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Abstract. We present a novel model of concurrent computations with shared
memory and provide a simple, yet powerful, logical framework for uniform Hoare-
style reasoning about partial correctness of coarse- and fine-grained concurrent
programs. The key idea is to specify arbitrary resource protocols as communicat-
ing state transition systems (STS) that describe valid states of a resource and the
transitions the resource is allowed to make, including transfer of heap ownership.
We demonstrate how reasoning in terms of communicating STS makes it easy
to crystallize behavioral invariants of a resource. We also provide entanglement
operators to build large systems from an arbitrary number of STS components,
by interconnecting their lines of communication. Furthermore, we show how the
classical rules from the Concurrent Separation Logic (CSL), such as scoped re-
source allocation, can be generalized to fine-grained resource management. This
allows us to give specifications as powerful as Rely-Guarantee, in a concise,
scoped way, and yet regain the compositionality of CSL-style resource manage-
ment. We proved the soundness of our logic with respect to the denotational se-
mantics of action trees (variation on Brookes’ action traces). We formalized the
logic as a shallow embedding in Coq and implemented a number of examples,
including a construction of coarse-grained CSL resources as a modular composi-
tion of various logical and semantic components.

1 Introduction

There are two main styles of program logics for shared-memory concurrency, customar-
ily divided according to the supported kind of granularity of program interference. Log-
ics for coarse-grained concurrency such as Concurrent Separation Logic (CSL) [13,15]
restrict the interference to critical sections only, but generally lead to more modular
specifications and simpler proofs of program correctness. Logics for fine-grained con-
currency, such as Rely-Guarantee (RG) [9] admit arbitrary interference, but their spec-
ifications have traditionally been more monolithic, as we shall illustrate. In this paper,
we identify the essential ingredients required for compositional specification of con-
current programs, and combine them in a novel way to reconcile the two approaches.
We present a semantic model and a logic that enables specification and reasoning about
fine-grained programs, but in the style of CSL. To describe our contribution more pre-
cisely, we first compare the relevant properties of CSL and RG.
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CSL employs shared resources and associated resource invariants [14], to abstract
the interference between threads. A resource r is a chunk of shared state, and a resource
invariant I is a predicate over states, which holds of r whenever all threads are outside
the critical section. By mutual exclusion, when a thread enters a critical section for r,
it acquires ownership and hence exclusive access to r’s state. The thread may mutate
the shared state and violate the invariant I, but it must restore I before releasing r and
leaving the critical section, as given by the following CSL rule [3].

Γ ` {p ∗ I} c {q ∗ I}

Γ, r : I ` {p} with r do c {q}
CRITSECCSL

Γ is a context of currently existing resources. The rule for parallel composition assumes
that forked threads don’t share any state beyond that of the resources in Γ, and may
divide the private state of the parent thread disjointly among the children.

Γ ` {p1} c1 {q1} Γ ` {p2} c2 {q2}

Γ ` {p1 ∗ p2} c1 ‖ c2 {q1 ∗ q2}
PARCSL

A private heap of a thread may be promoted into a freshly allocated shared resource in
a scoped manner by the following rule.

Γ, r : I ` {p} c {q}

Γ ` {p ∗ I} resource r in c {q ∗ I}
RESOURCECSL

One may see from these rules that resources are abstractions that promote modular-
ity. In particular, one may verify a thread wrt. the smallest resource context required.
By context weakening, the introduction of new resources will not invalidate the ex-
isting verification. Thread-local resources can be hidden from the environment by the
RESOURCECSL rule.

In RG, the interaction between threads is directly specified by the rule for parallel
composition.3

R ∨G2,G1 ` {p} c1 {q1} R ∨G1,G2 ` {p} c2 {q2}

R,G1 ∨G2 ` {p} c1 ‖ c2 {q1 ∧ q2}
PARRG

The rely transition R and guarantee transitions G1 and G2 are relations on states. A
rely specifies the thread’s expectations of state transitions made by its environment.
A guarantee specifies the state transitions made by the thread itself. The disjunctive
combinations of R and G’s in the rule captures the idea we call forking shuffle, whereby
upon forking, the thread c1 becomes part of the environment for c2 and vice-versa.

RG is more expressive than CSL because transitions can encode arbitrary protocols
on shared state, whereas CSL is specialized to a fixed mutual exclusion protocol on
critical sections. But, CSL is more compositional in manipulating resources. Where a
CSL resource invariant specifies the behavior of an individual chunk of shared state, the
transitions in RG treat the whole state as monolithically shared. Feng’s work on Local
Rely Guarantee (LRG) [6] has made first steps in improving RG in this respect.

3 In the presence of heaps, the rule is more complicated [7, 19], but we elide the issue here.
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1.1 Our contribution

We propose that a logic for fine-grained concurrency can be based on a notion of a fine-
grained resource. Fine-grained resources serve as buildings blocks for program specifi-
cation, and generalize CSL-style coarse-grained resource management. A fine-grained
resource is specified by a resource invariant, as in CSL, but it also adds transitions in the
form of relations between resource states. Thus, it is best viewed as a state transition
system (STS), where the resource invariant specifies the state space. We identify a num-
ber of properties that an STS has to satisfy to specify a fine-grained resource, and refer
to such STSs as concurroids. We refer to our generalization of CSL as Fine-grained
CSL (FCSL).

There are two main ideas that we build on in FCSL, and which separate FCSL from
LRG and other recent related work [5,16,18] (see Section 6 for details): (a) subjectivity
and (b) communication. Subjectivity [11] means that each state of a concurroid STS
describes not only the shared resource, but also two abstractions of it that represent the
views of the state by the thread, and by its environment, respectively. Subjectivity will
enable us to capture the idea of forking shuffle by a rule for parallel composition akin to
PARCSL (but with a somewhat generalized notion of separating conjunction (∗) [11]),
rather than in the monolithic style of PARRG.

To compositionally build large systems out of a number of smaller ones, we make
concurroids communicate. In addition to standard for STS internal transitions between
states, concurroids contain external transitions. These may be thought of as “wires”
whose one end is connected to a state in the STS, but whose other end is dangling,
representing either an “input” into or an “output” out of the STS. Concurroids can be
entangled, i.e., composed by interconnecting their dangling wires of opposite polar-
ity, where the interconnections serve to transfer heap ownership between concurroids.
Communication and entanglement endow FCSL with the compositionality of CSL. For
example, entanglement generalizes the notion of adding a resource to the context Γ in
RESOURCECSL. We also rely on entanglement to formulate a rule generalizing the
scoped resource allocation of RESOURCECSL. More precisely, our contributions are:

– We identify STSs with subjectively-shaped states (concurroids) and a number of
algebraic properties, as a natural model for scalable concurrency verification. We
show how communication enables composing larger STSs out of smaller ones.

– We present FCSL—a simple and expressive logic for fine-grained resources that
combines expressivity of RG with the compositional resource management of CSL.

– We illustrate FCSL by showing how to implement a coarse-grained resource of
CSL by a fine-grained resource of FCSL in which an explicit spin lock protects
the resource’s state. We also implemented examples such as ticketed locks, that go
beyond coarse-grained CSL resources, and present them in the appendix.

– We implemented FCSL [12] as a shallow embedding within the type theory of the
Calculus of Inductive Constructions (i.e., Coq [1, 17]). Thus, FCSL naturally rec-
onciles with features such as higher-order functions, abstract predicates, modules
and functors. We formally instantiated the whole stack of abstractions: the semantic
model is formalized in Coq, FCSL is built on top of the semantic model, CSL is
built on top of FCSL, and then verified programs are built on top of CSL.
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2 An Overview of Fine-Grained Resources

There are three different aspects along which fine-grained resources can be composed:
space (i.e., states), ownership, and time (i.e. transitions). In this section, we describe
how to represent these aspects in the assertion logic of FCSL.

Space The heap belonging to a fine-grained resource,4 is explicitly identified by a
resource label. We use assertions in the “points-to” style of separation logic, to name
resources and identify their respective heaps. For example, the assertion

`1
j
7→ h1 ∗ `2

j
7→ h2

describes a state in which the heaps h1 and h2 are associated with the resources la-
beled `1 and `2, respectively. The connective ∗ ensures that `1 and `2 are distinct labels,
and that h1 and h2 are disjoint heaps. The superscript j indicates that the heaps are
joint (shared), i.e., can be accessed by any thread, even though they are owned by the
resources `1 and `2, respectively.

The heaps h1 and h2 are not described by means of points-to assertions, but are built
using operators for singleton heaps x � v and disjoint union ·∪. For example, the heap of
the resource lock, which explicitly encodes a coarse-grained resource with the resource
invariant I [13] may be described by the assertion

lock
j
7→ ((lk � b) ·∪ h) ∧ if b then h = empty else I h. (1)

The assertion exposes the fact that the heap owned by lock contains a boolean pointer lk
encoding a lock that protects the heap h. The conditional conjunct is a pure (i.e., label-
free) assertion, which describes an aspect of the ownership transfer protocol of CSL.
When the lock is not taken (i.e. b = false), the heap h satisfies the resource invariant.
When the lock is taken, the heap is transfered to the private ownership of the locking
thread, so h equals the empty heap, but lk remains in the ownership of lock.

Ownership Data in FCSL may be owned by a resource, as illustrated above, or by
individual threads. The thread-owned data, however, is also associated with a resource,
which it refines with thread-relative information. For example, the resource lock owns a
pointer lk which operationally implements a lock. However, just knowing that the lock
is taken or free is not enough for reasoning purposes; we need to know which thread
has taken it, if any. Thus, we associate with each thread an additional bit of lock-related
information, Own or���Own, which will identify the lock-owning thread as follows.

Following the idea of subjectivity [11], FCSL assertions are interpreted in a thread-
relative way. We use self to name the interpreting thread, and other to name the combi-
nation of all other threads running concurrently with self (i.e., the environment of self ).
We use two different assertions to describe thread-relative views: `

s
7→ v and `

o
7→ v. The

first is true in the self thread, if self ’s view of the resource ` is v. The second is true in

the self thread, if other’s view of the resource ` is v. In this sense, the `
j
7→ v describes

4 Or just resource for short. Later on, we explicitly identify CSL resources as coarse-grained.
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the resource’s view of the data. In the case of lock, the thread that acquired the lock will
validate the assertion:

lock
s
7→ Own ∧ lock

j
7→ (lk � true),

while the symmetric assertion holds in all other threads:

lock
j
7→ (lk � true) ∧ lock

o
7→ Own.

In general, the values of the self and other views for any resource are elements of
some resource-specific partial commutative monoid (PCM) [11]. A PCM is a set with
a commutative and associative operation • with a unit element. • combines the self
and other views into a view of the parallel composition of self and other threads. The
• operation is commutative and associative because parallel composition of threads is
commutative and associative, and the unit element models the view of the idle thread.
Partiality models impossible thread combinations. For example, the elements of O =
{���Own,Own} represent thread-relative views of the lock lk. O forms a PCM under the
operation defined as x •���Own = ���Own • x = x, with Own • Own undefined. The unit
element is���Own, and the undefinedness of the last combination captures that two threads
can’t simultaneously own the lock. Notice that heaps form a PCM under disjoint union,
with the empty heap as unit. Thus, they too obey the discipline required of the general
self and other components.

Anticipating lock-related examples in Section 3, we combine thread-relative views
of the lock with thread-relative views of the lock-protected heap h. We parametrize the
resource lock by a PCM U, which the user may choose depending on the application.
Then we use assertions over pairs, such as lock

s
7→ (mS, aS) and lock

o
7→ (mO, aO), to

express that mS,mO ∈ O are views of the lock lk, and aS, aO ∈ U are views of the
heap h. The following assertion illustrates how the different FCSL primitives combine.
It generalizes (1) and defines the valid states of the resource lock.

lock
s
7→ (mS, aS) ∧ lock

o
7→ (mO, aO) ∧ lock

j
7→ ((lk � b) ·∪ h) ∧

if b then h = empty ∧mS •mO = Own else I (aS • aO) h ∧mS •mO =��Own
(2)

The assertion states that if the lock is taken (b = true) then the heap h is given away,
otherwise it satisfies the resource invariant I. In either case, the thread-relative views
mS, mO, aS and aO are consistent with the resource’s views of lk and h. Indeed, notice
how mS, mO and aS, aO are first •-joined (by the •-operations of O and U, respectively)
and then related to b and h; the former implicitly by the conditional, the latter explicitly,
by the resource invariant I, which is now parametrized by aS • aO.

Private heaps In addition to a private view of a resource, a thread may own a pri-
vate heap as well. We describe such thread-private heaps by means of the same thread-
relative assertions, but with a different resource label. We consider a dedicated resource
for private heaps, with a dedicated label priv. Then we can write, say, priv

s
7→ x � 4

to describe a heap consisting of a pointer x private to the self thread. By definition,

priv
j
7→ empty, i.e., the joint heap of the priv resource is always empty.
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Time Fine-grained reasoning requires characterization of the possible changes the
threads can make to the state. We encode such a characterization as relations between
states of possibly multiple resources (i.e., using multiple labels). For example, coarse-
grained resources require that upon successful acquisition, the resource’s heap is trans-
fered into the private ownership of the acquiring thread. In our fine-grained encoding,
the transition can be represented as follows:

priv
s
7→ hS ∗ (lock

s
7→ (��Own, aS) ∧ lock

j
7→ ((lk � false) ·∪ h)) 

priv
s
7→ (hS ·∪ h) ∗ (lock

s
7→ (Own, aS) ∧ lock

j
7→ (lk � true))

(3)

This transition preserves heap footprints, in the sense that the domain of the combined
heaps in the source of the transition equals the domain in the target of the transition. We
refer to such transitions as internal. Footprint preservation is an essential property, as it
facilitates composing and framing transitions. In particular, adding additional labels and
heaps with non-overlapping footprint to a source of an internal transition is guaranteed
to produce non-overlapping footprints in the target of the transition as well.

