
Cyclic Program Synthesis

Shachar Itzhaky
Technion
Israel

shachari@cs.technion.ac.il

Hila Peleg
University of California, San Diego

USA
hpeleg@eng.ucsd.edu

Nadia Polikarpova
University of California, San Diego

USA
nadia.polikarpova@ucsd.edu

Reuben N. S. Rowe
Royal Holloway, University of London

United Kingdom
reuben.rowe@rhul.ac.uk

Ilya Sergey
Yale-NUS College

National University of Singapore
Singapore

ilya.sergey@yale-nus.edu.sg

Abstract

We describe the first approach to automatically synthesiz-
ing heap-manipulating programs with auxiliary recursive
procedures. Such procedures occur routinely in data struc-
ture transformations (e.g., flattening a tree into a list) or
traversals of composite structures (e.g., n-ary trees). Our ap-
proach, dubbed cyclic program synthesis, enhances deductive
program synthesis with a novel application of cyclic proofs.
Specifically, we observe that the machinery used to form
cycles in cyclic proofs can be reused to systematically and
efficiently abduce recursive auxiliary procedures.
We develop the theory of cyclic program synthesis by

extending Synthetic Separation Logic (SSL), a logical frame-
work for deductive synthesis of heap-manipulating programs
from Separation Logic specifications. We implement our ap-
proach as a tool called Cypress, and showcase it by auto-
matically synthesizing a number of programs manipulating
linked data structures using recursive auxiliary procedures
and mutual recursion, many of which were beyond the reach
of existing program synthesis tools.

CCS Concepts: · Software and its engineering→ Auto-

matic programming.

Keywords: Program Synthesis, Separation Logic, Cyclic Proofs

ACM Reference Format:

Shachar Itzhaky, Hila Peleg, Nadia Polikarpova, Reuben N. S. Rowe,

and Ilya Sergey. 2021. Cyclic Program Synthesis. In Proceedings of

the 42nd ACM SIGPLAN International Conference on Programming

Language Design and Implementation (PLDI ’21), June 20ś25, 2021,

Virtual, Canada. ACM, New York, NY, USA, 16 pages. https://doi.

org/10.1145/3453483.3454087

Permission to make digital or hard copies of part or all of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

PLDI ’21, June 20ś25, 2021, Virtual, Canada

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8391-2/21/06.

https://doi.org/10.1145/3453483.3454087

1 Introduction

Consider the task of flattening a binary tree into a linked
list, which is typically solved by writing a recursive data
traversal program. The promise of program synthesis is to
automate such tedious data manipulation tasks by gener-
ating programs automatically from high-level, declarative
specifications. Several recent synthesizers [1, 19, 27ś29] are
indeed capable of generating recursive programs given only
the top-level description of their behavior. For example, SuS-
Lik [29] can generate a provably correct, recursive C-like
program that deallocates a binary tree given as input the
following specification in Separation Logic (SL) [26, 34]:

{tree(x, s)} treefree(x)
{

emp
}

(1)

This specification says that initially the heap contains a
binary tree rooted at address xwith set of elements s , and that
after executing treefree the heap must be empty. Inspired
by the success with treefree, the programmer might try to
synthesize tree flattening from the specification below:

{r 7→ x ∗ tree(x , s)} flatten(r)
{

r 7→ y ∗ sll(y, s)
}

(2)

where sll describes a singly-linked list, and the location r

initially stores the root of the input tree, and eventually the
output list as computed by flatten. Much to the program-
mer’s frustration, however, SuSLik fails to synthesize an
implementation: it times out, without producing any useful
output. In fact, given only the specification (2) or a similar
one, and no additional hints, this example is out of reach for
all other state-of-the-art synthesizers for recursive programs.

Challenge: recursive auxiliaries. This failure can be
more readily understood when considering the expected
solution. One such solution, depicted below, begins with two
recursive calls which flatten the immediate subtrees of the
input tree, obtaining two linked lists. Now, the synthesizer
is at an impasse: how to combine the two lists to create the
output list? This step requires an operationthat appends lists,
which is in itself a recursive program (and one which cannot
be implemented by another call to flatten, for example).
This synthesis task illustrates a fundamental limitation of
existing approaches to synthesis of recursion: tree flattening

945

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3453483.3454087
https://doi.org/10.1145/3453483.3454087
https://doi.org/10.1145/3453483.3454087

PLDI ’21, June 20ś25, 2021, Virtual, Canada Shachar Itzhaky, Hila Peleg, Nadia Polikarpova, Reuben N. S. Rowe, and Ilya Sergey

r x

xl xr

yl yr
flatten flatten

???

y

cannot be accomplished without
a recursive auxiliary function.1 Ex-
isting synthesizers can generate
flatten given the specification of
append as a hint from the user [29]:
using this auxiliary specification
as a stepping stone, they can then
generate code for both flatten

and append as two synthesis tasks.
It is, however, often non-trivial for
the programmer to come up with this kind of hints.

Inferring auxiliary specifications automatically has been a
long-standing open challenge in program synthesis. Since the
hypothesis space is very large, simply allowing the synthe-
sizer to conjecture any arbitrary auxiliary definition would
be impractical, as that would make the search space explode.
The state of the art is the work by Eguchi et al. [13], which
attacks this problem in the context of functional program-
ming by assuming a set of predefined recursion templates (e.g.
a fold-right over lists). While syntactic templates help curb
the search space explosion, they also limits the applicability
of the technique, and in particular, preclude traversals of
arbitrary user-defined data structures.

Cyclic program synthesis. We present a new synthesis
technique, dubbed cyclic program synthesis, capable of auto-
matically discovering recursive auxiliaries without the need
for built-in templates or additional hints from the user. In par-
ticular, given the specification (2), our technique synthesizes
a provably correct tree-flattening program, automatically
discovering a recursive auxiliary that appends two lists.

Our technique draws inspiration fromÐand owes its name
toÐcyclic proofs, a powerful reasoning mechanism from the
line of work on automated theorem proving [3, 9, 11, 25, 36,
37, 39]. In cyclic proofs, derivation łtreesž can have back-
links from non-axiomatic leaves (called buds) to identical
internal nodes (called companions). These backlinks enable
an automation-friendly approach to proofs by induction: in-
stead of conjecturing an induction hypothesis a-priori, the
method exploits a similarity between a current goal and
a companion goal elsewhere in the derivation, essentially
turning the latter into an induction hypothesis on demand.
The key insight of this work is to apply the cyclic proof

approach to automated deductive synthesis of recursive pro-
grams: instead of conjecturing auxiliary specifications a pri-
ori, one can abduce them from the repeated goal patterns
encountered during the main program derivation. For exam-
ple, in flatten the synthesizer starts generating the code of
append inline, and later recognizes that the program can be
completed by extracting the code into a function and adding
a recursive call.

1The choice of auxiliary is not unique, e.g. one may propose an auxiliary

that uses a list accumulator.

Our contributions. Realizing the idea of cyclic synthesis
requires a carefully designed deductive system, in which
the repeated goals observed in program derivations can be
used to form backlinks. Our first contribution is the design
of such a deductive system, which we dub Cyclic SSL (SSL⟲).
This system builds on top of Synthetic Separation Logic
(SSL), the deductive synthesis framework underlying SuS-

Lik [29]. SSL⟲ features a new set of rules for synthesiz-
ing procedure calls, incorporating an expressive trace-based
termination checking mechanism from cyclic proofs [7, 8].
This mechanism enables SSL⟲ to derive a wider range of
recursive programs, including programs with auxiliaries and
non-structural recursion.
Our second contribution is an implementation of SSL⟲

in a new synthesis tool Cypress, which extends and sub-
sumes SuSLik. The addition of cyclic reasoning requires an
efficient mechanism for detecting potential companions for
the current goal during search. Cypress achieves this via a
call abduction oracle, which matches up goals that are not
syntactically equal, adjusting them accordingly.Cypress also
features more efficient theory reasoning via a mechanism
we dub unification modulo theories, as well as new best-first

proof search, guided by the size and shape of the goal.
We evaluated Cypress on 46 synthesis benchmarks. Our

evaluation shows that Cypress is able to solve a number
of challenging tasks requiring nested traversals of linked
structures (e.g., sorting or de-duplicating a linked list) or
traversals of mutually-recursive data structures (e.g., n-ary
trees). To the best of our knowledge, these programs are
beyond reach of any existing approaches to automated hint-
free synthesis from declarative specifications.

Paper outline. The following sections provide a brief
primer on synthesis via SSL, outlining this work’s innova-
tions via a series of examples (Sec. 2); give a description of
SSL⟲ and its meta-theory (Sec. 3); describe the synthesis
algorithm (Sec. 4); and report on our evaluation (Sec. 5).

2 Cyclic Program Synthesis, by Example

This section presents the main ideas of Synthetic Separation
Logic (SSL), followed by an overview of the scenarios enabled
by our new rules and cyclic proofs principles. All code ex-
amples shown in this section are synthesized automatically
using our novel synthesis tool Cypress.

2.1 Background: SSL and Its Limitations

Specfications. Deductive synthesis based on SSL takes
as input a pair of Hoare-style pre- and postconditions. For
instance, recall the specification (1) for deallocating a tree:

{tree(x, s)} treefree(x)
{

emp
}

Here the precondition tree(x, s) states that treefree may
assume that it starts from a heap containing a binary tree
rooted at address x with payload set s; the postcondition

946

Cyclic Program Synthesis PLDI ’21, June 20ś25, 2021, Virtual, Canada

emp states that treefree must guarantee that the heap is
empty upon its termination.2 Note that the tree root x also
appears as a parameter to treefree, and hence is a program
variable, i.e., can be mentioned in the synthesized program;
the payload set s , on the other hand, is a logical variable and
must not appear in the program. In the rest of this section,
we distinguish program variables from logical variables by
using monotype font for the former.
In general, in a specification {P} f(...) {Q}, assertions
P, Q have the form ϕ; P , where the spatial part P describes
the shape of the heap, while the pure part ϕ is a plain first-
order formula that states the relations between variables
(in (1) the trivial pure part true is omitted from both pre-
and postcondition). For the spatial part, SSL employs the
standard symbolic heap fragment of Separation Logic [26, 34].
Informally, a symbolic heap is a set of atomic formulas called
heaplets joined with separating conjunction (∗). The simplest
kind of heaplet is a points-to assertion x 7→ e , which describes
a single memory location with address x and payload e . For
example, the formula x 7→ 5 ∗ y 7→ 10 describes a heap with
two memory locations, x and y, which store values 5 and 10,
and are distinct, as per the semantics of the ∗ connective.
To capture linked data structures, such as lists and trees,

SSL specifications make extensive use of inductive heap pred-
icates, which are standard in Separation Logic. For instance,
the tree predicate from (1) is inductively defined as follows:

tree(x , s) ≜ x = 0⇒
{

s = ∅; emp
}

| x , 0⇒ {s = {v} ∪ sl ∪ sr ;

[x , 3] ∗ x 7→ v ∗ ⟨x , 1⟩ 7→ l ∗ ⟨x , 2⟩ 7→ r ∗

tree(l , sl) ∗ tree(r , sr)}

(3)

This definition consists of two guarded clauses: the first one
describes the empty tree (and applies when the root pointer x
is null), and the second one describes a non-empty tree. In the
second clause, a tree node is represented by a three-element
record starting at address x . The first field of the record stores
the payload v , while the other two store the addresses l and
r of the left and right subtrees, correspondingly. Records
are represented using a generalized form of the points-to
assertion with an offset: for example, the heaplet ⟨x , 1⟩ 7→ l

describes a memory location at the address x + 1. The block
assertion [x , 3] is an artifact of C-style memory management:
it represents a memory block of size three at address x that
has been dynamically allocated by malloc (and hence can
be de-allocated by free). The two disjoint heaps tree(l , sl)
and tree(r , sr) store the two subtrees. Finally, the pure part
of the second clause indicates that the payload of the whole
tree consist of v and the subtree payloads, sl and sr .

