
Rooting for Efficiency
Mechanised Reasoning about Array-Based Trees in Separation Logic

Qiyuan Zhao
National University of Singapore

Singapore
qiyuanz@comp.nus.edu.sg

George Pîrlea
National University of Singapore

Singapore
gpirlea@comp.nus.edu.sg

Zhendong Ang
National University of Singapore

Singapore
zhendong.ang@u.nus.edu

Umang Mathur
National University of Singapore

Singapore
umathur@comp.nus.edu.sg

Ilya Sergey
National University of Singapore

Singapore
ilya@nus.edu.sg

Abstract

Array-based encodings of tree structures are often prefer-
able to linked or abstract data type-based representations
for efficiency reasons. Compared to the more traditional
encodings, array-based trees do not immediately offer conve-
nient induction principles, and the programs that manipulate
them often implement traversals non-recursively, requiring
complex loop invariants for their correctness proofs.
In this work, we provide a set of definitions, lemmas,

and reasoning principles that streamline proofs about array-
based trees and programs that work with them.We showcase
our proof techniques via a series of small but characteristic
examples, culminating with a large case study: verification
of a C implementation of a recently published tree clock data
structure in a Separation Logic embedded into Coq.

CCS Concepts: • Software and its engineering→ Soft-

ware verification.

Keywords: array-based trees, logical clocks, separation logic

ACM Reference Format:

Qiyuan Zhao, George Pîrlea, ZhendongAng, UmangMathur, and Ilya

Sergey. 2024. Rooting for Efficiency: Mechanised Reasoning about

Array-Based Trees in Separation Logic. In Proceedings of the 13th

ACM SIGPLAN International Conference on Certified Programs and

Proofs (CPP ’24), January 15–16, 2024, London, UK. ACM, New York,

NY, USA, 15 pages. h�ps://doi.org/10.1145/3636501.3636944

1 Introduction

There are hardly any other basic data structures in Com-
puter Science as ubiquitous, versatile, and beloved as trees.

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

CPP ’24, January 15–16, 2024, London, UK

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0488-8/24/01

h�ps://doi.org/10.1145/3636501.3636944

Used to represent virtually any kind of data with hierarchical
ordering, trees admit a simple encoding in both functional
programming languages, as algebraic data types (ADT), and
in imperative ones, as pointer-based linked structures with-
out internal sharing. Most tree-manipulating programs can
be expressed as recursive traversals, whose control flowmim-
ics the shape of the underlying data structure. Thanks to this
fact, reasoning about tree manipulations can be conducted
via simple induction principles, which made such computa-
tions popular topics in studies on program derivation [13, 29],
transformation [4, 35], and verification [2, 10].
In this work, we focus on a less well-studied way to rep-

resent trees in heap-manipulating programs written in im-
perative languages such as C: as arrays. Developers choose
an array-based encoding of trees for efficiency reasons—it
allows constant-time random access to node data, requires
less memory to store, and enjoys better cache locality than
pointer-based representations. From the perspective of for-
mal reasoning about tree-manipulating programs, the array
representation comes with a number of new challenges. First
of all, tree traversals implemented by means of addressing
elements in an array via integer indices do not immediately
yield familiar induction principles. Furthermore, programs
working with array-based tree representations often exploit
the fact that children of a node are arranged into a contiguous
array segment: this enables efficient non-recursive traver-
sals, but complicates verification due to the need to devise
complex loop invariants. Finally, while arrays are conceptu-
ally similar to pointers, they require slightly more delicate
reasoning in common formalisms, such as Separation Logic
(SL) [28, 31], as proof obligations involving their element
indices require one to keep track of the indices’ numeric
properties to avoid, in particular, out-of-bounds errors.
The motivation for this work came out of our effort of

verifying in Coq a C implementation of Tree Clocks [22]—an
intricate imperative data structure that implements a state-
of-the-art version of logical clocks via an array-based tree
and extensively takes advantage of the array encoding for the
sake of efficiency. SL-based reasoning about complex linked

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0

International License.

45

https://creativecommons.org/licenses/by-sa/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0000-0002-1017-1562
https://orcid.org/0009-0008-5378-2815
https://orcid.org/0009-0002-0214-3462
https://orcid.org/0000-0002-7610-0660
https://orcid.org/0000-0003-4250-5392
https://doi.org/10.1145/3636501.3636944
https://doi.org/10.1145/3636501.3636944

CPP ’24, January 15–16, 2024, London, UK Qiyuan Zhao, George Pîrlea, Zhendong Ang, Umang Mathur, and Ilya Sergey

structures with “deep” internal sharing and unstructured
aliasing has been addressed, to some extent, in the past [24,
36]. However, we found those developments inapplicable for
our goal due to their focus on a more general setup targeting
graph-like structures and, therefore, imposing extra proof
overhead when tackling tree-specific proof obligations.
To document the lessons we learned from our verifica-

tion experience, in this paper, we articulate a number of
challenges we faced during while verifying several charac-
teristic procedures that manipulate array-based trees. We
then describe reasoning principles and auxiliary definitions
encoded in Coq that came in handy when constructing such
proofs. In particular, we argue that there are two kinds of rep-
resentation predicates in Separation Logic for array-based
trees (i.e., the array view ones and the tree view ones), each
having its specialised utility in the proof; we also present
lemmas for smoothly “switching” between the dual views.
Another emphasis of our demonstration is the formulation
of an extensible loop invariant for non-recursive tree tra-
versals through a small collection of neat functions defined
on the mathematical model of array-based trees. Finally, we
sketch the key points of our mechanised correctness proof
of the tree clock data structure that has been implemented
in C and verified using the Verified Software Toolchain (VST)
framework [1], which embeds Separation Logic into Coq.

In summary, this work makes the following contributions:

• A collection of small case studies illustrating the key chal-
lenges of reasoning about imperative C programs that
manipulate array-based trees (Sec. 2);

• Arboreta: a library of predicates and accompanying higher-
order lemmas, as well as a set of principles that streamline
the common reasoning patterns for such program (Sec. 3);

• A mechanically verified implementation of Mathur et al.’s
array-based tree clock data structure in C [22] (Sec. 4).

The code repository for this paper is publicly available at

h�ps://github.com/verse-lab/arboreta

2 Overview and Key Ideas

In this work, we reason primarily about rooted labelled
trees (RLTs), and specifically those implemented using arrays.
An RLT is a tree in which each node, besides the data it holds,
is given a unique identifier (label), usually a natural num-
ber. These identifiers allow for node indexing and thereby
enable random-access data retrieval from the “carrier” array
of the tree. In an imperative programming language like C,
a common approach to implementing RLTs is to use an ar-
ray of structs, where each struct contains the information
associated with a node, and use array indices as node identi-
fiers. Fig. 1a shows one its possible encoding in C: the tree is
represented by the array tree, in which tree[i] stores the
node with identifier 8 (hereafter referred to as node 8). Each
node also stores some data in its val field, and its relations
to other nodes in the RLT are represented by the fields par,

struct node { int val, par, sib, fch; };

struct node tree[N];

(a) RLT encoding in C.

par

id:i
val sib

fch

children nodes

children

(b) Correspondence between a tree node and the struct fields.

Fig. 1. RLT: encoding in C (top) and its depiction (bottom).

sib, and fch that store the identifiers of the node’s parent,
right sibling, and first (left-most) child, respectively. Fig. 1b
gives a visual depiction of such a tree. As indicated in Fig. 1b,
this structure allows the representation of RLTs of any arity.
In the rest of this section, we provide a series of illustra-

tive examples of programs that manipulate RLTs encoded as
shown in Fig. 1a, articulating the challenges of structuring
formal verification of such programs.

Formalising RLTs. Fig. 2 shows a natural encoding of
an RLT in Coq as an inductive algebraic data type: an RLT
is constructed with the Node constructor, which carries the
node identifier id, the node information val and the list chn
of children. Even though the definition of the tree data type
offers no constructor for an empty tree, leafs (i.e., nodes
without children) can be modelled as instances of the Node

constructorwith empty chn. To ensure that the nodes in a tree
tr all have distinct identifiers, we use an extrinsic predicate
NoDupId(tr), whose presentation is postponed till Sec. 3.1.

While this fairly standard inductive definition is sufficient
for modelling the tree structure and stating and proving
mathematical properties of purely-functional RLTs, it is not
immediately suitable for specifying and verifying impera-
tive programs that manipulate array-based RLTs: the logical
tree structure is not directly related to the physical one in
memory. To bridge this gap, we employ a standard tech-
nique of defining a representation predicate in Separation
Logic [6, 7, 34] that relates the algebraic definition of RLTs
in Coq to the memory layout of the RLT in C.

To define a representation predicate tree_reparr for array-
based RLTs, we can use the conventional predicate arr(?, ℓ)

46

https://github.com/verse-lab/arboreta

Rooting for Efficiency: Mechanised Reasoning about Array-Based Trees in Separation Logic CPP ’24, January 15–16, 2024, London, UK

Inductive tree: Type := Node (id val: nat) (chn: list tree).

Definition NoDupId (tr: tree): Prop := (* elided *)

Fig. 2. An algebraic encoding of RLT in Coq.

for arrays (available in many existing Coq embeddings of
SL [1, 8]), which states that an address ? in memory is a base
pointer of an array whose elements are the elements of the
(mathematical) list ℓ . Concretely, we make ℓ into a list of
payloads, where each payload is the functional model of a
single instance of the node structure shown in Fig. 1a.

Unlike the C definition in Fig. 1a, in the Coq encoding, the
child subtrees of a node are represented as a finite list. The
challenge in relating the C encoding, which connects a node
to its parents/children/sibling by virtue of the indices repre-
sented by integer fields, with the Coq encoding from Fig. 2
lies in recovering the list of nodes from the inductive tree
definition, and specifically in constructing the par, sib, and
fch fields to express the tree structure. To this end, we define
a recursive projection predicate treelist_proj that relates a
list of trees to a list of payloads:

treelist_proj(nil, par, ℓ) ≜ ⊤

treelist_proj(Node(id, val, chn) :: trs, par, ℓ) ≜

ℓ [83] = payload(val, par, hid(trs), hid(chn)) ∧

treelist_proj(chn, id, ℓ) ∧ treelist_proj(trs, par, ℓ)

As per the definition above, the projection predicate takes
as input a list of trees, rather than a single tree, in order to
match the structure of the Coq definition wrt. children. For
Node(id, val, chn) in the list, the predicate asserts that its

payload is the idth element of ℓ (denoted ℓ [id]), with the ap-
propriate parent. The right sibling and first child are obtained
by retrieving the identifier of the heading node (hid) in the trs
and chn lists, respectively. The remainder of the payload list ℓ
is constrained by two recursive applications of the predicate,
treelist_proj(chn, id, ℓ) and treelist_proj(trs, par, ℓ). The in-
dices of the nodes in the payload list ℓ are the same as their
identifiers in the definition from Fig. 2, but treelist_proj could
assign identifiers arbitrarily, as long as they are distinct.

