
NUS Workshop on Formal Proofs and Lean
22 April 2024

Proving as Programming

Ilya Sergey

ilyasergey.net

http://ilyasergey.net

About myself: Ilya Sergey

• Associate Professor at NUS School of Computing

• Running VERSE lab (verse-lab.github.io)

• Previously: Assistant Professor at UCL (2015-2018)

• Research Interests:

• Design of Programming Languages

• Computer-Aided Software Verification

• Program Synthesis

• Using proof assistants since 2012

• Wrote a textbook on Coq/SSreflect (ilyasergey.net/pnp)

2 slides of this talk

http://verse-lab.github.io
http://ilyasergey.net/pnp

Proving as Programming

The Curry-Howard correspondence:

or

a link
between Computer Science and Logic

based on 2018/19 lectures by Xavier Leroy at Collège de France
xavierleroy.org/CdF/2018-2019/

3

http://xavierleroy.org/CdF/2018-2019/

Computer science and mathematical logic

Since its inception, computer science has taken many ideas and many principles
from mathematical logic.

(Church, Turing, von Neumann, and many other founders of computer science were
logicians or had beed trained in logic.)

This talk outlines the history of seminal interaction
between logic and computer science,
and more precisely between proof theory and programming languages.

4

Programming with logic
Programming with logic

Many programming languages treat programs as formulas of a logic:

Logic programming (Prolog, Mercury, . . .)
Constraint programming (Prolog III, CHIP, Oz, . . .)
Queries in relational databases.

Executing the program amounts to proving or refuting the corresponding
logical formula.

3

5

An example in PrologAn example in Prolog

A Prolog program:

append([], L, L).

append([H|T], L, [H|M]) :- append(T, L, M).

?- append(X, Y, [1,2,3]).

These Horn clauses and the �nal query de�ne a logical formula:

(8L, append([], L, L))
^ (8H, T, L,M, append(T, L,M)) append([H|T], L, [H|M]))
) 9X, Y, append(X, Y, [1, 2, 3])

Executing the program amounts to proving this proposition by �nding
appropriate X, Y that satisfy the 9.

4

6

Program = Proposition

Logic programming falls within a rather natural correspondence…

Proposition = program

Logic programming falls within a rather natural correspondence . . .
which is not the Curry-Howard correspondence:

programming language mathematical logic

program proposition

execution proof

5

7

This is not the Curry-Howard correspondence.

The Curry-Howard correspondence

An isomorphism between an intuitionistic (constructive) logic and
the simply-typed λ-calculus (the core of a functional programming language).

Complete change of viewpoint:
programs are no longer propositions, but the proofs of propositions.

The Curry-Howard correspondence

An isomorphism between an intuitionistic logic and the simply-typed
�-calculus (the core of a functional programming language).

simply-typed �-calculus intuitionistic logic

type proposition

term (programme) proof

reduction (execution) cut elimination
(normalization)

Complete change of viewpoint: programs are no longer propositions, but
the proofs of propositions.

6

8

The Curry-Howard correspondence
The Curry-Howard correspondence

Inspires a new perspective on logics and on programming languages,
summarized by the “PAT principle”:

Propositions As Types

Proofs As Terms

7

9

Curry-Howard today

A guiding principle to design, understand, and formalize programming languages
(mostly, but not only, functional languages, such as OCaml and Haskell).

New ways to program, integrating formal verification (e.g., dependent types).

New ways to do mathematics, leveraging the power of the computer.

Powerful and versatile tools such as Coq and Lean,
to help us explore this border between computer science and mathematics.

10

Today’s Agenda

11

• Towards Curry-Howard: the Lambda-Calculus

• Intuitionistic Logic and the idea of Constructive Proofs

• Types and Simply-Typed Lambda Calculus

• Curry-Howard Correspondence: Propositions as Types, Proofs = Programs

• Polymorphic Lambda-Calculus

• Dependent Types and Quantifying over Values

• Curry-Howard for Practitioners: Program Synthesis and Proof Repair

Today’s Agenda

• Towards Curry-Howard: the Lambda-Calculus

• Intuitionistic Logic and the idea of Constructive Proofs

• Types and Simply-Typed Lambda Calculus

• Curry-Howard Correspondence: Propositions as Types, Proofs = Programs

• Polymorphic Lambda-Calculus

• Dependent Types and Quantifying over Values

• Curry-Howard for Practitioners: Program Synthesis and Proof Repair

12

The lambda-notationThe lambda-notation

Circa 1930, Alonzo Church introduces the notation �x. e meaning
“the function that maps parameter x to expression e”.

Today we write x 7! e. However, this notation, popularized by Bourbaki,
was introduced later.

These notations �x. e or x 7! e are useful to clarify the way
mathematicians talk about functions. . .

“ the function x2 ” x 7! x2 or �x. x2

“ the function x2 + y2 ” (x, y) 7! x2 + y2 or �x.�y. x2 + y2

“ the family of functions cx2 ” c 7! (x 7! cx2) or �c.�x. cx2

4

13

Computing with the lambda-notationComputing with the lambda-notation

Two main computation rules:

↵-conversion: renaming a bound variable.

�x.M =↵ �y.M{x y} if y not free in M

�-conversion: replacing the formal parameter by the actual argument in a
function body.

(�x.M)(N) =� M{x N}

In ordinary mathematics we write:
Consider the function f(x) = x + 1. We have that f(2) = 3.

The lambda-notation decomposes this computation in multiple steps:
f(2) = (�x. x + 1) (2) =� 2+ 1 = 3

5

14

Why lambda?Why lambda?

Dana Scott tells that he once wrote Church

Dear professor Church: why “lambda”?

and received the following reply

Eeny, meeny, miny, moe.

Rosser tells that Church progressively simpli�ed the notation x̂e that is
used in Russell and Whitehead’s Principia Mathematica:

x̂e ! ^xe ! �xe ! �x[e] ! �x.e

6

15

A lambda to bind them allA lambda to bind them all

In �x.e, variable x is said to be “bound” and can be renamed without
changing the meaning.