Deductive synthesis. Given a pre-/postcondition pair P,
Q, deductive synthesis proceeds by constructing a derivation

2This specification also implicitly guarantees that treefree always termi-

nates and executes without memory errors (e.g., null-pointer dereferencing).

Emp

⊢ ϕ ⇒ ψ
{

ϕ ; emp
}

{
{

ψ ; emp
} �� skip

Frame
{

ϕ ; P
}

{
{

ψ ;Q
} �� c

{

ϕ ; P ∗ R
}

{
{

ψ ;Q ∗ R
} �� c

Free

R = [x, n] ∗∗0≤i≤n (⟨x, i⟩ 7→ ei)
{

ϕ ; P
}

{ {Q } �� c
{

ϕ ; P ∗ R
}

{ {Q } �� free(x); c
Read

y is fresh [y/a]
{

ϕ ; ⟨x, ι⟩ 7→ a ∗ P
}

{ [y/a]{Q } �� c
{

ϕ ; ⟨x, ι⟩ 7→ a ∗ P
}

{ {Q } �� let y = ∗(x + ι); c
Write

Vars(e) ⊆ PV
{

ϕ ; ⟨x, ι⟩ 7→ e ∗ P
}

{
{

ψ ; ⟨x, ι⟩ 7→ e ∗Q
} �� c

{

ϕ ; ⟨x, ι⟩ 7→ e′ ∗ P
}

{
{

ψ ; ⟨x, ι⟩ 7→ e ∗Q
} �� ∗(x + ι) = e ; c

Figure 1. Selected SSL rules (simplified).

of the SSL judgment {P}{ {Q} | c for some program c . In-
tuitively, this judgment has the same meaning as the Hoare
triple {P} c {Q} (different syntax is used to emphasise that
operationally the program c is łthe outputž rather than łthe
inputž). The derivation is constructed by applying inference
rules, a subset of which is presented in Fig. 1.
Inference rules gradually simplify the initial synthesis

goal {P} { {Q}, until symbolic heaps in both pre- and post-
conditions are empty, at which point the terminal rule Emp
concludes the derivation and łemitsž a trivial program skip.
The Frame rule reduces the synthesis goal to a smaller one
by removing matching symbolic heaps in its pre- and post-
condition. The Free rule eliminates a dynamically-allocated
block of memory from the precondition by emitting a free

statement. The rules Read and Write synthesize reads and
writes of heap locations, correspondingly. The role of the
Write rule is to łequalisež points-to heaplets that have the
same address but different payloads, so that they can be sub-
sequently łtrimmedž by Frame. The role of the Read rule is
to turn a logical variable a into a program variable y, which
might enable subsequent application of Free orWrite. Note
that reading from the heap always creates a fresh program
variable (hence the let syntax), and variables, unlike heap
locations, are never re-assigned.

To deal with inductive predicates, SSL features rules Open
and Close (elided from this overview), which unfold pred-
icate definitions in the pre- and the postcondition, respec-
tively. Finally, the Call rule synthesizes a recursive call if
some part of the current goal’s precondition matches the
precondition P of the top-level, user-provided specification.

1 void treefree(x) {

2 if (x = 0) {

3 } else {

4 let l = *(x + 1);

5 let r = *(x + 2);

6 free(x);

7 treefree(l);

8 treefree(r);

9 }}

Deriving treefree. Let us illus-
trate how all those rules work in
tandem to synthesize the imple-
mentation of treefree shown on
the right from the specification (1).
We start by unfolding the defini-
tion of tree in the top-level goal
{tree(x, s)} {

{

emp
}

, which generates two sub-goals (one
for each clause of the predicate):

947

PLDI ’21, June 20ś25, 2021, Virtual, Canada Shachar Itzhaky, Hila Peleg, Nadia Polikarpova, Reuben N. S. Rowe, and Ilya Sergey

{

x = 0 ∧ s = ∅; emp
}

{
{

emp
}

| c1 (4)

{x , 0; [x, 3] ∗ x 7→ v ∗ ⟨x, 1⟩ 7→ l ∗ ⟨x, 2⟩ 7→ r (5)

∗ tree(l , sl) ∗ tree(r , sr)} {
{

emp
}

| c2

The programs c1 and c2 emitted by these subgoals will be
conjoined via the statement if (x = 0) { c1 } else { c2 }. The
first subgoal (4) is trivially solved by the rule Emp, result-
ing in a program skip. In the second subgoal (5), the two
grayed fragments enable two subsequent applications of the
rule Read, adding two reads statements, from *(x + 1) and
*(x + 2), correspondingly, creating two new program-level
bindings, l and r and transforming the current goal into

{x , 0; [x, 3] ∗ x 7→ v ∗ ⟨x, 1⟩ 7→ l ∗ ⟨x, 2⟩ 7→ r

∗ tree(l, sl) ∗ tree(r, sr)} {
{

emp
}

(6)

The Free rule now applies to the grayed fragment of the
goal’s precondition, emitting free(x), and simplifying the
synthesis goal to:

{. . . ; tree(l, sl) ∗ tree(r, sr)} {
{

emp
}

(7)

To complete the synthesis, we notice that each of the two
heaplets in the precondition matches the top-level specifica-
tion (1), and hence can trigger the rule Call, synthesizing a
procedure call with a suitable argument.

Limitations. The Call rule of SSL imposes significant
limitations on the kinds of recursive functions it can derive.
The first limitation is that it only allows using the top-level
synthesis goal provided by the user as the specification for
the callee; this precludes synthesis of recursive auxiliary
functions, as required, for example, to flatten a tree into a
list, as explained in the introduction.
A second, somewhat subtler limitation arises from the

way SSL enforces termination of synthesized programs. To
avoid generating trivial non-terminating solutionsÐsuch as
treefree(x) immediately calling treefree(x) againÐSSL re-
stricts synthesized programs to be structurally recursive.3

More precisely, synthesis starts by picking a single inductive
predicate in the precondition that the program will łrecurse
onž, and only allows a recursive call once this predicate has
been unfolded at least once. This limitation makes it impos-
sible to synthesize programs with more complex recursion
patterns: even something as simple as a (helper-free) func-
tion that deallocates two trees, as such a function would need
to traverse both of those trees recursively in a single run.

In the remainder of this section we will demonstrate how
SSL⟲ overcomes both of these limitations by harnessing the
cyclic proof methodology to enhance the Call rule.

3Proof assistants like Coq [10] impose similar restrictions on recursion.

Call{
ϕf ; P

}
{

{
ψf ; S

} ��� f (xi) ⊢ ϕ ⇒ [σ]ϕf{
ϕ ∧ [σ]ψf ; [σ]S ∗ R

}
{ {Q }

��� c
{

ϕ ; [σ]P ∗ R
}

{ {Q } �� f (σ (xi)); c

Proc
{

ϕ ; P
}

{
{

ψ ;Q
} �� c

{

ϕ ; P
}

{
{

ψ ;Q
} �� f (xi)

Figure 2. Rules for calls and definitions in SSL⟲ (simplified).

2.2 Recursive Programs from Cyclic Proofs

The primary difference between SSL and SSL⟲, is that the lat-
ter synthesizes a program by searching for a cyclic derivation,
with recursive calls arising from backlinks in the proof.

New rules for function definitions and calls. To cater
for synthesizing recursive calls using cyclic proofs, SSL⟲
introduces a new, more general version of the Call rule,
shown in Fig. 2. As before, this rule synthesizes a function call
f (σ (xi)) (where σ substitutes actuals for formals) whenever
some part of the current symbolic heap can be unified with
f ’s spatial precondition P . The main difference is that the
new rule no longer requires f ’s pre-/postcondition to be the
top-level specification provided by the user. InsteadÐperhaps
surprisinglyÐthis rule simply requires that this pre-/post can
synthesize the call f (xi). At a first glance, this rule is not very
useful: in order to synthesize a function call, we (seemingly)
need to synthesize a function call! The intention of this rule
is to use its first premise as a bud, i.e., link it back to an
identical companion goal earlier in the derivation.
But where do we find a companion goal whose emitted

program is f (xi)? This is where the second new rule of
SSL⟲, Proc, comes into play (Fig. 2). The Proc rule should be
understood as a way to łlabelž a node in a program derivation
with a function definition f (xi). According to this rule, one
can synthesize a definition for the function f (xi), if one can
synthesize the body c for this function out of the goal with
same pre- and postconditions. Note that unlike all the rules
we’ve seen so far, Proc does not propagate the code emitted
by its premise (the function body) to the conclusion; instead
it abstracts this code away into an identity call f (xi), i.e., a
call whose actual parameters coincide with the formals. The
most common occurrence of the rule Proc is at the root of
the derivation, with the top-level goal being its conclusion.
However, we will see in Sec. 2.3 how this rule also makes it
possible to synthesize auxiliary recursive functions.

Cyclic derivation of treefree. We now demonstrate the
application of these new rules to build a cyclic derivaiton of
treefree, shown in Fig. 3. For the sake of brevity, we omit the
payload set variables and pure constraints related to them
(e.g., s = {v} ∪ sl ∪ sr) from the goals, as they don’t play any
role in our example. The instances of the tree predicate are
annotated with cardinality variables α , αl, and αr, which
play a role in the termination argument, as we will explain
shortly. The proof’s root goal serves as a conclusion for an
application of Proc, with the łconjecturedž function f being
treefree. Most of the subsequent applications follow the
sequence of rewritings via standard SSL rules outlined in

948

Cyclic Program Synthesis PLDI ’21, June 20ś25, 2021, Virtual, Canada

(Emp)
{

x = 0; emp
}

{
{

emp
} �� skip

{
tree α (x)

}
{
{

emp
} ��� treefree(x)

{
tree α (x)

}
{
{

emp
} ��� treefree(x)

(Call){
tree αr (r)

}
{
{

emp
} ��� treefree(r)

(Call){
. . . ; tree αl (l) ∗ tree αr (r)

}
{
{

emp
} ��� treefree(l); . . .

(Free){
. . . ; [x, 3] ∗ tree αl (l) ∗ tree αr (r) ∗ . . .

}
{
{

emp
} ��� free(x); . . .

(Read){
. . . ; [x, 3] ∗ tree αl (l) ∗ tree αr (r) ∗ . . .

}
{
{

emp
} ��� let r = . . .

(Read)

x , 0 ∧ αl < α ∧ αr < α ; [x, 3] ∗ x 7→ v ∗

⟨x, 1⟩ 7→ l ∗ tree αl (l) ∗ ⟨x, 2⟩ 7→ r ∗ tree αr (r)

{
{

emp
}

������
let l = . . .

(Open){
tree α (x)

}
{
{

emp
} ��� if (x = 0) {. . . } else {. . . }

(Proc){
tree α (x)

}
{
{

emp
} ��� treefree(x)

(1)

(2)

Figure 3. A derivation of treefree(x) with backlinks. Some pure assertions are omitted.

Sec. 2.1, with some evident parts of the goals elided. An
important twist happens at the two inner derivation nodes
corresponding to the premise of applying of the rule Call.
The goal in both nodes matches precisely the conclusion of
the top-level application of Proc. These pairs of matching
nodes create backlinks in the program derivation, connecting
the premises of two Call applications to the top-level goal.