We also consider external transitions that can acquire and release heaps. We use
external transitions to build internal ones. For example, the above internal transition
over priv and lock resources can be obtained as an interconnection (to be defined in
Section 4) of two external transitions, each operating on an individual label.

priv
s
7→ hS

+h
 priv

s
7→ (hS ·∪ h)

lock
s
7→ (��Own, aS) ∧ lock

j
7→ ((lk � false) ·∪ h)

−h
 lock

s
7→ (Own, aS) ∧ lock

j
7→ lk � true

(4)

The transition over priv takes a heap h as an input and attaches it to the self heap.
The transition over lock gives the heap h as an output. When interconnected, the two
transitions exchange the ownership of h between the lock and priv, producing (3).

A concurroid is an STS that formally represents a collection of resources. Each
state of the STS contains a number of components, identified by the labels naming the
individual resources. Each concurroid contains one internal transition, and an arbitrary
number of external ones. The internal transition describes how threads specified by the
concurroid may change their state in a single step. The external transitions are the “dan-
gling wires”, which provide means for composing different concurroids by entangling
them, i.e., interconnecting (some or all of) their dually polarized external transitions, to
obtain a larger concurroid.

For example, if P is the concurroid for private heaps (containing a single label priv),
and L{lock,lk,I} is the concurroid for a lock (with a single label lock, lock pointer lk and
protected heap described by the coarse-grained resource invariant I), we could con-
struct the entangled concurroid CSL{lock,lk,I} = P o L{lock,lk,I} that captures the heap
ownership-exchange protocol (3) of CSL for programs with one coarse-grained re-
source.5 The entanglement can be iterated, to obtain an STS for two coarse-grained
resources CSL{lock,lk,I},{lock′,lk′,I′} = CSL{lock,lk,I} o L{lock′,lk′,I′}, and so on. In this way, con-
curroids generalize the notion of resource context from the RESOURCECSL rule, with
entanglement modeling the addition of new resources to the context.

5 The formal definition of the o is postponed until Section 4.
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Fig. 1 Semantics of selected FCSL assertions.

w |= > iff always
w |= `

s
7→ v iff valid w, and w. s = ` � v

w |= `
j
7→ h iff valid w, and w. j = ` � h

w |= `
o
7→ v iff valid w, and w. o = ` � v

w |= p ∧ q iff w |= p and w |= q
w |= p ∗ q iff valid w, and w = w1 ·∪ w2, and w1 |= p and w2 |= q
w |= p−−∗ q iff for every w1, valid w ·∪ w1 and w1 |= p implies w ·∪ w1 |= q
w |= p ~ q iff valid w, and w. s = s1 ·∪ s2, and

[s1 | w. j | s2 ◦ w. o] |= p and [s2 | w. j | s1 ◦ w. o] |= q
w |= this w′ if w = w′

|= p ↓ h iff for every valid w, w |= p implies bwc = h

3 Reasoning with Concurroids

Auxiliary definitions PCM-map is a finite map from labels (isomorphic to nat) to
ΣU:pcmU. It associates each label with a pair of a PCM U and a value v ∈ U. Heap-
map is a finite map from labels to heaps. If m1,m2 are PCM-maps, then m1 ◦ m2 is
defined as empty ◦ empty = empty, and ((` �U v1) ·∪ m′1) ◦ ((` �U v2) ·∪ m′2) =
(` �U v1 • v2) ·∪ (m′1 ◦m′2), and undefined otherwise. State w is a triple [s | j | o], where
s, o are PCM-maps, and j is a heap-map. We abbreviate [` � vs | ` � v j | ` � vo] with
` � [vs | v j | vo]. w is valid if w. s, w. j, w. o contain same labels, w. s ◦ w. o is defined,
and the heaps in w. s, w. j and w. o are disjoint. State flattening bwc is the disjoint union
of all such heaps. w1 ·∪ w2 is the pairwise disjoint union of component maps of w1 and
w2. The semantics of the main FCSL assertions is provided in Figure 1.

FCSL specifications take the form of Hoare 4-tuple {p} c {q}@U expressing that the
thread c has a precondition p, postcondition q, in a state space and under transitions
defined by the concurroid U, which in FCSL takes the role of a resource context from
CSL. We next present the characteristic inference rules of FCSL.

Parallel composition The rule for parallel composition in FCSL is similar to PARCSL,
with Γ replaced by a concurroid U.

{p1} c1 {q1}@U {p2} c2 {q2}@U

{p1 ~ p2} c1 ‖ c2 {q1 ~ q2}@U
PAR

The PAR rule uses subjective separating conjunction ~ (see [11] and Figure 1) to split
the state of c1 ‖ c2 into two. The split states contain the same labels, and equal joint
portions, but the self and other portions are recombined to match the thread-relative
views of c1 and c2. When the parent thread forks the children c1 and c2, the PCM values
in the parent’s self components are split between the children, while the children’s
other component are implicitly induced to preserve overall •-total (i.e., c1’s other view
includes c2’s self view, and vice versa). For example, in the case of one label `, we have

`
s
7→ a • b ∧ `

o
7→ c =⇒ (`

s
7→ a ∧ `

o
7→ c • b) ~ (`

s
7→ b ∧ `

o
7→ c • a).



8 A. Nanevski, R. Ley-Wild, I. Sergey, and G. A. Delbianco

The implication encodes the idea of a forking shuffle from RG, but via states, rather
than transitions as in RG. It allows us to use the same concurroid U to specify the transi-
tions of both c1 and c2 in PAR, much like PARCSL uses the same context Γ. Essentially,
we rely on the recombination of views to select the transitions of U available to each of
c1 and c2, instead of providing distinct transitions for c1 and c2 as in PARRG.

We commonly encounter cases where the other views are existentially abstracted,
hence the conjuncts `

o
7→ − are omitted. In those cases, we have the simplified bi-

implication:
`

s
7→ a • b ⇐⇒ `

s
7→ a ~ `

s
7→ b (5)

The implications generalize to ~-separated assertions with more than one distinct label.
We illustrate PAR and ~ with the example of concurrent incrementation [11,14] in a

setting of a concurroid CSLlock,lk,I (i.e., private state and one lock). The lock lk protects
a shared integer pointer x, that is, the resource invariant is I (a : nat) (h : heap) =̂
h = x � a. For the nat argument, we chose the PCM structure under addition; thus, an
assertion lock

s
7→ (−, aS) expresses that the self thread has added aS to x, and dually for

lock
o
7→ (−, aO). Therefore, whenever the lock is not taken, x stores the sum aS + aO.

This follows from interpreting • with + in the lock state invariant (2).
Procedure incr(n) acquires the lock to ensure exclusive access to x, increments x by

n, and releases the lock. In FCSL, it has the following specification:{
priv

s
7→ empty ∗ lock

s
7→ (��Own, 0)

}
incr(n)

{
priv

s
7→ empty ∗ lock

s
7→ (��Own, n)

}
@CSLlock,lk,I

The specification states that incr runs in an empty private heap (hence by framing, in
any larger heap), the lock is not owned by the calling thread initially, and will not be
owned in the end. The addition of calling thread to x increases from 0 to n (hence by
framing, from m to m + n). We now prove that incr(i) ‖ incr( j) increments x by i + j.{

priv
s
7→ empty ∗ lock

s
7→ (��Own, 0)

}
{
priv

s
7→ empty ·∪ empty ∗ lock

s
7→ (��Own •��Own, 0 + 0)

}
{
(priv

s
7→ empty ∗ lock

s
7→ (��Own, 0)) ~ (priv

s
7→ empty ∗ lock

s
7→ (��Own, 0))

}
{
priv

s
7→ empty ∗ lock

s
7→ (��Own, 0)

} {
priv

s
7→ empty ∗ lock

s
7→ (��Own, 0)

}
incr(i) incr( j){

priv
s
7→ empty ∗ lock

s
7→ (��Own, i)

} {
priv

s
7→ empty ∗ lock

s
7→ (��Own, j)

}
{
(priv

s
7→ empty ∗ lock

s
7→ (��Own, i)) ~ (priv

s
7→ empty ∗ lock

s
7→ (��Own, j))

}
{
priv

s
7→ empty ∗ lock

s
7→ (��Own, i + j)

}
The proof uses the bi-implication (5) to move between ~-separated assertions and •-

joined views. The proof is compositional in the sense that the same verification of incr
is used as a black box in both parallel threads, with the subproofs merely instantiating
the parameter n with i and j respectively.

Injection The PAR rule requires c1 and c2 to share the same concurroid U, which
describes the totality of their resources. If the threads use different concurroids, they
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first must be brought into a common entanglement, via the rule INJECT.

{p} c {q}@U r stable under V

{p ∗ r} inject c {q ∗ r}@U o V
INJECT

If c is verified wrt. concurroid U, it can be injected (i.e. coerced) into a larger concur-
roid U o V . In programs, we use the explicit coercion inject to describe the change of
“type” from U to U o V . Reading the rule bottom-up, it says we can ignore V , as V’s
transitions and c operate on disjointly-labeled state. V may change U’s state by commu-
nication, but the change is bounded by U’s external transitions. Thus, we are justified
in verifying c against U alone. In this sense, INJECT may be seen as generalizing the
rule for resource context weakening of CSL.

The connective ∗ splits the state according to labels of U and V; p and q describe
the part labeled by U, and r describes the part labeled by V . Since r describes both the
prestate and poststate, it has to be stable; that is, remains valid under arbitrary transitions
the other thread takes over the labels from V . 6

We illustrate INJECT and stability by verifying incr. To set the stage, we need atomic
commands for reading from and writing to a pointer x. These have the following obvi-
ous specification relative to the concurroid P for private state:{

priv
s
7→ x � v

}
read x

{
priv

s
7→ x � v ∧ res = v

}
@P{

priv
s
7→ x � −

}
write x v

{
priv

s
7→ x � v

}
@P

The commands for acquiring and releasing lock exchange ownership of the protected
pointer x. Thus, they have specifications relative to the concurroid CSLlock,lk,I = P o
Llock,lk,I , which we have already used before.{

priv
s
7→ empty ∗ lock

s
7→ (��Own, 0)

}
acquire{

∃aO.priv
s
7→ x � aO ∗ (lock

s
7→ (Own, 0) ∧ lock

o
7→ (−, aO))

}
@CSLlock,lk,I{

priv
s
7→ x � aS + aO ∗ (lock

s
7→ (Own, 0) ∧ lock

o
7→ (−, aO))

}
release{

priv
s
7→ empty ∗ lock

s
7→ (��Own, aS)

}
@CSLlock,lk,I

acquire assumes that lock is not taken, and that the self thread so far has added 0 to
x. Thus, the overall contents of x is 0 + aO = aO, where aO is the addition of the other
threads. Note that acquire doesn’t have to be atomic:7 as implemented, it just spins
on lk, and after acquisition, x is transferred into the private heap of self . aO must be
existentially quantified, because other’s may add to x while acquire is spinning.

release assumes that lock is taken by self , and that prior to taking lock, self and
other have added 0 and aO to x, respectively. After acquiring x, self has mutated it, so
that its contents is aS + aO. After releasing, x is moved from the private heap to the

6 Formal definition of stability is in Appendix B.
7 The implementation of acquire and release relies on atomic actions (Section 5), specific for a

particular concurroid, e.g. CSLlock,lk,I .



10 A. Nanevski, R. Ley-Wild, I. Sergey, and G. A. Delbianco

joint portion of lock. The postcondition doesn’t mention x, as once in joint, x’s con-
tents becomes unstable. Indeed, other may acquire the lock and change x after release
terminates. However, other can’t change the self view of x, which is now set to aS.

The following proof outline presents the implementation and verification of incr(n).{
priv

s
7→ empty ∗ lock

s
7→ (��Own, 0)

}
acquire;{
∃aO.priv

s
7→ x � aO ∗ (lock

s
7→ (Own, 0) ∧ lock

o
7→ (−, aO))

}
res← inject (read x);{
∃aO.priv

s
7→ x � aO ∧ res = aO ∗ (lock

s
7→ (Own, 0) ∧ lock

o
7→ (−, aO))

}
inject (write x (res + n));{
∃aO.priv

s
7→ x � n + aO ∗ (lock

s
7→ (Own, 0) ∧ lock

o
7→ (−, aO))

}
release{
priv

s
7→ empty ∗ lock

s
7→ (��Own, n)

}
INJECT is used twice, to coerce read and write from the concurroid P to CSLlock,lk,I .

These commands manipulate the contents of priv, but retain the framing predicate
lock

s
7→ (Own, 0) ∧ lock

o
7→ (−, aO). This predicate is stable wrt. Llock,lk,I . Intuitively,

because self owns lock, other can’t acquire x and add to it. Thus, no matter what other
does, aO and the framing predicate remain invariant.

In order to simplify the proof outline, we have not explicitly emphasized the invari-
ance of aO between calls to acquire and release, even though it is the case (we could
do it using the standard rule EXIST from Figure 2). However, this invariance is what
allowed us to calculate the contribution of self to x as n (that is, final contents of x
minus aO). Without tracking aO, we would not know how much of the final contents of
x is attributable to self , and how much to other.

Hiding refers to the ability to construct a concurroid V from the thread-private heap, in
a scope of a thread c. The children forked by c can interfere on V’s state, respecting V’s
transitions, but V is hidden from the environment of c. To the environment, V’s state
changes look like changes of the private heap of c. In this sense, hiding generalizes the
RESOURCECSL rule to fine-grained resources.

{
priv

s
7→ h ∗ p

}
c
{
priv

s
7→ h′ ∗ q

}
@(P o U) o V

{Ψ g h ∗ (Φ (g)−−∗ p)} hideΦ,g c {∃g′.Ψ g′ h′ ∗ (Φ (g′)−−∗ q)}@P o U
HIDE

where Ψ g h = ∃k:heap. priv
s
7→ h ·∪ k ∧Φ (g) ↓ k

Since installing V consumes a chunk of private heap, the rule requires the overall
concurroid to support private heaps, i.e., to be an entanglement P o U, where P is the
concurroid for private heaps, and U is arbitrary. When U is of no interest, we set it to
the empty concurroid E (Section 4), for which P o E = P.