With the above predicate, we can now define a projection
on trees (rather than list of trees) and the representation
predicate for array-based RLTs in terms of Separation Logic:

tree_proj(tr, ℓ) ≜ treelist_proj(tr :: nil,−1, ℓ)

tree_reparr (?tree, tr) ≜ ∃ℓ, ⌈tree_proj(tr, ℓ)⌉ ∗ arr(?tree, ℓ)
(1)

where tree_reparr (?tree, tr) represents the array-based RLT
tr whose base pointer is ?tree (e.g., the tree pointer in Fig. 1a).
As customary in SL, the ∗ connective stands for the separating
conjunction [31], and ⌈. . .⌉ denotes pure assertions.

2.1 Specifying Computations with Array-Based RLTs

Let us now illustrate the representation predicate by specify-
ing and verifying a couple of RLT-manipulating programs.

Definition isSome [A : Type] (x : option A) :=

match x with Some _ => true | None => false end.

Fixpoint find_val (x : nat) (tr : tree) : option nat :=

let 'Node id v chn := tr in

if (x =? id)%nat then Some v

else match find isSome (map (find_val x) chn) with

| Some res => res

| None => None

end.

Fig. 3. Coq definitions for retrieving an value from RLT.

Example 1: RandomAccess. Consider the following func-
tion that returns a value of an RLT node given its index x:

int get_val (int x) { return tree[x].val; }

Ascribing a good formal specification to this one-liner re-
quires one to provide a couple of auxiliary definitions that
amount to several lines of Coq and are shown in Fig. 3. Using
the Coq function find_val as a helper, we can now ascribe
the following Hoare triple to get_val:

{tree_reparr (?tree, CA) ∗ ⌈find_val(G, tr) = Some(E)⌉}

get_val(G)

{_ret . tree_reparr (?tree, tr) ∗ ⌈ret = E⌉}

(2)

The specification above states that, assuming the node with
the identifier G holds the value E in the algebraic repre-
sentation of the RLT tr and the array-based representation
of tr is available to get_val, the result ret of the call will
be exactly E . To establish this specification, we first need
to prove an important property of find_val, namely, that
if find_val(G, tr) = Some(E), then for any ℓ that satisfies
tree_proj(tr, ℓ), ℓ [G] contains E . This fact can be proven by
induction on the algebraic tree tr via the following induction
principle stating that a property holds on an RLT if it holds
on all children and on the root node itself:1

Lemma tree_ind' (P: tree -> Prop)

(Hindstep : forall (id v: nat) (chn: list tree),

(forall ch, In ch chn -> P ch) -> P (Node id v chn)):

forall (tr: tree), P tr.

The specification (2) can be then proven using standard
Separation Logic rules. First, tree_reparr (?tree, tr) gives us
the logical list ℓ , which we pass to the find_val property, ob-
taining the fact that ℓ [G] contains E . Next, from arr(?tree, ℓ)

we know that tree[x] stores the equivalent of the payload
ℓ [G]. Finally, from the above, we conclude that tree[x].val
returns ℓ [x].val. The key enabler of this proof is the represen-
tation predicate that links the algebraic tree with the array-
based one. Random access operations similar to get_val are
paramount in implementations that manipulate array-based
RLTs, and we make use of such specifications in our chief
case study with tree clocks outlined in Sec. 4.

1Coq automatically derives a weaker induction principle for the tree from

Fig. 2, hence we define tree_ind' and prove it as a standalone theorem.

47

CPP ’24, January 15–16, 2024, London, UK Qiyuan Zhao, George Pîrlea, Zhendong Ang, Umang Mathur, and Ilya Sergey

1 struct node tree1[N], tree2[N]; // trees

2 int stack[N]; // assisting stack

3 void copyval_and_move (int root1, int root2) {

4 // root1: the root of tree1

5 // root2: the root of tree2

6 int top = -1;

7 stack[++top] = root2;

8 while (top >= 0){

9 int x = stack[top--];

10 tree1[x].val = tree2[x].val;

11 if (tree1[x].fch != -1)

12 move_first_child(root1, x); // defined in Fig. 5

13 int tmp = tree2[x].fch;

14 while (tmp != -1){

15 stack[++top] = tmp;

16 tmp = tree2[tmp].sib;

17 }

18 }

19 }

(a) Structure-changing non-recursive tree traversal.

2

val: 5

1

val: 6

3

val: 8

4

val: 0

5

val: 1

6

val: 3

5

val: 4

3

val: 7

1

val: 2

6

val: 3

1

val: 2

4

val: 0

2

val: 5

3

val: 7

5

val: 4

tree1 tree2 tree1 (after)

(b) Example of executing copyval_and_move.

Fig. 4. A structure-changing traversal and its depiction.

Example 2: Structure-Changing Tree Traversals. Real-
istic programs that manipulate RLTs can be quite complex,
and may perform (imperative, non-recursive) traversals inter-
spersed with structure-changing operations.2 Fig. 4a shows
an example of such a program, which (i) traverses the tree
stored in tree2, (ii) copies the val of each traversed node x

to the node with the same identifier (the “updated node”)
in the tree stored in tree1, and (iii) moves the first child
of the updated node to be the first child of the node root1.
Fig. 4b shows an example execution of copyval_and_move.
In the resulting tree, the value of node 3 has been updated
to 7, and node 3’s first child in tree1, i.e., node 4, has been
moved to become a child node of node 1, which is the root of
tree1. Similarly, node 5’s value has been updated to 4, and
node 5’s first child, i.e., node 6, has been attached to node 1.
Finally, the value of node 1 is updated to 2. This example
is a simplified version of the manipulations that take place
in tree clocks, and we dedicate the next two subsections to
zooming in on its two challenging aspects: changing the tree
structure and performing its non-recursive traversal.

2For ease of presentation, all non-recursive traversals in this paper visit

child nodes from last to first. Regular traversals can be handled analogously.

1 void move_first_child (int dst, int src) {

2 /* precondition: tree1[src].fch != -1 and

3 node dst is not in tree1[src].fch */

4 int tmp = tree1[src].fch;

5 tree1[src].fch = tree1[tmp].sib;

6 tree1[tmp].sib = tree1[dst].fch;

7 tree1[dst].fch = tmp;

8 tree1[tmp].par = dst;

9 }

Fig. 5. Example program that changes the tree’s structure.

2.2 Structure-Changing Tree Operations

Before we look into copyval_and_move, let us first verify its
subprocedure move_first_child, shown in Fig. 5.
This procedure makes the first child of node src become

the first child of node dst, while keeping the rest of the
tree’s structure unchanged. To give its specification, we can
(a) write one or more recursive functions in Coq exhibiting
the same behaviour as the imperative program (e.g., one for
popping a child of node 8 and another for prepending a child),
and then (b) state that the logical tree obtained after applying
these functions corresponds to the tree in the postcondition:

{tree_reparr (?tree, tr) ∗ ⌈· · · ⌉}

move_first_child(dst, src)

{__.tree_reparr (?tree, tr
′)}

(3)

where tr′ in the postcondition may be similar in form to
prepend_child(pop_child(tr, src), dst). We give one possible
definition of prepend_child later in Sec. 3.2.4.
To prove the specification (3), first observe that this pro-

gram only involves reads and writes on the fields of the
array tree. We can unfold the tree_reparr in the precondi-
tion to obtain the initial payload list ℓ by existential elimi-
nation. Similarly, in the postcondition, the resulting tree is
represented by another payload list ℓ ′ such that arr(?tree, ℓ

′)

holds, and we know that ℓ ′ is obtained from ℓ by applying
a sequence of transformations. It then suffices to show that
tree_proj(tr′, ℓ ′) holds. Unfortunately, this proof obligation
can be very cumbersome, since we need to show that the
payloads not touched by move_first_child have remained
unchanged in the process. We can prove this by induction,
but it is tedious, and the proof would need to be repeated
anew for every different structure-changing operation.

Key Idea: Dual Views. What we would really want are
some localised reasoning principles that would allow us to
prove tree_proj(tr′, ℓ ′) by only requiring reasoning about
the modified part of the payloads and the tree. However, this
is hard to achieve with the current representation predicate.
Prior work on Separation Logic-based verification has

shown that one can get exactly this workflow by defining an
alternative representation predicate that reflects tree struc-
ture via suitable placed usages of the separating conjunction
in its definition [6, 7]. We will refer to such a predicate that

48

Rooting for Efficiency: Mechanised Reasoning about Array-Based Trees in Separation Logic CPP ’24, January 15–16, 2024, London, UK

allows one to reason about the memory manipulations in-
ductively and employ proper localised reasoning rules (e.g.,
Frame), as a tree view predicate. In Sec. 3.2, we will show
how to define such a tree view predicate, which facilitates
verifying structure-changing RLT operations. At the same
time, we will keep using the previously-defined array view
predicate to deal with random access operations, and will be
switching between the two views as needed to use the one
best suited for the verification task at hand.

2.3 Non-Recursive Tree Traversals

Preorder or postorder tree traversals are easy to implement
recursively in both functional and imperative styles. Since
RLT nodes have unique identifiers, we can also implement
non-recursive traversals using a stack. This avoids recursion
overhead (e.g., allocation of stack frames), and is therefore
preferred in scenarios where efficiency is key.
The difficulty with certifying such traversals lies in stat-

ing the loop invariant. To illustrate this, let us temporar-
ily turn our attention from loop-based implementation of
copyval_and_move to a simpler program in Fig. 6 that per-
forms a recursive preorder traversal on array-based RLTs.
The program computes the maximum value val in the tree,
and we can straightforwardly define the functional model of
this imperative program in Coq:

Fixpoint max_val (tr : tree) : nat :=

let 'Node _ v chn := tr in

Nat.max v (list_max (map max_val chn)).