Proving termination. Cyclic reasoning is not valid in
general: cyclic proofs must satisfy a well-formedness con-
dition in order to preclude infinite derivations. Intuitively,
one can view the derivation as a directed graph with edges
pointing from conclusions to premises and from buds to com-
panions. The well-formedness condition requires that along
every infinite path in this graph, some well-founded measure
decreases infinitely often [8]. In SSL⟲, infinite paths in the
derivation correspond to potential infinite traces of the pro-
gram’s execution. The well-formedness condition ensures
that no such infinite executions exist since this would entail
an infinitely decreasing chain in a well-founded set.
To trace well-founded measures, SSL⟲ annotates induc-

tive predicates with cardinality variables, which can be seen
as sizes of the heap models of the corresponding predicate.
We automatically instrument all predicate definitions with
cardinality information; for example, the instrumentation of
the tree predicate (3) is highlighted via gray boxes below:

tree
α

(x, s) ≜ x = 0⇒
{

s = ∅; emp
}

���������
x , 0⇒

αl < α ∧ αr < α ∧ s = {v } ∪ sl ∪ sr ;

[x, 3] ∗ x 7→ v ∗ ⟨x, 1⟩ 7→ l ∗ ⟨x, 2⟩ 7→ r

∗tree
αl

(l, sl) ∗ tree
αr

(r, sr)

Note the highlighted cardinality constraints we add to the
second (recursive) clause, which state that cardinalities αl
and αr of the the left and right subtrees are strictly smaller
than α , that of the enclosing tree. Given this instrumentation,
the cardinality constraints end up in the goal’s precondition
upon unfolding the predicate (via Open), as shown in Fig. 3.
To show that the derivation in Fig. 3 is well-formed, we

must pick a sequence of cardinality variables to trace along
each infinite path and prove that this sequence is strictly
decreasing. All infinite paths in this derivation consist of

arbitrarily alternating cycles (1) and (2). In each cycle, we
will start by tracing α , and then switch to either αl or αr ,
depending on which cycle is being traversed. In either case,
when we make the switch, the traced cardinality strictly
decreases (following the cardinality constraints in the pred-
icate definition), while elsewhere along the cycle is stays
unchanged. Hence we have shown that along each infinite
path the cardinality must strictly decrease infinitely often.

As prior work has shown [35], given cardinally constraints,
the appropriate sequence of cardinalities to trace can be in-
ferred automatically using automata-theoretic toolsÐan ob-
servation that is crucial for automating synthesis via SSL⟲.
This mechanism subsumes termination measures based on
maximum and/or lexicographic ordering of multiple argu-
ments, and enable SSL⟲ to synthesize non-structurally re-
cursive programs, for example, one that deallocates two trees
as part of the same traversal (see technical report [16]).

2.3 Synthesizing Auxiliary Recursive Functions

Wenowmove on to the core of our contribution and illustrate
how cyclic synthesis handles the motivating example from
the introduction: the procedure that flattens a tree into a
linked list, whose specification (2) we repeat for convenience:

{r 7→ x ∗ tree(x , s)} {
{

r 7→ y ∗ sll(y, s)
}

We omit the definition of the singly-linked list predicate sll,
since it is standard for Separation Logic [34] and analogous
to the tree predicate (3). The specification enforces that the
payload set of the output list be the same as that of the
input tree by using the same logical variable s in the pre- and
postcondition. For the sake of brevity, we omit the set-related
reasoning in the derivations shown below.

Synthesized code. The program synthesized from this
specification is shown in Fig. 5. We have given more descrip-
tive names (in lieu of automatically-generated ones) to local
variables and the auxiliary function. The main procedure
flatten calls itself recursively twice to produce the lists cor-
responding to the left and right subtrees of the node x. The
head of the first list, returned from the call in line 9 via r, is
then stored in yl, while the head of the second list is stored in
r (through an extra level of indirection) after the call in line

949

PLDI ’21, June 20ś25, 2021, Virtual, Canada Shachar Itzhaky, Hila Peleg, Nadia Polikarpova, Reuben N. S. Rowe, and Ilya Sergey

{
r 7→ x ∗ tree α (x)

}
{

{
r 7→ y ∗ sllβ (y)

} ��� flatten(r) .
.
.
.

{
r 7→ x ∗ tree α (x)

}
{

{
r 7→ y ∗ sllβ (y)

} ��� flatten(r) .
.
.
.

{

r 7→ yr ∗ sll
βr (yr) ∗ sll

βl (yl) ∗ . . .

}

{

{
r 7→ y ∗ sllβ (y)

} ���� append(yl, v, x, r)
.
.
.
.

(Read), (Write)

(Call)
{

β ′
l
< βl ; r 7→ yr ∗ sllβr (yr) ∗ sll

β ′
l (n) ∗ ⟨yl, 1⟩ 7→ n ∗ . . .

}

{

{
r 7→ y ∗ sllβ (y)

} �����
append(n, v, x, r); . . .

·
·
·
(Read), (Open)

{

r 7→ yr ∗ sllβr (yr) ∗ sll
βl (yl) ∗ . . .

}

{

{
r 7→ y ∗ sllβ (y)

} ���� let yr = ∗r; if (yl = 0) {. . . } else {. . . }
(Proc){

r 7→ yr ∗ sll
βr (yr) ∗ sll

βl (yl) ∗ . . .

}

{

{
r 7→ y ∗ sllβ (y)

} ���� append(yl, v, x, r)

(Call){
r 7→ xr ∗ tree αr (xr) ∗ sllβl (yl) ∗ . . .

}
{

{
r 7→ y ∗ sllβ (y)

} ��� flatten(r); append(yl, v, x, r)
·
·
·
(Read), (Write)

{
r 7→ yl ∗ sll

βl (yl) ∗ tree
αr (xr) ∗ . . .

}
{

{
r 7→ y ∗ sllβ (y)

} ��� let yl = . . .

(Call){
αl < α ∧ αr < α ; r 7→ xl ∗ tree αl (xl) ∗ tree αr (xr) ∗ . . .

}
{

{
r 7→ y ∗ sllβ (y)

} ��� flatten(r); let yl = . . .

·
·
·
(Open), (Read), (Write)

{
r 7→ x ∗ tree α (x)

}
{

{
r 7→ y ∗ sllβ (y)

} ��� if (x = 0) { } else {. . . }
(Read){

r 7→ x ∗ tree α (x)
}
{

{
r 7→ y ∗ sllβ (y)

} ��� let x = ∗r; if (x = 0) { } else {. . . }
(Proc){

r 7→ x ∗ tree α (x)
}
{

{
r 7→ y ∗ sllβ (y)

} ��� flatten(r)

(1)

(2)

(3)

(c)

(a)

(b)

Figure 4. A derivation of flatten and its recursive auxiliary append.

1 void flatten(r) {

2 let x = *r;

3 if (x = 0) {

4 } else {

5 let v = *x;

6 let xl = *(x + 1);

7 let xr = *(x + 2);

8 *r = xl;

9 flatten(r);

10 let yl = *r;

11 *r = xr;

12 flatten(r);

13 append(yl, v, x, r);

14 }

15 }

16 void append(yl, v, x, r){

17 let yr = *r;

18 if (yl = 0) {

19 let y = malloc(2);

20 free(x);

21 *y = v;

22 *(y + 1) = yr;

23 *r = y;

24 } else {

25 let n = *(yl + 1);

26 append(n, v, x, r);

27 let y = *r;

28 *(yl + 1) = y;

29 *r = yl;

30 } }

Figure 5. Tree flattening program synthesized by Cypress.

12. As its last statement, flatten calls the recursive auxiliary
function append, passing it the pointers to the two lists, yl
and r, as well as the parent tree node x and its payload v.

The auxiliary procedure append concatenates the two lists,
yl and r, inserting a new element with payload v in the
middle (hence, computing an in-order unfolding of the tree).
To this end, it traverses the first list, yl, recursively. Once it
reaches the base case where yl is empty (lines 19ś23), it frees
the tree node x4, allocates a new list node y with payload
v, and prepends it to the second list, storing the result in r.
Its inductive case (lines 25ś29) calls append recursively on
the tail of yl, after which it adjusts the tail pointer (yl + 1)

appropriately and stores the result again in r.

Cyclic derivation of flatten. To understand how the
auxiliary append has been discovered, let us take a look at the
SSL⟲ derivation of flatten, shown in Fig. 4. The first half

4Instead of passing x to append, it would have been more natural to deal-

locate it immediately in flatten. Although SSL⟲ is capable of deriving

either program, our implementation makes the less natural choice, which

we discuss further in Sec. 5.4.

of this derivation is uneventful and quite similar to what we
have already seen for treefree in Fig. 3: the two applications
of Call induce two backlinks (1) and (2) to the top-level
goal and correspond to the recursive calls to flatten(r) in
lines 9 and 12 of Fig. 5.
After these two calls, however, we find ourselves in the

node (a) of the derivation5, with the following synthesis goal:
{

s = {v} ∪ sl ∪ sr ; r 7→ yr ∗ sll(yl, sl) ∗ sll(yr , sr) ∗

[x, 3] ∗ x 7→ v ∗ ⟨x, 1⟩ 7→ _ ∗ ⟨x, 2⟩ 7→ _

}

{
{

r 7→ y ∗ sll(y, s)
}

(8)

Here, we are given two lists, yl and yr , and we need to ob-
tain a single list y that contains all of their elements plus
v. How should the synthesizer proceed to solve this goal?
It proceeds just like it would for any goal that contains in-
ductive predicates in the precondition: by unfolding one of
their instancesÐin this case sll(yl, sl)Ðvia Open. The recur-
sive premise of Open is depicted in the derivation node (b),
whose precondition again features two lists: one of them, yr,
is the same as before, and the other one, n, is the tail of yl.

Abducing the auxiliary. At this point the synthesizer
realizes that the Call rule is applicable again; this time, how-
ever, the companion goal is not the top-level specification (2),
but rather the goal (8) from node (a). Indeed, a sub-heap of
the current precondition (the one containing everything but
the head of yl) can be unified with the precondition of (8)
by substituting n for yl. In order to become an eligible com-
panion, however, a node must emit a procedure call, which
is clearly not the case for (a). To bridge this mismatch, the
synthesizer retroactively inserts an application of Proc just
below (a) and creates a new node (c) as its conclusion. The

5For now, imagine that node (c) and the adjacent application of Proc are

not there. We will come back to them shortly.

950

Cyclic Program Synthesis PLDI ’21, June 20ś25, 2021, Virtual, Canada

Variable x, y Alpha-numeric identifiers ∈ PV

Size, offset n, ι Non-negative integers

Expression e ::= 0 | true | x | e = e | e ∧ e | ¬e | d

T -expr. d ::= n | x | d + d | n · d | { } | {d } | · · ·

Command c ::= let x = ∗(x + ι) | ∗(x + ι) = e |

let x = malloc(n) | free(x) | error

| f (ei) | c ; c | if (e) {c } else {c }

Program Π ::= f (xi) { c } ; c

Logical variable ν, ω Cardinality variable α

T -term κ ::= ν | e | · · ·

Pure logic term ϕ,ψ , χ ::= κ | ϕ = ϕ | ϕ ∧ ϕ | ¬ϕ

Symbolic heap P,Q,R ::= emp | ⟨e, ι⟩ 7→ e | [e, ι] | pα (ϕi) | P ∗Q

Heap predicate D ::= pα (xi) : ej ⇒ ∃y .
{
χj ;Rj

}

Assertion P,Q ::=
{

ϕ ; P
}

Environment Γ := ∀xi . ∃yj . Context Σ ::= D

Figure 6. SSL⟲ programming language and assertion syntax.

new node has the same synthesis goal as (a) and an iden-
tity call to a fresh procedureÐhere append(yl,v,x,r)Ðas the
emitted code.
This lazy application of Proc corresponds to abducing

the recursive auxiliary on demand. The parameters of the
new procedure are all the program variables of (a); its pre-
and postcondition are defined by (8), the synthesis goal of
(a); finally, its body is the code emitted by (a) (derived by the
SSL⟲ sub-derivation rooted at (a)).

Termination. As before, we perform a global well-formed-
ness check on the entire derivation. Note, however, that in
this case infinite paths can either follow some combination
of backlinks (1) and (2) or always follow the backlink (3); in
other words, in the absence of mutual recursion, the termina-
tion arguments for the two procedures are entirely disjoint.
Termination follows from the highlighted cardinality con-
straints: αl < α , αr < α , and β ′

l
< βl .

2.4 More Examples

We conclude this section by outlining two examples that
showcase unique capabilities of SSL⟲ and Cypress and go
beyond the state of the art in synthesis with auxiliaries [13].
More details and synthesized code for these examples can
be found in our technical report [16].