In programs, we use the explicit coercion hideΦ,g to indicate the change of type
from (P oU) o V to P oU. The annotation Φ(g) corresponds to a set of concrete states
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of a concurroid V to be created. Its parameter g is a meaningful abstraction of such a set
(e.g., (mS, aS) for the L{lock,lk,I} concurroid) and can be thought of as an “abstract state”.
In the rule HIDE, g is the initial abstract state, i.e., upon creation, the state of V satisfies
Φ (g). In the premise of the HIDE rule, the predicates priv

s
7→ − describe the behavior

of c on the private heaps, while p and q describe the state of the labels belonging to U
and V . In the conclusion, Ψ g h and Ψ g′ h′ map the abstract states g and g′ into private
heaps h and h′. This follows from the definition of Ψ , in which Φ (g) ↓ k indicates that
states satisfying Φ (g) erase to the private heap k (see Figure 1). Thus, changes that c
imposes on abstract states, appear as changes to private heaps for hideΦ,g c.

In the conclusion, the assertion Φ (g)−−∗ p states that attaching any state satisfying
Φ (g) to the chunk of the initial state identified by the labels from U produces a state in
which p holds, “compensating” for the component k inΨ . In other words, p corresponds
to an abstract state g. By the premise, c can be safely executed in such a state. The
rule guarantees that if c terminates with a postcondition q, then q corresponds to some
abstract state g′.

We illustrate the rule with a proof outline for program hideΦ,g (incr(n)). We show
how to choose Φ and g so that the program implements the following functionality. It
starts with only the concurroid P, and the private heap containing pointers lk and x. It
locally installs Llock,lk,I , which makes x a shared pointer, protected by the lock lk. It runs
incr(n), after which the local concurroid is disposed, and lk and x return to the private
heap. We prove that if initially x � 0, then in the end x � n. The abstract states are
pairs (mS, aS), encodings of the self views of the concrete state of lock. Φ maps a self
view into a predicate on the full state of lock, specifying joint and other views as well.

Φ (mS, aS) = lock
s
7→ (mS, aS) ∧ lock

o
7→ (��Own, 0) ∧

if mS =��Own then lock
j
7→ ((lk � false) ·∪ (x � aS)) else lock

j
7→ (lk � true)

We choose the initial state g = (mS, aS) = (���Own, 0) indicating that the lock is installed
with lk unlocked, and x set to 0.

The proof outline uses the facts that Φ (���Own, aS) ↓ lk � false ·∪ x � aS, and thus
Ψ (���Own, aS) empty = priv

s
7→ lk � false ·∪ x � 0. Also, Φ (mS, aS)−−∗ lock

s
7→ (m′S, a

′
S)

is equivalent to (mS, aS) = (m′S, a
′
S) in the label-free state.

{
priv

s
7→ lk � false ·∪ x � 0

}
@P

{Ψ (��Own, 0) empty}@P{
Ψ (��Own, 0) empty ∗ (Φ (��Own, 0)−−∗ lock

s
7→ (��Own, 0))

}
@P (= P o E)

hideΦ,(��Own,0)

{
priv

s
7→ empty ∗ lock

s
7→ (��Own, 0)

}
@CSLlock,lk,I (= P o E o Llock,lk,I)

incr(n){
priv

s
7→ empty ∗ lock

s
7→ (��Own, n)

}
@CSLlock,lk,I{

∃g2.Ψ g2 empty ∗ (Φ g2 −−∗ lock
s
7→ (��Own, n))

}
@P

{Ψ (��Own, n) empty}@P{
priv

s
7→ lk � false ·∪ x � n

}
@P
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The soundness of HIDE depends on a number of semantic properties of Φ.8 The most
important one is that states in the range of Φ have fixed other views for every label `
of V; equivalently, that environment threads for the program hideΦ,g1 c do not interfere
with c on the states of V: all interference on V is hidden within the hide-section.

if w1 |= Φ g1 ∧ (`
o
7→ v1 ∗ >) and w2 |= Φ g2 ∧ (`

o
7→ v2 ∗ >) then v1 = v2

Concretely for our example, Φ g ∧ (lock
o
7→ v) implies v = (���Own, 0), thus the above

property clearly holds.

4 Concurroids Abstractly

A concurroid is a 4-tuple V = (L,W, τ,E) where: (1) L is a set of labels, where a label
is a nat; (2)W is the set of states, each state w ∈ W having the structure described in
Section 3; (3) τ is the internal transition, which is a relation onW; (4) E is a set of pairs
(α, ρ), where α and ρ are external transitions of V . An external transition is a function,
mapping a heap h into a relation onW. The components must satisfy a further set of
requirements, discussed next.

State properties Every state w ∈ W is valid as defined in Figure 1, and its label
footprint is L, i.e. dom (w. s) = dom (w. j) = dom (w. o) = L. Additionally, W
satisfies the property:

Fork-join closure: ∀t:PCM-map.w / t ∈ W ⇐⇒ w . t ∈ W,

where w / t = [t ◦ w. s | w. j | w. o], and w . t = [w. s | w. j | t ◦ w. o]

The property requires thatW is closed under the realignment of self and other com-
ponents, when they exchange a PCM-map t between them. Such realignment is part
of the definition of ~, and thus appears in proofs whenever the rule PAR is used, i.e.
whenever threads fork or join. Fork-join closure ensures that if a parent thread forks in
a state from W, then the child threads are supplied with states which also are in W,
and dually for joining.

Transition properties A concurroid transition γ is a relation onW satisfying:

Guarantee: (w,w′) ∈ γ =⇒ w. o = w′. o
Locality: ∀t:PCM-map.w. o = w′. o =⇒ (w . t,w′ . t) ∈ γ =⇒ (w / t,w′ / t) ∈ γ

Guarantee restricts γ to only modify the self and joint components. Therefore, γ de-
scribes the behavior of a viewing thread in the subjective setting, but not of the thread’s
environment. In the terminology of Rely-Guarantee logics [6, 7, 9, 19], γ is a guarantee
relation. To describe the behavior of the thread’s environment, i.e. obtain a rely relation,
we merely transpose the self and other components of γ:

γ> = {(w>1 ,w
>
2 ) | (w1,w2) ∈ γ}, where w> = [w. o | w. j | w. s].

In this sense, FCSL transitions always encode both guarantee and rely relations.

8 Listed in Appendix C.
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Locality ensures that if γ relates states with a certain self components, then γ also
relates states in which the self components have been simultaneously framed by a PCM-
map t, i.e., enlarged according to t. It thus generalizes the notion of locality from sepa-
ration logic [15], with a notable difference. In separation logic, the frame t materializes
out of nowhere, whereas in FCSL, t has to be appropriated from other; that is, taken out
from the ownership of the environment.

An internal transition τ is a transition which is reflexive and preserves heap foot-
prints. An acquire transition α, and a release transition ρ are functions mapping heaps
to transitions which extend and reduce heap footprints, respectively, as formalized be-
low. An external transition is either an acquire or a release transition. If (α, ρ) ∈ E, then
α is an acquire transition, and ρ is a release transition.

Footprint preservation: (w,w′) ∈ τ =⇒ dom bwc = dom bw′c
Footprint extension: ∀h:heap. (w,w′) ∈ (α h) =⇒ dom (bwc ·∪ h) = dom bw′c
Footprint reduction: ∀h:heap. (w,w′) ∈ (ρ h) =⇒ dom (bw′c ·∪ h) = dom bwc

Internal transitions are reflexive so that programs specified by such transitions may
be idle (i.e., transition from a state to itself). Footprint preservation requires internal
transitions to preserve the domains of heaps obtained by state flattening. Internal transi-
tions may exchange the ownership of subheaps between the self and joint components,
or change the contents of individual heap pointers, or change the values of non-heap
(i.e., auxiliary) state, which flattening erases. However, they cannot add new pointers to
a state or remove old ones, which is the task of external transitions, as formalized by
Footprint extension and reduction.

Example 1 (The concurroid for private state). P = ({priv},WP, τP, {(αP, ρP)}), with

WP =
{

priv � [hS | empty | hO] | hS and hO disjoint heaps
}
, and

(w,w′) ∈ τP ⇐⇒ w. s = priv � hS,w′. s = priv � h′S, dom hS = dom h′S,w. o = w′. o
(w,w′) ∈ αP h ⇐⇒ w. s = priv � hS,w′. s = priv � hS ·∪ h,w. o = w′. o
(w,w′) ∈ ρP h ⇐⇒ w. s = priv � hS ·∪ h,w′. s = priv � hS,w. o = w′. o

The internal transition admits arbitrary footprint-preserving change to the private heap
hS, while the acquire and release transitions simply add and remove the heap h from hS.

Example 2 (The concurroid for a lock). Llock,lk,I = ({lock},WL, τL, {(αL, ρL)}), with
WL = { w | w |= assertion (2) }, and (assuming w. o = w′. o everywhere):

(w,w′) ∈ τL ⇐⇒ w = w′

(w,w′) ∈ αL h ⇐⇒ w. s = lock � (Own, aS), w. j = lock � (lk � true),
w′. s = lock � (��Own, a′S), w′. j = lock � ((lk � false) ·∪ h)

(w,w′) ∈ ρL h ⇐⇒ w. s = lock � (��Own, aS), w. j = lock � ((lk � false) ·∪ h),
w′. s = lock � (Own, aS), w′. j = lock � (lk � true)

The internal transition admits no changes to the state w. The αL transition corresponds
to unlocking, and hence to the acquisition of the heap h. It flips the ownership bit from
Own to ���Own, the contents of the lk pointer from true to false, and adds the heap h to
the resource state. The ρL transition corresponds to locking, and is dual to αL. When
locking, the ρL transition keeps the auxiliary view aS unchanged. Thus, the resource
“remembers” the auxiliary view at the point of the last lock. Upon unlocking, the αL
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transition changes this view into a′S, where a′S is some value that is coherent with the
acquired heap h, i.e., which makes the resource invariant I (aS • aO) h hold, and thus,
the whole state belongs toWL.

Entanglement Let U = (LU ,WU , τU ,EU) and V = (LV ,WV , τV ,EV ), be concurroids.
The entanglement U o V is a concurroid with the label component LUoV = LU ∪ LV .
The state set component combines the individual states of U and V by unioning their
labels, while ensuring that the labels contain only non-overlapping heaps.

WUoV = {w ·∪ w′ | w ∈ WU ,w′ ∈ WV , and bwc disjoint from bw′c}

To define the transition components of U o V , we first need the auxiliary concept of
transition interconnection. Given transitions γU and γV overWU andWV , respectively,
the interconnection γ1 ./ γ2 is a transition onWUoV which behaves as γU (resp. γV ) on
the part of the states labeled by U (resp. V).

γ1 ./ γ2 = {(w1 ·∪ w2,w′1 ·∪ w′2) | (wi,w′i ) ∈ γi,w1 ·∪ w2,w′1 ·∪ w′2 ∈ WUoV }.

The internal transition of UoV is defined as follows, where idU is the diagonal ofWU .

τUoV = (τU ./ idV ) ∪ (idU ./ τV ) ∪
⋃

h, (αU , ρU ) ∈ EU , (αV , ρV ) ∈ EV

(αU h ./ ρV h) ∪ (αV h ./ ρU h).

Thus, U o V steps internally whenever U steps and V stays idle, or when V steps and
U stays idle, or when there exists a heap h which U and V exchange ownership over by
synchronizing their external transitions.

Example 3. The transitions αp of P and ρL of Llock,lk,I have already been described in
display (4) of Section 2, but using assertions, rather than semantically. The display (3)
of Section 2 presents the interconnection αP h ./ ρL h, which moves h from Llock,lk,I to
P, and is part of the definition of τPoLlock,lk,I . The latter further allows moving h in the
opposite direction (αL h ./ ρP h), independent stepping of P (τP ./ idL) and of Llock,lk,I

(idP ./ τL).

The external transitions of U o V are those of U, framed wrt. the labels of V .

EUoV = {(λh. (αU h) ./ idV , λh. (ρU h) ./ idV ) | (αU , ρU ) ∈ EU }

We note that EUoV somewhat arbitrarily chooses to frame on the transitions of U rather
than those of V . In this sense, the definition interconnects the external transitions of
U and V , but it keeps those of U “open” in the entanglement, while it “shuts down”
those of V . The notation U o V is meant to symbolize this asymmetry. The asymmetry
is important for our example of encoding CSL resources, as it enables us to iterate the
addition of new resources as an expression

((P o Llock1 ,lk1 ,I1 ) o Llock2 ,lk2 ,I2 ) o · · ·

while keeping the external transitions of P open to exchange heaps with new resources.
Clearly, many ways exist to interconnect transitions of two concurroids and select

which transitions to keep open. In our implementation, we have identified several opera-
tors implementing common interconnection choices, and proved a number of equations
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and properties about them (in particular, all of them validate an instance of the INJECT
rule). However, as none of these operators is needed for the examples in this paper, we
don’t present them here.9

Lemma 1. U o V is a concurroid.

Entanglement operator o is adequate for modeling resource context extension from
CSL, because we can reorder the iterated addition of lock concurroids.

Lemma 2 (Exchange law). (U o V) oW = (U oW) o V .

We close the section with the definition of the concurroid E which is the right unit
of the entanglement operator o. E is defined as E = (∅,WE , id, ∅), whereWE contains
only the empty state (i.e. the state with no labels).

5 Language and Logic

In the tradition of axiomatic program logics, the language of FCSL splits into purely
functional expressions e (v when the expression is a value), and commands c with the
effects of divergence, state and concurrency. We also include procedures F, for com-
mands with arguments.

FCSL commands A command c satisfies the Hoare tuple {p} c : A {q}@U if c’s effect
on states respects the internal transition of the concurroid U, c is memory-safe when ex-
ecuted from a state satisfying p, and concurrently with any environment that respects the
transitions (internal and external) of U. Furthermore, if c terminates, it returns a value
of type A in a state satisfying q. Formally, q may use a dedicated variable res of type A
to name the return result.10 FCSL uses a procedure tuple, ∀x:B. {p} f (x) : A {q}@U, to
specify a potentially recursive higher-order procedure f taking an argument x of type
B to a result of type A. The assertions p and q may depend on x. FCSL does not treat
first-order looping commands, as these are special cases of recursive procedures. In the
case of recursive procedures, p and q in the procedure tuple together correspond to a
loop invariant, and typically are provided by the programmer.