Bound variables appear in various mathematical notations:

{x | P(x)} 8x, P(x) 9x, P(x)

[

n2N
A(n)

nY

i=1

i
1X

n=0

1
n2

lim
n!1

un
Z b

a
f(x)dx

7

16

The lambda-calculusThe pure lambda-calculus

Circa 1935, Church and his students Kleene and Rosser study the “pure”
lambda-calculus, without logical connectives:

M,N ::= x | �x.M | M N

↵-equivalence and �-reduction (= oriented conversion):

�x.M =↵ �y.M{x y} (�x.M) N!� M{x N}
(y not free in M)

A notion of computation appears: iterate �-reduction until an irreducible
“normal form” N is reached.

M!� M1 !� M2 !� · · ·!� N 6!�

13

A minimalistic formal system to express algorithms as compositions of functions

17

Lambda-calculus and computability
Lambda-calculus and computability

Church (1936) shows the �rst undecidability results
(= cannot be computed by a general recursive function):

Whether a term M has a normal form is undecidable.
Corollary: Hilbert’s decision problem (Entscheidungsproblem) has no
solution.

Kleene (1935) and Turing (1937) show equivalences between
general recursive functions (Herbrand, Gödel, Kleene);
functions computable by a Turing machine;
functions de�nable as a �-term
via Church’s encoding of natural numbers (1933):

n ⌘ �f . f � · · · � f| {z }
n times

⌘ �f .�x. f (f (· · · (f x)))| {z }
n times

15

18

Lambda-calculus and functional languagesLambda-calculus and functional languages

The pure lambda-calculus as the common ancestor and as the kernel of
functional programming languages:

functional language = pure lambda-calculus
+ reduction strategy
+ data types
+ type system (if applicable)

LISP 1.5 (1960) refers to Church and writes (LAMBDA ...) for anonymous
functions. However, its semantics (dynamic scoping of bindings) does not
follow �-reduction.

Landin (1965) proposes ISWIM, an extended lambda-calculus, as the basis
for The next 700 programming languages.

A�er 1970, all functional languages contain lambda-calculus as a kernel:
Common Lisp, Scheme, SML, Caml, Haskell, . . .

16

19

Today’s Agenda

• Towards Curry-Howard: the Lambda-Calculus

• Intuitionistic Logic and the idea of Constructive Proofs

• Types and Simply-Typed Lambda Calculus

• Curry-Howard Correspondence: Propositions as Types, Proofs = Programs

• Polymorphic Lambda-Calculus

• Dependent Types and Quantifying over Values

• Curry-Howard for Practitioners: Program Synthesis and Proof Repair

20

Today’s Agenda

• Towards Curry-Howard: the Lambda-Calculus

• Intuitionistic Logic and the idea of Constructive Proofs

• Types and Simply-Typed Lambda Calculus

• Curry-Howard Correspondence: Propositions as Types, Proofs = Programs

• Polymorphic Lambda-Calculus

• Dependent Types and Quantifying over Values

• Curry-Howard for Practitioners: Program Synthesis and Proof Repair

21

Intuitionism and intuitionistic logic

Intuitionism: a philosophy of mathematics developed by Brouwer (1881–1966).
Requires all mathematical objects to be accessible to intuition.
Rejects non-constructive proofs.

Intuitionistic logic: family of logics studied by Heyting, Glivenko, Gödel,
Kolmogorov. Formalizes the “only constructive proofs” aspect of intuitionism.

22

Constructive proofs vs. non-constructive proofs
Constructive proofs vs. non-constructive proofs

How to prove “there exists x 2 A such that P(x)” ?
1 Constructively: we de�ne an element a of A from the
2 By contradiction: we assume 9x 2 A. P(x) false, that is, we assume

8x 2 A. ¬P(x) true, and we deduce a contradiction.

For an intuitionist, the �rst proof is the only valid way to show that
9x 2 A. P(x) is true.
The second proof only shows that 9x 2 A. P(x) is not absurd,
which is a weaker result.

19

23

An intuitionistic adventure
(inspired by G. Dowek, Computation, Proof, Machine)

An intuitionistic adventure
(inspired by G. Dowek, Computation, Proof, Machine)

In the train back from the Netherlands, someone drops me a note:
The French classicist logicians want to kill you. Get o� at the last
stop before the French border.
Note: the train may make extra unplanned stops.

At which stop should I get o� the train?

The set A of all stops outside France is 1- nonempty (Brussels 2 A),
2- totally ordered, and 3- �nite; hence, it contains a maximal element;
this is “my” stop.

However, this proof is not constructive and fails to give me an e�ective
criterion to decide at each stop whether to get o� or stay. . .

20

24

Excluded middle

Intuitionistic logic rejects excluded middle (and the many equivalent rules).

Excluded middle

The excluded middle principle (tertium non datur, tiers exclu):

P _ ¬P for all proposition P

Equivalent to double negation elimination:

¬¬P) P for all proposition P

This is the principle for proofs by contradiction.

Intuitionistic logic rejects excluded middle (and the many equivalent
rules).

21

25

Truth vs provability

Classical logic:
every proposition is a priori true or false.
Mathematical proof establishes which of these two cases apply.

Intuitionistic logic:
a proposition can be proved;
or its negation can be proved;
otherwise we do not know anything about the proposition.

26

The BHK interpretation (Brouwer, Heyting, Kolmogorov)

Provability is characterized by the existence of a construction of the proposition.

The BHK interpretation
(Brouwer, Heyting, Kolmogorov)

Provability is characterized by the existence of a construction of the
proposition.

There exists a construction of > (“true”).
There exists no construction of ? (“false”).
A construction of P1 ^ P2 is a pair (c1, c2)
where c1 is a construction of P1 and c2 a construction of P2.
A construction of P1 _ P2 is a pair (i, c)
where i 2 {1, 2} and c is a construction of Pi.