Flattening a tree in-place. Our first example leverages
the imperative nature of our underlying language, allowing
Cypress to flatten a binary tree into a doubly-linked list in-
place: {tree(x, s)} flatten_to_dll(x) {dll(x, z, s)}. Note that
here we require that the root of the input tree and the head
of the output list be located at the same address x. We omit
the standard definition of the dll predicate, but note that
in-place flattening is possible because both a tree node and
a doubly-linked list node are represented as a three-element
record, so one can be reinterpreted as the other.

Mutual recursion. Our final example shows the abil-
ity of Cypress to synthesize manipulations with mutually-
recursive data structures. An n-ary tree, a.k.a. rose tree [23],
can be implemented by storing the children of a tree node in
a linked list. Its definition in Separation Logic uses a pair of
mutually recursive predicates: rtree, representing a tree, and
children, representing a linked list of trees. Given these pred-
icates and a specification {rtree(x, s)} rtree_free(x)

{

emp
}

,

Cypress is able to generate a pair of mutually recursive func-
tions that deallocate a rose tree.

3 Cyclic Program Synthesis, Formally

In this section, we give a formal presentation of declarative
rules of SSL⟲ and describe the underlying metatheory.

3.1 Programs and Assertions

Programming language. The target language of SSL⟲
is an imperative, C-like fragment with dynamic memory
allocation, deallocation, store and load (Fig. 6, left). Values
include at least booleans and integers, and a special type
loc designates pointer variables. Pointers are isomorphic to
unsigned integers, but there is only a single pointer constant,
0 (null). Expressions include at least variables, literal con-
stants, equality check and logical connectives. Additional
theory-specific expressions are allowed depending on the un-
derlying theory used for checking entailment in derivations;
our implementation supports linear integer arithmetic and
sets. The language allows pointer arithmetic in the form
x + ι, but other arithmetic operations are disabled for point-
ers. The statement f (ei) denotes a procedure call with actual
parameters ei . Procedures do not have a return value: the
behavior of return is emulated by passing in an address of the
heap location where the result should be stored. There are
no variable re-assignments and no while loops. A program is
a sequence of procedure definitions, followed by a statement.

Assertion language. The assertion language comprises
pure assertions in the underlying theory, and SL assertions
with inductively defined predicates (Fig. 6, right). Its seman-
tics have been explored throughout Sec. 2. The set of pure
logic terms (ϕ,ψ , χ) is a superset of program expressions e .
The logic is sorted, and pure parts (ϕ in {ϕ; P }) are ensured to
be Boolean expressions via simple type checking. Predicate
instances are annotated with cardinality variables α and β .
Assertions are interpreted in an environment Γ in which

some of the variables are universally quantified and others
existentially quantified, with a prefix of the form ∀x .∃y. Pro-
gram variables are always included in the universal prefix.
Logical variables are split between universal (also called ghost
variables) and existential. We denote Vars(Γ) = {x ,y} for all
quantified variables, and PV(Γ) = {x }∩PV,GV(Γ) = {x }\PV,
EV(Γ) = {y} for program variables, ghost variables and exis-
tentials of Γ, respectively. We also use e[Γ] for the set of all

951

PLDI ’21, June 20ś25, 2021, Virtual, Canada Shachar Itzhaky, Hila Peleg, Nadia Polikarpova, Reuben N. S. Rowe, and Ilya Sergey

Emp

⊢ ϕ ⇒ ψ

Γ;
{

ϕ; emp
}

{
{

ψ ; emp
} �� skip

Inconsistency

⊢ ϕ ⇒ ⊥

Γ;
{

ϕ; P
}

{Q �� error

R0 Terminal rules

Read

∀y.Γ;
{

ϕ ∧ y = e; ⟨x , ι⟩ 7→ e ∗ P
}

{Q �� c x ∈ PV y ∈ PV \ Vars(Γ)

Γ;
{

ϕ; ⟨x , ι⟩ 7→ e ∗ P
}

{Q �� let y = ∗(x + ι); c
Write

Γ;
{

ϕ; ⟨x , ι⟩ 7→ e ∗ P
}

{
{

ψ ; ⟨x , ι⟩ 7→ e ∗Q
} �� c Vars(e) ⊆ PV

Γ;
{

ϕ; ⟨x , ι⟩ 7→ e ′ ∗ P
}

{
{

ψ ; ⟨x , ι⟩ 7→ e ∗Q
} �� ∗(x + ι) = e; c

Alloc

Γ;
{
ϕ; [y,n] ∗

(

〈

y, i
〉

7→ ti
)

0≤i<n ∗ P
}
{{

ψ ; [x ,n] ∗
(

⟨x , i⟩ 7→ ei
)

0≤i<n ∗Q
} ��� c x ∈ EV(Γ)

Γ;
{

ϕ; P
}

{

{
ψ ; [x ,n] ∗

(

⟨x , i⟩ 7→ ei
)

0≤i<n ∗Q
} ��� let y = malloc(n); c

Free

Γ;
{

ϕ; P
}

{Q �� c x ∈ PV

Γ;
{
ϕ; [x ,n] ∗

(

⟨x , i⟩ 7→ ei
)

0≤i<n ∗ P
}
{Q

��� free(x); c

R1 Pointer operations

Open

Γ ∪· ∀ωjk ; [ti/νi]
{
ϕ ∧ ej ∧ χj ; R j ∗ P

}
{Q

��� c j for all j=1..r

pα (νi) : ej ⇒ ∃ωjk .
{
χj ;R j

}
j=1..r

∈ Σ ωjk < Vars(Γ),GV(ti) = ∅

Γ;
{
ϕ; pα (ti) ∗ P

}
{Q

���
if ([ti/νi]e1) {c1}

else if ([ti/νi]e2) {c2} else · · ·

Close

Γ ∪· ∃ωjk ; P{ [ti/νi]
{
ϕ ∧ ej ∧ χj ; R j ∗Q

} ��� c j for some j=1..r

pα (νi) : ej ⇒ ∃ωjk .
{
χj ;R j

}
j=1..r

∈ Σ ωjk < Vars(Γ)

Γ; P{
{
ϕ; pα (ti) ∗Q

} ��� c

R2 Predicate unfolding

Proc

Γ; P{Q | c {xi } = PV(Γ)

Γ; P{Q | f (xi)

Call

∀xi ,νj .∃ωk ;
{

ϕ ′; P
}

{
{

ψ ′; S
} �� f (xi)

Γ ∪· ∀σ (ωi);
{

[σ]ψ ′ ∧ ϕ; [σ]S ∗ R
}

{Q �� c
⊢ ϕ ⇒ [σ]ϕ ′

dom (σ) = {xi ,νj ,ωk }

σ (xi) ∈ e[Γ];σ (νj) ∈ κ[Γ]

Γ;
{

ϕ; [σ]P ∗ R
}

{Q �� f (σ (xi)); c
CallSetup

Γ;
{

ϕ; P
}

{
{

ψ ; S
} �� c1 Γ ∪· BV(c1);

{

ψ ; S ∗ R
}

{Q �� f (ei); c2
Γ;
{

ϕ; P ∗ R
}

{Q �� c1; f (ei); c2

R3 Procedures

Figure 7. Synthesis rules of SSL⟲.

expressions that can be constructed using PV(Γ), and κ[Γ]Ð
all logical terms that can be constructed with Vars(Γ). When
joining environments, the quantifier pattern is preserved,
and we use the notation ∀x .∃y ∪· ∀x ′.∃y ′ = ∀x ,x ′.∃y,y ′.

All variable sets x , x ′, y, y ′ must be disjoint.
A clause e ⇒ ∃y.

{

χ ;R
}

in a definition of a heap predicate
pα (xi) consists of a selector expression e and an assertion
{

χ ;R
}

. As explained in Sec. 2.2, the pure part χ contains a
cardinality constraint of the form αk < α for each predicate
instance qαk (. . .) inside R. These are not part of the surface
syntax, but are added automatically during pre-processing.

3.2 Proof Rules

Fig. 7 lists all synthesis-related SSL⟲ rules in a declarative
manner. The rules operate on transforming entailment judg-
ments Γ; P{Q | c , which informally means that any state
that satisfies the assertion P can be transformed into some
state that satisfies Q by a statement c [29]. Within rules, for
clarity, we follow the convention of using lower latin letters
x , y for program variables, e , t for program-level terms (of
the syntactic class e in Fig. 6), greek letters ν , ω for logi-
cal variables, and ϕ,ψ , χ for logical formulas. We will now
describe the rules and their effects on the synthesis.

R0 Terminal rules. The rules Emp and Inconsistency

form the leaves of a derivation by emitting a skip for a trivial
goal or error for a vacuous goal (unsatisfiable precondition).
Here ⊢ ϕ ⇒ ψ denotes entailment between pure formulas
in the underlying theory; our implementation uses an SMT
solver to discharge these premises.

R1 Rules for atomic operations. Each of the pointer op-
erations of the target language has a corresponding rule
that describes when to emit it: Read and Write for mem-
ory access, Alloc and Free for dynamic memory manage-
ment. These rules are more restricted versions of the corre-
sponding symbolic execution rules of standard Separation
Logic [5]; the additional restrictions are required to guide
rule applications in the context of synthesis, where the pro-
gram is not available. For example, theWrite rule uses the
heaplet ⟨x , ι⟩ 7→ e in the goal’s postcondition to determine
what should be written into the address x .

R2 Rules for inductive predicates. The two rules Open
and Close unfold definitions of inductive predicates in the
pre- and the postcondition, respectively. These rules have
dual effects on the program in the sense thatOpen eliminates

a predicate instance and hence performs a case split on its
clauses, while Close introduces an instance and hence picks
a single clause non-deterministically. As a result, Close does
not emit any code, while Open emits a conditional statement
with one branch per clause, using clause selectors as guards.

R3 Rules for procedures. These rules are the main inno-
vation of SSL⟲ as compared with SSL. The rules Proc and
Callwere discussed in detail in Sec. 2.2. The rule Proc delin-
eates procedure boundaries by emitting a call to a procedure
whose body is emitted by its single premise.

Procedure calls are generated via the rule Call. It bun-
dles together Separation Logic-style framing, with R as the
frame, and substitution of actual into formal parameters via
σ , which is also applied to the postcondition

{

ψ ′; S
}

. Existen-
tial variables in the procedure’s environment are remapped
to fresh ghost variables in the second premise of the rule.
Formal parameters xi are mapped to program expressions
e[Γ] using program variables of Γ, and ghosts νj are mapped
to logical terms using any variables of Γ.

CallSetup handles the situations when some code has to
be emitted before the call can be made. To see why this rule

952

Cyclic Program Synthesis PLDI ’21, June 20ś25, 2021, Virtual, Canada

is required, consider the recursive call flatten(r) in line 9 of
Fig. 5. To enable this call we first need to write the root of the
left subtree xl into the return location r; but to trigger this
write, we need to have r 7→ xl in the goal’s postcondition!
CallSetup enables that: it performs sequential decomposition

of the synthesis goal with the call’s precondition
{

ψ ; S
}

as
the intermediate state. As a result, r 7→ xl ends up in the
postcondition of its first subgoal, triggering the synthesis
of the write in line 8. Although the declarative presentation
in Fig. 7 makes it look like the assertion

{

ψ ; S
}

is chosen
non-deterministically, in Sec. 4 we explain how Cypress

implements this rule efficiently via a call abduction oracle.

Logical rules. The remainder of SSL⟲ rules are logical
rules, which do not emit new code, but instead transform the
goal in a way that would ultimately allow the application
of other (operational) rules. Our logical rules are mostly
standard for SL-based theorem provers [5], so we relegate
them to the technical report [16] to save space. They include
the Frame rule we have seen in Sec. 2, as well as rules for pure
reasoning, e.g. eliminating existentials. In Sec. 4 we discuss
how Cypress implements such pure reasoning efficiently.