The syntax of commands and procedures is as follows.

c ::= x← c1; c2 | c1 ‖ c2 | if e then c1 else c2 | F(e) | return v | act a | inject c | hideΦ,g c
F ::= f | fix f . x. c

Commands and procedures include atomic actions, a monadic unit ret v that returns
v and terminates, a monadic bind (i.e. sequential composition) x ← c1; c2 that runs c1
then substitutes its result v1 for x to run c2 (we write c1; c2 when x < FV(c2)), fork-join
parallel composition c1 ‖ c2, a conditional, a procedure application F(e), a procedure
variable f , a fixed-point construct for recursion, and injection and hiding commands.

9 Appendix E shows a version of the INJECT rule with a different operator (n) (Section E.6).
10 When A = unit, we suppress the type and the variable res, as we did in previous sections.
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Fig. 2 FCSL inference rules.

Γ ` {p} c1 : B {q}@U Γ, x : B ` {[x/res]q} c2 : A {r}@U x < FV(r)

Γ ` {p} x← c1; c2 : A {r}@U
SEQ

Γ ` {p1} c1 : A1 {q1}@U Γ ` {p2} c2 : A2 {q2}@U

Γ ` {p1 ~ p2} c1 ‖ c2 : A1 × A2 {[π1 res/res]q1 ~ [π2 res/res]q2}@U
PAR

∀x:B. {p} f (x) : A {q}@U ∈ Γ

Γ ` ∀x:B. {p} f (x) : A {q}@U
HYP

Γ ` {p1} c : A {q1}@U Γ ` (p1, q1) v (p2, q2)

Γ ` {p2} c : A {q2}@U
CONSEQ

Γ ` {p} c : A {q}@U r stable under U

Γ ` {p ~ r} c : A {q ~ r}@U
FRAME

Γ ` {e = true ∧ p} c1 : A {q}@U Γ ` {e = false ∧ p} c2 : A {q}@U

Γ ` {p} if e then c1 else c2 : A {q}@U
IF

Γ ` {p1} c : A {q1}@U Γ ` {p2} c : A {q2}@U

Γ ` {p1 ∧ p2} c : A {q1 ∧ q2}@U
CONJ

Γ ` {p} c : A {q}@U α < dom Γ

Γ ` {∃α:B. p} c : A {∃α:B. q}@U
EXIST

Γ ` e : A p stable under U

Γ ` {p} return e : A {p ∧ res = e}@U
RET

Γ,∀x:B. {p} f (x) : A {q}@U, x:B ` {p} c : A {q}@U

Γ ` ∀x:B. {p} (fix f . x. c)(x) : A {q}@U
FIX

Γ ` ∀x:B. {p} F(x) : A {q}@U Γ ` e : B

Γ ` {[e/x]p} F(e) : A {[e/x]q}@U
APP

Γ ` {p} c : A {q}@U r stable under V

Γ ` {p ∗ r} inject c : A {q ∗ r}@U o V
INJECT

Γ `
{
priv

s
7→ h ∗ p

}
c
{
priv

s
7→ h′ ∗ q

}
@(P o U) o V

Γ ` {Ψ g h ∗ (Φ (g)−−∗ p)} hideΦ,g c
{
∃g′.Ψ g′ h′ ∗ (Φ (g′)−−∗ q)

}
@P o U

HIDE

where Ψ g h = ∃k:heap. priv
s
7→ h ·∪ k ∧Φ (g) ↓ k

a = (U, A, σ, µ) is an action Γ ` (σ ∧ this w, λw′. (w,w′, res) ∈ µ) v (p, q) p, q stable under U

Γ ` {p} act a : A {q}@U
ACTION

Judgments and inference rules The FCSL judgments are hypothetical under a con-
text Γ that maps program variables x to their type and procedure variables f to their
specification. We allow each specification to depend on the variables declared to the left.

Γ ::= · | Γ, x:A | Γ,∀x:B.{p} f (x) : A {q}@U

Γ does not bind logical variables. In first-order Hoare logics, logical variables are
implicitly universally quantified with global scope. In FCSL, we limit their scope to the
Hoare tuples in which they appear. This is required for specifying recursive procedures,
where a logical variable may be instantiated differently in each recursive call [10]. We
also assume a formation requirement on Hoare tuples FLV(p) ⊇ FLV(q), i.e., that all
free logical variables of the postcondition also appear in the precondition.

The inference rules of the Hoare tuple judgments for commands and procedures
are presented in Figure 2. We note that the assertions and the annotations in the rules
(e.g., Φ in the HIDE rule) may freely use the variables in Γ. To reduce clutter, we
silently assume the checks that all such specification level-entities are well-typed in
their respective contexts Γ.

We have already discussed PAR, INJECT and HIDE rules in their versions where
the return type A = unit. The generalization to arbitrary A is straightforward. The
rule FRAME is a special case of PAR when c2 is taken to be the idle thread (i.e.,
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c2 = return()). Just like in the rule RET, we need to prove the framing assertion r
stable, to account for the interference of the other threads. The rule FIX requires prov-
ing a Hoare tuple for the procedure body, under a hypothesis that the recursive calls
satisfy the same tuple. The procedure APPlication rule uses the typing judgment for
expressions Γ ` e : A, which is the customary one from a typed λ-calculus, so we
omit its rules; in our formalization in Coq, this judgment will correspond to the CiC’s
typing judgment. The CONSEQ rule uses the judgment Γ ` (p1, q1) v (p2, q2), which
generalizes the customary side conditions p2 =⇒ p1 for strengthening the precondition
and q1 =⇒ q2 for weakening the postcondition, to deal with the local scope of logical
variables (it is defined in the appendix). The other rules are standard from Hoare logic,
except the ACTION rule for atomic actions. We devote the rest of the section to it.

Atomic actions Actions perform atomic steps from state to state, such as, e.g., re-
aligning the boundaries between, or changing the contents of self , joint and other state
components. The actions thus serve to synchronize the changes to operational state (i.e.,
heaps), with changes to the logical information required for verification (i.e. auxiliary,
or abstract, parts of the state: aS, aO, etc.). If the logical information is erased, that is, if
the states are flattened to heaps, then an action implements a single atomic memory op-
eration such as looking up or mutating a heap pointer, CAS-ing over a heap pointer, or
performing some other atomic Read-Modify-Write operation [8, §5.6]. How an atomic
action manipulates the logical state can be defined by the user, depending on the appli-
cation. Thus, we provide a formal definition of actions, and require that user’s choices
adhere to the definition.

An action is a 4-tuple a = (U, A, σ, µ) where: (1) the concurroid U whose internal
transition a respects, (2) the type A of the action’s return value, (3) the predicate σ on
states describing the states in which the action could be executed, and (4) the relation µ
relating the initial state, the ending state, and the ending result of the action.

For example, consider the action release used in Section 3 to release a lock and
transfer the pointer x from a private heap of a thread to the ownership of the lock re-
source. This action is over the entangled concurroid CSLlock,lk,I = P o Llock,lk,I as it
transfers the ownership of (x � −). Its return value type is A = unit. It can be executed
in states in which the lock is taken by the self thread, and the pointer x is in the pri-
vate heap. The contents of x is aS + aO for some aS, so that once x is transfered to the
ownership of the lock resource, it satisfies the resource invariant. Thus:

w ∈ σ ⇐⇒ w = priv � [x � (aS + aO) | empty | hO] ·∪
lock � [(Own, 0) | lk � true | (��Own, aO)]

(w,w′, res) ∈ µ ⇐⇒ w = priv � [x � (aS + aO) | empty | hO] ·∪
lock � [(Own, 0) | lk � true | (��Own, aO)] ∧

w′ = priv � [empty | empty | hO] ·∪
lock � [(��Own, aS) | lk � false ·∪ x � (aS + aO) | (��Own, aO)]

Once the states are flattened into heaps, the σ and µ components of release reduce
to describing the behavior of a memory mutation on the pointer lk. For example, the
relation bµc = {(bwc, bw′c, r) | (w,w′, r) ∈ µ} relates (h, h′, r) iff

h = (x � (aS + aO)) ·∪ (lk � true) ·∪ hO

h′ = (x � (aS + aO)) ·∪ (lk � false) ·∪ hO
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Thus, operationally, release can be implemented as a single mutation to the lk pointer.11

The inference rule ACTION takes an action a = (U, A, σ, µ) and checks that a sat-
isfies that σ can be strengthened into p and µ can be weakened into q. As µ is not a
postcondition itself, but a relation taking input states, we first introduce a fresh logical
variable w to name the input state using a predicate this. Then the predicate expressing
post states for the action is computed out of µ and w, and it is this predicate that’s weak-
ened into q. p and q must be stable wrt. U, in order to account for the possibility that an
interference of the environment appears just before, or just after, the action is executed.

Soundness and Implementation We have established the soundness of FCSL by ex-
hibiting a denotational model based on action trees (Appendix F), which are a variation
on Brookes’ action trace semantics, so we can formulate the following theorem.

Theorem 1. FCSL is sound with respect to the denotational model of action trees.

We developed the model in the logics of Calculus of Inductive Constructions (thus,
the model is a shallow embedding in Coq, and its implementation is available on-
line [12]).12

6 Related Work

FCSL builds on the previous work on subjective auxiliary state and SCSL logic [11].
The SCSL logic contained the distinction between self and other views, which was es-
sential for compositional implementation of auxiliary state. However, it contained ex-
actly one coarse-grained resource, with no ability to create and dispose new resources.
In contrast, FCSL can introduce any number of fine-grained resources in a scoped way.

The work on Concurrent Abstract Predicates (CAP) [5] introduces a notion of shared
region that serves a similar purpose as our concurroids, in that regions circumscribe a
chunk of shared heap with a protocol governing the evolution of the heap. A protocol is
defined by a set of atomic actions, which are RG-style transitions on private state and a
region. In addition to heaps, regions may contain abstract capabilities that identify en-
abled actions. Thus there is a subtle mutual recursion in a protocol definition between
an action and the capability to perform the action. A recurring pattern for this approach
is quantification over all possible capabilities and placing them in a shared region, to
be used up if needed in the execution of the protocol. The original work on CAP could
atomically perform changes to one region only; a restriction lifted in the recent work
on Views [4] and HOCAP [16] that introduced view shifts to synchronize changes to
more than one region. To the best of our knowledge, neither CAP nor HOCAP allow
the removal or scoped hiding of a shared region.

In contrast with CAP and their successors, FCSL does not require capabilities to
perform actions, as these are naturally represented in the self and other views associated
with a resource (and can also be seen as auxiliary state). Such auxiliary state is simpler
than capabilities; it is not subject to ownership transfer, and there is no need to quantify

11 The appendix contains the formal definition of the requirements on actions and their erasures.
12 See Appendix F for details of the semantics and the proof of soundness.
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over all capabilities. In our experience, this simplicity extends to the specification of
invariants and transitions, and to the proofs of stability. In FCSL, synchronizing changes
over a number of concurroids is achieved directly at the level of transitions by means of
entanglement, and at the level of programs by allowing actions to be defined over any
concurroid, including entangled ones. Thus, no view shifts are required.

The burden of stability proofs is further reduced in FCSL by formulating private
heaps as a separate concurroid that one may, but need not, entangle with. Thus, when
an action manipulates only the internal state of a resource, the attendant stability proofs
can ignore private heaps, e.g., the take action in the case of ticketed locks [5] (Ap-
pendix E). Moreover, the communication in FCSL makes it possible for concurroids to
pass heaps between each other directly, rather than going through private state. While
the current paper does not present examples that exploit this ability, we have found it
useful when verifying in FCSL a more advanced example of readers-writers [2], which
we will present in future work.

CaReSL [18] uses the same notion of shared region as CAP, though it specifies the
transitions in a manner closer to FCSL, namely by means of STS’s. CaReSL does not
directly provide subjective self and other views of a resource, but it provides a no-
tion of tokens, whose ownership is exchanged between a thread and its environment.
Tokens thus introduce a modicum of subjectivity into the semantics, but CaReSL asser-
tions explicitly allow statements only about self-owned tokens, not other-owned ones.
Thus, reasoning about the lack of logical changes to environment-owned data has to
be encoded with a level of indirection, potentially quantifying over all tokens, similar
to CAP’s quantification over capabilities. A frequent side condition in CaReSL rules
is that various assertions are token-pure, which does not have a direct correspondent
in FCSL. Similar to CAP, CaReSL currently allows actions that work over only a sin-
gle region, and will require an extension akin to view shifts to enable synchronized
updates. Similar to CAP and HOCAP, CaReSL does not consider removal or scoped
hiding of shared regions. On the other hand, CaReSL can reason about fine-grained
data structure by means of refinement (a generalization of linearizability). FCSL sup-
ports higher-order functions by means of shallow embedding into CiC [1,17]. However,
we have not considered linearizability so far, which is future work.

Feng’s Local Rely-Guarantee (LRG) [6] is, to the best of our knowledge, the first
work that reconciled fine-grained reasoning in the style of RG with framing and hiding
at the level of transitions (similar to our INJECT and HIDE). We differ from LRG in
that we introduce communication and subjectivity into the mix; thus our injection and
hiding rules take self and other views into account. The latter are a compositional form
of auxiliary state, whereas LRG in practice has to use the classical, non-compositional
form of auxiliary state [11, 14]. Additionally, FCSL parallel composition rule is in the
style of CSL, rather than RG.

7 Conclusion and Future Work

We presented concurroids—a novel model for scalable shared-memory concurrency
verification, based on communicating STS, and FCSL—a logic for reasoning with con-
curroids.
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In the future work, we are going to build a number of concurroids to encode com-
mon programming patterns. For example, dynamic allocation and deallocation of mem-
ory can be encoded via an allocator concurroid, and similarly for dynamic allocation
and deallocation of locks. We also plan to consider other combinators for building and
entangling concurroids. In particular, we hope to investigate if concurroids can be en-
dowed with analogues of channel relabeling and restriction operators from process al-
gebras, to provide finer control over interconnection and closure of external transitions.
Finally, we plan to consider refinement which allows weakening the ascribed concurroid
U of a program, to a coarser-grained concurroid V , if U can be shown to simulate V .

Acknowledgments We wish to thank Anindya Banerjee for his thorough proof-reading
of the paper draft and providing many insightful comments, both on the technical con-
tent and the presentation.