Since max_val_rec performs recursion nearly identically to
max_val, a feasible SL specification for max_val_rec is:

{tree_rep′arr (?tree, tr, par)}

max_val_rec(id_of (tr))

{_ret . tree_rep′arr (?tree, tr, par) ∗ ⌈ret = max_val(tr)⌉}

(4)

where id_of (tr) returns the identifier of tr’s root, and

tree_rep′arr (?tree, tr, par) ≜

∃ℓ, ⌈treelist_proj(tr :: nil, par, ℓ)⌉ ∗ arr(?tree, ℓ).

We have to use the generalised representation predicate
above because par is not −1 in the recursive call.

We can now establish specification (4) by (a) showing that
tree_rep′arr (?tree,Node(id, val, chn), par) entails that the pred-
icate tree_rep′arr (?tree, ch, id) holds for all ch ∈ chn, and
(b) using “the value of maxi is the maximum value amongst
tr’s root and some prefix of its children” as a loop invariant.
Although, as we have seen, a recursive traversal similar

to max_val_rec is straightforward to specify and prove, the
situation is quite different for copyval_and_move. Specifically,
it is unclear how to specify the loop invariant for its outer
while-loop. There are two aspects we need to capture in that
loop invariant: (a) the contents of the stack and (b) the visited
nodes (i.e., the nodes that have already been popped from the
stack in previous iterations). The twomust be consistent (e.g.,
a visited node should not appear in the stack) andmaintained

1 int max_val_rec (int rt) {

2 int maxi = tree[rt].val;

3 int tmp = tree[rt].fch;

4 while (tmp != -1){

5 int res = max_val_rec(tmp);

6 if (maxi < res) maxi = res;

7 tmp = tree[tmp].sib;

8 }

9 return maxi;

10 }

Fig. 6. Recursive traversal of an array-based RLT.

synchronously (e.g., once a node is visited in the current
iteration, its children nodes should be pushed into the stack).
The difficulty lies in both characterising these two aspects
and describing how they evolve in a traversal. In some cases,
it might suffice to define a ghost state for the visited nodes,
but this does not generalise for arbitrary traversals.

Key Idea: Tree Spli�ing. To verify non-recursive traver-
sals, we need a precise characterisation of the tree structure
that has been already visited. This can be achieved by “split-
ting” the set of array-hosted nodes of the tree into those
already visited and those that yet remain to be processed.
Luckily, the spatial structure of the array-based RLTs makes
it possible to define such invariants by instantiating a com-
mon “template” that constrains the two subsets of the nodes.
We detail this technique Sec. 3.3, providing a description of
the helper lemmas that facilitate such proofs.

3 Arboreta: Proofs about Array-Based Trees

In this section, we elucidate the design of Arboreta—a Coq
library with a set of proof principles that facilitate mech-
anised reasoning about array-based tree manipulations in
Separation Logic. We introduce its fundamental components
in Sec. 3.1. In Sections 3.2 and 3.3, we develop and apply spe-
cialised reasoning principles to solve the challenges outlined
previously in Sections 2.2 and 2.3, respectively.

3.1 Reasoning Principles for Rooted Trees

Core to Arboreta is Arboreta-P, a small collection of useful
definitions and lemmas for pure reasoning about rooted (un-
labelled and labelled) trees. The library provides a definition
of generic rooted trees, parametrised by a type parameter A,
which is the type of node data, shown in Fig. 7a. For conve-
nience, we keep using tree as the type name of trees.

Expansion. One of the core definitions is the expansion
function, which, when applied to an algebraic tree tr, returns
a list containing all the subtrees of tr. Fig. 7b shows its
definition, and three derived definitions, for the size of a
tree, the subtree relation, and the list of node data. Since
a bijection exists between nodes and subtrees, expansion
serves as a building block for other definitions, e.g., NoDupId.

49

CPP ’24, January 15–16, 2024, London, UK Qiyuan Zhao, George Pîrlea, Zhendong Ang, Umang Mathur, and Ilya Sergey

Parameter A : Type.

Inductive tree : Type := Node (a : A) (chn : list tree).

Definition data_of tr := let 'Node a _ := tr in a.

Definition chn_of tr := let 'Node _ chn := tr in chn.

(a) Rooted trees and getters.

Fixpoint expand tr : list tree :=

let 'Node a chn := tr in tr :: (flat_map expand chn).

Definition size tr : nat := length (expand tr).

Definition subtr tr1 tr2 : Prop := In tr1 (expand tr2).

Definition data_list_of tr : list A := map data_of (expand tr).

(b) Expansion and derived definitions.

Parameters (B : Type) (id_of_data : A -> B).

Definition id_of tr : B := id_of_data (data_of tr).

Definition id_list_of tr : list B := map id_of (expand tr).

Definition NoDupId tr : Prop := NoDup (id_list_of tr).

(c) Definitions related to node identifiers.

Parameter (B_eqb : B -> B -> bool).

Definition has_same_id x tr := B_eqb (id_of tr) x.

Definition find_node x tr : option tree :=

find (has_same_id x) (expand tr).

(d) Definition of node finding function. B_eqb is a binary boolean

function for checking whether two terms of type B are equal or not.

Fixpoint locate tr pos : option tree := (* ... *)

Fixpoint locate_update tr (pos : list nat) new : tree :=

match pos with

| nil => new

| x :: pos' => let 'Node a chn := tr in

match nth_error chn x with

| Some ch =>

Node a (upd_nth x chn (locate_update ch pos' new))

| None => tr

end

end.

(e) Using node coordinates to update subtrees. nth_error(ℓ, G) re-

turns Some(ℓ [G]) if G < |ℓ | and None otherwise. upd_nth(G, ℓ, 0)

returns the resulting list obtained by updating ℓ [G] to 0.

Inductive prefix : tree -> tree -> Prop :=

prefix_intro : forall a chn chn_sub prefix_chn,

subseq chn_sub chn ->

Forall2 prefix prefix_chn chn_sub ->

prefix (Node a prefix_chn) (Node a chn).

Lemma prefix_data_is_subset tr1 tr2 (Hpref : prefix tr1 tr2):

subseq (data_list_of tr1) (data_list_of tr2).

(f) Definition of tree prefix and one of its property. Forall2(%, ℓ1, ℓ2)

holds iff |ℓ1 | = |ℓ2 | and ∀8, % (ℓ1 [8], ℓ2 [8]). subseq(ℓ1, ℓ2) holds iff ℓ1
is a subsequence of ℓ2.

Fig. 7. Main Coq definitions from Arboreta-P.

Node identifiers. As the type of node data is parame-
terised, we also parameterise the type of node identifiers
into B, as shown in Fig. 7c. id_of_data extracts the node
identifier from a node’s data, and id_of extracts it from a
node. NoDupId is defined in terms of expansion and id_of.

Finding by identifier.When identifiers come equipped
with decidable equality (e.g., natural numbers), Arboreta-P
provides a function find_node(x, tr) for finding the subtree
of tr whose root has identifier x, as shown in Fig. 7d.

Node coordinate. We can assign a unique coordinate to
each node in the tree. A coordinate or position describes
how to find that node from the root in a top-down manner,
and can be represented in Coq as a list of natural numbers
storing a child index to visit at each level. We define a locate
function to access a node by coordinate (the definition is
trivial and elided), and a locate_update function to replace
the subtree at a given coordinate, as shown in Fig. 7e.

Tree prefix. We say that a rooted tree tr1 is a prefix of tr2
if tr1 is a subgraph of tr2 and both trees have the same root.
This definition is encoded by the inductive predicate from
Fig. 7f, along with a custom induction principle (not shown).
With such an abstract definition, we can prove properties of
prefixes in Arboreta-P, and then prove that the trees returned
by the (possibly complicated) functions we want to verify
are prefixes. For instance, we use the prefix_data_is_subset
property in the tree clock case study (cf. Sec. 4).

3.2 Dual Views: From Array to Tree and Back Again

Recall that in Sec. 2.2, we encountered the need to reason
about trees in a structure-aware fashion, and envisioned an
inductively defined tree view predicate to be used as an alter-
native to the array view, in order to reason with ease about
structure-changing operations. In this section, we (a) derive
the tree view predicate from the array view one, (b) exploit
the tree view to apply local reasoning principles, and finally
(c) shift back to the array view. In other words, we work
through the (general) way to apply the following rule of con-
sequence, and showcase it on move_first_child from Fig. 5:

%arr ⊢ %tree {%tree} 2 {&tree} &tree ⊢ &arr

{%arr} 2 {&arr}

3.2.1 From Array View to Tree View. As a reminder,
the representation predicate of an array is typically defined
as a collection of contiguous memory blocks, as follows:3

arr(?, ℓ) ≜ ∗
8∈[0, |ℓ |)

? + 8 × sizeof ()) ↦→ ℓ [8] (ArrDef)

where) is the type of the payload and sizeof ()) denotes
how much space the payload occupies in memory. Since the
separating conjunction ∗ is commutative and associative, we
can reorganise the memory blocks in the array according

3In practical SL frameworks, the right-hand side may come with side-

conditions, such as p != NULL. We omit them to simplify the presentation.

50

Rooting for Efficiency: Mechanised Reasoning about Array-Based Trees in Separation Logic CPP ’24, January 15–16, 2024, London, UK

to the tree’s structure, and inductively define the tree view
predicate tree_reptree as follows:

treelist_reptree (nil, par, p) ≜ emp

treelist_reptree (Node(id, val, chn) :: trs, par, p) ≜

p + id × sizeof ()) ↦→ payload(val, par, hid(trs), hid(chn)) ∗

treelist_reptree (chn, id, p) ∗ treelist_reptree (trs, par, p)

tree_reptree (p, tr) ≜ treelist_reptree (tr :: nil,−1, p)

where hid is defined in Sec. 2 before Sec. 2.1. Noting the
similarity to the previously defined list-based tree_reparr (1),
we can prove the following entailment by induction on tr :

∗8∈ids(tr) ? + 8 × sizeof ()) ∗ ⌈tree_proj(tr, ℓ)⌉

⊢ tree_reptree (p, tr)
(MemBlksToTree)

where ids is a shorthand of id_list_of from Fig. 7c. There-
fore, given tree_reparr (?, tr), we can obtain the tree repre-
sentation tree_reptree (p, tr) by first unfolding arr byArrDef
and then apply MemBlksToTree. We then combine the two
steps together and get the following:

tree_reparr (?, tr) ⊢

∗8∈rem(tr, |ℓ |) ? + 8 × sizeof ()) ↦→ ℓ [8] ∗ tree_reptree (?, tr)
(ArrToTree)

where rem(tr, |ℓ |) ≜ [0, |ℓ |) \ ids(tr) contains the “remain-
ing” memory blocks, i.e., the allocated array indices not used
by the tree. If the size of tr is |ℓ |, i.e., rem(tr, |ℓ |) is empty, Ar-
rToTree simplifies to tree_reparr (p, tr) ⊢ tree_reptree (p, tr).