23

27

The BHK interpretation (Brouwer, Heyting, Kolmogorov)
The BHK interpretation

A construction of P1) P2 is a “process” that, given a construction of
P1, produces a construction of P2.

We can elaborate the word “process” in several ways:

arbitrary mathematical function (not always constructive)
algorithm (a very intuitionistic idea!)
recursive function (! Kleene’s realizability)
lambda-term (! Curry-Howard).

24

The BHK interpretation

A construction of ¬P, treated like P) ?, is an algorithm that, from a
(hypothetical) construction of P produces a non-existent object.

Note: the existence of a construction of ¬P is much stronger than the
non-existence of a construction of P.

A construction of 8x, P(x) is an algorithm that, given a value for x,
produces a construction of P(x).
A construction of 9x, P(x) is a pair (a, construction of P(a)).

25

The BHK interpretation

A construction of ¬P, treated like P) ?, is an algorithm that, from a
(hypothetical) construction of P produces a non-existent object.

Note: the existence of a construction of ¬P is much stronger than the
non-existence of a construction of P.

A construction of 8x, P(x) is an algorithm that, given a value for x,
produces a construction of P(x).
A construction of 9x, P(x) is a pair (a, construction of P(a)).

25

Provability is characterized by the existence of a construction of the proposition.

28

Back to excluded middleBack to excluded middle

Let TM be the set of all Turing machines. Consider

Q def
= 8m 2 TM, terminates(m) _ ¬terminates(m)

Q follows immediately from excluded middle (P _ ¬P for all P).

Yet, a construction of Q would be an algorithm that, given a Turing machine
m, returns (1, c) if m terminates and (2, c) otherwise.

Since the halting problem is undecidable, such an algorithm does not exist.

Excluded middle is therefore not constructive, since there is no
construction that validates it.

(This construction would be a universal decision procedure!)

26

29

A formalization of intuitionistic logic
A formalization of intuitionistic logic

Manipulates intuitionistic sequents of the form � ` P
(read: “under hypotheses � we can deduce P”.)

Comprises axioms (“this sequent is true”) and inference rules
(“if the sequents above are true, then the sequent below is true”).
For example:

P ` P
� ` P � ` Q

� ` P ^ Q

27

30

Rules of intuitionistic logic
Rules of intuitionistic logic

Implication: (“I” stands for Introduction, “E” for Elimination)

�1, P, �2 ` P (Ax)

�, P ` Q
()I)

� ` P) Q

� ` P) Q � ` P
()E, modus ponens)

� ` Q

Conjunction:

� ` P � ` Q
(^I)

� ` P ^ Q

� ` P ^ Q
(^E1)

� ` P

� ` P ^ Q
(^E2)

� ` Q

28

31

Rules of intuitionistic logic
Rules of intuitionistic logic

Disjunction:

� ` P
(_I1)

� ` P _ Q

� ` Q
(_I2)

� ` P _ Q

� ` P _ Q �, P ` R �,Q ` R
(_E)

� ` R

Negation:
� ` ?

(?E, ex falso quodlibet)
� ` P

29

32

Today’s Agenda

• Towards Curry-Howard: the Lambda-Calculus

• Intuitionistic Logic and the idea of Constructive Proofs

• Types and Simply-Typed Lambda Calculus

• Curry-Howard Correspondence: Propositions as Types, Proofs = Programs

• Polymorphic Lambda-Calculus

• Dependent Types and Quantifying over Values

• Curry-Howard for Practitioners: Program Synthesis and Proof Repair

33

Today’s Agenda

• Towards Curry-Howard: the Lambda-Calculus

• Intuitionistic Logic and the idea of Constructive Proofs

• Types and Simply-Typed Lambda Calculus

• Curry-Howard Correspondence: Propositions as Types, Proofs = Programs

• Polymorphic Lambda-Calculus

• Dependent Types and Quantifying over Values

• Curry-Howard for Practitioners: Program Synthesis and Proof Repair

34

Why Types?
Types

Folk wisdom:
Don’t compare apples to oranges.
On n’additionne pas des choux et des carottes.

Physical wisdom: dimensional analysis

d = v.t dist = dist homogeneous, possibly correct
d = v/t dist 6= dist.time�2 not homogeneous, always false

31

35

Types in programming languagesTypes in programming languages

To detect and reject some programming errors.

"foo"(12) (character string 6= function)
cos(45, "degrees") (wrong number of arguments)

As partial speci�cations of data structures and module interfaces.

type ’a tree = Leaf of ’a | Node of ’a tree * ’a tree
val assoc: ’a -> (’a * ’b) list -> ’b

To clarify the meaning of programs and facilitate compilation.

integer n
real x
n = n * 2 + 1 (integer arithmetic)
x = x * 2 + 1 (�oating-point arithmetic)

32

36

Types in mathematical logicTypes in mathematical logic

In elementary mathematics: an intuitive notion.
For example, in Euclidean geometry, a point is not a line,
and we never talk about the intersection of two points.

In naive set theory: no types a priori.

For example, the encoding of natural numbers n+ 1 def= n [{n}.

But we get paradoxes such as Russell’s: {x | x /2 x}.

Type theories: add types to a logic to rule out paradoxes.
Typing is a sort of superego forbidding certain forms of logical in-
cest of the kind x 2 x.

(J.-Y. Girard, The blind spot)

33

37

The simply-typed lambda-calculusThe simply-typed lambda-calculus

The modern presentation separates the syntax of terms from
the typing judgment � ` M : ↵
(read: term M has type ↵ under hypotheses �).