References
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Optional Appendices

In the optional appendices we describe in detail some technical insights behind FCSL
and the model of concurroids. We also provide an extended overview of another case
study, which was omitted in the paper body due to space constraints. The remainder of
the paper is structured as follows. Appendix A describes a number of properties and
requirements of the actions, presented in Section 5 of the main paper body. Appendix B
formalizes the familiar notions of Rely and Guarantee relations, as well as a notion of
stability, in terms of concurroids and their transitions. Appendix C lists the necessary
properties of the abstraction functions Φ, used in the HIDE rule of FCSL. Appendix D
defines Hoare ordering (p1, q1) v (p2, q2), used in the rule CONSEQ of the logic. Ap-
pendix E presents development of a large example: a concurroid for the ticketed lock
algorithm. Finally, in Appendix F we present the denotational model of FCSL, based
on action trees and schedules, and prove the main technical result: soundness of FCSL
as a shallow embedding into the Calculus of Inductive Constructions.

A Abstract Properties of Actions

An action is a 4-tuple a = (U, A, σ, µ). U is a concurroid whose internal transition a is
supposed to respect. A is the type of the return value of a. σ is the safety predicate (over
states of U) describing under which conditions a may be executed. µ is the stepping
relation; it relates the input state, output state, and the result of a.

Definition 1 (Action erasures). Given an action a, the erasures bσc and bµc of a’s
safety predicate and stepping relation are relations on heaps defined as follows.

bwc ∈ bσc ⇐⇒ w ∈ σ
(bwc, bw′c, r) ∈ bµc ⇐⇒ (w,w′, r) ∈ µ

An atomic is a triple α = (A, σ, µ). It’s a special kind of actions, but over concrete
heaps, rather than over states. States differ from heaps in that they are decorated with
additional information such as auxiliary state and partitioning between self , joint and
other. As with actions, A is the return type,σ is the safety predicate and µ is the stepping
relation, but they all range over heaps.

We consider four different (parametrized classes of) atomics, corresponding to the
four (parametrized) primitive memory operations that we consider.

Definition 2 (Primitive atomic actions).

ReadA
x = (A, x �A −, x � v x � v ∧ res = v)

Write x v = (unit, x � −, x � − x � v)
Skip = (unit, empty, empty empty)
RMWA B

x f g = (B, x �A −, x � v x � f (v) ∧ res = g(v))

The last class RMWA B
x f g corresponds to the family of Read-Modify-Write opera-

tions: they all atomically replace the current register value v with f (v) for some pure
function f , and return the result according to the function g [8, §5.6]. One particular
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representative of this family is the CAS operation, which instantiates the parameters of
RMW as follows:

CASA x v1 v2 =̂ RMWA bool
x f (v1 ,v2) g(v1 ,v2),where

f (v1, v2)(v) = if (v = v1) then v2 else v1

g(v1, v2)(v) = (v = v1)

Another representative of the RMW class is the atomic fetch-and-increment functions,
which we will employ in Appendix E, defined as follows:

FAIx =̂ RMWnat nat
x inc id,where

inc(v) = v + 1 id(v) = v

Definition 3 (Operational action). An action a is operational if its erasure corre-
sponds to one of the atomics, i.e., if there exists b ∈

{
ReadA

x ,Write x v,Skip,RMWA B
x f g

}
such that

bσac ⊆ σb ∧ ∀h ∈ bσac h′ r. (h, h′, r) ∈ bµac =⇒ (h, h′, r) ∈ µb

In our examples we only consider operational actions, though the inference rules and
the implementation in Coq don’t currently enforce this requirement (the operationality
of actions in the examples has been proved by hand).

Let U = (L,W, τ,E). The action a = (U, A, σ, µ) is required to satisfy the following
properties.

Coherence : w ∈ σ =⇒ w ∈ W
Safety monotonicity : w . t ∈ σ =⇒ w / t ∈ σ

Step safety : (w,w′, r) ∈ µ =⇒ w ∈ σ
Internal stepping : (w,w′, r) ∈ µ =⇒ (w,w′) ∈ τ

Framing : w . t ∈ σ =⇒ (w / t,w′, r) ∈ µ =⇒
∃w′′.w′ = w′′ / t ∧ (w . t,w′′ . t, v) ∈ µ

Erasure : defined(bwc ·∪ h) =⇒ bwc ·∪ h = bw′c ·∪ h′ =⇒
(w,w1, r) ∈ µ =⇒ (w′,w′1, r

′) ∈ µ =⇒
r = r′ ∧ bwc1 ·∪ h = bw′1c ·∪ h′

Totality : ∀w.w ∈ σ =⇒ ∃w′ v. (w,w′, v) ∈ µ

The properties of Coherence, Step safety and Internal stepping are straightforward.
Safety monotonicity states that if the action is safe in a state with a smaller self com-
ponent (because the other component is enlarged by t), the action is also safe if we
increase the self component by t.

Framing property says that if a steps in a state with a large self component w / t, but
is already safe to step in a state with a smaller self component w . t, then the result state
and value obtained by stepping in w / t can be obtained by stepping in w . t, and moving
t afterwards.

The Erasure property shows that the behavior of the action on the concrete input
state obtained after erasing the auxiliary fields and the logical partition, doesn’t depend
on the erased auxiliary fields and the logical partition. In other words, if the input state
have compatible erasures (that is, erasures which are subheaps of a common heap), then
executing the action in the two states results in equal values, and final states that also
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have compatible erasures. This is a standard property proved in concurrency logics that
deal with auxiliary state and code [3, 14].

The Totality property shows that an action whose safety predicate is satisfied al-
ways produces a result state and value. It doesn’t loop forever, and more importantly,
it doesn’t crash. We will use this property of actions in the semantics of programs to
establish that if the program’s precondition is satisfied, then all of the approximations
in the program’s denotation are either done stepping, or can actually make a step (i.e.,
they make progress).

To enable writing various actions in a small footprint style, we also enforce the
property

Locality : w. o = w′. o =⇒ (w . t,w′ . t, v) ∈ µ =⇒ (w / t,w′ / t, v) ∈ µ

Curiously, if the default use of the logic is in a large footprint notation, then this prop-
erty is not necessary as it is not used in any proofs.

B Self/Environment Stepping and Stability

Definition 4 (Self-stepping (Guarantee)).
Given a concurroid U = (L,W, τ,E), the environment stepping relation GU of U

unions its internal and all external transitions of U, and then takes a transitive closure.

GU = (τU ∪
⋃

h,(α,ρ)∈EX

(α h) ∪ (ρ h))∗.

Definition 5 (Environment stepping (Rely)).
Given a concurroid U = (L,W, τ,E), the environment stepping relation RU of U

unions the transposed versions of the internal and all external transitions of U, and
then takes a transitive closure.

RU = (τ> ∪
⋃

h,(α,ρ)∈E

(α h)> ∪ (ρ h)>)∗

Definition 6 (Stability). An assertion (i.e., a predicate over states) p is stable under
concurroid U iff for every w,w′ such that (w,w′) ∈ RU , w |= p =⇒ w′ |= p.

C Properties of Φ Functions from the Hiding Rule

The abstraction function Φ is a user-specified annotation on the hide command. It maps
values g : G (where G is also user specified) to assertions, that is, predicates over states
(equivalently, sets of states) of a concurroid V . For the soundness of the hiding rule, Φ
is required to satisfy the following properties.

Coherence : w ∈ Φ(g) =⇒ w ∈ WV

Injectivity : w ∈ Φ(g1) =⇒ w ∈ Φ(g2) =⇒ g1 = g2

Surjectivity : w1 ∈ Φ(g1) =⇒ w2 ∈ WW =⇒ w1. o = w2. o =⇒ ∃g2.w2 ∈ Φ(g2)
Guarantee : w1 ∈ Φ(g1) =⇒ w2 ∈ Φ(g2) =⇒ w1. o = w2. o
Precision : w1 ∈ Φ(g) =⇒ w2 ∈ Φ(g) =⇒ bw1c ·∪ h1 = bw2c ·∪ h2 =⇒ w1 = w2
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Coherence and Injectivity are obvious. Surjectivity states that for every state w2 of the
concurroid W one can find an image g, under the condition that the other component
of w2 is well-formed according to Φ (typically, that the other component is equal to
the unit of the PCM-map monoid for W). Guarantee is the property stated in the paper
at the end of Section 3, but through assertions, rather than semantically. This property
formalizes that environment of hide can’t interference on V , as V is installed locally.
Thus, whatever the environment does, it can’t influence the other component of the
states w described by Φ.

Precision is a technical property common to separation-style logics, though here it
has a somewhat different flavor. Precision ensures that for every value g, Φ(g) precisely
describes the underlying heaps of its circumscribed states; that is, each state Φ(g) is
uniquely determined by its heap erasure.

D Definition of Hoare Ordering (p1, q1) v (p2, q2)

Given preconditions p1, p2 and postconditions q1, q2, the judgment (p1, q1) v (p2, q2)
generalizes the usual Hoare logic side conditions on the rule of consequence about
strengthening the precondition p2 =⇒ p1 and weakening the postcondition q1 =⇒ q2.
The generalization is required in FCSL because of the local scope of logical variable.
In first order Hoare logics, the logical variables have global scope, so the above impli-
cations over p1, p2 and q1, q2 suffice. In FCSL, the logical variables have scope locally
over Hoare triples, and this scope has to be reflected in the semantic definition of v by
introducing quantifiers. The definition is similar to the one of Kleymann [10].

(p1, q1) v (p2, q2) ⇐⇒
∀w w′. (w |= ∃v̄2. p2 =⇒ w |= ∃v̄1. p1) ∧

((∀v̄1 res.w |= p1 =⇒ w′ |= q1) =⇒ (∀v̄2 res.w |= p2 =⇒ w′ |= q2))

where vi = FLV(pi, qi) are the free logical variables. The definition makes it apparent
that the Hoare triple {p} c {q}@U is essentially a syntactic sugar for a different kind of
Hoare triple, which may be written as:

{w.∃v̄.w |= p} c {res w w′.∀v̄.w |= p =⇒ w′ |= q}@U

where v = FLV(p, q). In this alternative Hoare triple, the postconditions are predicates
ranging over input and output states w and w′ (they are thus called binary postcon-
ditions). The advantage of the alternative Hoare triple is that the logical variables are
explicitly bound, making their scoping explicit. In our Coq implementation we use this
alternative formulation of Hoare triples.

E A Concurroid for the Ticketed Lock

In this section, we instantiate the presented framework by constructing from scratch
a concurroid for another famous fine-grained locking algorithm—a ticketed lock [5].
Unlike the CAS-based spin lock, which we took as a running example, this algorithms,
although simple, provides fairness guarantees for competing threads. We start by giving
a simplified implementation of the algorithm and building the intuition about the states
and transitions of the concurroid, implementing its protocol.
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E.1 Reference implementation

As a reference implementation of the ticketed lock, we use the one from the work on
Concurrent Abstract Predicates [5].

lock = { unlock = {

n := TAKE(); DROP_TKT();

while (!TRY(n)) skip; }

}

The three atomic actions TAKE, TRY(n) and DROP TKT have the following opera-
tional meaning:

TAKE() = { fetch_and_increment(next); }

TRY(n) = { return (n == owner); }

DROP_TKT() = { fetch_and_increment(owner); }

As a minor difference, we assume a pointer to the lock structure being fixed and omit
it from the code, referring instead to the two its essential fields: owner and next. These
two fields are natural numbers, describing the state of the ticketed lock system. We
implemented TAKE() and DROP TKT() as fetch and increment, which is is a stan-
dard atomic operation implemented in most of the modern architectures, operationally
equivalent to the following sequence of commands:

fetch_and_increment(ptr) = { tmp := ptr; ptr++; return tmp; }

The intuition behind the protocol comes from the idea of the organization of the
service in a bakery: next corresponds to the current ticket available at the dispenser
(but not yet taken!), whereas owner indicates a ticket number, an owner of which is
called to be served, or is currently being served. Hence, the lock procedure corre-
sponds to drawing a ticked from the dispenser and a subsequent repetitive attempt to
be served, whereas unlock corresponds to throwing the ticket away and increasing the
ticket counter, so the next client could be served (if there is one in a waiting line).

E.2 States of the concurroid

The intuition for the construction of a ticketed lock concurroid can be built from the
idea of splitting the resources in the spirit of the Subjective Concurrent Separation
Logic [11]. What are the primary resources that a ticketed lock deals with? Those are
tickets, of course! Some of them can be taken by a current thread, some by others.
If we make an assumption that each ticket is thrown away right after its owner has
been served, we will see a simple invariant: all tickets in the system are from the range
[n1, n2), where n1 and n2 are natural numbers, corresponding to the values of owner
(currently being served or about to be) and next (next ticked to be issued), hence non-
inclusion on the right side of the range.

As in the case of the CAS-based spin lock (Section 2), the self and other compo-
nents of the ticketed lock concurroid are pairs of two PCMs: the PCM of finite sets of
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natural numbers, accounting for the tickets (tS and tO), and a generic PCM accounting
in order to the heap invariant associated with this particular lock: aS and aO. Similarly
to the CAS-based spin lock, the ticketed lock is parametrized by a resource invariant I.
We will denote the whole concurroid with the label tlock, pointers own and nxt and
invariant I by T{tlock,own,nxt,I}. Let us start by defining a predicate, describing valid states
of the ticketed lock concurroid.

Definition 7 (T{tlock,own,nxt,I} state invariantWT ).

WT =̂ tlock
s
7→ (tS, aS) ∧ tlock

o
7→ (tO, aO) ∧ tlock

j
7→ (own � 〈n1, b〉) ·∪ (nxt � n2) ·∪ h ∧

n1 ≤ n2 ∧ (tS • tO) = {n | n1 ≤ n < n2} ∧n1 ∈ (tS • tO) ∧ b = true ∧ h = empty ∨
if n1 = n2 then b = false ∧ I (aS • aO) h

else n1 ∈ (tS • tO) ∧ b = false ∧ I (aS • aO) h


Definition 7 highlights a number of important invariants of the ticketed lock:

– The first line of the conjunction specifies the shape of the concurroid states. Since
the joint component is always a heap, we needed to introduce a “ghost” value b,
such that own � 〈n1, b〉, which tracks if the lock is taken or not. This is a purely
logical artifact, which simplifies the reasoning and it can be safely erased in the
actual implementation, making this entry look just as (own � n1). To make it clear
that b is auxiliary state, we could have introduced a separate label whose joint
part contains only b. In our implementation, joint components need not contain
only heaps, but can contain arbitrary non-heap types, whose values are by default
considered auxiliary. Thus, the addition of a new label with a boolean contents b
would suffice to declare b as an auxiliary state. However, for simplicity, we omitted
such generalization.