3.3 Cyclic Program Derivations

An SSL⟲ derivation is a tree consisting of goals Γ; P{Q | c ,
and constructed using the inference rules in Fig. 7. In con-
trast to the standard notion of a proof as a finite derivation
tree, SSL⟲ derivations are permitted to be regular, non-well-
founded (i.e., infinitely tall) trees. Regularity ensures that
an SSL⟲ derivation tree always has a finite representation
as a (possibly) cyclic graph. Concretely, we represent SSL⟲
derivations as finite trees, along with a set of backlinks con-
necting each non-terminal leaf node to a syntactically iden-
tical ancestor node. In other words, we allow goals from
the middle of the proof to be used again as premises higher
up the derivation tree. Formally, each backlink denotes the
infinite unfolding of the path connecting the leafÐcalled
budÐwith its associated internal nodeÐcalled companion.
We call SSL⟲ derivations pre-proofs, since they do not

necessarily derive terminating programs. To ensure termina-
tion, we require that pre-proofs satisfy an additional global
property, defined in terms of traces of cardinality variables.

Definition 3.1 (Trace pairs). Let G and G′ be, respectively,
the conclusion and a premise of an inference rule r , and let
α and β be cardinality variables occurring universally in G
and G′, respectively. We say that (α , β) is a trace pair for
(G,G′) when: either r is Call with substitution σ , G′ is the
left-hand premise, and α = σ (β); or ⊢ ϕ ⇒ β ≤ α holds,
where ϕ is the pure precondition of G. If ⊢ ϕ ⇒ β < α also
holds, we say that the trace pair is progressing.

A path in a pre-proof P is a sequence Gi (i ≥ 0) of nodes in
P such that each node Gi is the parent of Gi+1 in the infinite
derivation corresponding to P .

Definition 3.2 (Traces). A trace is an infinite sequence αi
(i ≥ 0) of cardinality variables. We say that a trace follows a
path Gi (i ≥ 0) in a pre-proof P when (αi ,αi+1) is a trace pair
for (Gi ,Gi+1) for each i ≥ 0. When (αi ,αi+1) is progressing,
we say that the trace progresses at i . A trace is called infinitely
progressing if it progresses at infinitely many points.

Definition 3.3 (Proofs). A pre-proof P is said to satisfy the
global trace condition when every infinite path in P is fol-
lowed by an infinitely progressing trace.

The global trace condition is an ω-regular property, so it
is decidable when a pre-proof is a proof, cf. [9, Prop. 7.4]. We
write ⊢ G when there is a proof deriving G.

3.4 Soundness

SSL⟲ inherits the memory model and operational semantics
from traditional SL [5]. In the interest of space we only state
the soundness theorem here. Its proof and the rest of the
metatheory are relegated to the technical report [16].

Theorem 3.4 (Soundness). If ⊢ Γ; P{Q | c , then for any

heap/stack pair ⟨h, s⟩ that satisfies P, there exists a heap/stack

pair ⟨h′, s ′⟩ that satisfies Q, such that executing c from state

⟨h, s⟩ terminates in state ⟨h′, s ′⟩.

4 Cyclic Program Synthesis, Pragmatically

We implemented cyclic program synthesis in a new synthe-
sizer called Cypress [17]. Cypress takes as input a synthesis
goal {P} f (xi) {Q} together with the definitions of all induc-
tive predicates it mentions, and performs backtracking proof
search for an SSL⟲ derivation of the judgment P{Q | f (xi).
Once a proof has been constructed, extracting the synthe-
sized program is straightforward: we simply consider each
application of the Proc rule in isolation; each such applica-
tion gives rise to a procedure, whose signature and body are
the code emitted by the conclusion and the premise of Proc,
respectively. For example, the two applications of Proc in
Fig. 4 give rise to two procedures, flatten and append.

In the rest of this section we outline the mechanisms that
make our proof search tractable. Since Cypress builds upon
SuSLikÐthe original implementation of SSLÐwe only fo-
cus on the new mechanisms, which make Cypress more
general and/or more efficient than its predecessor. Cypress
also leverages existing proof search features of SuSLik, such
as early failure rules, phased proof search, and branch ab-
duction (which enables it to synthesize conditionals beyond
those in predicate selectors); we refer the reader to [29] for
a detailed account of these features.

Best-first search. One difference in the overall search al-
gorithm is that Cypress uses memoizing best-first search (in-
spired by [19]), instead of SuSLik’s naïve depth-first search.
The search is guided by a cost function that assigns a cost to
each heaplet in the goal’s pre- and postcondition, with predi-
cate instances growing more expensive as they get unfolded

953

PLDI ’21, June 20ś25, 2021, Virtual, Canada Shachar Itzhaky, Hila Peleg, Nadia Polikarpova, Reuben N. S. Rowe, and Ilya Sergey

Unify

Γ;
{

ϕ ; P ∗ [σ1]R
}

{
{

ψ ∧ψ ′;Q ∗ [σ1]R
} �� c

ψ ′ =
∧

ν ∈V

(σ1 (ν) = σ2 (ν)) dom (σ1) = dom (σ2) = V

Γ;
{

ϕ ; P ∗ [σ1]R
}

{
{

ψ ;Q ∗ [σ2]R
} �� c

Solve-∃
Γ;
{

ϕ ; P
}

{ [σ]
{

ψ ;Q
} �� c

⊢ ϕ ⇒ [σ]ψ dom (σ) = {ω }; EV(Γ) = ∅

Γ ∪· ∃ω ;
{

ϕ ; P
}

{
{

ψ ;Q
} �� c

Figure 8. Two algorithmic rules for pure reasoning.

or go through a call. This cost function prevents the search
from getting stuck in a branch that performs infinitely many
unfoldings or calls, and encourages it to focus on smaller
(and therefore, hopefully, easier to solve) goals.

4.1 Synthesizing Calls

To understand how Cypress applies the rules Call and
CallSetup in practice, let us revisit the tree flattening pro-
gram from Fig. 5. After the initial sequence of Read andOpen
applications, which generate lines 1ś7, we find ourselves
with a pre-heap r 7→ x ∗ tree(xl) ∗ tree(xr) ∗ . . . (where el-
lipsis stands for the node at x and its payload, andwe omit car-
dinality and set parameters for brevity). To decide whether a
call can be synthesized from this goal, Cypress considers all
candidate companion goals, i.e. all ancestor goals separated
from the current goal by at least one application of Open.
Open is the only rule where cardinality traces can progress,
hence any well-formed cycle in the derivation must include
an application of Open. In our case, the top-level goal with
the pre-heap r 7→ x ∗ tree(x) is such a candidate.

Call abduction oracle. Given a candidate companion,
synthesizing a call involves guessing (1) the substitution σ
of formals into actuals (e.g., [x 7→ xl]); (2) the frame R,
i.e., the part of the precondition untouched by the call (e.g.,
tree(xr) ∗ . . .); and (3) the setup statement c required to sat-
isfy the companion’s precondition (here *r = xl). Cypress
finds all these three components at once, using a mechanism
we dub call abduction oracle. This oracle is a separate synthe-
sis problem that attempts to łbridge the gapž between the
current goal’s precondition and that of the companion. In
our example, the oracle attempts to derive:

{r 7→ x ∗ tree(xl) ∗ tree(xr) ∗ . . .}{
{

r ′ 7→ x ′ ∗ tree(x ′)
} �� c

Note that all variables in the companion goal are replaced
with fresh existentials. The call abduction oracle only uses
the subset of SSL⟲ rules triggered by the post-condition (e.g.
Write and Alloc), since the rest of rules (e.g. Read, Open,
Call) could already fire before the oracle was invoked. It also
uses a modified version of the Emp rule, which allows the pre-
heap to remain non-empty. Upon successful completion, the
remaining pre-heap becomes the frame R, the code emitted
during this derivation becomes the setup statement c , and the
σ comprises all existential substitutions from this derivation.

Unify

Frame

Solve-∃

Emp
{

emp
}

{
{

s ∪ {a } = {a } ∪ s ; emp
}

{

emp
}

{
{

s ∪ {a } = {a } ∪w ; emp
}

{sll(x, s∪{a }) } { {s∪{a } = {a }∪w ; sll(x, s∪{a }) }

{sll(x, s ∪ {a }) } { {sll(x, {a } ∪w) }

Figure 9. An example derivation with rules from Fig. 8.

Termination checking. Whenever the call abduction or-
acle succeeds,Cypress adds appropriate applications of Call
and CallSetup, inserts an application of Proc below the
companion candidate (using all its program variables as for-
mals and a fresh procedure name), and forms a backlink from
the first premise of Call to the conclusion of Proc. Every
time a backlink is formed, Cypress checks whether the pre-
proof constructed so far satisfies the trace condition from
Sec. 3.3. To this end, it builds a graph of the current pre-proof
with edges labeled with all available trace pairs, according to
Def. 3.1. It then invokes Cyclist [35], an off-the-shelf cyclic
theorem prover, which uses an automata-theoretic algorithm
to check whether every infinite path in the graph contains
an infinitely progressing trace.

4.2 Pure Reasoning

Until nowwe have focused on synthesis rules, which directly
emit code; the success of synthesis, however, also crucially
relies on logical rules, which transform the goal into a form
where synthesis rules can fire. Logical reasoning in SSL⟲ is
far from straightforward because it needs to support arbi-
trary SMT-decidable theories in its pure formulas.
To illustrate the challenges of pure reasoning, consider

the following (simplified but representative) synthesis goal:

∀x, s,a.∃w .{sll(x, s ∪ {a})} { {sll(x, {a} ∪w)} (9)

The simplestÐand hencemost desirableÐsolution to this goal
is skip, which informally can be obtained by simply framing
away the sll heaplets; but formally, before Frame can ap-
ply, we need to transform the post-heap to be syntactically
identical to the pre-heap, which requires: (a) exploiting com-
mutativity of set union, and (b) instantiating the existential
w with s . Fig. 8 shows two novel logical rules implemented
in Cypress, which perform such transformations efficiently;
Fig. 9 demonstrates how these rules work together to solve
the synthesis goal (9) (we omit the emitted program skip

and highlight new parts in each sub-goal for readability).

Unification modulo theories. The traditional approach
to exploiting equational theoriesÐsuch as commutativity
of union in our exampleÐis to eagerly normalize the goal
after every proof step, by computing all implied equalities
between its subterms [4]. For example, if a specification
mentions both s ∪ {a} and {a} ∪ s , normalization would
replace one with the other. The normalization approach has
two downsides: first, it is rather inefficient if you assume
only blackbox access to the SMT solver; second, it does not
help with the goal like (9), because here s ∪ {a} = {a} ∪

954

Cyclic Program Synthesis PLDI ’21, June 20ś25, 2021, Virtual, Canada

w is not a logical necessity, but rather a possibility, which
happens to lead to the shortest solution. To circumvent these
limitations, Cypress implements a new, lazy approach to
equational reasoning via the rule Unify in Fig. 8, which we
dub unification modulo theories. Unify looks for a pair of
heaplets [σ1]R and [σ2]R in the pre- and postcondition that
only differ in pure subterms, and speculatively unifies them,
adding equalities between mismatched subterms, σ1 (ν) =
σ2 (ν), as proofs obligation to the pure postcondition. In Fig. 9,
Unify is used to unify the pre- and post-heap of the goal
(9), producing the proof obligation s∪{a} = {a}∪w . Even in
the absence of existentials, this approach is more efficient
than eager normalization, because the SMT solver only needs
to check equalities between terms that appear in matching
positions inside a heaplet.

Pure synthesis. The other major challenge is to find ap-
propriate instantiations for existential variables. To this end,
Cypress includes the rule Solve-∃ in Fig. 8, which picks a
substitution σ from existentials to universals that validates
the pure specification. To find such a substitution, Cypress
needs to solve the constraint ∃σ .∀x .ϕ ⇒ [σ]ψ , which is itself
a synthesis problem in the pure subset of our logic. Although
such pure synthesis is generally a challenging task, it has
been the subject of much prior work [2, 21, 32]. Cypress out-
sources pure synthesis queries to the CVC4 synthesizer [33].

