthe-
sised by SUSLIK

To further understand the capabilities of the CALL rule, let us revisit

the example of flattening a tree into a singly-linked list (sll) as described

by the specification in Figure 2.5.

tz fiÑ p ˚ treepp, squ
void flattenploc zq
tz fiÑ q ˚ sllpq, squ

FIGURE 2.5: Specification for Flattening a Tree to SLL in
Separation Logic

The tool will begin with the READ rule to turn the program variable

z into logical variable x. Then, similar to the previous example, the tool

will continue with the OPEN rule to unfold the tree predicate as per the

inductive definition, producing two sub-goals c1 and c2:

tx “ 0 ^ s “ H; empu{ tempu | c1 (2.8)

tx ‰ 0; rx, 3s ˚ x fiÑ v ˚ xx, 1y fiÑ l ˚ xx, 2y fiÑ r (2.9)

˚ treepl, slq ˚ treepr, srqu{ tsllpx, squ | c2
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Similarly to the previous example, the first subgoal (Eq. 2.8) would

be solved by the EMP rule, emitting a program skip. In the case of the

second subgoal (Eq. 2.9), the tool will apply the READ rule three times

to turn the logical variables x, x ` 1, and x ` 2 into program variables

v, l, and r correspondingly. Afterward, we want the tool to unify both

heaplets l and r with the top-level specification to trigger the CALL rule

on them.

However, the precondition in specification requires z to point to the

root of the sub-trees to make this recursive call. As the WRITE rule ap-

plication process is guided by the desired postheap, it is not capable of

making this decision on its own. This is where the ABDUCECALL rule

comes in. It will prepare the symbolic heap for the recursive call, i.e.

t. . . ; z fiÑ lu { tz fiÑ l’u, which will help trigger the WRITE rule to pro-

duce *z = l’ (Polikarpova and Sergey, 2019). Now, the CALL rule can be

triggered on the predicate instance of the left sub-tree which will store

the result in program variable y. This process of applying the ABDUCE-

CALL , WRITE and CALL rules will be repeated for the recursively syn-

thesising the right sub-tree. At this stage, we are left with two flattened

singly-linked-list stored inside y and z. And therefore, at this point of

derivation, we now have the synthesis goal of:

$
’&

’%

s “ tvu Y sl Y sr; r fiÑ yr ˚ sllpyl, slq ˚ sllpyr, srq ˚

rx, 3s ˚ x fiÑ v ˚ xx, 1y fiÑ _ ˚ xx, 2y fiÑ _

,
/.

/-

{ tr fiÑ y ˚ sllpy, squ

(2.10)

Here, we have two lists yl and yr in the preheap while a single list of

y which contains all the elements of both heaplets along with v in the
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postheap. The tool will proceed by unfolding the predicate instances of

sll by using the OPEN rule. This would again results in two lists: yr,

which is the same as before, and y
1
l
, the tail of yl. As this can be unified

with the predicate instances in Eq. 2.10, the CALL rule will be triggered,

emitting an auxiliary recursive procedure append(y,v, x,z). The result of

this synthesis is as shown in Figure 2.6.

1 void flatten(z) {
2 let x = *z;
3 if (x == 0) {
4 } else {
5 let v = *x;
6 let l = *(x + 1);
7 let r = *(x + 2);
8 *z = l;
9 flatten(z);

10 let y = *z;
11 *z = r;
12 flatten(z);
13 append(y, v, x, z);
14 }
15 }

16 void append(y1, v, x, z){
17 let y2 = *z;
18 if (y1 == 0) {
19 let y = malloc(2);
20 free(x);
21 *z = y;
22 *(y + 1) = y2;
23 *y = v;
24 } else {
25 let n = *(y1 + 1);
26 append(n, v, x, z);
27 let y = *z;
28 *z = y1;
29 *(y1 + 1) = y;
30 } }

FIGURE 2.6: Tree flattening program synthesised by SUS-
LIK.