– The second line states the invariant with respect to the distributed tickets. Indeed,
the number of a ticket currently being (or just about to be) served is less than or
equal to the number of the ticket in the dispenser, hence, n1 ≤ n2. The tickets in the
queue range from n1 to n2, and n2 has not yet been assigned to any thread.

– The last three lines outline the essential “states” of the system.

• One case is the lock being locked. It corresponds to a thread with some ticket
n1 (captured either by tS or tO) being served. Therefore, the ownership over
the heap is being transferred to the client (h = empty) and the logical flag b is
indicating the locking (b = true). We will refer to this state as locked.

• Another case corresponds to the situation when there are no more threads
awaiting for service or being served. This is the case n1 = n2. Therefore, the
lock is not taken (b = false) and has the ownership over the heap with the lock
invariant holding over it (I (aS • aO) h). We will refer to this state as unlocked.

• The least obvious case is the situation when no thread is being served, but one
is just about to be. This is the thread having the ticket n1 (hence n1 ∈ (tS • tO)),
but the lock is not yet taken (b = false) and has the ownership over the heap
(I (aS • aO) h). We will refer to such state as transit.
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It is important to notice that the awkward addition of the logical flag b to the joint
state is a byproduct of co-existence of “locked” and “transit” states of the concurroid
and our generality with respect to the invariant I. In particular, had we assumed I (aS •

aO) h =⇒ h , empty, we could use this fact in order to distinguish between the
“locked” and “transit” states. Finally, as it will be shown, the flag b plays an important
role only when verifying the body of the lock procedure, and can be abstracted away
for convenience of the clients of lock and unlock.

E.3 Transitions of the concurroid

In contrast with the CAS-based spin lock, whose internal transitions do not allow any
components of the state to change, the internal transitions of the ticketed lock concur-
roid account for taking the tickets from the dispenser and changing the corresponding
counter nxt in the joint part of the state. Again, describing the transitions on states w
and w′, we implicitly assume w. o = w′. o.

Definition 8 (T{tlock,own,nxt,I} internal transitions τT ).

(w,w′) ∈ τT ⇐⇒ w. s = tlock � (tS, aS), w. j = tlock � (nxt � n2 ·∪ h),
w′. s = tlock � (t′S, aS), w. j = tlock � (nxt � n′2 ·∪ h),
n2 ≤ n′2

Notice that in Definition 8 we don’t specify the rest of the joint heap h. What is
important is that it remains unchanged. The nxt counter may only increase, and this
change is reflected by changing the self auxiliary component tS to t′S, assuming that the
resulting state still adheres to the state predicateWT (Definition 7).

Definition 9 (T{tlock,own,nxt,I} external transitions, αT and ρT ).

(w,w′) ∈ αT h ⇐⇒ w. s = tlock � (tS ∪ {n1} , aS),
w. j = tlock � (own � 〈n1, true〉 ·∪ nxt � n2),
w′. s = lock � (tS, a′S),
w′. j = tlock � (own � 〈n1 + 1, false〉 ·∪ nxt � n2 ·∪ h)

(w,w′) ∈ ρT h ⇐⇒ w. s = lock � (tS ∪ {n1} , aS),
w. j = tlock � (own � 〈n1, false〉 ·∪ nxt � n2 ·∪ h),
w′. s = lock � (tS ∪ {n1} , aS),
w′. j = tlock � (own � 〈n1, true〉 ·∪ nxt � n2)

In Definition 9, the acquire transition αT transfers the heap h to the joint part of the
state w′. j, increases the service counter, hence n1 + 1, and flips the flag b from true to
false. The transition is only possible when the ticket number n1 is “registered” in the
self -set tS in the initial state. Similarly, the release transition ρT is only possible when
the ticked being called is owned by the self set tS. In such a case, the ownership of the
heap h is given away to the calling thread.

We now have all ingredients to define the concurroid for ticketed locks.
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Definition 10 (The concurroid for the ticketed lock).
T{tlock,own,nxt,I} = ({tlock},WT , τT , (αT , ρT )), whereWT is given by Definition 7 and

τT , αT and ρT are defined in Definitions 8 and 9.

E.4 Atomic actions of a ticketed lock

We now define the three atomic actions, used in the implementation of the locking/unlocking
procedures in Section E.1.

The action take corresponds to internal transitions of the concurroid T{tlock,own,nxt,I}

and returns the number of the drawn ticket as its result. Hence the following specifica-
tions, according to the definitions of Section 5:

Definition 11 (take action). take = (T{tlock,own,nxt,I}, nat, σ, µ), where

w ∈ σ ⇐⇒ w = tlock � [(tS, aS) | nxt � n2 ·∪ h | (tO, aO)]

(w,w′, res) ∈ µ ⇐⇒ w = tlock � [(tS, aS) | nxt � n2 ·∪ h | (tO, aO)] ∧
w′ = tlock � [(tS ∪ {n2} , aS) | nxt � (n2 + 1) ·∪ h | (tO, aO)] ∧
res = n2

By doing flattening, one can see that operationally take corresponds to an atomic fetch-
and-increment of the pointer nxt. Formally, the fetch-and-increment operation can be
is defined in Section A. Two other actions, try and droptkt account for the heap own-
ership transfer and, hence, correspond to internal transitions of the entanglement P o
T{tlock,own,nxt,I}.

Definition 12 (try action). ∀n : nat. try(n) = (P o T{tlock,own,nxt,I}, bool, σ, µ), where

w ∈ σ ⇐⇒
w = priv � [empty | empty | hO] ·∪

tlock � [(tS ∪ {n} , aS) | own � 〈n1, b〉 ·∪ nxt � n2 ·∪ h | (tO, aO)]

(w,w′, res) ∈ µ ⇐⇒
w = priv � [empty | empty | hO] ·∪

tlock � [(tS ∪ {n} , aS) | own � 〈n1, b〉 ·∪ nxt � n2 ·∪ h | (tO, aO)] ∧
if n = n1

then w′ = priv � [h | empty | hO] ·∪
tlock � [(tS ∪ {n} , aS) | own � 〈n1, true〉 ·∪ nxt � n2 | (tO, aO)] ∧

res = true ∧ I (aS • aO) h
else w′ = w ∧ res = false

One can see that the action try(n) corresponds to reading from the heap cell own � −
(hence, it’s operational), but it has a interesting effect on the auxiliary state. In particular,
if the comparison succeeds (then-branch), the ownership over heap h is transferred
to the self -part of priv, and logical flag is flipped, which corresponds to the internal
transition of the entanglement P o T{tlock,own,nxt,I}. Otherwise, the thread has approached
the counter with a ticket that is not called, and thus is denied service for now. The state
therefore doesn’t change, which corresponds to the reflexivity of the internal transition.
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The action can only be performed if the ticket n, which is being checked for the service,
is present in the self part, hence tS ∪ {n} (that is the thread indeed has right to try claim
the service).

Definition 13 (droptkt action). droptkt = (T{tlock,own,nxt,I}, unit, σ, µ), where

w ∈ σ ⇐⇒ w = priv � [h | empty | hO] ·∪
tlock � [(tS ∪ {n1} , aS) | own � 〈n1, b〉 ·∪ nxt � n2 | (tO, aO)] ∧

I ( f (aS) • aO) h ∧ f is local

(w,w′, res) ∈ µ ⇐⇒ w = priv � [h | empty | hO] ·∪
tlock � [(tS ∪ {n1} , aS) | own � 〈n1, b〉 ·∪ nxt � n2 | (tO, aO)] ∧

I ( f (aS) • aO) h ∧ f is local ∧
w′ = priv � [empty | empty | hO] ·∪

tlock � [(tS, aS) | own � 〈n1 + 1, false〉 ·∪ nxt � n2 ·∪ h | (tO, aO)]

In the definition of droptkt, the self -contribution with respect to the abstract state aS

is captured via some auxiliary function f , which is required to be local [11]. Another
important change is removing a ticket n1 from the self -set tS, once the service is finished
(i.e., the lock is unlocked).

E.5 Lock predicates

In order to verify the lock and unlock procedures, we first introduce a number of
auxiliary predicates to simplify the presentation of the reasoning.

Definition 14 (T{tlock,own,nxt,I} predicates).

isLocktlock(aS) =̂ tlock
s
7→ (tS, aS)

canTrytlock(n, aS) =̂ tlock
s
7→ (tS ∪ {n} , aS) ∧ tlock

j
7→ (own � 〈n1, b〉 ·∪ h) ∧

(n = n1) =⇒ ¬b

Lockedtlock(aS, aO) =̂ tlock
s
7→ (tS ∪ {n1} , aS) ∧ tlock

j
7→ (own � 〈n1, true〉 ·∪ h)

In Definition 14 and further we implicitly treat all non-bound logical variables as
existentially quantified. The predicate isLocktlock identifies a state w as one satisfying to
the structure of the T{tlock,own,nxt,I} concurroid. The predicate canTrytlock asserts that the
current thread can make an attempt to acquire the lock with the ticket n, but it might
fail. The auxiliary condition (n = n1) =⇒ ¬b is essential for verifying the body of
lock in order to exclude the bogus situation when the same thread tries to re-acquire
the lock which it already owns.

Curiously, the isLocktlock and Lockedtlock predicates can be considered as imple-
mentation of the abstract interface for locks, as presented by the work on CAP [5]:
we deliberately picked the same name for ours. In particular, we can prove the similar
properties for ours predicates with respect to the locking intuition:

Lemma 3. Lockedtlock(aS, aO) =⇒ isLocktlock(aS).
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Lemma 4 (Mutual exclusion for Ticketed Lock).

w |= Lockedtlock(aS, aO) ∧ w> |= Lockedtlock(aO, aS) =⇒ False.

Lemma 4 is a “subjective” formulation of the mutual exclusion property, stating that
the lock can be simultaneously acquired by at most one thread. We address the interested
reader to our formal development in Coq [12] for the proofs of these and some other
lemmas about locks as well as for implementation of the same abstract interface for the
CAS-based spin lock.

E.6 Verifying locking procedures

We culminate the development of this appendix with the verification of the lock pro-
cedure for the ticketed lock (Section E.1).13

{
priv

s
7→ empty ∗ isLocktlock(aS)

}
lock{

∃h, aO, priv
s
7→ h ∗ Lockedtlock(aS, aO) ∧ I (aS • aO) h

} (6)

Since in our logic imperative while-loops are implemented as a fixed point iteration
of a tail-recursive function, for such functions a specification should be defined by the
programmer (same is true for loop invariants in the standard Hoare logic). We begin
by assuming for each auxiliary element of PCM aS and a ticket number n a family of
curried functions loop(n : nat) : unit→ unit with the following FCSL specification:

{
priv

s
7→ empty ∗ canTrytlock(n, aS)

}
loop(n)( ){

∃h, aO, priv
s
7→ h ∗ Lockedtlock(aS, aO) ∧ I (aS • aO) h

} (7)

We proceed by unfolding the definition of the locking procedure and presenting the
proof outline.

13 Verification of unlock is significantly simpler, and we address the reader to our formal devel-
opment for the details [12].
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{
priv

s
7→ empty ∗ isLocktlock(aS)

}
n← inject′(take);priv

s
7→ empty ∗ tlock

s
7→ (tS ∪ {n2} , aS) ∧ tlock

j
7→ (own � − ·∪ nxt � n′2 ·∪ h′) ∧

n = n2 ∧ n2 ≤ n′2

{
priv

s
7→ empty ∗ canTrytlock(n, aS)

}
fix.loop(n). . (
if (try(n)) then{

priv
s
7→ h ∗ tlock � [(tS, aS) | own � 〈n, true〉 ·∪ nxt � n′′2 | (t

′
O, aO)] ∧ I (aS • aO) h

}
return ();{
priv

s
7→ h ∗ Lockedtlock(aS, aO) ∧ I (aS • aO) h

}
else{

priv
s
7→ empty ∗ canTrytlock(n, aS)

}
loop(n)( );{
∃h, aO, priv

s
7→ h ∗ Lockedtlock(aS, aO) ∧ I (aS • aO) h

}
)( ){
∃h, aO, priv

s
7→ h ∗ Lockedtlock(aS, aO) ∧ I (aS • aO) h

}
In fact, the proof has been implicitly split into two parts: (a) proving the correctness

of the loop specification (7) in the body of the locking procedure by the rule FIX (Fig-
ure 2) and (b) proving the specification of the locking itself, assuming the loop spec. In
the outline we have blended them both together, as the proof of (7) is straightforward:
just by reading the specification of the try action, we know that in then-branch the heap
h has been transferred to self -part of priv. Moreover, in the proof outline we omitted
some reasoning about stability, which, indeed, has been taken into account. In particu-
lar, in the assertion right after the line “if (try(n)) then”, we mention n′′2 rather than n′2,
since this counter could have been changed by the other threads. These subtle details
become clear in the mechanized proofs and are omitted above for the sake of brevity.

Finally, we have employed a slightly different version of injection, which we em-
phasized by using the inject′ command. It differs from one we described in Section 3
by the form of entanglement it handles. The original rule INJECT enabled concurroid
framing with respect to the right operand of o. In contrast, the following rule enables
concurroid framing with respect to the left operand of o, or right operand of the “re-
versed” operator n:

{p} c {q}@U r stable under V

{p ∗ r} inject′ c {q ∗ r}@U n V
INJECT’

The rule was, indeed, proved sound as well [12]. In general, we have actually proved
the injection rule sound for any operator satisfying a number of general properties, and
then shown that o and n (as well as some other combinators), satisfy these general
properties.
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F Semantics and Soundness

The semantic model for FCSL programs largely relies on the denotational semantic
of action trees [11], which implement finite, partial approximations of the behavior of
FCSL commands. Action trees are a generalization of the Brookes’ action traces in the
following sense. Where action trace semantics approximate a program by a set of traces,
we approximate with a set of trees. A tree differs from a trace in the following: a trace
is a sequence of actions and their results, whereas a tree contains an action followed by
a continuation which itself is a tree parametrized wrt. the output of the action. In this
appendix we introduce a number of notions in order to formalize the safety of FCSL.