3.2.2 Local Reasoning with Tree View. Let us define
the predicate tree_rep′tree in a way similar to tree_rep′arr (4):

tree_rep′tree (?,Node(83, E0;, 2ℎ=), ?0A, B81) ≜

? + 83 × sizeof ()) ↦→ payload(E0;, ?0A, B81, hid(2ℎ=)) ∗

treelist_reptree (2ℎ=, 83, ?)

(5)

Using the properties of the magic wand [6], we can reflect the
modifications to the functional tree made by locate_update
(Fig. 7e) onto the heap state, expressing this by the following
entailment, which can be proved by induction on pos:

⌈locate(tr, pos) = Some(sub)⌉ ∗ tree_rep′tree (?, tr, par, sib)

⊢

∃par′, sib′, tree_rep′tree (?, sub, par
′, sib′) ∗

©­­
«

∀sub′, id_of (sub) = id_of (sub′) =⇒(
tree_rep′tree (?, sub

′, par′, sib′) −∗

tree_rep′tree (?, locate_update(tr, pos, sub
′), par, sib)

) ª®®
¬

(WandFrameUpdate)
The entailment inWandFrameUpdate might look a bit in-
timidating, but the only thing it does is instantiating the
analogue of the “modus ponens” rule for ∗/−∗, “pulling out”
the tree_rep′tree (?, sub

′, par′, sib′) assertion. Note thatWand-

FrameUpdate allows “pulling out” only a single subtree at
a time, which is nevertheless sufficient for our verification
task about tree clock. We will discuss this limitation in Sec. 5.

3.2.3 From Tree View to Array View. Thus far, we have
defined the tree view predicate and shown how to obtain it
from the array view predicate. However, in practice, the array
view predicate is independently useful for reasoning about
read-only operations, especially random array accesses. This
utility may stem from specialised support provided by verifi-
cation tools for handling array operations, for instance. To
this end, a natural question could be whether we are able to
switch between the array view and the tree view on demand
so as to enjoy the best parts of both views.
The answer is affirmative. From the definition ArrDef,

we can prove the following entailment, which “reconstructs”
an array from contiguous memory blocks, by induction on
=. Here, = is a natural number and the type of 5 is N→) .

∗8∈[0,=) ? + 8 × sizeof ()) ↦→ 5 (8) ⊢

∃ℓ, ⌈(∀8 ∈ [0, =), ℓ [8] = 5 (8)) ∧ |ℓ | = =⌉ ∗ arr(?, ℓ)
(ArrIntro)

And since the tree view predicate can be also regarded as a
bunch of memory blocks, we can prove by induction on tr

that it can be “shattered” into memory blocks whose content
is specified by a function from identifiers to payload:

tree_reptree (?, tr) ⊢

∃5 , ⌈∀ℓ, (∀8 ∈ ids(tr), ℓ [8] = 5 (8)) =⇒ tree_proj(tr, ℓ)⌉ ∗

∗8∈ids(tr) ? + 8 × sizeof ()) ↦→ 5 (8)

(TreeToMemBlks)
Finally, by gathering the payloads with indices in rem(tr, |ℓ |),
we can reconstruct the array view from the tree view:

∗8∈rem(tr, |ℓ |) ? + 8 × sizeof ()) ↦→ 5 (8) ∗ tree_reptree (?, tr)

⊢ tree_reparr (?, tr)

(TreeToArr)
Again, once rem(tr, |ℓ |) is empty, TreeToArr simplifies

to tree_reptree (p, tr) ⊢ tree_reparr (p, tr). In this case, we
can switch “seamlessly” between the two views using Ar-

rToTree and TreeToArr.

3.2.4 Dual Views in Action. The ability to switch be-
tween the array and tree views allows for relatively straight-
forward verification of move_first_child from Sec. 2.2 against
the specification (3). To do so, we first express the local modi-
fications via locate_update. For example, prepending a child
ch to a specific node of tr can be implemented as follows,
when given the coordinate pos of that node inside tr :

prepend_child(tr, ch) ≜

locate_update(tr, pos,Node(0, ch :: chn))

where we let locate(tr, pos) be Some(Node(0, chn)). We can
implement popping the first child analogously. After those
instantiations, we can then switch from the array view in
the precondition to the tree view via ArrToTree, apply
WandFrameUpdate to reason about the affected local part,
and finally recover the original array view via TreeToArr.

51

CPP ’24, January 15–16, 2024, London, UK Qiyuan Zhao, George Pîrlea, Zhendong Ang, Umang Mathur, and Ilya Sergey

2

1

3 4

5 6

2

1

3 4

5 6

1

3 4

5 6

split through
the path

from 1 to 3

adding 3
to the

visited part

Visited part new Visited partCurrent stack top: 3

Fig. 8. Splitting a tree vertically wrt. the node 3.

3.3 Loop Invariants for Non-Recursive Traversals

As the last component of Arboreta we present an approach
for stating loop invariants to verify non-recursive tree traver-
sals similar to that of copyval_and_move from Fig. 4a. Recall
that the solution hinted at the end of Sec. 2.3 was to explic-
itly characterise the “visited part” of the tree in the loop
invariant, relating it to the contents of the explicit stack.
In such traversals, at the beginning of each iteration of

the outer while-loop, the visited part is likened to the “right
half” of the tree obtained by “splitting” the original tree
along the path from the root down to the node that will be
processed in the current iteration (i.e., the node at the top
of the stack; represented by x in Fig. 4a, for example), which
we refer to as the stack top node hereafter. After completing
the iteration, the stack top node will belong to the visited
part in the loop invariant. This process is depicted in Fig. 8
with regard to the “working” node 3. As we will soon see,
a visited part must be a prefix of the original tree (in the
sense of the definition from Fig. 7f), so we will refer to it as
the visited prefix. In addition, we name the visited prefix at
the beginning/end of the iteration as the pre/post-iteration
visited prefix, respectively.

In the remainder of this subsection, we will walk through
the intuition of formalising the idea of splitting the tree along
the path, showing how it leads to an extensible invariant def-
inition for non-recursive traversals, and demonstrating the
utility of that definition to verify the program from Fig. 4a.

3.3.1 Vertical Tree Splitting. Fig. 9a provides the defi-
nition of a function for splitting the tree vertically wrt. a
given node, which is represented by its position. The func-
tion vsplit(full, tr, pos) returns the part “on the right”
after splitting tr wrt. the node at pos, whose children will be
included in the result iff full is true (see the first branch of
match pos with in the definition of vsplit).
We can now use vsplit to define post-iteration visited

prefix for a traversal loop. As an example, let us take tr to
be the tree in the leftmost part of Fig. 8. Then the coordinate
of the node 3 in tr is pos3 = [1], and we can check that

Fixpoint vsplit (full: bool) tr (pos: list nat) : tree :=

let 'Node a chn := tr in

match pos with

| nil => Node a (if full then chn else nil)

| x :: pos' =>

match nth_error chn x with

| Some ch =>

let chn' := vsplit full ch pos' :: drop (S x) chn in

Node a chn'

| None => Node a nil

end

end.

Lemma vsplit_is_prefix : forall full tr pos,

prefix (vsplit full tr pos) tr.

(a) Definition and lemma of vertical tree splitting.

Definition post_iter_visited_prefix tr pos : tree :=

vsplit false tr pos.

Definition rsibpos (pos : list nat) : list nat :=

match rev pos with nil => nil

| x :: pos' => rev ((S x) :: pos') end.

Lemma vsplit_norsib : forall tr pos, locate tr pos = None ->

vsplit false tr pos = vsplit false tr (removelast pos).

Definition pre_iter_visited_prefix tr pos : tree :=

vsplit (isSome (locate tr (rsibpos pos))) tr (rsibpos pos).

(b) Definitions of pre/post-iteration visited prefixes. When comput-

ing the pre-iteration visited prefix, the value of full depends on

the existence of the right sibling of the node at pos. Note that if the

right sibling does not exist, then by vsplit_norsib, the computed

result will be equal to the post-iteration visited prefix applied to the

coordinate of the parent node, namely (removelast pos).

Fig. 9. Coq definitions related with vertical tree splitting.

the result of vsplit(false, tr, pos3) is the post-iteration
visited prefix shown in the rightmost part of Fig. 8.

Even though the function vsplit is defined to produce the
post-iteration visited prefix, it can also be used to obtain the
pre-iteration visited prefix: the pre-iteration visited prefix
is exactly the post-iteration visited prefix after “subtracting”

52

Rooting for Efficiency: Mechanised Reasoning about Array-Based Trees in Separation Logic CPP ’24, January 15–16, 2024, London, UK

2

1

3 4

5 6

2

1

3 4

5 6

2

1

3 4

5 6

2

1

3 4

5 6

2

1

3 4

5 6

2

1

3 4

5 6

pos=[2]
full=false

pos=[2,1]
full=false

pos=[2,0]
full=true

pos=[1]

full=true
pos=[1,0]
full=true

finish

Fig. 10. Tree traversal and vertical splitting.

the stack top node. It turns out that this definition of the
pre-iteration visited prefix coincides with the result obtained
by vsplit using the coordinate of the right sibling (or the
parent, if the right sibling does not exist) of the stack top
node. Moreover, the coordinate of the right sibling of a node
can be calculated from the node’s own coordinate via the
function rsibpos in Fig. 9b.

We summarise the formal definitions of pre/post-iteration
visited prefixes in Fig. 9b, from which we know that they are
indeed tree prefixes by the lemma vsplit_is_prefix. Fig. 10
depicts a sequence of steps showing how the non-recursive
traversal progresses. Each subfigure snapshots the state at
the start of the corresponding loop iteration. The portion
encircled by red dashed line indicates the pre-iteration visited
prefix, and a node surrounded by blue dashed line denotes
the stack top node with pos being its coordinate. Readers are
invited to validate the definitions from Fig. 9b by using the
pos and full in each subfigure.