Terms: M,N ::= x | �x:↵.M | M N

Typing rules:

�1, x : ↵, �2 ` x : ↵

�, x : ↵ ` M : �

� ` �x:↵.M : ↵ ! �

� ` M : ↵ ! � � ` N : ↵

� ` M N : �

Types for the constants used by Church:

¬ : o ! o 8↵ : (↵ ! o) ! o
^ : o ! o ! o ◆↵ : (↵ ! o) ! ↵

37

38

Type safety in programming languages

"Well typed programs do not go wrong."
 – Robin Milner, 1978

Theorem: (type soundness of simply typed lambda calculus)

 If ∅ ⊢ M : τ then there exists a value v = λx: τ′.N such that M →β* v .

39

Today’s Agenda

• Towards Curry-Howard: the Lambda-Calculus

• Intuitionistic Logic and the idea of Constructive Proofs

• Types and Simply-Typed Lambda Calculus

• Curry-Howard Correspondence: Propositions as Types, Proofs = Programs

• Polymorphic Lambda-Calculus

• Dependent Types and Quantifying over Values

• Curry-Howard for Practitioners: Program Synthesis and Proof Repair

40

Today’s Agenda

• Towards Curry-Howard: the Lambda-Calculus

• Intuitionistic Logic and the idea of Constructive Proofs

• Types and Simply-Typed Lambda Calculus

• Curry-Howard Correspondence: Propositions as Types, Proofs = Programs

• Polymorphic Lambda-Calculus

• Dependent Types and Quantifying over Values

• Curry-Howard for Practitioners: Program Synthesis and Proof Repair

41

Combinatory logic
Combinatory logic

As early as 1930, Curry studies combinatory logic: a variant of the
�-calculus without abstraction �x.M, but with combinators prede�ned by
their conversion rules. For example:

Terms: M,N ::= M N | S | K | I
Rules: I x = x

K x y = x
S x y z = x z (y z)

Every �-term can be encoded in combinatory logic if a suitable combinator
basis is provided, such as S, K, I.

Typing combinatory logic using simple types:

M : ↵ ! � N : ↵

M N : �

I : ↵ ! ↵ K : ↵ ! � ! ↵

S : (↵ ! � ! �) ! (↵ ! �) ! (↵ ! �)

40

42

Curry’s correspondenceCurry’s correspondence

On pages 313–314 of their book Combinatory logic (1958), Curry and Feys
remark that, if we read the arrow in type ⌧1 ! ⌧2 like the implication
P) Q between propositions,

The types for the combinators S, K, I are the axioms that de�ne
implication in a Hilbert-style logic:

I : ↵ ! ↵ P) P
K : ↵ ! � ! ↵ P) Q) P
S : (↵ ! � ! �) ! (P) Q) R))

(↵ ! �) ! (↵ ! �) (P) Q)) (P) R)

The typing rule for function application is modus ponens:

M : ↵ ! � N : ↵

M N : �

P) Q P

Q

41

43

Curry’s correspondence

Via Curry’s correspondence, a proposition P is provable

if and only if

the corresponding type τ is inhabited, that is, there exists a closed term with type τ.

44

Howard’s manuscript
W. A. Howard, The formulae-as-types notion of construction, 1969

Howard’s manuscript
W. A. Howard, The formulae-as-types notion of construction, 1969

Extends and modernize Curry’s result:
Lambda-calculus instead of combinatory logic.
Intuitionistic sequents instead of Hilbert-style axioms.
Treats the connectors ^, _, ¬ in addition to);
discusses the quanti�ers 8 and 9.
Correspondence between reduction over terms and cut elimination
over proofs.

First circulated as photocopies of hand-written notes.
Eventually published (identically) in 1980 in the book
To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus, and
Formalism.

43

45

Curry-Howard: implication

Curry-Howard: implication

�1, x : A, �2 ` x : A

�, x : A ` M : B

� ` �x.M : A ! B

� ` M : A ! B � ` N : A

� ` M N : B

44

46

Curry-Howard: implication

Curry-Howard: implication

�1,

x :

A, �2 `

x :

A

�,

x :

A `

M :

B

� `

�x.M :

A) B

� `

M :

A) B � `

N :

A

� `

M N :

B

� is � without variable names, for example x : A, y : A = A, A.

44

47

Curry-Howard: conjunction

Curry-Howard: conjunction

Extend the lambda-calculus with pairs and projections:

Types: A, B ::= . . . | A⇥ B
Terms: M,N ::= . . . | hM,Ni | ⇡1 M | ⇡2 M

� ` M : A � ` N : B

� ` hM,Ni : A⇥ B

� ` M : A⇥ B

� ` ⇡1 M : A

� ` M : A⇥ B

� ` ⇡2 M : B

45

48

Curry-Howard: conjunction

Curry-Howard: conjunction

Extend the lambda-calculus with pairs and projections:

Types: A, B ::= . . . | A⇥ B
Terms: M,N ::= . . . | hM,Ni | ⇡1 M | ⇡2 M

� `

M :

A � `

N :

B

� `

hM,Ni :

A ^ B

� `

M :

A ^ B

� `

⇡1 M :

A

� `

M :

A ^ B

� `

⇡2 M :

B

45

49

Curry-Howard: disjunction

Extend the lambda-calculus a sum type, its constructors, and pattern matching

Curry-Howard: disjunction

Extend the lambda-calculus a sum type and the corresponding operations
(see lecture 3 on week 2):

Types: A, B ::= . . . | A+ B
Terms: M,N ::= . . . | inj1 M | inj2 M

| match M with inj1 x1) N1 | inj2 x2) N2 end

� ` M : A

� ` inj1 M : A+ B

� ` N : B

� ` inj2 N : A+ B

� ` M : A+ B �, x1 : A ` N1 : C �, x2 : B ` N2 : C

� ` match M with inj1 x1) N1 | inj2 x2) N2 end : C

46
50

Curry-Howard: disjunction
Curry-Howard: disjunction

Extend the lambda-calculus a sum type and the corresponding operations
(see lecture 3 on week 2):

Types: A, B ::= . . . | A+ B
Terms: M,N ::= . . . | inj1 M | inj2 M

| match M with inj1 x1) N1 | inj2 x2) N2 end

� `

M :

A

� `

inj1 M :

A _ B

� `

N :

B

� `

inj2 N :

A _ B

� `

M :

A _ B �,

x1 :

A `

N1 :

C �,

x2 :

B `

N2 :

C

� `

match M with inj1 x1) N1 | inj2 x2) N2 end :

C

46

Extend the lambda-calculus a sum type, its constructors, and pattern matching

51

Curry-Howard: absurdity

Extend the lambda-calculus an empty type and “pattern matching” with zero branches
Curry-Howard: absurdity

Extend the lambda-calculus with an empty type and an “eliminator” for
this type (see lecture 3 on week 2):

Types: A, B ::= . . . | ?
Terms: M,N ::= . . . | match M with end

� ` M : ?