However, as mentioned in Section 1.4, we know that this approach

of flattening a tree will incur a quadratic time complexity and can be

reduced to a linear one by merely introducing an accumulator. As such,

in the next sections, we will attempt to provide a pipeline where users

can request the tool to use an accumulator in the synthesis process.
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Chapter 3

Synthesising Code With An

Accumulator

3.1 Overview of the Pipeline

Previously, we have demonstrated the importance of accumulators in op-

timizing the efficiency of synthesised programs. In order for the tool to be

able to use the accumulator in synthesising recursive functions, we have

attempted to implement a pipeline entailing the three sub-processes as

below:

• Algorithm to generate accumulator-based specification from the client

specification

• Verifying the correctness of the generated accumulator-based spec-

ification

• Synthesising the accumulator-based function

The implementation of this entire pipeline could be checked out here in

our GitHub Repository1. In the following sections, we will delve into

1https://github.com/NayChi-7/suslik/tree/accumulators

https://github.com/NayChi-7/suslik/tree/accumulators
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the specifics of each process, in order to provide a comprehensive under-

standing of the process of introducing accumulators to the synthesiser.

3.2 Algorithm for Generating Accumulator Based

Specifications

One way of enforcing the tool to use an accumulator is for the user to

include it in the specification. However, automating this process would

greatly enhance user experience. To this end, we have implemented a

pipeline where the user can transform their original specification into one

with an accumulator. This functionality can be assessed by running the

tool via the terminal with an additional parameter “-g true”.

To generate an accumulator-based specification from the original one,

we would need to alter all three components of the specification, namely

the precondition: P , postcondition: Q, and the function parameters.

Each of these components requires different variations of hints for ac-

cumulator usage. The crux of this process lies in determining the correct

accumulator type from the original specification.

3.2.1 Determining the Correct Accumulator Type

As mentioned before, the nature of an accumulator is to accumulate re-

sults over time so that the function can reuse such results and return these

accumulated results at the end (Danvy, 2023). As such, one way to exam-

ine the correct type of accumulator to be used is by analysing the post-

condition of the specification, which entails the final result the program
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is expected to return. To understand this better, we will revisit the exam-

ple of flattening a tree into a singly linked list as described in Figure. 2.5.

Below is the declarative functional specification for the task that needs to

be parsed into the tool:

In the precondition, a tree is allocated in the memory at address r. Af-

ter flattening it, we want to return a singly linked list carrying the same

payload set s as the tree, at a new memory address y. In order to de-

termine the correct type of accumulator, we can first take a look at the

synthesised code without an accumulator. In the example of a tree being

flattened to a list, we can see that the program will recursively flatten the

left and right trees and store these results in a singly linked list. Therefore,

each intermediate result would essentially be the result of appending the

root of the subtree at each recursive call into the singly linked list. Finally,

we want to return the final result where the payload set s is stored in the

form of a singly linked list. From this analysis, if we recall the purpose

of the accumulators as described in Section 1.4, we can conclude that the

accumulator needs to be a singly linked list. In the context of this paper,

we want to use accumulators for accumulation across the intermediate

state as well as storing the final result of the program. We can simply

take a look at the final element to be returned in the original specification

to acquire a correct instance of the accumulator for the program.

3.2.2 Transformation of the Pre-Condition, P

As mentioned in Chapter 2, the pre-condition of a specification has pure

and spatial parts, represented as tf, Pu. However, to transform the pre-

condition of the client specification (original specification) into one with
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an accumulator, we only need to transform the spatial part in the precon-

dition. This is because the pure part, f, represents the logical constraints

of the program state. We want the addition of the accumulator to en-

hance the program’s efficiency while preserving the original purpose. As

the accumulator should not interfere with existing logical constraints if

any, there is no need to transform the pure part of the precondition.

However, we need to transform the spatial component, P, of the pre-

condition – i.e. we need to include an instance of the correct accumulator

in the precondition so that the tool can recognise it and manipulate it

throughout the synthesis. After determining the correct type of accumu-

lator as mentioned above, we then create an instance of such accumulator

in the memory at a new address, namely original_loc, carrying a payload

of set acc, which is usually empty but could be of any value. Then, we al-

locate a new address in the memory, namely ans, which stores a pointer to

the accumulator. This pointer will also serve as an explicit result-storing

pointer, i.e. the return to the program following the design of SUSLIK .