3.3.2 Retrieving Stack Contents. Perhaps surprisingly,
by understanding the nature of the traversal, it becomes
possible to fully retrieve the contents of the assisting stack
from the algebraic tree description of the stack top node. The
definition of a function worklist doing exactly that is given
in Fig. 11. The function returns a list of subtrees (the second
component of its return value) in addition to the coordinates
of their roots (the first component of its return value). By
applying worklist on the coordinate of the stack top node,
the contents of the assisting stack can be then recovered
from the root identifiers of the returned list of subtrees. The
list of coordinates will be used later in Sec. 3.3.3.

3.3.3 TheCornerstone Loop Invariant. At last, we come
to present a recipe for stating loop invariants to verify non-
recursive traversals using the cornerstone invariant, which

Fixpoint worklist tr pos : (list (list nat)) * (list tree) :=

let 'Node a chn := tr in

match pos with

| nil => (nil, nil)

| x :: pos' =>

match nth_error chn x with

| Some ch =>

let (res1, res2) := worklist ch pos' in

(map (fun i => i :: nil) (seq 0 x) ++

map (fun l0 => x :: l0) res1, take x chn ++ res2)

| None =>

(map (fun i => i :: nil) (seq 0 (length chn)), chn)

end

end.

Fig. 11. Retrieving a worklist given a tree tr and a node
position pos in it. The auxiliary function seq(n, m) returns
a list of natural numbers [n; n+1; ...; m-1].

is defined as an inductive Coq predicate in Fig. 12 and is
parameterised by the tree tr being traversed. It relates assist-
ing stack (captured in its first index of type list B) and the
pre-iteration visited prefix (i.e., its second index of type tree).
In order to use the cornerstone invariant, one has to assume
that the root has been visited before the loop begins and that
its children nodes are in the assisting stack at the start of the
loop. In practice, this is almost always the case, and it is the
case for all the operations of tree clocks (cf. Sec. 4).
During a loop iteration where the assisting stack is not

empty, according to the TInv_intermediate case in Fig. 12,
the stack top node (i.e., the root of sub) will be popped, and
its children nodes will be pushed into the stack before the
iteration ends.4 The lemma in Fig. 12 serves to re-establish
the invariant at the end of the iteration.
A notable feature of this pure loop invariant is its exten-

sibility: it characterises only the core components of non-
recursive traversal, thereby granting users the flexibility to
use it in conjunction with other invariants. In particular, one
can use this loop invariant as the cornerstone of a “larger”
loop invariant specific to a concrete non-recursive traver-
sal. At a high-level, any such larger loop invariant can be
constructed using the following invariant template:

loopinv(tr, ?) ≜ ∃ stk, pf ,

⌈traversal_invariant(tr, stk, pf) ∧ · · · ⌉ ∗

tree_reparr (?, tr),

where tr is the tree being traversed. We phrase the template
using the array view predicate, since the structure of the
original tree tr is usually not changed during traversal, and
the contents of tr are retrieved via random accesses.

3.3.4 Traversal Invariant in Action. We conclude our
presentation of Arboreta by revisiting the verification chal-
lenge posed by the copyval_and_move function from Fig. 4a.

4To align with the array-based stack implementation, in this invariant the

list-based stack has its entry/exit point at the tail position.

53

CPP ’24, January 15–16, 2024, London, UK Qiyuan Zhao, George Pîrlea, Zhendong Ang, Umang Mathur, and Ilya Sergey

Inductive traversal_invariant tr : list B -> tree -> Prop :=

| TInv_terminate : traversal_invariant tr nil tr

| TInv_intermediate : forall stk pos sub,

locate tr pos = Some sub ->

stk = (map id_of (snd (worklist tr pos) ++ (sub :: nil))) ->

pf = pre_iter_visited_prefix tr pos ->

traversal_invariant tr stk pf.

Lemma traversal_invariant_trans tr pos sub :

locate tr pos = Some sub ->

traversal_invariant tr

(map id_of (snd (worklist tr pos) ++ chn_of sub))

(post_iter_visited_prefix tr pos).

Fig. 12. An extensible loop invariant for non-recursive tra-
versals. In the TInv_terminate case, the assisting stack is
empty and the traversal terminates. The TInv_intermediate

case snapshots the stack content and the pre-iteration visited
prefix given the coordinate pos of the stack top node.

The proof of its SL specification with regard to a functional
reference implementation 5 can be completed by instantiat-
ing the invariant template as follows:

∃stk, pf ,

⌈traversal_invariant(tr2, stk, pf) ∧ tr′
1
= 5 (tr1, pf) ∧ · · · ⌉ ∗

tree_reparr (?tree, tr
′
1
) ∗ tree_reparr (?tree2, tr2)

4 Verifying the Tree Clock Data Structure

This section showcases the definitions and techniques of
Arboreta working in tandem for verifying a large case study:
an executable C implementation the tree clock structure [22].

4.1 Tree Clocks: A Primer

Dynamic analysis is a de facto preferred method for detect-
ing concurrency bugs such as data races in multi-threaded
programs. Dynamic data race detectors such as Thread-
Sanitizer [33] and FastTrack [12] observe events of an
execution during runtime, infer the happens-before (HB) par-
tial order [18] between them and report conflicting events
unordered by HB to be in a data race. These detectors play a
vital role in revealing data races which may lead to critical
failures in large software systems and have been extensively
applied in industrial settings.
Instead of explicitly constructing the HB partial order as

a graph of events, such tools leverage time-stamping to im-
plicitly infer the HB partial order. Analyses such as data race
detectors maintain logical clock data structures to compute
the timestamp of each event accurately, potentially perform-
ing clock operations at every event. A timestamp is a map-
ping from the identifiers of threads to their respective (local)
clocks (represented by natural numbers), and the HB rela-
tion between events can be recovered by comparing their
timestamps. Tree clock [22], a recently proposed logical clock

variant, achieves optimal asymptotic complexity in perform-
ing clock operations by novelly exploiting the hierarchical
structure of tree.
A logical clock can be regarded as an abstract data type

which exposes its maintained timestamp and usually sup-
ports two clock operations: join and copy.When implemented
in an imperative language, the timestamp is typically muta-
ble, and the two operations work by modifying the times-
tamp stored in one of the two operands (i.e., they are in-place
operations). For an instance� of a logical clock, we use� ·val
to denote the timestamp that � points to. Let �1 and �2 be
two instances of a logical clock initially pointing to times-
tamps)1 and)2 respectively. The in-place join operation
�1·join(�2) should update �1 so that �1·val =)1 ⊔)2,
where ⊔ denotes the logical join over timestamps:

)1 ⊔)2 = _C .max {)1 (C),)2 (C)} (LogicalJoin)

Likewise, the copy operation�1·copy(�2) should update�1

so that �1·val =)2 after the operation is performed.
The vector clock [11, 23] is the traditional logical clock

data structure; it represents timestamp using an array, in-
dexed by identifiers of threads. Join and copy operations for
the vector clock data structure take Θ(:) time, where : is
the number of threads in the execution. In the context of
data race detection, for executions with many events, this
can result in prohibitively significant slowdowns. On the
other hand, the tree clock internally organises timestamp hi-
erarchically as a tree, where nodes in the tree correspond to
threads. Join and copy operations on trees are implemented
through tree traversals, and tree’s hierarchical structure al-
lows for pruning of the traversal, which is the key to its
optimal time complexity.

Formally defined, a tree clock is a tuple TC = (tr, ThrMap),
where tr is a tree such that every node = in the tree is a tuple
= = (C, c, ac, p, ch, rs), where thread identifier C , clock c, and
attached clock ac are scalar fields, while parent p, head child
ch, and right sibling rs are pointer fields to other nodes in
tr. Every node except tr’s root has an attached clock; for tr’s
root, its attached clock is undefined and thus marked as ⊥.
Intuitively, the thread at the root of tr “owns” the tree clock
instance. Node =1 is a child of =2 if the root thread was “made
aware of” the thread =2·C (using a message/synchronisation
operation <) via =1·C , and the attached clock =2·ac is the
clock of =2·C when this message< arrived at =1·C . Therefore,
for each node =, the attached clocks of its children should
be no more than =·c. Moreover, its children are arranged in
decreasing order of their attached clocks, which facilitates
pruning during traversal. ThrMap(C) identifies the unique
node = in tr with identifier C and serves as the timestamp.
We provide the visual representation of two exemplary tree
clock instances TC1 and TC2 in Fig. 15.
In this paper, we focus on formalising and verifying the

join operation of array-based tree clocks. For efficiency in
an intensive application like data race detection, the tree

54

Rooting for Efficiency: Mechanised Reasoning about Array-Based Trees in Separation Logic CPP ’24, January 15–16, 2024, London, UK

1 struct Clock { int clock_clk, clock_aclk; };

2 struct TreeClock{

3 int dim, root_tid, top, *S; // S: assisting stack

4 struct Clock* clocks;

5 struct Node* tree;

6 };

7 void join(struct TreeClock* TC2, struct TreeClock* TC1){

8 // ...

9 while (TC2->top >= 0){

10 int v_tid = TC2->S[TC2->top--];

11 struct Clock* uprime_clocks = &(TC1->clocks[v_tid]);

12 struct Node* u_node = &(TC2->tree[v_tid]);

13 struct Clock* u_clocks = &(TC2->clocks[v_tid]);

14 int u_clock = u_clocks->clock_clk;

15 if (!node_is_null(u_node)){

16 detach_from_neighbors(TC2, v_tid, u_node);

17 }

18 u_clocks->clock_clk = uprime_clocks->clock_clk;

19 u_clocks->clock_aclk = uprime_clocks->clock_aclk;

20 struct Node* uprime_node = &(TC1->tree[v_tid]);

21 int y = uprime_node->node_par;

22 push_child(TC2, y, v_tid, u_node);

23 get_upd_nodes_join_chn(TC2, TC1, v_tid, u_clock);

24 }

25 }

Fig. 13. Fragment of join code and related struct definitions.

clock data structure is implemented using arrays instead of
explicit pointers. In this case, the join of a tree clock TC1

into TC2 (TC2·join(TC1)) is performed by traversing TC1

and updating the corresponding nodes in TC2, in which the
traversal is loop-based with the assistance of a stack. We
show a snippet (in C) of the join operation on array-based
tree clocks in Fig. 13.