� ` match M with end : A

(The syntax match M with end is the one used in Coq and comes from the
fact that type ? can be de�ned as an inductive type with zero
constructors.)

47

52

Curry-Howard: absurdity

Extend the lambda-calculus an empty type and “pattern matching” with zero branches
Curry-Howard: absurdity

Extend the lambda-calculus with an empty type and an “eliminator” for
this type (see lecture 3 on week 2):

Types: A, B ::= . . . | ?
Terms: M,N ::= . . . | match M with end

� `

M :

?

� `

match M with end :

A

(The syntax match M with end is the one used in Coq and comes from the
fact that type ? can be de�ned as an inductive type with zero
constructors.)

47

53

Today’s Agenda

• Towards Curry-Howard: the Lambda-Calculus

• Intuitionistic Logic and the idea of Constructive Proofs

• Types and Simply-Typed Lambda Calculus

• Curry-Howard Correspondence: Propositions as Types, Proofs = Programs

• Polymorphic Lambda-Calculus

• Dependent Types and Quantifying over Values

• Curry-Howard for Practitioners: Program Synthesis and Proof Repair

54

Today’s Agenda

• Towards Curry-Howard: the Lambda-Calculus

• Intuitionistic Logic and the idea of Constructive Proofs

• Types and Simply-Typed Lambda Calculus

• Curry-Howard Correspondence: Propositions as Types, Proofs = Programs

• Polymorphic Lambda-Calculus

• Dependent Types and Quantifying over Values

• Curry-Howard for Practitioners: Program Synthesis and Proof Repair

55

Static typing v. genericityStatic typing vs. genericity

Static typing with simple types (as in simply-typed �-calculus but also as in
Algol, Pascal, etc) sometimes forces us to duplicate code.

Example
A sorting algorithm applies to any list list(t) of elements of type t, provided it
also receives then function t ! t ! bool that compares two elements of type t.

With simple types, to sort lists of integers and lists of strings, we need two
functions with di�erent types, even if they implement the same algorithm:

sort list int : (int ! int ! bool) ! list(int) ! list(int)

sort list string : (string ! string ! bool) ! list(string) ! list(string)

4

56

Static typing v. genericity
Static typing vs. genericity

There is a tension between static typing on the one hand and reusable
implementations of generic algorithms on the other hand.

Some languages elect to weaken static typing, e.g. by introducing a
universal type “any” or “?” with run-time type checking, or even by turning
typing o�:

void qsort(void * base, size_t nmemb, size_t size,

int (*compar)(const void *, const void *));

Instead, polymorphic typing extends the algebra of types and the typing
rules so as to give a precise type to a generic function.

5

57

The polymorphic lambda-calculusThe polymorphic lambda-calculus
(John C. Reynolds, Towards a theory of type structure, 1974)

We suggest that a solution to [the polymorphic sort function] prob-
lem is to permit types themselves to be passed as a special kind of
parameter, whose usage is restricted in a way which permits the
syntactic checking of type correctness.

Extends simply-typed lambda-calculus with the ability to abstract over a
type variable and to apply such an abstraction to a type:

Terms: M,N ::= x | �x:t.M | M N
| ⇤X.M abstraction over type X
| M[t] instantiation with type t

Types: t ::= X | t1 ! t2 | 8X. t

6

(John C. Reynolds, Towards a theory of type structure, 1974)

58

The polymorphic lambda-calculus

Continuing the list sorting example, the generic sorting function can be given type

The polymorphic lambda-calculus

Continuing the list sorting example, the generic sorting function can be
given type

sort list : 8X. (X ! X ! bool) ! list(X) ! list(X)

Its implementation is of the following shape:

sort list = ⇤X. �cmp : X ! X ! bool. �l : list(X). M

The function can be used for integer lists as well as for string lists just by
instantiation:

sort list[int] : (int ! int ! bool) ! list(int) ! list(int)

sort list[string] : (string ! string ! bool) ! list(string) ! list(string)

7

59

Typing and reduction rulesTyping and reduction rules

The rules of simply-typed lambda calculus:

�1, x : t, �2 ` x : t
�, x : t ` M : t0

� ` �x:t.M : t! t0
� ` M : t! t0 � ` N : t

� ` M N : t0

Plus two rules for introduction and elimination of polymorphism:

� ` M : t X not free in �

� ` ⇤X.M : 8X. t

� ` M : 8X. t

� ` M[t0] : t{X t0}

A new form of �-reduction:

(⇤X.M)[t] !� M{X t}

8

60

The polymorphic lambda-calculus in practiceThe polymorphic lambda-calculus in practice

Second-class polymorphism
(⇡ polymorphic de�nitions, but monomorphic values):

Generics in Ada, Java, C#.
Hindley-Milner typing in the ML family languages (SML, OCaml,
Haskell, etc), with inference of types, of ⇤ and of instantiations:

Type scheme: � ::= 8↵1, . . .↵n. ⌧ for let-bound variables
Simple types: ⌧ ::= ↵ | ⌧1 ! ⌧2 | . . . for all other variables and values

First-class polymorphism
(⇡ function parameters can have 8 types):

Recent extensions of OCaml and of Haskell. An example in OCaml
type poly_id = { id : ’a. ’a -> ’a }

11

61

Polymorphism = Abstraction

Simply-typed lambda calculus:
 Functions: values can be abstracted over values (i.e., values depend on values)

Polymorphic lambda calculus:
 Polymorphic functions: values can be abstracted over types (e.g., polymorphic sorting)

Polymorphic lambda calculus with data types:
 Type constructors: types can be abstracted over types (e.g., List<T> in Java)

 cf. Barendregt’s lambda-cube (1992)

What about types depending on values?