Given that each program should only have one return value, any exist-

ing explicit result-storing pointers in the original precondition will be re-

moved. However, any existing heap allocation associated with it would

be preserved.

The result of the transformation is shown below:
{ tree(r, s) ** ans :-> original\_loc ** sll(original\_loc ,

accumulator)}

3.2.3 Transformation of the Function Parameters

Through the specification, the tool also takes in immutable program vari-

ables, i.e. function parameters that it needs to utilise. As such, to enable
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the tool to recognise the accumulator instance, a reference to the previ-

ously allocated accumulator must be added to these parameters. This

is simply achieved by parsing in locans where loc is an untyped pointer

used for location references, while ans is the address of the accumulator.

The new function signature should look like this:
tree_flatten(loc r, loc ans)

3.2.4 Transformation of the Post-Condition, Q

Unlike the precondition, this time, we are concerned with both the pure

and spatial parts of the assertion to capture the expected state of the pro-

gram upon termination accurately.

Transformation of the Spatial Part, Q

As mentioned previously, the accumulators serve both purposes of “car-

rying” intermediate computations across recursion and storing the final

result. Therefore, we need to transform the current postcondition into

one that would explicitly return the accumulator element with the help

of the result-storing pointer, which we allocated as ans in Section 3.2.2.

After the program execution, ans should store a pointer to a new address

in the memory, which we have instantiated as new_loc. While it is pos-

sible to just append to the existing accumulator at the original address

when we manually program, the tool needs to instantiate a new one as it

is essential for the tool to recognize that this is a newly processed result.

Additionally, as we are accounting for all general instances of accumu-

lators that are not necessarily empty, the payload that the accumulator

will now carry would be a combination of its existing payload acc and
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the payload of the heaplet in the memory before program execution, i.e.

payload set s in our examples. Thus, we have introduced a new payload

variable, namely f inal_result, to capture this.

The result of the transformation on spatial part of the post condition

is shown below (the pure part is omitted):
{ ...; ans :-> new_loc ** sll(new_loc , final_result)}

Transformation of the Pure Part, P

In the section above, we claimed that the final payload at the return ad-

dress would be f inal_result. However, without any logical constraints,

it could just be any set. It, therefore, would not necessarily capture the

essence of the payload that the accumulator should carry, and thus, will

fail to fulfill the original program requirements. We can solve this prob-

lem by making some changes to the existing pure formulas in the post-

condition, i.e. inflicting some logical constraints on this variable.

First of all, we need to remember that the payload that the accumula-

tor should carry upon program termination is essentially the combination

of the original payload that the accumulator instance was carrying and

the final payload in the original specification. As such, we will take first a

close look at the postcondition of the original specification. First, we will

zoom into the spatial part and determine the return element associated

with the result-storing pointer. From this element, we can figure out the

final payload, which in example ?? would be set s. Then, we will examine

if there are any existing logical constraints associated with this payload

set s. If there are some existing pure formulas, we will filter out the one

that utilises the logical operator, OverloadedEq. This operator is used to
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express information regarding the elements/value in the final payload

set s in the original postcondition. Therefore, we need to utilise this in-

formation when creating a logical constraint to f inal_result as well.

For example, if the pure formula extracted is s “ s1 Y s2, then, the

logical constraint to be generated would take the form of final_res “

s Y acc, and when unpacked, would be final_res “ s1 Y s2 Y acc. If

there is no pure formula extracted according to the aforementioned crite-

ria, then, there is no need for us to “unpack” the contents of s, and there-

fore, the constraint would simply take the form of final_res “ s Y acc.

We now need to represent these logical constraints in the correct syn-

tax, by utilising the logical and binary operators that SUSLIK provides.

There are multiple binary operators responsible for various purposes such

as addition, subtraction, and multiplication. While we could generate all

possible logical constraints on the logical variable: f inal_result by util-

ising all of these binary operators, it is impractical considering the time

and energy needed to generate and verify the correctness of each of them

through the tool, just to be filtered out to a single correct instance. There-

fore, we will filter these operations down to just one which is most ap-

propriate in this context.