The high-level view of the development is as follows. We first define semantic be-
havior (i.e., operational semantics) for action trees wrt. a program state (Section F.1).
We consider program state that, in addition to concrete heaps includes the logical in-
formation such as auxiliary state, or division of state between concurroid labels. Thus,
the operational semantics of trees is instrumented. In Section F.4, we prove the stan-
dard erasure result of shared-memory concurrency logics, whereby logical information
in program states doesn’t influence the result of the computation.

Taking the low-level operational semantics of threes from Section F.1 as a base for
our soundness result, we relate it to the high-level transitions of a concurroid by an
always predicate (Section F.5) that ensures a tree is resilient to any amount of a concur-
roid’s rely-interference, and that all operational steps by a tree are safe (i.e., providing
an analogue to preservation property for the action safety predicate) and correspond to
concurroid interference.

The denotational semantics (Section F.6) interprets Hoare tuple judgments by the
monadic Hoare type {|p|}A{|q|}@U, which is a complete lattice of trees that are always-
safe to run from any initial configuration that satisfies precondition p and if they ter-
minate produce a final configuration that satisfies postcondition q (under possible inter-
ference from programs respecting the transitions of the concurroid U). The complete
lattice structure makes the semantic domain suitable for modeling recursion. A com-
mand is denoted by the set of its tree approximations, and a procedure is denoted by a
function into a set of trees. The soundness of FCSL (Section F.7) follows from showing
that the denotations of the commands listed in Section 5 satisfy the appropriate always
predicate (i.e., adhere to the progress-and-preservation property), and that always sat-
isfies certain closure conditions.

We choose the Calculus of Inductive Constructions (CiC) [1, 17] as our meta logic.
This has several important benefits. First, we can define a shallow embedding of FCSL
into CiC that allows us to program and prove directly with the semantic objects, thus
immediately lifting FCSL to a full-blown programming language and verification sys-
tem with higher-order functions, abstract types, abstract predicates, and a module sys-
tem. We also gain a powerful dependently-typed λ-calculus, which we use to formalize
all semantic definitions and metatheory, including the definition of action trees by it-
erated inductive definitions [17], specification-level functions, and programming-level
higher-order procedures. Finally, we were able to mechanize the entire semantics and
metatheory [12] in the Coq proof assistant implementation of CiC.
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Following [11], we use set-theoretic and type-theoretic notation as appropriate. The
reader unconcerned with the fine points of the type theory, may read a typing judgment
x : A as a set membership predicate x ∈ A.

F.1 Action trees and their operational semantics

The type family tree U A of A-returning action trees is defined by an iterated inductive
definition, as follows.

Definition 15 (Action trees).

Unfinished : tree U A
Ret (v : A) : tree U A
Act (a : (U, A, σ, µ)) : tree U A
Seq (t : tree U B) (k : B→ tree U A) : tree U A
Par (t1 : tree U B1) (t2 : tree U B2) (k : B1 × B2 → tree U A) : tree U A
Inject (t : tree V A) : tree U A
HideΦ̂,g (t : tree V A) : tree U A

Most of the constructors in Definition 15 are self-explanatory. Since trees have fi-
nite depth, they can only approximate divergent computations, thus the Unfinished tree
indicates an incomplete approximation. Ret v is a terminal computation that returns
value v : A. The constructor Act takes as a parameter an action (U, A, σ, µ), defined in
concurroid U (Section 5). Seq t k sequentially composes a B-returning tree t with a
continuation k that takes t’s return value and generates the rest of the approximation.
Par t1 t2 k is the parallel composition of trees t1 and t2, and a continuation k that takes
the pair of their results when they join. CiC’s iterated inductive definition permits the
recursive occurrences of tree to be nonuniform (e.g., tree Bi in Par) and nested (e.g.,
the positive occurrence of tree A in the continuation). Since the CiC function space
→ includes case-analysis, the continuation may branch upon the argument, which cap-
tures the pure computation of conditionals. This closely corresponds to the operational
intuition and leads to a straightforward denotational semantics.

The Inject constructor embeds a tree t : tree V A (of a different, i.e., smaller, con-
curroid V) for the underlying computation and generates a tree in the concurroid U. V
and U are not arbitrary, but it has to be possible to inject V into U, as we shall define
shortly. In particular, we will be able to prove that we can inject V into U = V oW for
any W.

The Hide constructor embeds a generalized refinement function Φ̂, an abstract state
g and a tree t : tree V A for the underlying computation and generates a tree in the
concurroid U. Again, U and V are not arbitrary but it has to be possible to refine V
into U. In particular, we will be able to prove the we can refine U = P o V1 o V2 into
V = P o V1.

In general, in Coq, the proof that V injects into U, or that V refines U, has to be an
annotation on the Inject and Hide constructors, but we omit the annotations for brevity.
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F.2 Injection and Refinement

We define the predicate injects V U, which intuitively means that the “larger” concur-
roid U can be considered as an entanglement of the “smaller” concurroid V with some
additional concurroid W.

Definition 16 (Injection predicate).
injects V U ⇐⇒ there exists W, such that the following three statements hold:

1. w ∈ WU ⇐⇒ w = w1 ·∪ w2 ∧ w1 ∈ WV ∧ w2 ∈ WW ;
2. ∀w1 w2 w. w1 ·∪w ∈ WU∧w2 ·∪w ∈ WU∧(w1,w2) ∈ τV =⇒ (w1 ·∪w,w2 ·∪w) ∈ τU;
3. ∀w1 w′1 w2 w′2.

s1 ∈ WV ∧ s2 ∈ WV ∧ (s1 ·∪ s′1, s2 ·∪ s′2) ∈ GU =⇒

(s1, s2) ∈ GV ∧ (s′1, s
′
2) ∈ GW , where

GX is a guarantee relation of a concurroid X (Definition 4).

The first requirement ensures that the states of U can be constructed as Cartesian prod-
ucts of states of V and W. The second requirement ensures that internal transitions of
the smaller concurroid V do not break the coherence of it enclosing concurroid U. The
third requirement ensures that the transitions within U can be always uniquely split
to the transitions done by V and by the “addition” W. Notably, the first requirement
ensures that if injects V U holds, there always exists a “smaller” state wV , such that
wV ∈ WV for any wU ∈ WU .

We will also introduce another auxiliary definition in order to have a handle to the
existential concurroid W in Definition 16.

Definition 17. We will write U = V §đ W, when injects V U and W is an additional
concurroid from Definition 16.

The notation §đ hints that already familiar entanglement operators o and n can be
seen as particular cases of §đ.

Lemma 5. injects V (V oW) for every V and W with disjoint label sets.

We next define the refinement relation on concurroids. The concurroid U is refined
into V , if we can, intuitively, elaborate the states of U into those of V . In other words,
if V’s states can be seen to contain the states of U, plus some other additional state.
Abstractly, we capture the dependence by positing an elaboration predicate Φ̂ between
the state spaces of U and V , with a number of properties shown below. Additionally,
Φ̂ takes a value g : G of user-specified type, which is an abstraction of the mentioned
additional state. Thus, we read Φ̂(g)(w,w′) to say that g elaborates w into w′ (via Φ̂).

Definition 18 (Elaboration predicate).
Given a type G of abstract states and a function Φ̂ : G → (WU ,WV ) → prop,

refines U V Φ̂ ⇐⇒ the following statements hold:

1. Φ̂(g)(w,w1) ∧ Φ̂(g)(w,w2) =⇒ w1 = w2;
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2. Φ̂(g1)(w1,w) ∧ Φ̂(g1)(w2,w) =⇒ g1 = g2 ∧ w1 = w2;
3. Φ̂(g)(w,w′) =⇒ w ∈ WU ∧ w′ ∈ WV ;
4. Φ̂(g)(w1,w′1) ∧ (w1,w2) ∈ RU =⇒ ∃w′2, Φ̂(g)(w2,w′2) ∧ (w′1,w

′
2) ∈ RV ;

5. Φ̂(g1)(w1,w′1) ∧ (w′1,w
′
2) ∈ τV =⇒ ∃g2 w2. Φ̂(g2)(w2,w′2) ∧ (w1,w2) ∈ τU ;

6. Φ̂(g1)(w1,w′1) ∧ Φ̂(g2)(w2,w′2) =⇒ (w1. o = w1. o ⇐⇒ w′1. o = w′2. o);
7. ∀p.∃q.

∀g w w′. Φ̂(g)(w . p,w′) =⇒
(
∃w′1,w

′ = w′1 . q ∧ Φ̂(g)(w / p,w′1 / q)
)
∧

∀g w w′. Φ̂(g)(w,w′ / q) =⇒
(
∃w1,w = w1 / p ∧ Φ̂(g)(w1 . p,w′ . q)

)
;

8. Φ̂(g)(w,w′) =⇒ bwc = bw′c;

If the properties in Definition 18 are satisfied, we call Φ̂ and elaboration predicate
for U and V . In Definition 18, (1) states that Φ̂ uniquely determines refined states (how-
ever, some states in U need not refine into anything in V , i.e., Φ̂ is a partial function);
(2) states that the Φ̂ is injective: abstracting back from a refinement is unique. Thus,
(1) and (2) state that Φ̂ is a partial bijection. (3) ensures that the elaboration maps well-
formed states to well-formed states; (4) specifies that environment steps in the “coarse”
world do not change introduced abstractions in the “fine” world, as environment steps
in the coarse world can’t see the refinement; (5) states that “abstracting back” preserves
internal transitions. The properties (4) and (5) can be seen as stating commutativity of
the apparent categorical diagrams. They may also be seen as stating simulation prop-
erties. In (4), a rely transitions of U can always be matched by a rely transition of V .
In (5), an internal transition of V may always be matched by an internal transition of
U. (6) postulates that refinement realigns self and joint parts, but doesn’t move things
into/out of other; (7) is a version of framing, namely, every every extension to other of
a coarse state is is uniquely refined into an addition to fine state; finally, (8) ensures that
refinement only deals with abstract parts of the state and does not change the heap.

Lemma 6 (Hiding and refinement).
Let U and V be concurroids, and letΦ be an abstraction function from a HIDE; that

is, Φ satisfies the properties about concurroid V from Section C. Let Φ̂ be constructed
as follows.

Φ̂(g)(w,w′) ⇐⇒ ∃h w1 w2, w = (priv � (h ·∪ bw1c)) ·∪ w2 ∧

w′ = (priv � h) ·∪ w1 ·∪ w2 ∧

w1 ∈ Φ(g) ∧
w ∈ WPoU ∧ w′ ∈ WPoUoV

Then Φ̂ is a valid elaboration predicate, that is refines (P o U) (P o U o V) Φ̂.

F.3 Operational semantics of action trees

The judgment for small-step operational semantics of action trees has the form w; t
π
=⇒t w′, t′

(Figure 3). It operates on program states w and paths π to step the tree t from initial state
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Fig. 3 Tree stepping w; t
π
=⇒t w′; t′ with respect to the path π

(w,w′, v) ∈ µ

w; Act (U, A, σ, µ)
ChoiceAct
======⇒t w′; Ret v w; Par (Ret v1) (Ret v2) k

ParRet
====⇒t w; k (v1, v2)

w; t1
π
=⇒t w′; t′1

w; Par t1 t2 k
ParL π
====⇒t w′; Par t′1 t2 k

w; t2
π
=⇒t w′; t′2

w; Par t1 t2 k
ParR π
====⇒t w′; Par t1 t′2 k

w; Seq (Ret v) k
SeqRet
=====⇒t w; (k v)

w; t1
π
=⇒t w′; t2

w; Seq t1 k
SeqStep π
=======⇒t w′; Seq t2 k

w; Inject (Ret v)
InjRet
===⇒t w; Ret v

injects V U wU = wV ·∪ w0 wV ; t1
π
=⇒t w′V ; t2 w′U = w′V ·∪ w0

wU ; Inject t1
InjStep π
======⇒t w′U ; Inject t2

w; Hide Φ̂ g (Ret v)
HideRet
=====⇒t w; Ret v

hides U V Φ̂ Φ̂(g)(wU ,wV ) wV ; t1
π
=⇒t w′V ; t2 Φ̂(g′)(w′U ,w

′
V )

wU ; Hide Φ̂ g t1
HideStep π
=======⇒t w′U ; Hide Φ̂ g′ t2

w to a reduced tree t′ in ending state w′. Intuitively, the path π identifies the position in
the tree to be reduced, which may be an action, or a beta redex.

π ::= ChoiceAct | SeqRet | SeqStep π |
ParRet | ParL π | ParR π |

HideStep π | HideRet | InjStep π | InjRet.
(8)

Stepping is undefined for the Unfinished and Ret trees. For the Seq and Par trees, the
path π selects a β-redex and performs the appropriate reduction. For the Inject tree in
the non-Ret case the reduction of the tree t1 is performed for a smaller state wV instead
of the large state wU , and the resulted state w′V is “plugged” back using the addition w0
in order to obtain the resulting large state w′U . The situation for Hide is symmetric: the
coarse-grained state wU and the fine-grained state wV are related by the elaboration Φ̂.
Note that the modifications of the changes to the abstract values g are recorded into g′.

The decorated semantics in Figure 3 may not make a step for two different reasons.
The first, benign, reason is that the the chosen path π doesn’t actually determine an
action or a redex in the tree t. For example, we may have t = Unfinished and π = ParR.
But we can choose the right side of a parallel composition only in a tree whose head
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constructor is Par, which is not the case with Unfinished. We consider such paths that
don’t determine an action or a redex in a tree ill-formed.

The second reason arises when π is actually well-formed. In that case, the construc-
tors of the path uniquely determine a number of rules of the operational semantics that
should be applied to step the tree. However, what is some of the rules can’t be applied
because their side-conditions are not satisfies by the current state.