4.2 Tree Clocks in Coq, Functionally

We start our tree clock mechanisation by developing its
reference implementation in Gallina, the pure functional
programming language of Coq. We will then use it in Hoare-
style specifications to connect the reference implementation
with the C code, following the relatively conventional two-
layer paradigm for verifying imperative programs [3].

4.2.1 Datatypes. In Fig. 14a, we model the tree part of
the tree clock as the generic functional RLT in Sec. 3.1 with
the type parameter A instantiated to be the following record
type and the type parameter B instantiated to be thread. The
id_of_data is thereby set to be the tid getter of the record.
Here thread is also a type parameter and will be instantiated
as natural numbers in proving the imperative join opera-
tion. Note that compared with the axiomatic definition of
a node (i.e., defining a node as a tuple), the data held by
a treeclock node does not contain the pointer fields: it is
implicitly captured in the functional RLT structure.

We model ThrMap via the function find_node introduced
in Sec. 3.1, and the timestamp from a tree clock (i.e., the

Parameter thread : Type.

Record tc_nodedata : Type :=

mkTCdata { tid : thread; clk : nat; aclk : nat }.

Definition treeclock : Type := tree tc_nodedata.

(a) Functional model of the tree part of tree clock.

Definition getClock t tc :=

match find_node t tc with

| Some res => (data_of res).(clk) | _ => 0 end.

(b) Functional model of the timestamp maintained by tree clock.

Fixpoint getUpdatedNodesJoin tc tc' : treeclock :=

let fix aux tc clk chn : list treeclock :=

match chn with

| nil => nil

| tc' :: chn' =>

let: Node (mkTCdata v' clk_v' aclk_v') chn_v' := tc' in

if clk_v' <=? (getClock v' tc)

then (if aclk_v' <=? clk

then nil else (aux tc clk chn'))

else (getUpdatedNodesJoin tc tc') :: (aux tc clk chn')

end in

let: Node data_u' chn_u' := tc' in

Node data_u' (aux tc (getClock data_u'.(tid) tc) chn_u').

Fixpoint detachNodes pf tc : treeclock * list treeclock :=

let: Node data chn := tc in

let: (chn', res) :=

List.split (map (detachNodes pf) chn) in

let: (res', chn'') := List.partition

(fun tc' => isSome (find_node (id_of tc') pf)) chn' in

(Node data chn'', (List.concat res) ++ res').

Fixpoint attachNodes forest tc' : treeclock :=

let: Node data_u' chn' := tc' in

let: u_pre := find (has_same_id data_u'.(tid)) forest in

let: chn_u := (match u_pre with Some u => chn_of u

| None => nil end) in

Node data_u' ((map (attachNodes forest) chn') ++ chn_u).

Definition corejoin (tc pf : treeclock) : treeclock :=

let: (Node data_z chn_z, forest) := detachNodes pf tc in

let: Node (mkTCdata w clk_w _) chn_w :=

attachNodes forest pf in

Node data_z

((Node (mkTCdata w clk_w data_z.(clk)) chn_w) :: chn_z).

Definition join (tc tc' : treeclock) : treeclock :=

let: mkTCdata z' clk_z' aclk_z' := data_of tc' in

if clk_z' <=? (getClock z' tc)

then tc else (corejoin tc (getUpdatedNodesJoin tc tc')).

(c) Functional version of the tree clock join operation.

Fig. 14. Tree clock operations defined in Coq.

mapping from the identifier of a thread to its clock value)
can be further expressed as getClock funciton in Fig. 14b.

4.2.2 Operations. In the original tree clock presentation,
the join operation builds upon three auxiliary operations:
getUpdatedNodesJoin, detachNodes, and a�achNodes. All
of them are modelled as recursive functions on tree clocks

55

CPP ’24, January 15–16, 2024, London, UK Qiyuan Zhao, George Pîrlea, Zhendong Ang, Umang Mathur, and Ilya Sergey

T2

20,9

T1

16,⊥

T3

17,7
T9

10,4

T4

23,18

T7

11,2

T5

4,14

T6

15,8

T8

8,7

T10

2,15

T5

8,20

T8

25,⊥

T7

24,16

T9

10,4

T4

31,20

T2

14,9

T1

4,4

T6

15,8

T3

10,2

T10

2,15

T5

8,20

T8

25,⊥

T7

24, 16

T9

10,4

T4

32,18

T2

20,9

T1

16,25

T6

15,8

T3

17,7

T10

2,15

TC1 TC2 TC2’ = TC2.join(TC1)

Fig. 15. Illustrative example of joining TC1 into TC2. Each node is annotated with its thread identifier, its clock and attached
clock (e.g., for node C2 on TC1 its clock is 20 and its attached clock is 9). The portion encircled by the blue dashed line is the
portion of TC1 returned by getUpdatedNodesJoin(TC2, TC1) (denoted as pf) such that a thread identifier C appears in pf if and
only if getClock(TC2, C) < getClock(TC1, C). And pf is a prefix of TC1. detachNodes(pf , TC2) partitions TC2 into a “pivot” tree
(encircled by the green dashed line) and a list of trees (denoted as forest, here containing the trees encircled by the red dashed
lines), such that (1) for every tree in forest, its root thread identifier appears in pf and no other thread identifier appearing in
pf also appears in that tree; (2) the pivot tree is a prefix of TC2 and does not contain any thread identifier appearing in pf .
After that, a�achNodes(forest, pf) “attaches” all the trees in forest to pf by matching the root thread identifiers in forest; the
resulting tree is the one surrounded by red and blue dashed lines in TC′

2
. Finally, the result of join TC′

2
is given by making the

result of a�achNodes be the first child of the root of the pivot tree.

and presented in Fig. 14c. To streamline the proof of the
imperative join, we model the core part of join into corejoin,
with join, the actual functional join operation, being its wrap-
per (cf. Fig. 14c). While the imperative join TC2·join(TC1)

modifies TC2 into another tree clock TC
′
2
, the corresponding

functional join, i.e. join(TC2, TC1), just returns TC
′
2
. Fig. 15

shows a concrete example of execution of join(TC2, TC1).

4.2.3 Predicates and Properties. We define several ex-
trinsic predicates to ensure well-formedness of functional
tree clocks. Specifically, the predicate valid(TC) is a conjunc-
tion of NoDupId(TC) and the conditions in Sec. 4.1 that a
tree clock should satisfy. We also define the binary predi-
cate respect(TC1, TC2) to be the conjunction of the direct
monoticity and indirect monoticity, which are required in the
following proofs. Due to space limit, we omit its concrete
statement and refer interested readers to its provenance [22].

To guarantee that the functional tree clock implements the
interfaces of logical clock correctly, we need to prove that
LogicalJoin holds for the functional join operation. With
the timestamp model from Fig. 14b, this can be phased as:

∀TC1, TC2, valid(TC1) ∧ valid(TC2) ∧ respect(TC1, TC2) =⇒

∀C, getClock(C, join(TC2, TC1)) =

max {getClock(C, TC1), getClock(C, TC2)}

The proof of this fact closely depends on the property of
getUpdatedNodesJoin(TC2, TC1) and the lemma from Fig. 7f.

4.3 Verifying the C Implementation

As the second step of our verification task, we ascribe a
Hoare-style specification phrased in terms of functional tree
clock manipulations from Sec. 4.2, to the C implementation5

from Fig. 13 and prove that the specification holds.

4.3.1 The C Implementation. The imperative tree clock
joining (cf. Fig. 13) is implemented as a non-recursive tree tra-
versal with its control flow similar that of copyval_and_move
from Fig. 4a. Notably, the imperative implementation is noth-
ing like its functional reference counterpart from Sec. 4.2. In
the functional join, the join is done step-by-step: we first ob-
tain the prefix getUpdatedNodesJoin(TC2, TC1) in one step,
then accomplish all the subtree detaching in another step,
and finally do all the attaching. In the imperative version,
however, we will detach and attach a single subtree in an
iteration during the non-recursive traversal of that prefix;
the join is done only after finishing the traversal.

5The C implementation of the tree clock is translated from the (unverified)

Java implementation accompanying the original paper [22].

56

Rooting for Efficiency: Mechanised Reasoning about Array-Based Trees in Separation Logic CPP ’24, January 15–16, 2024, London, UK

Table 1. Rounded formalisation sizes in lines of Coq code.

Arboreta Case Study Total

Pure 1,300 3,200 4,500
VST 1,400 2,000 3,400

Total 2,700 5,200 7,900

4.3.2 Specification of the Imperative Join. The specifi-
cation of the imperative join is given by the following Hoare
triple, where ?1, ?2 is the pointer to TC1, TC2 respectively:

{tree_reparr (?2, TC2) ∗ tree_reparr (?1, TC1) ∗ ⌈· · · ⌉}

join(?2, ?1)

{__.tree_reparr (?2, join(TC2, TC1)) ∗ tree_reparr (?1, TC1)}

where the pure assertion in the precondition is almost the
same one as required by TC1 and TC2 in Sec. 4.2.3, except
for some additional numeric conditions required by VST.

4.3.3 Loop Invariant and Proof Outline. The most in-
teresting part of the proof is the invariant for while-loop
at lines 9–23 of Fig. 13. Following the strategy outlined in
Sec. 3.3.3, we instantiate the invariant template as follows:

∃stk, pf ,⌈
traversal_invariant(getUpdatedNodesJoin(TC2, TC1), stk, pf)

∧ TC′′
2
= corejoin(TC2, pf) ∧ · · ·

⌉
∗ tree_reparr (?2, TC

′′
2
) ∗ tree_reparr (?1, TC1)

That is, the traversal_invariant predicate from Fig. 12 is
instantiated with getUpdatedNodesJoin(TC2, TC1) as an ar-
gument. This is because during the imperative traversal, the
tree prefix getUpdatedNodesJoin(TC2, TC1) is not fully vis-
ited, hence the invariant needs to “compensate” for this to
match the functional reference implementation.
With the main complexity of the invariant factored out

as per the core proof principles of Arboreta, the rest of the
proof posed little conceptual challenge. For example, the
subprocedure push_child is a structure-changing operation,
which can be modelled in the same way as has been demon-
strated for prepend_child in Sec. 3.2.4. The proof is similar
for another subprocedure detach_from_neighbors (called at
line 16 of Fig. 14c) that removes a child.
The last thing to note is the switch between array view

and tree view. When verifying the code in Fig. 14c, we keep
using the array view when “stepping through” at the lines
10–14 and deal with the random access. We then switch to
the tree view to handle the structure-changing subproce-
dures. At the line 23, we go back to the array view, since
get_upd_nodes_join_chn (a function used for traversing chil-
dren nodes) also performs various random accesses.