As mentioned previously, the purpose of the accumulator in our pro-

grams is to aggregate results over time, storing the final return value

upon termination. As such, the changes to the accumulators would be

monotone: i.e. always increasing in value or size of the payload set. Thus,

we can filter it down to a single operator, namely OverloadedPlus. This

operator can be used to perform both numerical addition and set unions

based on the type of payloads that it is dealing with. Additionally, since
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the addition of elements and values are commutative and associative,

we do not consider the order of the logical variables in the formula. As

such, the logical constraint generated could be filtered down to a single

formula.

3.3 Verifying the Correctness of the Guessed Spec-

ification with an Accumulator

In the previous section, we introduced an algorithm that could help us

generate an accumulator-based specification candidate from the client

specification. However, we need to ensure that this generated candidate

is correct, i.e. when synthesised, it satisfies the same program require-

ments as the client function. Toward this end, we will provide the gen-

erated accumulator-based specification as an auxiliary to the tool along

with the client function specification. Through this, we aim to direct

the tool to synthesise the client function by invoking the accumulator-

based function with an empty accumulator instance. It is capable of per-

forming in the expected manner in synthesising the client functions of

binary-tree-size and sll-length. However, such is not always the case.

When dealing with accumulators which are instances of linked data

structures, the tool simply ignores the accumulator-based specification

and starts to synthesise the client function on its own. This could be

due to two main reasons: 1) it is cheaper for the tool to synthesise the

client specification on its own, and 2) the synthesis rules fail to “unify”

the client goal with that of the accumulator-based one. The latter could

imply that the generated specification is not the correct one.
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Let us first assume that the generated candidate is indeed the correct

one. Then, we will examine the cause of the problem by manually syn-

thesise the targeted versions of tree-flattening and sll-length, with the

help of their accumulator-based functions to compare the steps needed.

As mentioned previously, the process essentially is parsing an empty ac-

cumulator instance as an argument to the accumulator-based function as

shown in Figure 3.1a.

1 void flatten_with_helper(loc
z)

2 let x = *z ;
3 *z = 0;
4 flatten_acc(x, z);

(A) Tree Flattening

1 void sll_len_with_helper (loc
x, loc ret) {

2 *ret = 0;
3 sll_len_acc(x, ret);
4 }

(B) SLL Length

FIGURE 3.1: Targeted Synthesis of Tree Flattening and SLL
Length with the Help of Accumulator-based Functions.

tans fiÑ ori_loc ˚ sllpori_loc, accq ˚ treepx, squ
void flattenploc x, loc ansq
t f inal_res “ s ` `acc; ans fiÑ new_loc ˚ sllpnew_loc, f inal_resqu

FIGURE 3.2: Generated Specification with an Accumulator
for Flattening a Tree into SLL

At first glance, it is surprising to see that the tool is only able to syn-

thesise sll_len_with_helper but not flatten_with_helper as the steps re-

quired seem to be identical. To understand the problem better, we have

analysed the steps needed for deducing flatten_with_helper in Figure 3.1a.

It will first need to apply the READ rule to transform the logical variable

z into program variable x. Then, we want the tool to apply the CALL
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rule and create a recursive call on the auxiliary function, which in this

case would be flatten_acc. Here, we need to parse in the tree heaplet

along with an additional parameter which should be a sll instance as

described in Figure 3.2. However, there is no such sll instance in our

current preheap. Then, let us create an empty sll heaplet to parse in the

result. Then, we will store the address of this heaplet, which would be 0,

inside z via the WRITE call rule. Such preparation of the symbolic heap

will now result in the trigger of the CALL rule application on flatten_acc.

The derivation of this entire process is shown in Fig. ?? .