5 Evaluation

We evaluated Cypress empirically along three axes: (1) gen-
erality: its ability to synthesize programs with complex recur-
sion; (2) efficiency: the time it takes to synthesize programs;
and (3) utility: the size of the input specification compared
to the size of the generated programs, and the quality of
generated programs.

5.1 Benchmarks and Setup

For our empirical evaluation we have assembled a suite of 46
synthesis benchmarks for pointer-manipulating programs.
Each benchmark is defined by a top-level synthesis goal
expressed as separation-logic specification (and optionally,
specifications of library functions the code is allowed to
invoke). We collected these benchmarks from three sources:

1. State of the art in synthesis with recursive auxiliaries [13].
We include eight out of their nine benchmarks. The re-
maining one, merge_sort, has a specification identical
to another one (sort), but a different program template,
which forces their tool to synthesize merge sort instead of
insertion sort; Cypress does not use program templates,
so the difference between these two benchmarks does not
make sense in our setting. The tool [13] synthesizes func-
tional programs from refinement types, so we manually
translated these benchmarks into Separation Logic.

2. State of the art in synthesis of heap-manipulating pro-

grams: SuSLik [29] and ImpSynt [31]. We include all 22

benchmarks from SuSLik, and the 11 recursive bench-
marks from ImpSynt (these two sets overlap); the excluded
five ImpSynt benchmarks are iterative versions of their
recursive benchmarks, and similarly require sketches.

3. We supplement this set with 14 new benchmarks, half of
which, to the best of our knowledge, cannot be solved by
any existing synthesis tools. These benchmarks involve
the interplay between auxiliary functions and heap ma-
nipulation (e.g., an in-place tree flattening) or operate on
cyclic or mutually recursive structures (e.g., rose trees).

Out of the 46 benchmarks, 19 exercise complex recursion,
i.e., they either require a non-trivial termination measure
or a recursive auxiliary procedure (not given as a library
function). We refer to this benchmark set as complex and use
it as a primary focus of our empirical evaluation. All complex
benchmarks are by construction out of reach for SuSLik. The
remaining 27 benchmarks only exercise simple (structural)

recursion. We refer to this benchmark set as simple; although
not the focus of our evaluation, we use these benchmarks to
demonstrate the versatility of Cypress.

Experiment setup. For our main experiment, we ran Cy-

press on the complex benchmark set, and measured synthesis
time and size of the generated code. For our second experi-
ment, we ran Cypress on the simple benchmark suite and
compared the synthesis times with SuSLik. The purpose of
this experiment is to confirm that searching a larger program
space does not lead to significant degradation in performance.
All experiments were conducted on a commodity laptop (2.7
GHz Intel Core i7 Lenovo Thinkpad with 16GB RAM), and
Cypress was run as a single-threaded process. Timeout for
all experiments was set to one hour.

5.2 Results

Experiment results on the complex benchmarks are shown
in Tab. 1, and on the simple benchmarks in Tab. 2. All speci-
fications and generated code can be found in the technical
report [16].

5.2.1 Generality. The results in Tab. 1 confirm that Cy-
press is able to synthesize a variety of functions with com-
plex recursion. Benchmarks 10ś13 were discussed in Sec. 2.
Out of all benchmarks in Tab. 1, only 10 and 17 can be solved
without auxiliaries, but they require a complex termination
metric; interestingly, for 17Ðsorted list mergeÐCypress gen-
erates an auxiliary anyway (see discussion in Sec. 5.3) All
the other benchmarks require one or even two auxiliaries;
for example, benchmark 14 flattens a rose tree into a list,
and needs one auxiliary for flattening the list of children and
another one for appending two lists (a flattened tree and a
flattened list of children).
Finally, four of the synthesized programs feature mutual

recursion. Two of them operate on rose trees, where mutual
recursion is expected, while the other twoÐflattening a tree

955

PLDI ’21, June 20ś25, 2021, Virtual, Canada Shachar Itzhaky, Hila Peleg, Nadia Polikarpova, Reuben N. S. Rowe, and Ilya Sergey

Table 1. Benchmarks with complex recursion; all of these are
out of reach for SuSLik. We report the number of Procedures
generated, total number Stmt of statement in those proce-
dures, the ratio Code/Spec of code to specification (in AST
nodes), and the synthesis Time (in seconds).

Group Id Description Proc Stmt Code/Spec Time

Singly
Linked
List

1 deallocate two 2 9 6.2x 0.3
2 append three 2 14 2.3x 1.2
3 non-destructive append 2 21 3.0x 5.2
4 union 2 24 5.9x 9.6
5 intersection1 3 33 7.3x 95.6
6 difference1 2 22 5.5x 8.1
7 deduplicate1 2 23 7.8x 6.2

List of
Lists

8 deallocate 2 11 10.7x 0.3
9 flatten1 2 19 4.8x 0.8

Binary
Tree

10 deallocate two 1 16 11.8x 0.3
11 flatten 2 24 7.4x 1.5

12 flatten to dll in place 2† 15 9.6x 2.7

Rose
Tree

13 deallocate 2† 9 12.0x 0.3

14 flatten 3† 25 8.0x 12.6

Sorted
list

15 reverse1 2 11 3.3x 1.1
16 sort1 2 12 3.6x 1.9
17 merge2 2 23 2.2x 33.6

BST
18 from list1 2 27 5.0x 11.5

19 to sorted list1 2† 35 6.4x 10.2
1 From [13] 2 From [31] † Mutually-recursive

into doubly-linked list (12) and flattening a binary search
tree (BST) into a sorted list (19)Ðcame as a surprise.

Comparison with other tools. Cypress was able to syn-
thesize all eight selected benchmarks from [13]. Unlike their
tool, Cypress does not use function templates as hints, and
also targets pointer-manipulating programs instead of func-
tional programs, which is arguably a harder problem. To
the best of our knowledge, Cypress generates code with
similar recursive structure to their tool: for example, list
reversal, deduplication, and sorting all have the structure
of two nested right-folds (and hence quadratic complexity);
one exception is list intersection, discussed below, where
Cypress generates an overly complex solution.
Cypress can also handle all 22 original SuSLik bench-

marks (which are all part of the simple set). Finally, Cypress
was also able to solve all 11 recursive benchmarks from Imp-

Synt [31] (one of which is in the complex set and the rest
are in the simple set). Unlike ImpSynt, we do not require
the user to provide program sketches, and additionally, our
synthesis times on a commodity laptop are at least an order
of magnitude faster than the run times reported in [31] on a
server with 10 cores and 96GB of RAM.

On the other hand, SuSLik cannot handle any of the bench-
marks in the complex setÐbecause of complex recursionÐand
also fails on five benchmarks in the simple set. All five fail-
ures are due to restrictions on predicate unfolding, which
SuSLik had to impose due to its ad-hoc termination checking
mechanism, which in Cypress has been replaced with the
more powerful cardinality-based mechanism from Sec. 3.3.

Table 2. Comparison with SuSLik on benchmarks with sim-
ple recursion. We report the number of statements Stmt and
synthesis Time in seconds for both Cypress and SuSLik.
Each benchmark generates a single procedure.

Time

Group Id Description Stmt Code/Spec Cypress SuSLik

Integers
20 swap two3 4 1.0x 0.2 < 0.1
21 min of two3,4 3 1.1x 1.5 0.4

Singly
Linked
List

22 length2,3 6 1.2x 1.1 1.1
23 max2,3 7 1.9x 0.7 0.7
24 min2,3 7 1.9x 0.6 0.7
25 singleton3,4 4 0.9x 0.3 < 0.1
26 dispose3 4 5.5x 0.2 < 0.1
27 initialize3 4 1.6x 0.6 0.1
28 copy3,5 11 2.7x 0.8 0.3
29 append3,5 6 1.1x 0.5 0.4
30 delete3,5 12 2.6x 1.6 0.4

Sorted
list

31 prepend2,3 4 0.5x 0.3 0.2
32 insert2,3 25 2.6x 4.4 5.2
33 insertion sort2,3 7 1.0x 1.2 1.4

Tree

34 size3 9 2.5x 0.7 0.3
35 dispose3 6 8.0x 0.2 < 0.1
36 copy3 16 3.8x 2.8 0.7
37 flatten w/append3 19 5.4x 0.4 0.7
38 flatten w/acc3 12 2.1x 0.7 0.7

BST

39 insert2,3 19 1.9x 9.8 36.9
40 rotate left2,3 5 0.2x 6.2 23.9
41 rotate right2,3 5 0.2x 4.8 9.1
42 delete root2 29 1.7x 1304.3 -

Doubly
Linked
List

43 copy 22 4.3x 7.3 -
44 append5 10 1.6x 2.3 -
45 delete5 19 3.7x 4.7 -
46 single to double 21 5.5x 1.3 -

2From [31] 3From SuSLik [29] 4From [22] 5From [30]

Although in principle ImpSynt is capable of solving complex
benchmarks that require recursive auxiliaries using nested
loops instead, none of the results reported in [31] contain
nested loops, and in any case, ImpSynt relies on program
sketches. To our knowledge, no existing synthesizer (for ei-
ther functional or heap-manipulating programs) is able to
generate mutually-recursive programs.

5.2.2 Efficiency. Our experiments show that Cypress is
efficient in synthesizing a variety of programs: all 19 complex
benchmarks were synthesized within two minutes, and all
but two of them take less than fifteen seconds. Our com-
parison of Cypress with SuSLik on the simple benchmarks
demonstrates that despite searching a larger space of pro-
grams, Cypress remains efficient. It is slightly slower on easy
benchmarks: of the 18 benchmarks that take less than five
seconds for SuSLik, the average time is 0.5 seconds for SuS-
Lik compared to 0.8 seconds for Cypress; the remaining four
hard benchmarks is where Cypress’s new search strategy
pays off: the average time for those four benchmarks is 18.8
seconds for SuSLik and only 6.3 seconds for Cypress.

5.2.3 Utility. To quantify synthesis utility, we measured
the ratio between the size of synthesized code and the input
specification (taken as AST sizes). For all benchmarks from

956

Cyclic Program Synthesis PLDI ’21, June 20ś25, 2021, Virtual, Canada

the complex set, the generated code is larger than the speci-
fication by at least 2.2x (sorted list merge) and at most 12x
(deallocate rose tree). This confirms our intuition that for
simple, boilerplate data structure manipulations, like deallo-
cation and copying, synthesis offers a good trade-off, since
their specifications are very simple, while the code can be
quite tricky. We only include pre- and postconditions in
the specification size and omit predicate definitions, since
those are reused between benchmarks. Anecdotally, the new
benchmarks created for this paper were quick and easy to
write: most predicate definitions were either reused from
SuSLik or were standard SL predicates. In both cases, the
pre- and postconditions were very straightforward. Note
that the code-to-spec ratios for the simple benchmarks are
lower (between 0.2x and 8.0x), which serves as evidence
that deductive synthesis for heap-manipulating programs
delivers larger pay-off for complex traversals.

5.3 Notable Benchmarks

Merge. One benchmark where Cypress surprised us is
merging two sorted lists (benchmark 17).We initially thought
that this problem required an extension to the tool, because
the traditional recursive implementationÐwithout auxiliariesÐ
has to unfold both input lists in order to compare their heads,
but then fold one of the lists back again to pass it to the re-
cursive call; this łfolding backž is something that Cypress
does not explicitly support. To our surprise, Cypress was
instead able to solve this problem by inventing an auxiliary
that merges two lists one of which is non-empty. This imple-
mentation is even slightly more efficient, since it eliminates
a redundant emptiness check for one of the lists.