Table 2. Evaluation: array-based v. pointer-based tree clocks

1 2 3 4 5 6

Trace len. num. Avg. len. Ptr. TC (s) Arr. TC (s) Speedup

(0M, 60M] 35 0.14M 0.22 0.16 1.25×

(60M, 112M] 24 102M 162.27 115.32 1.41×

(112M, 136M] 29 125M 206.57 147.22 1.40×

(136M, 215M] 29 169M 222.36 190.72 1.17×

(215M, 1B] 29 391M 657.23 463.32 1.42×

Total 146 31.41 48.90 36.10 1.35×

4.4 Proof Effort

The quantitative data about our verification efforts is given
in Tab. 1. The implementation of Arboreta includes pure
facts about array-based trees (Sec. 3.1) and separation logic
facts about dual views (Sec. 3.2) and amounts to 2.7 kLOC of
Coq. The formalisation of tree clocks includes the functional
reference specification (Sec. 4.2) as well as specs and proofs
for C code (Sec. 4.3), totalling at 5.2 kLOC of Coq.

The size of the verified C codebase, not included into the
statistics in Tab. 1, is around 150 lines of code.

4.5 Evaluation and Benchmarks

To demonstrate the practical relevance of our verified C
implementation of array-based tree clocks, we incorporated
it inside a HB-based dynamic data race detector.
We evaluate the performance of our array-based imple-

mentation over the naïve but easier-to-mechanise pointer-
based tree clocks. For a controlled evaluation, our data race
detector performs analysis on offline traces logged a priori;
this ensures that both implementations work on the same
trace (for each benchmark program). Conceptually, the race
detector maintains a fixed number of tree clocks, processes
events one by one, updates them at each event, and checks
for data races at every access event. Our benchmark suite is
derived from prior work [22] and includes 146 traces from
different concurrent C/C++ as well as Java applications. For
each trace, we measured the time taken by the race detection
analysis, using both the naïve pointer-based, as well as our
verified array-based tree clock implementations. Our evalua-
tion was conducted on a 64-bit Red Hat Enterprise Linux 8.4
machine with a single CPU core and 256GB RAM.

In Tab. 2, we summarise the results of our evaluation. The
table aggregates the trace logs into 5 groups, dividing the
entire set into roughly equal sets based on their lengths
(number of events). Column 1 and Column 2 represent the
range of trace lengths and the number of traces in each group
respectively. Column 4 (resp. column 5) reports the (geomet-
ric) mean of the time taken by the analysis that uses the
pointer-based (resp. verified array-based) tree clock imple-
mentation. Column 6 reports the (geometric) mean of the
resulting speedup in each group; the speedup for a given
benchmark is measured as the ratio of the time taken by the

57

CPP ’24, January 15–16, 2024, London, UK Qiyuan Zhao, George Pîrlea, Zhendong Ang, Umang Mathur, and Ilya Sergey

pointer-based implementation and the array-based imple-
mentation. Overall, the array-based implementation offers
a 35% speedup, thanks to the efficiency offered by random
access in arrays. More importantly, now this fast implemen-
tation comes with a formal correctness proof!

5 Related Work

Our work contributes to a large body of research on mechan-
ically verified heap-based data structures and algorithms.

Tree manipulations in Separation Logic. Verifying re-
cursive traversals of heap-based trees in SL (mechanised or
not) is considered a standard exercise and is featured in a
number of papers and teaching materials [8, 9, 27, 30]. Rea-
soning about arrays in SL is also a well-studied area, in which
many problems can be reduce to reasoning about lists [15].
To the best of our knowledge, relatively few works are

concerned with array-based tree representations. Barriére
specifies B+ trees in VST by providing a representation pred-
icate that facilitates proofs about traversals via heap induc-
tion, but is less convenient to reason about random accesses,
as is allowed by the array view in our approach [5].
As described in Sec. 3.2.2, our tree view enables the use

of localised reasoning rules such as WandFrameUpdate,
which, however, is restricted to scenarios involving the ma-
nipulation of only one subtree at a time. Advanced tech-
niques have been proposed to address the more complex
cases involving multiple subtrees [7] and we plan to inte-
grate them into Arboreta in the future.
Reasoning about graphs in Separation Logic frequently

requires defining a representation predicates similar to our
tree_rep [24, 34, 36]. Even though such predicates facilitate
certain kinds of inductive reasoning [16], they impose addi-
tional proof obligations related to non-interference between
recursive calls that can be caused by deep intrinsic sharing—
such obligations would not be necessary for trees.
Our approach of formulating loop invariants for non-

recursive traversals is reminiscent of Charguéraud’s spe-
cialised rules for inductive reasoning about loops [8, §6], but
is tailored for array-based trees and the respective represen-
tation predicates. We do not exclude a possibility that such
loop invariants can be automatically derived from induction
hypotheses of equivalent recursive traversals, and we are
planning to investigate this research question in the future.

Reasoning about logical clocks. Tree clocks are a partic-
ular instance of logical clocks [18]: a family of data structures
that are frequently used as a mechanism for reasoning about
causality of events in concurrent and distributed systems.
Mechanised implementations of a simpler version of log-
ical clocks—vector clocks [11, 23]—are featured in several
existing efforts on verified algorithms for dynamic data race
detection [21, 32, 37]. Verified vector clocks are also an impor-
tant component of certified implementations of Conflict-free
Replicated Data Types (CRDTs) [14, 19, 20, 26].

We are not aware of any verified implementations of tree
clocks, but we believe it should be possible to use our im-
plementation from Sec. 4 as a verified drop-in replacement
for vector clocks in some of those systems. The reason we
could not do so immediately is the mismatch between the
logical foundations of our proofs and the existing implemen-
tations of data race detectors and CRDTs. For example, most
of the existing mechanised CRDT implementations [14, 26]
are verified in Iris [17], whose proofs are therefore not di-
rectly composable with ours in VST. Mansky et al.’s verified
version of FastTrack algorithm [12, 21] features a C imple-
mentation partially verified in VST. Unfortunately, its proof
relies on bespoke specifications of logical clock operations,
making it difficult to plug in our implementation “as-is”. We
leave these exercises in proof composition to the future work.

6 Conclusion and Future Work

In this work, we have presented a principled methodology
for structuring proofs about manipulations with array-based
trees in Separation Logic (SL). We implemented the main
components of our approach in a Coq library called Arboreta
and showcased them on a large case study, verifying an array-
based tree structure used in real-world data race detectors.
While our current implementation is tied to the VST frame-
work as a Coq embedding of Separation Logic, we believe,
the key ideas of our work can be transferred to other SL em-
beddings, such as CFML [8], HTT [25], and Iris [17] in a rel-
atively straightforward way. Furthermore, our pure reason-
ing principles concerning RLTs, such as those delineated in
Arboreta-P (Sec. 3.1) and those associated with non-recursive
tree traversals (Sec. 3.3), should be adaptable to other theo-
rem provers based on higher-order logic. In the future, we
are planning to extend our case studies to other array-based
tree structures, such as AVL and B+ trees. We are also plan-
ning to integrate our verified implementation of tree clocks
into the verified data race detector by Mansky et al. [21].

Data Availability

The software artefact with a snapshot of the Coq and C de-
velopments accompanying this paper is available online [38].
It contains the source code of Arboreta, the tree clock case
study, and the harness to reproduce the experimental results
with the data race detector described in Sec. 4.5.

Acknowledgments

We thank the anonymous CPP’24 reviewers for their con-
structive and insightful comments. We also thank Brigitte
Pientka and Sandrine Blazy for their efforts as CPP’24 Pro-
gramme Co-Chairs. This work was partially supported by a
Singapore Ministry of Education (MoE) Tier 3 grant “Auto-
mated Program Repair” MOE-MOET32021-0001, MoE Tier 1
grant T1 251RES2108 “Automated Proof Evolution for Ver-
ified Software Systems”, and MoE Tier 1 grant “Tree Data
Structures for Causal Orderings in Data Race Detection”.

58

Rooting for Efficiency: Mechanised Reasoning about Array-Based Trees in Separation Logic CPP ’24, January 15–16, 2024, London, UK

References
[1] Andrew W. Appel. 2011. Verified Software Toolchain - (Invited Talk).

In ESOP (LNCS, Vol. 6602). Springer, 1–17. h�ps://doi.org/10.1007/978-

3-642-19718-5_1

[2] Andrew W. Appel. 2016. Verified Functional Algorithms. Software

Foundations.Volume 3 (2016). Available at h�ps://so�warefoundations.

cis.upenn.edu/vfa-current/.

[3] Andrew W. Appel. 2022. Coq’s vibrant ecosystem for verification

engineering (invited talk). In CPP. ACM, 2–11. h�ps://doi.org/10.1145/

3497775.3503951

[4] Patrick Bahr and Emil Axelsson. 2017. Generalising tree traversals

and tree transformations to DAGs: Exploiting sharing without the

pain. Sci. Comput. Program. 137 (2017), 63–97. h�ps://doi.org/10.1016/

j.scico.2016.03.006

[5] Aurèle Barrière. 2018. VST Verification of B+ Trees with Cursors. Tech-

nical Report. Ecole Normale Supérieure de Rennes.

[6] Qinxiang Cao, Shengyi Wang, Aquinas Hobor, and Andrew W. Appel.

2019. Proof Pearl: Magic Wand as Frame. h�ps://doi.org/10.48550/

arXiv.1909.08789

[7] Arthur Charguéraud. 2016. Higher-order representation predicates in

separation logic. In CPP. ACM, 3–14. h�ps://doi.org/10.1145/2854065.

2854068

[8] Arthur Charguéraud. 2020. Separation Logic for Sequential Programs

(Functional Pearl). Proc. ACM Program. Lang. 4, ICFP (2020), 116:1–

116:34. h�ps://doi.org/10.1145/3408998

[9] Arthur Charguéraud. 2021. Separation Logic Foundations. Software

Foundations.Volume 6 (2021). Available at h�ps://so�warefoundations.

cis.upenn.edu/slf-current/.