READ

ABDUCTIONNEEDED

WRITE

CALL

FRAME

EMP tempu{tempu | skip 
final_res == s + emp;z fiÑ x1 ˚ sllpx

1, final_resq
(
{tz fiÑ y ˚ sllpy, squ

ˇ̌
skip

tz fiÑ 0 ˚ treepx, sq ˚ sllp0, empqu{tz fiÑ y ˚ sllpy, squ | flatten_acc(x,z)
!
z fiÑ x ˚ treepx, sq ˚ sllp0, empq

)
{tz fiÑ y ˚ sllpy, squ

ˇ̌
ˇ *z = 0;
flatten_acc(x,z)

tz fiÑ x ˚ treepx, squ{tz fiÑ y ˚ sllpy, squ | *z = 0;
flatten_acc(x,z)

t z fiÑ r ˚ treepr, squ{tz fiÑ y ˚ sllpy, squ |
let x = *z;

*z = 0;
flatten_acc(x,z)

FIGURE 3.3: Derivation of Tree Flattening to SLL with
accumulator-based function as helper.

3.3.1 Addition of Identity Element and Safety Check

To resolve this issue, we will need to add a “zero”/ empty instance of the

accumulator to the precondition of the client specification. The zero in-

stance will differ based on the type of accumulator we are dealing with. If

the accumulator stores an integer element, the zero instance will be sim-

ply 0. On the other hand, if the accumulator is a dynamically-allocated

memory like a singly-linked list, it will take the form of an empty list,

having the structure of sll(0,{}).
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After determining the zero instance of the accumulator, we will then

add it to the precondition of the client specification P1. Let this newly

transformed precondition be P2. We then construct a new synthesis goal

G
1 with P2 as its pre-condition, keeping the function parameters and

postcondition of the client specification. We then parse the new synthesis

goal G
1 along with the accumulator-based specification. We observe that

the tool is then able to synthesise G
1 as intended, i.e. no recursive func-

tion except the accumulator-based function is invoked in the synthesized

code.

Even though this introduction of an empty instance “magically” re-

solves the verification process, we need to ensure that the client goal did

not get transformed during the process, i.e. the client goal G and the new

goal G
1 are indeed the same. Toward this end, we have implemented a

safety check procedure as follows. First, we create another sub-synthesis

goal G1, where its pre- and postcondition are P1 and P2 respectively. If

the two assertions are identical, the pre-and postheap could be cancelled

out as per FRAME rule, leaving EMP on both sides. Then, EMP rule will

kick in to terminate the program, by emitting a trivial program skip. Oth-

erwise, the tool will produce a safety goal error. We have tested our ex-

amples with this procedure and the results support our argument that

the client goal G and the newly transformed goal G
1 being identical.



Chapter 3. Synthesising Code With An Accumulator 27

3.4 Synthesising the Accumulator-Based Func-

tion

Previously, we have generated a candidate specification for an accumulator-

based function from the client specification in Section 3.2 and also en-

sured that our guess is indeed a correct one in Section 3.3. Now, we need

to ensure that the tool is capable of synthesising the accumulator-based

function from the guessed specification. Thus, we provided this guessed

specification to the tool for synthesis, and all of them were successfully

synthesised as expected. However, these synthesised accumulator-based

functions are not more efficient than the client functions.

The main source of this inefficiency stems from the tool utilising the

accumulator instance in a “wrong” way. As mentioned previously, we

would like to use an accumulator to remove recursive auxiliary functions

which attributed to the expensive runtime complexity and also in synthe-

sising tail-recursive functions whenever possible. However, the tool per-

formed opposite to our intentions: synthesised recursive auxiliary func-

tions whenever possible and did not use the accumulator to carry the

information across recursive calls to enable tail call optimisation. These

two inefficiencies are evident in the examples of flattening a tree into a

singly-linked list and calculating the length of a singly-linked list corre-

spondingly. We will try to explore each issue in detail in the following

subsections 3.4.1 and 3.4.2.
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3.4.1 Removing Recursive Auxiliary Functions

The synthesis of the function to flatten a tree into a singly linked list (ac-

cording to the specification in Figure 3.2) results in the inefficient pro-

gram shown in Figure 3.4.