62

Today’s Agenda

• Towards Curry-Howard: the Lambda-Calculus

• Intuitionistic Logic and the idea of Constructive Proofs

• Types and Simply-Typed Lambda Calculus

• Curry-Howard Correspondence: Propositions as Types, Proofs = Programs

• Polymorphic Lambda-Calculus

• Dependent Types and Quantifying over Values

• Curry-Howard for Practitioners: Program Synthesis and Proof Repair

63

Today’s Agenda

• Towards Curry-Howard: the Lambda-Calculus

• Intuitionistic Logic and the idea of Constructive Proofs

• Types and Simply-Typed Lambda Calculus

• Curry-Howard Correspondence: Propositions as Types, Proofs = Programs

• Polymorphic Lambda-Calculus

• Dependent Types and Quantifying over Values

• Curry-Howard for Practitioners: Program Synthesis and Proof Repair

64

Ordinary function type

A → B

fun b =>
 match b with
 | true => 0
 | false => 1
 end

bool → nat

65

Dependent function type

П(x: A). B(x)

fun b =>
 match b with
 | true => 0
 | false => true
 end

П(b: bool). if b then nat else bool

66

Dependent types for programs
Dependent types for programs

In Fortran, C or C++, the type of an array t[N] contains
a type t: the type of the array elements
a “term” (constant expression) N: the size of the array.

In other words, the array type constructor takes two parameters, a type t
and a term N, and produces the type array(t,N).

Li�ing the restriction that N is a constant expression, and allowing
ourselves to quantify over this N, we can give very precise dependent types
to array operations:

concat : 8t.8N1.8N2. array(t,N1) ! array(t,N2) ! array(t,N1 + N2)

(! P. E. Dagand’s seminar in week 2.)

27

67

Curry-Howard for dependent types

П(x: A). P(x) ∀x ∈ A, P(x) should be read as

Dependent function type corresponds to universal quantification!

68

A familiar dependent type

П(P : nat -> Prop).
 P(0) ->
 (П(n : nat). P(n) -> P(n.+1))
П(n : nat). P n

Function nat_ind (P : nat -> Prop)
 (f0 : P 0)  
 (fn : П(n : nat), P n -> P (n.+1)) :=
 fun (n : nat) =>
 match n with
 | 0 => f0
 | n’.+1 => fn n’ (nat_ind P f0 fn n0)
 end.

… and its inhabitant in Coq

69

Dependent types as theorems

Theorem counterexample (A: Type) (P: A → Prop) :
 (∃x: A, ¬P x) → ¬(∀ x, P x).  
Proof. by case => x H1 H2; apply : H1 (H2 x). Qed.

70

Dependent types as theorems

Function counterexample :=
 fun (A : Type) (P : A -> Prop) (hyp : ∃x : A, ¬ P x) =>
 (fun F : ∀(x : A) (p : (fun x0 : A => ¬ P x0) x),
 (fun _ : (∃x0 : A, ¬ P x0) => ¬ (∀x0 : A, P x0))
 (ex_intro (fun x0 : A => ¬ P x0) x p) =>
 match hyp as e
 return ((fun _ : (∃x : A, ¬ P x) => ¬ (∀x : A, P x)) e)
 with
 | ex x x0 => F x x0
 end) (fun (x : A) (H1 : ¬ P x) (H2 : ∀x0 : A, P x0) => H1 (H2 x)).

Proof term in Coq

Theorem counterexample (A: Type) (P: A → Prop) :
 (∃x: A, ¬P x) → ¬(∀ x, P x).  
Proof. by case => x H1 H2; apply : H1 (H2 x). Qed.

71

Dependent types as theorems

theorem counterexample : ∀ {α : Type} (P : α → Prop),  
 (∃ x, ¬P x) → ¬∀ (x : α), P x :=
fun {α} P H =>
 Exists.casesOn (motive := fun t => H = t → ¬∀ (x : α), P x) H
 (fun w h h_1 H2 =>  
 h (Eq.mp
 ((congrArg Not ((fun x => eq_true (H2 x)) w)).trans  
 not_true_eq_false) h).elim)
 (Eq.refl H)

Proof term in Lean

theorem counterexample {α: Type} (P: α → Prop) :
 (∃x: A, ¬P x) → ¬(∀ x, P x) := by  
 sby scase => x H1 H2; apply H1

72

Programming with dependent types

• Scala (limited form)

• Agda

theorem reverse_reverse {α : Type} :
 ∀xs : List α, reverse (reverse xs) = xs
 | [] => by rfl
 | x :: xs =>
 by simp [reverse, reverse_append, reverse_reverse xs]

• Coq/Rocq

• Lean

73

Today’s Agenda

• Towards Curry-Howard: the Lambda-Calculus

• Intuitionistic Logic and the idea of Constructive Proofs

• Types and Simply-Typed Lambda Calculus

• Curry-Howard Correspondence: Propositions as Types, Proofs = Programs

• Polymorphic Lambda-Calculus

• Dependent Types and Quantifying over Values

• Curry-Howard for Practitioners: Program Synthesis and Proof Repair

74

Today’s Agenda

• Towards Curry-Howard: the Lambda-Calculus

• Intuitionistic Logic and the idea of Constructive Proofs

• Types and Simply-Typed Lambda Calculus

• Curry-Howard Correspondence: Propositions as Types, Proofs = Programs

• Polymorphic Lambda-Calculus

• Dependent Types and Quantifying over Values

• Curry-Howard for Practitioners: Program Synthesis and Proof Repair

75

Exploiting the PAT principle

If propositions = types and proofs = terms,
we can reuse principles for proofs construction to generate programs
and vice versa.