Sort. An important difference between the functional set-
ting of [13] and our setting is that SL specifications give
the the user more fine-grained control over the relationship
between input and output data structures in memory. For
sorting (benchmark 16), we took the liberty of requiring the
sort to be in-place, by using the following specification:

{sll(x,n, l ,h)} { {srtl(x,n, l ,h)}

Here sll is a list rooted at xwith lengthn and lower and upper
bounds on the elements l and h, and srtl is a sorted list with
the same parameters (notably, rooted at the same address
x). Such in-place sorting is not expressible using refinement
types from [13]. Given this specificationÐwhich contains
no insight as to which algorithm to use to sort the listÐ
Cypress synthesizes a rather peculiar version of in-place
insertion sort: while traditionally insertion sort on linked
lists performs insertion by switching next pointers, Cypress
chose instead to do it by swapping elements in out-of-order
list cells (similarly to a typical insertion sort on an array).

Intersection. Perhaps themost curious case is benchmark
5, which computes the intersection of two sets represented as
linked lists with unique elements (denoted by the inductive

predicate ul). The simplest specification for intersection is:

{r 7→ x ∗ ul(x, s1) ∗ ul(y, s2)} { {r 7→ z ∗ ul(z, s1 ∩ s2)}

With this specification, however, Cypress fails to find a so-
lution due to a limitation on the class of auxiliaries it can
generate. Unlike the original functional setting, there is no
simple, fold-like solution for this specification, because it
is destructive: once it computes the intersection z ′ of y and
the tail of x , the list y is lost, and we cannot decide whether
the head of x should be added to z ′. A more sophisticated
solution would require an auxiliary that tests membership,
which is beyond the capabilities of cyclic synthesis.

To circumvent this issue, we added ∗ul(y, s2) to the post-
condition to preserve the input list y. Even with this change,
however, Cypress fails to generate the simple solution with
a single auxiliary (one that searches for the head of x in y,
and if found, prepends it to z ′), because doing so requires
weakening of the auxiliary’s pure precondition, which cyclic
synthesis currently does not support. Surprisingly, Cypress
finds another solution, which uses a second auxiliary to ap-

pend the head of x to z ′ instead of prepending it. This solution
is so unusual that we worried we found a soundness issue,
until we checked it with an external program verifier: the
solution is indeed correct (albeit inefficient), and both of the
inferred auxiliary specifications are inductive.

5.4 Limitations

When does Cypress fail? The main limitation of SSL⟲
is that it can only derive a certain class of auxiliary functions.
Intuitively, it can only extract auxiliary specifications from
the goals in the main derivation, and cannot invent them łout
of thin airž, so, for example, the auxiliary cannot take extra
parameters or return a new data structure, which the main
specification does not mention. For this reason, Cypress can-
not synthesize linear-time implementations of list reversal
or tree flattening, which would require conjecturing an extra
accumulator parameter. As explained in Sec. 5.3, SSL⟲ also
lacks support for generalizing the pure part of the auxiliary
specification, which prevents it from deriving simpler ver-
sion of set intersection. It is difficult to precisely characterize
the class of synthesis problems that cyclic synthesis can and
cannot solve, because, as illustrated above, it often finds
alternative solutions that circumvent the limitations. Such
characterization is an interesting direction for future work;
another important and challenging direction is extending
SSL⟲ with additional rules to support a wider class of pro-
grams, while continuing to strike a careful balance between
expressiveness and tractability of proof search.

Quality of solutions. A Cypress solution might have
suboptimal performance even if a more efficient program
is derivable via SSL⟲. The core issue is that SSL⟲ has no
means of analyzing program efficiency, and hence no reason
to prefer a more efficient solution. A promising approach for
producing efficient heap-manipulating would be to adopt a

957

PLDI ’21, June 20ś25, 2021, Virtual, Canada Shachar Itzhaky, Hila Peleg, Nadia Polikarpova, Reuben N. S. Rowe, and Ilya Sergey

flavor of Separation Logic with time credits [15], combining
it with techniques for resource-aware synthesis for pure
functional programs [20].
We also noticed that the division of code between the

procedures in Cypress solutions is sometimes unnatural: for
example, the tree flattening program in Fig. 5 deallocates
tree nodes inside the auxiliary append function instead of the
main function; in terms of abstraction boundaries, it would
be better if append were only concerned with appending lists
and had no knowledge of tree nodes. The division of code
depends on the order in which Cypress tries applying syn-
thesis rules (in this case, the relative order of Call and Free);
currently the order is optimized for efficiency of proof search
rather than for optimal abstraction boundaries. We leave the
investigation of improving program quality to future work.

Loop support. SSL⟲ currently has no support for loops,
which are often a more natural and efficient alternative to
recursion in imperative programs. There are several existing
techniques for deductive verification of loops using cyclic
proofs [7, 43]; hence we believe the general cyclic synthesis
technique could be extended to also handle them. To keep
proof search tractable, however, we might not want to sup-
port both recursion and loops in our target language; a better
idea might be to synthesize tail-recursive programs and then
translate them into loops using standard techniques. The
challenge, however, is that most tail-recursive programs re-
quire invented accumulator parameters (equivalently: most
loops require temporary variables). Hence adding support
for loops goes hand-in-hand with the extending the logic to
support a wider class of auxiliaries.

6 Related Work

Deductive program synthesis. Our work on SSL⟲ ex-
tends a line of research on synthesizing programs from logi-
cal specifications [22, 31, 38, 40, 44], and, in particular, on de-

ductive synthesis [12, 19, 24, 28], which implements a search
in the space of proofs of program correctness (rather than
in the space of programs). Our work is the first to combine
deductive synthesis with cyclic proof to generate provably
correct and terminating programs with complex recursion
patterns. Our technical contributions build primarily on the
work by Polikarpova and Sergey [29], extending their logic
SSL and the tool SuSLik with ideas from cyclic proofs. The
best-first search algorithm of Cypress is inspired by the
Leon system for deductive program verification, synthesis,
and repair [18, 19], but tailored to Separation Logic.

Our work advances the state of the art for deductive syn-
thesis tools with regard to establishing termination of synthe-
sized programs. Specifically, it enables automated derivation
of a termination argument along with the program being
synthesized without being subject to restrictions of previ-
ous approaches: (1) requiring the user to provide an explicit
termination measure [28]; (2) restricting the recursion to
syntactic structural one [27, 29]; and (3) determining the

termination measure by instantiating one of the pre-defined
recursion/looping schemas [19, 31].

Synthesis of auxiliary functions. Eguchi et al. [13] im-
plement a technique for automatically synthesizing imple-
mentations of pure functional programs with recursive helper
functions from refinement types [45]. Their approach in-
fers specifications for recursive helper functions by trying
a number of predefined templates for the łmainž function,
which exercise different flavours of recursion (structural
folds or divide-and-conquer) on the input data structures.
Our work is complementary in that it considers imperative
heap-manipulating programs, and also takes a fundamentally
different proof-driven (rather than template-driven) approach
to identify recursion patterns. By doing so, our technique
removes the need to conjecture recursion principles upfront,
yet it is capable of discovering many of those automatically,
including non-trivial ones, such as traversals of a rose tree.

Several other techniques cannot synthesize recursive aux-
iliaries directly, but can synthesize nested folds [14] or nested
loops [31, 38, 40]. Out of these techniques, λ2 [14] is restricted
to a set of predefined templates, and also provides no correct-
ness guarantees beyond a finite set of input-output examples.
Sketching-based approaches [31, 38, 40] are very flexible, but
require the programmer to provide an extensive program
sketch in order to make synthesis with nested loops tractable.

Cyclic proofs. The techniques and metatheory of cyclic
proofs originates in the logic and proof theory community.
Most related to our current work is the application of cyclic
proof to reasoning about program correctness [7, 35, 43], as
well as to proving pure entailments of Separation Logic with
inductively defined predicates [6, 41, 42]. In particular, our
use of cardinalities with Separation Logic coincides with the
approach used by Rowe and Brotherston [35].

7 Conclusion

We have demonstrated that cyclic proofs, already known as
an automation-friendly method for reasoning about program
termination, can also be an effective tool for automatically
synthesizing programs with recursive auxiliary functions. By
investigating this synergy between verification and synthe-
sis, we have once again witnessed that the ideas developed
by the logic community for scalable reasoning about heap-
manipulating procedures can be instrumental in practical
synthesis of correct-by-construction programs.

Acknowledgments

The authors would like to thank the anonymous reviewers
and our shepherd, Kwangkeun Yi, for their valuable feedback
on earlier drafts of this paper. This work was supported by
the National Science Foundation under Grant No. 1911149,
by SingaporeMoE Tier 1 Grant No. IG18-SG102, by the Israeli
Science Foundation (ISF) Grants No. 243/19 and 2740/19, and
by the United States-Israel Binational Science Foundation
(BSF) Grant No. 2018675.

958

Cyclic Program Synthesis PLDI ’21, June 20ś25, 2021, Virtual, Canada

References
[1] Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid. 2013. Recur-

sive Program Synthesis. In CAV (Part II) (LNCS, Vol. 9780). Springer,

934ś950. https://doi.org/10.1007/978-3-642-39799-8_67

[2] Rajeev Alur, Rastislav Bodík, Garvit Juniwal, Milo M. K. Martin,

Mukund Raghothaman, Sanjit A. Seshia, Rishabh Singh, Armando

Solar-Lezama, Emina Torlak, and Abhishek Udupa. 2013. Syntax-

guided synthesis. In FMCAD. IEEE, 1ś8. https://doi.org/10.1145/

3434311

[3] David Baelde, Amina Doumane, and Alexis Saurin. 2016. Infinitary

Proof Theory: the Multiplicative Additive Case. In CSL (LIPIcs, Vol. 62).

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 42:1ś42:17. https:

//doi.org/10.4230/LIPIcs.CSL.2016.42

[4] Josh Berdine and Nikolaj Bjùrner. 2014. Computing All Implied

Equalities via SMT-Based Partition Refinement. In IJCAR. 168ś183.

https://doi.org/10.1007/978-3-319-08587-6_12

[5] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. 2005. Sym-

bolic Execution with Separation Logic. In APLAS (LNCS, Vol. 3780).

Springer, 52ś68. https://doi.org/10.1007/11575467_5

[6] James Brotherston. 2007. Formalised Inductive Reasoning in the Logic

of Bunched Implications. In SAS (LNCS, Vol. 4634). Springer, 87ś103.

https://doi.org/10.1007/978-3-540-74061-2_6

[7] James Brotherston, Richard Bornat, and Cristiano Calcagno. 2008.

Cyclic proofs of program termination in separation logic. In POPL.

ACM, 101ś112. https://doi.org/10.1145/1328897.1328453

[8] James Brotherston, Nikos Gorogiannis, and Rasmus Lerchedahl Pe-

tersen. 2012. A Generic Cyclic Theorem Prover. In APLAS (LNCS,

Vol. 7705). Springer, 350ś367. https://doi.org/10.1007/978-3-642-35182-

2_25

[9] James Brotherston and Alex Simpson. 2011. Sequent Calculi for In-

duction and Infinite Descent. J. Log. Comput. 21, 6 (2011), 1177ś1216.

https://doi.org/10.1093/logcom/exq052

[10] Coq Development Team. 2020. The Coq Proof Assistant Reference

Manual - Version 8.11. Available at http://coq.inria.fr/.

[11] Anupam Das and Damien Pous. 2018. Non-Wellfounded Proof The-

ory For (Kleene+Action)(Algebras+Lattices). In CSL (LIPIcs, Vol. 119).

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 19:1ś19:18. https:

//doi.org/10.4230/LIPIcs.CSL.2018.19

[12] Benjamin Delaware, Clément Pit-Claudel, Jason Gross, and Adam

Chlipala. 2015. Fiat: Deductive Synthesis of Abstract Data Types in

a Proof Assistant. In POPL. ACM, 689ś700. https://doi.org/10.1145/

2775051.2677006

[13] Shingo Eguchi, Naoki Kobayashi, and Takeshi Tsukada. 2018. Auto-

mated Synthesis of Functional Programs with Auxiliary Functions. In

APLAS (LNCS, Vol. 11275). Springer, 223ś241. https://doi.org/10.1007/

978-3-030-02768-1_13

[14] John K. Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing

data structure transformations from input-output examples. In PLDI.