1 void flatten (loc x, loc ans)
{

2 let o = *ans;
3 if (o == 0) {
4 flatten_helper(x,

ans);
5 } else {
6 let nx = *(o + 1);
7 *ans = nx;
8 flatten(x, ans);
9 let n = *ans;

10 *ans = o;
11 *(o + 1) = n;
12 }
13 }

1 void flatten_helper (loc
x, loc a) {

2 if (x == 0) {
3 } else {
4 let v = *x;
5 let l = *(x + 1);
6 let r = *(x + 2);
7 flatten_helper(l, a);
8 flatten(r, a);
9 let ne = *a;

10 let n = malloc(2);
11 free(x);
12 *a = n;
13 *(n + 1) = ne;
14 *n = v;
15 }
16 }

FIGURE 3.4: Inefficient Synthesis of Tree Flatten Function
with an Accumulator

By tracing the results of the synthesis, we noticed that the heuris-

tic costs associated with synthesising a recursive auxiliary function are

cheaper than an attempt at trying to utilise the accumulator instance cor-

rectly in the invocation of the recursive call on the main function itself.

As such, by limiting the space for possible candidate goals to be unified

with, to just the top-level specification, we can achieve the desired syn-

thesis of flatten_w_acc as shown in Figure 3.5.
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void flatten_w_acc (loc x, loc
ans) {

if (x == 0) {
} else {

let v = *x;
let l = *(x + 1);
let r = *(x + 2);
flatten(l, ans);
flatten(r, ans);
let ne = *ans;
let n = malloc(2);
free(x);
*ans = n;
*(n + 1) = ne;
*n = v;

}
}

FIGURE 3.5: Synthesis of Tree Flatten with Accumulator
without Recursive Auxiliary Function

3.4.2 Exploring the Synthesis of Tail Recursive Calls

Another important use of accumulators is to enable tail call optimisation

to transform recursive functions into tail-recursive ones. Such transfor-

mation is prevalent in various arithmetic functions ranging from simple

functions such as computing the size of the tree, the sum of the elements

in a list to more complex ones such as factorial or Fibonacci numbers. Let

us focus on the synthesis of relatively simpler functions such as calculat-

ing the length and sum of a list and size and sum of a tree. While the

current tool utilises the accumulator in synthesising these functions, it is

not capable of using the accumulator in the way we want. The essence

of the tail recursive function as mentioned before is the fact that the re-

cursive call to the function is the last action performed in the program.

However, we realised that the tool modifies the accumulator after the re-

cursive call in the version of the program that is produced as shown in
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void sll_len_current (loc x,
loc a) {

let ans = *a;
if (x == 0) {
} else {

let n = *(x + 1);
*a = 0;
sll_len(n, a);
let l = *a;
*a = ans + l + 1;

}
}

(A) Inefficient Synthesis

void sll_len_desired (loc x,
loc a) {

let ans = *a;
if (x == 0) {
} else {

let n = *(x + 1);
*a = ans + 1;
sll_len(n, a);

}
}

(B) Desired Synthesis

FIGURE 3.6: Inefficient Synthesis vs Desired Synthesis of
Singly-linked List Length Function with an Accumulator

Figure 3.6a. In order to better understand the failure, let us compare it to

the ideal tail recursive version, which we have manually synthesised, as

shown in Figure 3.6b.

The main difference lie in line 6 of both functions, where the tool needs

to apply the WRITE rule to the accumulator instance ans. As such, we

have tried to analyse the intermediate assertions of Figure 3.6b as shown

here. Through this analysis, we found out that if the tool were given

a pure formula a == a1+ 1 in the precondition, it would synthesise the

version in Figure 3.6b. To understand the reason behind this, we have

printed the traces of both versions of the synthesis (obtained by running

the tool with ’-r 1’), we realised that it is because without this hint, the

tool is unable to determine the modifications that it needs apply to the

accumulator and therefore, will try to invoke the CALL rule to synthesise

the recursive function and add in the accumulator value finally to satisfy

the logical constraint in the postcondition.

https://github.com/NayChi-7/suslik/tree/accumulators/src/test/resources/synthesis/all-benchmarks/accumulators/step-by-step/sll-length
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We can provide the same hint to synthesise a function which calcu-

lates the binary tree size. This is because, at each recursive call, the ac-

cumulator is incremented by one. However, this hint unfortunately is

not the magical solution to synthesising tail recursive functions. Let us

consider the case of implementation of sll-sum function which sums all

the elements in a list as the name suggests. Then, at each recursive call,

the accumulator is modified by adding the head of the list to it. As el-

ements in a list are variables and can take any value, we can no longer

create a trivial hint as at each recursive call, the value needed to add to

the accumulator needs to change. Therefore, with the current capabilities

of the tool, we are not able to provide a generalised solution to ensure the

synthesis of tail-recursive functions whenever possible.
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Chapter 4