[10] Olivier Danvy. 2022. Fold-unfold lemmas for reasoning about recursive

programs using the Coq proof assistant. J. Funct. Program. 32 (2022),

e13. h�ps://doi.org/10.1017/S0956796822000107

[11] Colin J Fidge. 1988. Timestamps in message-passing systems that

preserve the partial ordering. In Proceedings of the 11th Australian

Computer Science Conference. 55–66.

[12] Cormac Flanagan and Stephen N. Freund. 2009. FastTrack: efficient

and precise dynamic race detection. In PLDI. ACM, 121–133. h�ps:

//doi.org/10.1145/1542476.1542490

[13] Jeremy Gibbons. 1991. Algebras for Tree Algorithms. Ph. D. Dissertation.

University of Oxford.

[14] Léon Gondelman, Simon Oddershede Gregersen, Abel Nieto, Amin

Timany, and Lars Birkedal. 2021. Distributed causal memory: modular

specification and verification in higher-order distributed separation

logic. Proc. ACM Program. Lang. 5, POPL (2021), 1–29. h�ps://doi.org/

10.1145/3434323

[15] Kiran Gopinathan, Mayank Keoliya, and Ilya Sergey. 2023. Mostly

Automated Proof Repair for Verified Libraries. Proc. ACM Program.

Lang. 7, PLDI (2023), 25–49. h�ps://doi.org/10.1145/3591221

[16] Aquinas Hobor and Jules Villard. 2013. The ramifications of sharing

in data structures. In POPL. ACM, 523–536. h�ps://doi.org/10.1145/

2429069.2429131

[17] The Iris Project. 2023. Iris: a Higher-Order Concurrent Separation

Logic Framework, implemented and verified in the Coq proof assistant.

h�ps://iris-project.org/ Online.

[18] Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in

a Distributed System. Commun. ACM 21, 7 (1978), 558–565. h�ps:

//doi.org/10.1145/359545.359563

[19] Mohsen Lesani, Christian J. Bell, and Adam Chlipala. 2016. Chapar:

certified causally consistent distributed key-value stores. In POPL.

ACM, 357–370. h�ps://doi.org/10.1145/2837614.2837622

[20] Yiyun Liu, James Parker, Patrick Redmond, Lindsey Kuper, Michael

Hicks, and Niki Vazou. 2020. Verifying replicated data types with

typeclass refinements in Liquid Haskell. Proc. ACM Program. Lang. 4,

OOPSLA (2020), 216:1–216:30. h�ps://doi.org/10.1145/3428284

[21] WilliamMansky, Yuanfeng Peng, Steve Zdancewic, and JosephDevietti.

2017. Verifying dynamic race detection. In CPP. ACM, 151–163. h�ps:

//doi.org/10.1145/3018610.3018611

[22] Umang Mathur, Andreas Pavlogiannis, Hünkar Can Tunç, and Mahesh

Viswanathan. 2022. A Tree Clock Data Structure for Causal Orderings

in Concurrent Executions. In ASPLOS. ACM, 710–725. h�ps://doi.org/

10.1145/3503222.3507734

[23] Friedemann Mattern. 1989. Virtual Time and Global States of

Distributed Systems. In Parallel and Distributed Algorithms. North-

Holland, 215–226.

[24] Anshuman Mohan, Wei Xiang Leow, and Aquinas Hobor. 2021. Func-

tional Correctness of C Implementations of Dijkstra’s, Kruskal’s, and

Prim’s Algorithms. In CAV (LNCS, Vol. 12760). Springer, 801–826.

h�ps://doi.org/10.1007/978-3-030-81688-9_37

[25] Aleksandar Nanevski, Viktor Vafeiadis, and Josh Berdine. 2010. Struc-

turing the verification of heap-manipulating programs. In POPL. ACM,

261–274. h�ps://doi.org/10.1145/1706299.1706331

[26] Abel Nieto, Léon Gondelman, Alban Reynaud, Amin Timany, and Lars

Birkedal. 2022. Modular verification of op-based CRDTs in separation

logic. Proc. ACM Program. Lang. 6, OOPSLA2 (2022), 1788–1816. h�ps:

//doi.org/10.1145/3563351

[27] Peter W. O’Hearn. 2012. A Primer on Separation Logic (and Automatic

Program Verification and Analysis). In Software Safety and Security -

Tools for Analysis and Verification. NATO Science for Peace and Security

Series, Vol. 33. IOS Press, 286–318. h�ps://doi.org/10.3233/978-1-

61499-028-4-286

[28] Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. 2001. Local

Reasoning about Programs that Alter Data Structures. In CSL (LNCS,

Vol. 2142). Springer, 1–19. h�ps://doi.org/10.1007/3-540-44802-0_1

[29] José Nuno Oliveira. 2023. Program Design by Calculation.

[30] Ruzica Piskac, Thomas Wies, and Damien Zufferey. 2014. Automat-

ing Separation Logic with Trees and Data. In CAV (LNCS, Vol. 8559).

Springer, 711–728. h�ps://doi.org/10.1007/978-3-319-08867-9_47

[31] John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable

Data Structures. In LICS. IEEE Computer Society, 55–74. h�ps://doi.

org/10.1109/LICS.2002.1029817

[32] Caitlin Sadowski, Jaeheon Yi, Kenneth Knowles, and Cormac Flanagan.

2008. Proving correctness of a dynamic atomicity analysis in Coq. In

Workshop on Mechanizing Metatheory, Vol. 8.

[33] Konstantin Serebryany and Timur Iskhodzhanov. 2009. ThreadSani-

tizer – data race detection in practice.. In Proceedings of the Workshop

on Binary Instrumentation and Applications. h�p://doi.acm.org/10.

1145/1791194.1791203

[34] Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. 2015. Mecha-

nized verification of fine-grained concurrent programs. In PLDI. ACM,

77–87. h�ps://doi.org/10.1145/2737924.2737964

[35] Philip Wadler. 1990. Deforestation: Transforming Programs to Elim-

inate Trees. Theor. Comput. Sci. 73, 2 (1990), 231–248. h�ps:

//doi.org/10.1016/0304-3975(90)90147-A

[36] Shengyi Wang, Qinxiang Cao, Anshuman Mohan, and Aquinas Hobor.

2019. Certifying graph-manipulating C programs via localizations

within data structures. Proc. ACM Program. Lang. 3, OOPSLA (2019),

171:1–171:30. h�ps://doi.org/10.1145/3360597

[37] James R. Wilcox, Cormac Flanagan, and Stephen N. Freund. 2018.

VerifiedFT: a verified, high-performance precise dynamic race detector.

In PPoPP. ACM, 354–367. h�ps://doi.org/10.1145/3178487.3178514

[38] Qiyuan Zhao, George Pîrlea, Zhendong Ang, Umang Mathur, and Ilya

Sergey. 2023. Artefact for Article “Rooting for Efficiency: Mechanised

Reasoning about Array-Based Trees in Separation Logic”. h�ps://doi.

org/10.5281/zenodo.10366484

Received 2023-09-19; accepted 2023-11-25

59

https://doi.org/10.1007/978-3-642-19718-5_1
https://doi.org/10.1007/978-3-642-19718-5_1
https://softwarefoundations.cis.upenn.edu/vfa-current/
https://softwarefoundations.cis.upenn.edu/vfa-current/
https://doi.org/10.1145/3497775.3503951
https://doi.org/10.1145/3497775.3503951
https://doi.org/10.1016/j.scico.2016.03.006
https://doi.org/10.1016/j.scico.2016.03.006
https://doi.org/10.48550/arXiv.1909.08789
https://doi.org/10.48550/arXiv.1909.08789
https://doi.org/10.1145/2854065.2854068
https://doi.org/10.1145/2854065.2854068
https://doi.org/10.1145/3408998
https://softwarefoundations.cis.upenn.edu/slf-current/
https://softwarefoundations.cis.upenn.edu/slf-current/
https://doi.org/10.1017/S0956796822000107
https://doi.org/10.1145/1542476.1542490
https://doi.org/10.1145/1542476.1542490
https://doi.org/10.1145/3434323
https://doi.org/10.1145/3434323
https://doi.org/10.1145/3591221
https://doi.org/10.1145/2429069.2429131
https://doi.org/10.1145/2429069.2429131
https://iris-project.org/
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/2837614.2837622
https://doi.org/10.1145/3428284
https://doi.org/10.1145/3018610.3018611
https://doi.org/10.1145/3018610.3018611
https://doi.org/10.1145/3503222.3507734
https://doi.org/10.1145/3503222.3507734
https://doi.org/10.1007/978-3-030-81688-9_37
https://doi.org/10.1145/1706299.1706331
https://doi.org/10.1145/3563351
https://doi.org/10.1145/3563351
https://doi.org/10.3233/978-1-61499-028-4-286
https://doi.org/10.3233/978-1-61499-028-4-286
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1007/978-3-319-08867-9_47
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1109/LICS.2002.1029817
http://doi.acm.org/10.1145/1791194.1791203
http://doi.acm.org/10.1145/1791194.1791203
https://doi.org/10.1145/2737924.2737964
https://doi.org/10.1016/0304-3975(90)90147-A
https://doi.org/10.1016/0304-3975(90)90147-A
https://doi.org/10.1145/3360597
https://doi.org/10.1145/3178487.3178514
https://doi.org/10.5281/zenodo.10366484
https://doi.org/10.5281/zenodo.10366484

	Abstract
	1 Introduction
	2 Overview and Key Ideas
	2.1 Specifying Computations with Array-Based RLTs
	2.2 Structure-Changing Tree Operations
	2.3 Non-Recursive Tree Traversals

	3 Arboreta: Proofs about Array-Based Trees
	3.1 Reasoning Principles for Rooted Trees
	3.2 Dual Views: From Array to Tree and Back Again
	3.3 Loop Invariants for Non-Recursive Traversals

	4 Verifying the Tree Clock Data Structure
	4.1 Tree Clocks: A Primer
	4.2 Tree Clocks in Coq, Functionally
	4.3 Verifying the C Implementation
	4.4 Proof Effort
	4.5 Evaluation and Benchmarks

	5 Related Work
	6 Conclusion and Future Work
	Acknowledgments
	References