Program Synthesis
Write a theorem specifying a program,
build a constructive proof that such program exists,
the obtained program is correct by construction.

Proof Repair
Definitions involved into a theorem changed:
Refactor the proof as a program working a new data type to it would type-check,
the result is a new valid proof.

76

void swap(loc x, loc y)

{ x ↦ a ∗ y ↦ b }

{ x ↦ b ∗ y ↦ a }

Program Synthesis
(Polikarpova & Sergey, 2019)

77

⇝ { x ↦ a ∗ y ↦ b } { x ↦ b ∗ y ↦ a }{ x, y } ; | ??

Program Synthesis

78

⇝ { x ↦ a ∗ y ↦ b } { x ↦ b ∗ y ↦ a }{ x, y } ; | let a2 = *x; ??
(Read)

⇝ { x ↦ a2 ∗ y ↦ b } { x ↦ b ∗ y ↦ a2 }{ x, y, a2 } ; | ??

Program Synthesis

79

⇝ { x ↦ a ∗ y ↦ b } { x ↦ b ∗ y ↦ a }{ x, y } ; | let a2 = *x; ??
(Read)

⇝ { x ↦ a2 ∗ y ↦ b } { x ↦ b ∗ y ↦ a2 }{ x, y, a2 } ; | let b2 = *y; ??

⇝ { x ↦ a2 ∗ y ↦ b2 } { x ↦ b2 ∗ y ↦ a2 }{ x, y, a2, b2 } ; | ??
(Read)

Program Synthesis

80

⇝ { x ↦ a ∗ y ↦ b } { x ↦ b ∗ y ↦ a }{ x, y } ; | let a2 = *x; ??
(Read)

⇝ { x ↦ a2 ∗ y ↦ b } { x ↦ b ∗ y ↦ a2 }{ x, y, a2 } ; | let b2 = *y; ??

⇝ { x ↦ a2 ∗ y ↦ b2 } { x ↦ b2 ∗ y ↦ a2 }{ x, y, a2, b2 } ; | *x = b2; ??
(Read)

⇝ { x ↦ b2 ∗ y ↦ b2 } { x ↦ b2 ∗ y ↦ a2 }{ x, y, a2, b2 } ; | ??
(Write)

Program Synthesis

81

⇝ { x ↦ a ∗ y ↦ b } { x ↦ b ∗ y ↦ a }{ x, y } ; | let a2 = *x; ??
(Read)

⇝ { x ↦ a2 ∗ y ↦ b } { x ↦ b ∗ y ↦ a2 }{ x, y, a2 } ; | let b2 = *y; ??

⇝ { x ↦ a2 ∗ y ↦ b2 } { x ↦ b2 ∗ y ↦ a2 }{ x, y, a2, b2 } ; | *x = b2; ??
(Read)

⇝ { x ↦ b2 ∗ y ↦ b2 } { x ↦ b2 ∗ y ↦ a2 }{ x, y, a2, b2 } ; | ??
(Write)

(Frame)

⇝ { y ↦ b2 } { y ↦ a2 }{ x, y, a2, b2 } ; | ??

Program Synthesis

82

⇝ { x ↦ a ∗ y ↦ b } { x ↦ b ∗ y ↦ a }{ x, y } ; | let a2 = *x; ??
(Read)

⇝ { x ↦ a2 ∗ y ↦ b } { x ↦ b ∗ y ↦ a2 }{ x, y, a2 } ; | let b2 = *y; ??

⇝ { x ↦ a2 ∗ y ↦ b2 } { x ↦ b2 ∗ y ↦ a2 }{ x, y, a2, b2 } ; | *x = b2; ??
(Read)

⇝ { x ↦ b2 ∗ y ↦ b2 } { x ↦ b2 ∗ y ↦ a2 }{ x, y, a2, b2 } ; | ??
(Write)

(Frame)

⇝ { y ↦ b2 } { y ↦ a2 }{ x, y, a2, b2 } ; |
(Write)

*y = a2; ??

⇝ { y ↦ a2 } { y ↦ a2 }{ x, y, a2, b2 } ; | ??

Program Synthesis

83

⇝ { x ↦ a ∗ y ↦ b } { x ↦ b ∗ y ↦ a }{ x, y } ; | let a2 = *x; ??
(Read)

⇝ { x ↦ a2 ∗ y ↦ b } { x ↦ b ∗ y ↦ a2 }{ x, y, a2 } ; | let b2 = *y; ??

⇝ { x ↦ a2 ∗ y ↦ b2 } { x ↦ b2 ∗ y ↦ a2 }{ x, y, a2, b2 } ; | *x = b2; ??
(Read)

⇝ { x ↦ b2 ∗ y ↦ b2 } { x ↦ b2 ∗ y ↦ a2 }{ x, y, a2, b2 } ; | ??
(Write)

(Frame)

⇝ { y ↦ b2 } { y ↦ a2 }{ x, y, a2, b2 } ; |
(Write)

*y = a2; ??

⇝ { y ↦ a2 } { y ↦ a2 }{ x, y, a2, b2 } ; | ??

⇝ { emp } { emp }{ x, y, a2, b2 } ; | ??
(Frame)

Program Synthesis

84

⇝ { x ↦ a ∗ y ↦ b } { x ↦ b ∗ y ↦ a }{ x, y } ; | let a2 = *x;
(Read)

⇝ { x ↦ a2 ∗ y ↦ b } { x ↦ b ∗ y ↦ a2 }{ x, y, a2 } ; | let b2 = *y;

⇝ { x ↦ a2 ∗ y ↦ b2 } { x ↦ b2 ∗ y ↦ a2 }{ x, y, a2, b2 } ; | *x = b2;
(Read)

⇝ { x ↦ b2 ∗ y ↦ b2 } { x ↦ b2 ∗ y ↦ a2 }{ x, y, a2, b2 } ; | ??
(Write)

(Frame)

⇝ { y ↦ b2 } { y ↦ a2 }{ x, y, a2, b2 } ; |
(Write)

*y = a2;

⇝ { y ↦ a2 } { y ↦ a2 }{ x, y, a2, b2 } ; | ??