Evaluation

4.1 Cost and Efficiency

In order to understand the benefits and cost of our work, let us take a

look at Table 4.1 .
Function Name Synthesis Time (s) Time Complexity

tree_flatten_to_sll 6.326 Opn
2q

tree_flatten_to_sll_acc 2.049 Opnq
tree_flatten_to_dll 20.667 Opn

2q
tree_flatten_to_dll_acc 5.205 Opnq

sll_length 2.044 Opnq
sll_length_acc 3.688 Opnq

sll_length_acc_with_extra_pure_formula 2.821 Opnq
binary_tree_size 2.145 Opnq

binary_tree_size_acc 13.794 Opnq
binary_tree_size_acc_with_extra_pure_formula 4.909 Opnq

TABLE 4.1: Synthesis Time and Complexity for Functions
with and without (correct) use of accumulators

Here, we can see that the introduction of accumulators is greatly ben-

eficial in the cases of flattening a tree into a singly-linked list (sll) and

doubly-linked list (dll) both in terms of time taken to synthesise and the

time complexity of the resulting function. In the cases of calculating the

length and size of the binary tree, it takes longer for the tool to synthe-

sise, especially in the case of “incomplete” specification which does not

hint at the changes needed to be made to the accumulator instance. At
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a first glance, one might think that this attempt at introducing the accu-

mulator might be decreasing the overall efficiency as the synthesis time

increases while the overall time complexity remains the same. However,

we should note that when provided with the correct hint, the increase in

the synthesis time is trivial, yet we gain more efficiency through the tail

call optimisation whose benefit we have mentioned previously in Section

1.4.

However, we should also note that there is a cost (time and space)

associated with the generation of the accumulator-based specification. It

approximately takes a user 30 seconds to transform each specification

via the tool, verify the correctness of the specification, and then replace

the client specification with an accumulator-based one. This current cost

alone is longer than all of the examples that we have tried to synthesise.

While this could be automated to enhance user convenience, it, nonethe-

less, will still have some costs associated with time and space.

While this is true, we believe that any improvement in the time and

space complexity will outweigh these costs. Any programmer would

agree that the improvement of time complexity from Opn
2q to Opnq is

crucial especially dealing with large datasets where the time taken could

scale extremely over time. As such, a good programmer would always

try to optimise their solutions and the time taken to manually do so

would be significantly bigger than 30 seconds in almost all the cases.

4.2 Limitations

While our current tool can generate a correct accumulator-based spec-

ification when given a working specification, it is not necessarily the
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version where the tool can synthesise the most efficient version. Such

instances are evident in cases where the synthesised function could be

optimised into a tail-recursive one as discussed before. Additionally, ac-

cumulators do not necessarily improve the efficiency of the function in

certain instances such as copying an instance of sll. In such instances,

the function without an accumulator would only traverse the list once to

copy each element into a new list, incurring only the cost of linear time

complexity Opnq. Additionally, in most cases of copying a list, we would

like our list to be in the same order as the original list. However, even

if we could make the accumulator-based copy function tail-recursive, it

would still result in a reversed version. Even though the introduction of

the accumulator would not incur significant costs, it also would not im-

prove the existing efficiency, and therefore, there is no use of one in these

cases.

4.3 Future Work

As mentioned previously, the inclusion of “correct" pure formula hints

plays a significant role in assisting the tool to use the accumulator in-

stances in a correct manner. Therefore, we could develop a mechanism

where the tool is capable of analysing the exact steps that the accumula-

tor should take either by inspecting the client specification or by having

a procedure to analyse the synthesised code and reuse those analysis in

making more informed decisions. Additionally, we could also implement

a mechanism which could automate the examination of the necessity of

an accumulator in a function and only synthesise with the use of such

accumulators only in those instances.
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