ACM, 229ś239. https://doi.org/10.1145/2737924.2737977

[15] Armaël Guéneau, Arthur Charguéraud, and François Pottier. 2018.

A Fistful of Dollars: Formalizing Asymptotic Complexity Claims via

Deductive Program Verification. In ESOP (LNCS, Vol. 10801). Springer,

533ś560. https://doi.org/10.1007/978-3-319-89884-1_19

[16] Shachar Itzhaky, Hila Peleg, Nadia Polikarpova, ReubenN. S. Rowe, and

Ilya Sergey. 2021. Cyclic Program Synthesis. Technical Report. Univer-

sity of California, San Diego. https://cseweb.ucsd.edu/~npolikarpova/

publications/cypress-extended.pdf

[17] Shachar Itzhaky, Hila Peleg, Nadia Polikarpova, ReubenN. S. Rowe, and

Ilya Sergey. 2021. Cypress (PLDI 2021 Artifact): Code and Benchmarks.

https://doi.org/10.5281/zenodo.4679743

[18] Etienne Kneuss, Manos Koukoutos, and Viktor Kuncak. 2015. De-

ductive Program Repair. In CAV (LNCS, Vol. 9207). Springer, 217ś233.

https://doi.org/10.1007/978-3-319-21668-3_13

[19] Etienne Kneuss, Ivan Kuraj, Viktor Kuncak, and Philippe Suter. 2013.

Synthesis modulo recursive functions. In OOPSLA. ACM, 407ś426.

https://doi.org/10.1145/2544173.2509555

[20] Tristan Knoth, Di Wang, Nadia Polikarpova, and Jan Hoffmann. 2019.

Resource-guided program synthesis. In PLDI. ACM, 253ś268. https:

//doi.org/10.1145/3314221.3314602

[21] Viktor Kuncak, Mikaël Mayer, Ruzica Piskac, and Philippe Suter. 2010.

Complete Functional Synthesis. In PLDI. 316ś329. https://doi.org/10.

1145/1809028.1806632

[22] K. Rustan M. Leino and Aleksandar Milicevic. 2012. Program Extrapo-

lation with Jennisys. In OOPSLA. ACM, 411ś430. https://doi.org/10.

1145/2398857.2384646

[23] Grant Malcolm. 1990. Data Structures and Program Transformation.

Sci. Comput. Program. 14, 2-3 (1990), 255ś279. https://doi.org/10.1016/

0167-6423(90)90023-7

[24] Zohar Manna and Richard J. Waldinger. 1980. A Deductive Approach

to Program Synthesis. ACM Trans. Program. Lang. Syst. 2, 1 (1980),

90ś121. https://doi.org/10.1145/357084.357090

[25] Damian Niwiński and Igor Walukiewicz. 1996. Games for the µ-

Calculus. Theor. Comput. Sci. 163, 1&2 (1996), 99ś116. https:

//doi.org/10.1016/0304-3975(95)00136-0

[26] Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. 2001. Local

Reasoning about Programs that Alter Data Structures. In CSL (LNCS,

Vol. 2142). Springer, 1ś19. https://doi.org/10.1007/3-540-44802-0_1

[27] Peter-Michael Osera and Steve Zdancewic. 2015. Type-and-example-

directed program synthesis. In PLDI. ACM, 619ś630. https://doi.org/

10.1145/2737924.2738007

[28] Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Pro-

gram synthesis from polymorphic refinement types. In PLDI. ACM,

522ś538. https://doi.org/10.1145/2980983.2908093

[29] Nadia Polikarpova and Ilya Sergey. 2019. Structuring the Synthesis

of Heap-Manipulating Programs. Proc. ACM Program. Lang. 3, POPL

(2019), 72:1ś72:30. https://doi.org/10.1145/3290385

[30] Xiaokang Qiu, Pranav Garg, Andrei Stefanescu, and Parthasarathy

Madhusudan. 2013. Natural proofs for structure, data, and separation.

In PLDI. ACM, 231ś242. https://doi.org/10.1145/2499370.2462169

[31] Xiaokang Qiu and Armando Solar-Lezama. 2017. Natural synthesis of

provably-correct data-structure manipulations. PACMPL 1, OOPSLA

(2017), 65:1ś65:28. https://doi.org/10.1145/3133889

[32] Andrew Reynolds, Morgan Deters, Viktor Kuncak, Cesare Tinelli, and

Clark W. Barrett. 2015. Counterexample-Guided Quantifier Instantia-

tion for Synthesis in SMT. In CAV (Part II) (LNCS, Vol. 9207). Springer,

198ś216. https://doi.org/10.1007/978-3-319-21668-3_12

[33] Andrew Reynolds, Viktor Kuncak, Cesare Tinelli, Clark W. Barrett,

and Morgan Deters. 2019. Refutation-based synthesis in SMT. Formal

Methods Syst. Des. 55, 2 (2019), 73ś102. https://doi.org/10.1007/s10703-

017-0270-2

[34] John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable

Data Structures. In LICS. IEEE Computer Society, 55ś74. https://doi.

org/10.1109/LICS.2002.1029817

[35] Reuben N. S. Rowe and James Brotherston. 2017. Automatic cyclic

termination proofs for recursive procedures in separation logic. In

CPP. ACM, 53ś65. https://doi.org/10.1145/3018610.3018623

[36] Luigi Santocanale. 2002. A Calculus of Circular Proofs and Its Cat-

egorical Semantics. In FoSSaCS (LNCS, Vol. 2303). Springer, 357ś371.

https://doi.org/10.1007/3-540-45931-6_25

[37] Alex Simpson. 2017. Cyclic Arithmetic Is Equivalent to Peano Arith-

metic. In FoSSaCS (LNCS, Vol. 10203). Springer, 283ś300. https:

//doi.org/10.1007/978-3-662-54458-7_17

[38] Armando Solar-Lezama. 2013. Program sketching. STTT 15, 5-6 (2013),

475ś495. https://doi.org/10.1007/s10009-012-0249-7

[39] Christoph Sprenger andMads Dam. 2003. On the Structure of Inductive

Reasoning: Circular and Tree-Shaped Proofs in the µ-Calculus. In

FoSSaCS (LNCS, Vol. 2620). Springer, 425ś440. https://doi.org/10.1007/

3-540-36576-1_27

959

https://doi.org/10.1007/978-3-642-39799-8_67
https://doi.org/10.1145/3434311
https://doi.org/10.1145/3434311
https://doi.org/10.4230/LIPIcs.CSL.2016.42
https://doi.org/10.4230/LIPIcs.CSL.2016.42
https://doi.org/10.1007/978-3-319-08587-6_12
https://doi.org/10.1007/11575467_5
https://doi.org/10.1007/978-3-540-74061-2_6
https://doi.org/10.1145/1328897.1328453
https://doi.org/10.1007/978-3-642-35182-2_25
https://doi.org/10.1007/978-3-642-35182-2_25
https://doi.org/10.1093/logcom/exq052
http://coq.inria.fr/
https://doi.org/10.4230/LIPIcs.CSL.2018.19
https://doi.org/10.4230/LIPIcs.CSL.2018.19
https://doi.org/10.1145/2775051.2677006
https://doi.org/10.1145/2775051.2677006
https://doi.org/10.1007/978-3-030-02768-1_13
https://doi.org/10.1007/978-3-030-02768-1_13
https://doi.org/10.1145/2737924.2737977
https://doi.org/10.1007/978-3-319-89884-1_19
https://cseweb.ucsd.edu/~npolikarpova/publications/cypress-extended.pdf
https://cseweb.ucsd.edu/~npolikarpova/publications/cypress-extended.pdf
https://doi.org/10.5281/zenodo.4679743
https://doi.org/10.1007/978-3-319-21668-3_13
https://doi.org/10.1145/2544173.2509555
https://doi.org/10.1145/3314221.3314602
https://doi.org/10.1145/3314221.3314602
https://doi.org/10.1145/1809028.1806632
https://doi.org/10.1145/1809028.1806632
https://doi.org/10.1145/2398857.2384646
https://doi.org/10.1145/2398857.2384646
https://doi.org/10.1016/0167-6423(90)90023-7
https://doi.org/10.1016/0167-6423(90)90023-7
https://doi.org/10.1145/357084.357090
https://doi.org/10.1016/0304-3975(95)00136-0
https://doi.org/10.1016/0304-3975(95)00136-0
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1145/2737924.2738007
https://doi.org/10.1145/2737924.2738007
https://doi.org/10.1145/2980983.2908093
https://doi.org/10.1145/3290385
https://doi.org/10.1145/2499370.2462169
https://doi.org/10.1145/3133889
https://doi.org/10.1007/978-3-319-21668-3_12
https://doi.org/10.1007/s10703-017-0270-2
https://doi.org/10.1007/s10703-017-0270-2
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1145/3018610.3018623
https://doi.org/10.1007/3-540-45931-6_25
https://doi.org/10.1007/978-3-662-54458-7_17
https://doi.org/10.1007/978-3-662-54458-7_17
https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1007/3-540-36576-1_27
https://doi.org/10.1007/3-540-36576-1_27

PLDI ’21, June 20ś25, 2021, Virtual, Canada Shachar Itzhaky, Hila Peleg, Nadia Polikarpova, Reuben N. S. Rowe, and Ilya Sergey

[40] Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster. 2010. From

program verification to program synthesis. In POPL. ACM, 313ś326.

https://doi.org/10.1145/1706299.1706337

[41] Quang-Trung Ta, Ton Chanh Le, Siau-Cheng Khoo, and Wei-Ngan

Chin. 2016. Automated Mutual Explicit Induction Proof in Separation

Logic. In FM (LNCS, Vol. 9995), John S. Fitzgerald, Constance L. Heit-

meyer, Stefania Gnesi, and Anna Philippou (Eds.). Springer, 659ś676.

[42] Quang-Trung Ta, Ton Chanh Le, Siau-Cheng Khoo, and Wei-Ngan

Chin. 2018. Automated lemma synthesis in symbolic-heap separation

logic. Proc. ACM Program. Lang. 2, POPL (2018), 9:1ś9:29. https:

//doi.org/10.1145/3158097

[43] Gadi Tellez and James Brotherston. 2020. Automatically Verifying

Temporal Properties of Pointer Programs with Cyclic Proof. J. Autom.

Reasoning 64, 3 (2020), 555ś578. https://doi.org/10.1007/978-3-319-

63046-5_30

[44] Emina Torlak and Rastislav Bodík. 2014. A lightweight symbolic

virtual machine for solver-aided host languages. In PLDI. ACM, 530ś

541. https://doi.org/10.1145/2666356.2594340

[45] Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon

L. Peyton Jones. 2014. Refinement types for Haskell. In ICFP. ACM,

269ś282. https://doi.org/10.1145/2628136.2628161

960

https://doi.org/10.1145/1706299.1706337
https://doi.org/10.1145/3158097
https://doi.org/10.1145/3158097
https://doi.org/10.1007/978-3-319-63046-5_30
https://doi.org/10.1007/978-3-319-63046-5_30
https://doi.org/10.1145/2666356.2594340
https://doi.org/10.1145/2628136.2628161

	Abstract
	1 Introduction
	2 Cyclic Program Synthesis, by Example
	2.1 Background: SSL and Its Limitations
	2.2 Recursive Programs from Cyclic Proofs
	2.3 Synthesizing Auxiliary Recursive Functions
	2.4 More Examples

	3 Cyclic Program Synthesis, Formally
	3.1 Programs and Assertions
	3.2 Proof Rules
	3.3 Cyclic Program Derivations
	3.4 Soundness

	4 Cyclic Program Synthesis, Pragmatically
	4.1 Synthesizing Calls
	4.2 Pure Reasoning

	5 Evaluation
	5.1 Benchmarks and Setup
	5.2 Results
	5.3 Notable Benchmarks
	5.4 Limitations

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