⇝ { emp } { emp }{ x, y, a2, b2 } ; | skip
(Frame)

(Emp)

??

??

??

??

Program Synthesis

85

let a2 = *x;

let b2 = *y;

*x = b2;

*y = a2;

void swap(loc x, loc y) {

}

Program Synthesis

86

Today’s Agenda

• Towards Curry-Howard: the Lambda-Calculus

• Intuitionistic Logic and the idea of Constructive Proofs

• Types and Simply-Typed Lambda Calculus

• Curry-Howard Correspondence: Propositions as Types, Proofs = Programs

• Polymorphic Lambda-Calculus

• Dependent Types and Quantifying over Values

• Curry-Howard for Practitioners: Program Synthesis and Proof Repair

87

Today’s Agenda

• Towards Curry-Howard: the Lambda-Calculus

• Intuitionistic Logic and the idea of Constructive Proofs

• Types and Simply-Typed Lambda Calculus

• Curry-Howard Correspondence: Propositions as Types, Proofs = Programs

• Polymorphic Lambda-Calculus

• Dependent Types and Quantifying over Values

• Curry-Howard for Practitioners: Program Synthesis and Proof Repair

88

Computational Reflection

89

Use mechanisms for type inference for switch from proofs to programs and back.

Small Scale Reflection for the Working Lean User

Vladimir Gladshtein � ↸

School of Computing, National University of Singapore, Singapore

George Pîrlea � ↸

School of Computing, National University of Singapore, Singapore

Ilya Sergey � ↸

School of Computing, National University of Singapore, Singapore

Abstract

We present the design and implementation of the Small Scale Reflection proof methodology and
tactic language (a.k.a. SSR) for the Lean 4 proof assistant. Like its Coq predecessor SSReflect,
our Lean 4 implementation, dubbed LeanSSR, provides powerful rewriting principles and means for
e�ective management of hypotheses in the proof context. Unlike SSReflect for Coq, LeanSSR does
not require explicit switching between the logical and symbolic representation of a goal, allowing for
even more concise proof scripts that seamlessly combine deduction steps with proofs by computation.

In this paper, we first provide a gentle introduction to the principles of structuring mechanised
proofs using LeanSSR. Next, we show how the native support for metaprogramming in Lean 4 makes
it possible to develop LeanSSR entirely within the proof assistant, greatly improving the overall
experience of both tactic implementers and proof engineers. Finally, we demonstrate the utility of
LeanSSR by conducting two case studies: (a) porting a collection of Coq lemmas about sequences
from the widely used Mathematical Components library and (b) reimplementing proofs in the finite
set library of Lean’s mathlib4. Both case studies show significant reduction in proof sizes.

1 Introduction

Small Scale Reflection (SSR) is a methodology for structuring deductive machine-assisted
proofs that promotes the pervasive use of computable symbolic representations of data
properties, in addition to their more conventional logical definitions in the form of inductive
relations. Small scale reflection emerged from the prominent e�ort to mechanise the proof
of the Four Colour Theorem in the Coq proof assistant [9], in which the large number of
cases to be discharged posed a significant scalability challenge for a traditional proof style
based on tactics that operate directly with the logical representation of a goal. Support
for small scale reflection in Coq has later been implemented in the form of the SSReflect
plugin, which provides a concise tactic language, and its associated library of lemmas [11],
becoming an indispensable tool for the working Coq user. SSReflect has been employed in
many projects, including mechanisations of the foundations of group theory [10], measure
theory [2], information theory [3], 3D geometry [1], programming language semantics [30], as
well as proving the correctness of heap-manipulating, concurrent and distributed programs [20,
23,26,27], and probabilistic data structures [12]. Two SSReflect tutorials [18,25] are currently
recommended amongst the basic learning materials for Coq [6].

Lean 4 is a relatively new proof assistant and dependently typed programming lan-
guage [7].1 Like Coq, Lean is based on the Calculus of Constructions with inductive types
and is geared towards interactive proofs, coming with extensive support for metaprogram-
ming aimed at simplifying custom proof automation and code generation. Unlike Coq,
Lean assumes axioms of classical logic, such as the law of excluded middle. Very much
in the spirit of the SSR philosophy of reflecting proofs about decidable propositions into
Boolean-returning computations, Lean encourages the use of such propositions (implemented

1 In the rest of the paper, we will refer to the latest version 4 of the framework simply as Lean.

Tuesday, 23 April, 14:30

To take away

Formal proofs are functional programs in disguise;
propositions are program types;
writing a proof = constructing a program.

Thinking in terms of Curry-Howard correspondence
brings new insights allowing to combine and reuse ideas
between Formal Mathematics and Computer Science

Thanks!

slides of this talk
(in case you missed it)

90

Further reading

• Xavier Leroy. The Curry-Howard correspondence today. xavierleroy.org/CdF/2018-2019/

• Benjamin Pierce. Types and Programming Languages. MIT Press, 2002

• Ilya Sergey. Programs and Proofs: Mechanizing Mathematics with Dependent Types

• Yves Bertot, Pierre Castéran. Interactive Theorem Proving and Program Development.

• David Thrane Christiansen. Functional Programming in Lean

• Ilya Sergey and Nadia Polikarpova. Structuring the Synthesis of Heap-Manipulating Programs

• Talia Ringer. Proof Repair. PhD Thesis, 2021

• Kiran Gopinathan, Mayank Keoliya, Ilya Sergey. Mostly Automated Proof Repair for Verified Libraries, 2023

91

http://xavierleroy.org/CdF/2018-2019/