We next state a form of the progress property, showing that the latter case can’t
occur in trees that approximate well-proved programs. We first formally define paths
which are well-formed wrt. a tree.

Definition 19 (Good paths). Let t : tree U A and π be a path. Then the predicate
good t π is defined as follows:

good (Act (U, A, σ, µ)) ChoiceAct =̂ true
good (Seq (Ret v) ) SeqRet =̂ true
good (Seq t ) SeqRet π =̂ good t π
good (Par (Ret ) (Ret ) ) ParRet =̂ true
good (Par t1 t2 ) ParL π =̂ good t1 π
good (Par t1 t2 ) ParR π =̂ good t2 π
good (Inject (Ret )) InjRet =̂ true
good (Inject t) InjStep π =̂ good t π
good (Hide (Ret )) HideRet =̂ true
good (Hide t) HideStep π =̂ good t π
good t π =̂ false otherwise

We next require a notion of safety for a tree and a path.

Definition 20 (Safe path for an action tree). Let t : tree U A, π be a path π, and state
w ∈ WU . safe t π w is defined as follows:

safe (Act (U, A, σ, µ)) ChoiceAct w =̂ (w ∈ σ)
safe (Seq (Ret v) ) SeqRet w =̂ true
safe (Seq t ) SeqStep π w =̂ safe t π w
safe (Par (Ret ) (Ret ) ) ParRet w =̂ true
safe (Par t1 t2 ) ParL π w =̂ safe t1 π w
safe (Par t1 t2 ) ParR π w =̂ safe t2 π w
safe (Inject (Ret )) InjRet w =̂ true
safe (Inject (t : tree V A)) InjRet π w =̂ injects V U ∧ w = wV ·∪ w0 ∧

safe t π wV

safe (Hide (Ret )) HideRet w =̂ true
safe (Hide Φ g (t : tree V A)) HideStep π w =̂ hides U V Φ ∧Φ(g)(w,wV ) ∧

safe t π wV

safe t π w =̂ true otherwise

The definition traverses the path and the tree, and in those cases when the tree and
the path match, collects the side-conditions on the initial states of the operational se-
mantics rules.
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Lemma 7 (Progress on action trees). For any concurroid U, state w ∈ WU , action
tree t : tree U A and a path π, if safe t π w, then either of the following holds

1. ¬ good t π;
2. ∃w′ t′, w; t

π
=⇒t w′; t′.

The lemma shows that if we can match the tree t with a path π and thus manage
to pick an action or a redex (i.e., good t π), then the safety predicate implies the side
conditions of the inference rule determined by π.

The import of the lemma is in allowing that safety and stepping relations may be
defined independently of each other. The difficulty of the proof consists in showing
that the various conditions from the reduction rules, that have not been incorporated
into the safety predicate, are nevertheless satisfied. For example, the reduction rules for
Inject and Hide contain such side conditions on the ending states of their premisses.
We have proved that even though these conditions are not incorporated by the safe
predicate, they are implied by it. The proof relies on the general properties of injection
and refinement listed in Section F.2.

Defining safety independently from stepping will enable us to develop a semantics
in the style of Milner and Wright and Felleisen, whereby we only give meaning to pro-
grams that are well-proved in FCSL, analogously to how Milner and Wright-Felleisen
semantics give meaning to only well-typed programs. As the type of the program, we
will use its Hoare-tuple specification, and the denotation of a program wrt. a specifi-
cation with precondition p, will only contain approximating action trees whose safety
predicate is implied by p. The fact that the safety predicate actually means safety, i.e.,
it allows stepping, is a consequence of the Progress lemma above.

F.4 Erased FCSL action trees

We next define an erased version of action trees that remove the various logical anno-
tations. One example of such erased logical information is the proofs of injection and
refinement that we implicitly elided from the INJECT and HIDE constructors. Another
example is the logical information from the actions embedded into action trees, which,
as we have shown, operate on decorated states.

We then prove that such logical information doesn’t influence the stepping of the
tree. In other words, states that erase to equal concrete heaps, produce output states that
also erase to equal concrete heaps.

Definition 21 (Tree erasure).
Given a tree t : tree U A, its erasure btc : etree A is defined as follows:

bUnfinishedc =̂ Unfinished
bRet vc =̂ Ret v
bAct (U, A, σ, µ)c =̂ Act (A, bσc, bµc)
bSeq t kc =̂ Seq btc (λv.bk vc)
bPar t1 t2 kc =̂ Par bt1c bt1c (λv.bk vc)
bInject tc =̂ Inject btc
bHide tc =̂ Hide btc
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Theorem 2 (Erasure irrelevance). For a concurroid U, states w1,w2 ∈ WU and ac-
tion trees t1, t2 : tree U A, if bw1c = bw2c, bt1c = bt2c, w1; t1

π
=⇒t w′1; t′1 and w2; t2

π
=⇒t w′2; t′2,

then bw′1c = bw
′
2c and bt′1c = bt

′
2c.

Ideally, we will need to prove a stronger result, stating that if the tree and state
evaluate under semantics from Figure 3, so do their erased counterparts under some
sort of erased semantics. However, we have not carried out this exercise due to time
constraints and decided to leave it for the future work.

F.5 Auxiliary modal predicates

In this section we next define a number of modal predicates over all possible steps of
execution to relate the operational semantics over heaps and concurroid transitions over
admissible states.

Definition 22 (Modal predicates). The predicates alwaysζU w t P, alwaysU w t P and
afterU w t Q are defined relative to a schedule ζ, concurroid U, state w, A-returning
rich tree t : tree U A and arbitrary predicates P : state → tree U A → prop and
Q : A→ state→ prop:

alwaysζU w t P =̂ if ζ = π :: ζ′

then ∀w2.(w,w2) ∈ RU =⇒

safe t π w2 ∧(
∀w3 t2. w2; t

π
=⇒t w3; t2 =⇒ alwaysζ

′

U w3 t2 P
)

else ∀w2.(w,w2) ∈ RU =⇒ P w2 t

alwaysU w t P =̂ ∀ζ.alwaysζU w t P

afterU w t Q =̂ alwaysU w t (λ w′ t. ∀v′.(t′ = Ret v′) =⇒ Q v′ w′)

The predicate alwaysU w t P expresses the fact that starting from the state w, the
tree t remains memory-safe and the user-chosen predicate P holds of all intermediate
configurations and trees, for any schedule ζ and under any environment of the concur-
roid U. The helper predicate alwaysζU w t P is defined by induction on ζ: the concurroid
U is allowed to make arbitrary rely-transitions from w to w2, in the resulting configu-
ration the predicate P w2 t holds; moreover, if the schedule is π::ζ′, then the resulting
configuration must have a state that is safe for t, π and w2 (so, according to Theorem 7,
it can step), and, if t steps to w3 and t2, then the predicate recurses on ζ′, w3 and t2. One
can notice that if the predicate alwaysζU w t P, it automatically implies “preservation”
of the safe predicate at each step of reduction of the tree t.

The predicate afterU w t Q encodes that t is safe; however, Q v′ w′ only holds if t
steps completely to Ret v′ in configuration w′.
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Fig. 4 Denotational semantics of FCSL judgments.

[[·]] =̂ ·

[[Γ, x : A]] =̂ [[Γ]], x : A
[[Γ,∀x : B. {p} f (x) : A {q}@U]] =̂ [[Γ]], f : ∀x : B. {|p|}A{|q|}@U

[[Γ ` {p} c : A {q}@U]] =̂ [[Γ]] `CiC [[c]] : {|p|}A{|q|}@U

[[Γ ` ∀x : B.{p}F(x) : A{q}@U]] =̂ [[Γ]] `CiC [[F]] : ∀x : B. {|p|}A{|q|}@U

[[Γ ` e : A]] =̂ [[Γ]] `CiC e : A
[[Γ ` (p1, q1) v (p2, q2)]] =̂

[[Γ]] `CiC ∀w w′. (w |= ∃v̄2. p2 =⇒ w |= ∃v̄1. p1) ∧
((∀v̄1 res.w |= p1 =⇒ w′ |= q1) =⇒ (∀v̄2 res.w |= p2 =⇒ w′ |= q2))

where v̄i =̂ FLV(pi, qi)

F.6 Denotational semantics of FCSL

In this section, we define the denotational semantics of FCSL as a shallow embedding
into CiC. For the sake of simplicity, one can think of the embedding as of a macro-
expansion, which compositionally replaces FCSL programs by expressions and values
of CiC.

The semantics of commands and judgments are defined simultaneously. The mutual
recursion is necessary because the denotation of judgments depends on the denotation
of commands and procedures, while the denotation of a fixed point procedure depends
on the denotation of its procedure triple to determine the lattice in which to take the
fixed point.

We denote FCSL programs as sets T of trees of increasing precision including the
Unfinished tree, which is the coarsest possible approximation of any program:

prog U A =̂ {T ⊆ P(tree U A) | Unfinished ∈ T }.

To model recursion, we construct a complete lattice of Hoare types to get fixed
points. We use the after predicate (Definition 22) to ensure the tree approximations are
memory safe, respect mutual exclusion, and satisfy their FCSL specifications.

Definition 23 (FCSL Hoare types). For a concurroid U and type A, fix a precondition
p : state→ prop and a postcondition q : A→ state→ prop, with free logical variables
FLV(p, q). The FCSL Hoare type {|p|}A{|q|}@U is defined as follows:

{|p|}A{|q|}@U =̂
{

T ∈ prog U A

∣∣∣∣∣∣ ∀FLV(p, q) w (t ∈ T ).
w |= p ∧ w ∈ WU =⇒ afterU w t q

}
Intuitively, the denotation of a FCSL judgment {p} c : A {q}@U is the set of trees T

denoting the command c, together with a proof that for any initial configuration w that
satisfies the precondition p, then after executing any tree t ∈ T from c produces some
result value and final configuration that satisfy postcondition q. The definition quantifies
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Fig. 5 Denotational semantics of FCSL commands.

[[return]] (v : A) =̂ {Unfinished,Ret v}
[[x← c1; c2]] =̂ {Unfinished} ∪ {Seq t1 k | t1 ∈ [[c1]],∀x. k x ∈ [[c2]]}

[[c1 ‖ c2]] =̂ {Unfinished} ∪ {Par t1 t2 (λv.Ret v) | t1 ∈ [[c1]], t2 ∈ [[c2]]}
[[if e then c1 else c2]] =̂ if e then [[c1]] else [[c2]]

[[act a]] =̂ {Unfinished,Act a}
[[inject c]] =̂ {Unfinished} ∪ {Inject t | t ∈ [[c]]}

[[hideΦ,g c]] =̂ {Unfinished} ∪
{
Hide Φ̂ g t | t ∈ [[c]]

}
, where

Φ̂ is constructed from Φ as in Lemma 6
[[F (e)]] =̂ [[F]] (e)

[[fix f B,A,p,q. x : A. c]] =̂ lfp∀x:B. {|p|}A{|q|}@U (λ f .λx. [[c]])

over the free logical variables of p and q in order to give these variables local scope, as
stipulated in Section 5. FCSL assertions (Section 3) are arbitrary CiC predicates of type
state→ prop; and we model the relation w |= p of FCSL as the application p w in CiC.

Lemma 8. The type {|p|}A{|q|}@U is a complete lattice, with set union as the join oper-
ator, and {Unfinished} as the unit element.

The type ∀x : B. {|p|}A{|q|}@U of functions mapping x : B into {|p|}A{|q|}@U, where
A, p, q may depend on x, is also a complete lattice, with the join operator on functions
defined point-wise, and the constant {Unfinished} function as the unit element.

The denotation of judgments [[Γ ` J]] (Figure 4) turns FCSL judgments into CiC
typing judgments (`CiC). A command specification {p} − : A {q}@U is denoted by
the CiC type {|p|}A{|q|}@U, and a procedure specification ∀x : B. {p} − : A {q}@U is
denoted by the CiC dependent function type ∀x : B. {|p|}A{|q|}@U. The Hoare ordering
(p1, q1) v (p2, q2) judgment is explained in Section D, so here we just literally repeat
the definition given there.

The denotation of commands and procedures (Figure 5) is subsidiary to that of
judgments because the fixed-point construction is indexed by the argument and return
types, and the pre- and postconditions. An A-returning command c is denoted by a set
of approximating trees in prog U A, and an A-returning procedure F with argument B
is denoted by a set of trees in B→ prog U A.

In the semantic translation for the sequential composition [[x← c1; c2]], we employ
the fact that the translation [[c2]] can produce open values (i.e., trees t2), where a variable
x of CiC is not bound. We subsequently close them by constructing a continuation k as
a CiC function, in an indirect way, that is, quantifying over all possible inputs, hence
∀x, k x ∈ [[c2]]. For the denotational semantics of the hiding statement [[hideΦ,g c]],
we appeal to Lemma 6 (Section F.2), which give a constructive way to construct an
elaboration predicate Φ̂ from a given abstraction function Φ. Since all FCSL program
constructors preserve monotonicity, the fix f .x.c procedure can take the least fixed point
lfp of the function λ f . λx. [[c]] by the Knaster-Tarski theorem.
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F.7 Soundness Result

We culminate this section with the proof of soundness of the interpretation. The main
soundness theorem (Theorem 3), which we present at the end of this section, is a key re-
sult of our formal development. It states that FCSL is sound as a logic with respect to its
translation into CiC (i.e. shallow embedding), that is, for any judgment J, Γ ` J implies
[[Γ ` J]]. In particular, it means that if a judgment of the form Γ ` {p} c : A {q}@U
is derivable in FCSL, then its translation [[Γ]] `CiC [[c]] : {|p|}A{|q|}@U is derivable in
CiC. Next, let us apply Definition 23 of a Hoare type to {|p|}A{|q|}@U and recall that
[[c]] is just a set of action trees, corresponding to the command c (Figure 5). There-
fore, by the derivation under `CiC, all action trees from [[c]] will belong to {|p|}A{|q|}@U,
which automatically implies that for any state w and each tree from [[c]], if w satisfies
p and w ∈ WU , then afterU w t q also holds. The later means (Definition 22) that t is
safe and q v w′ eventually holds if t steps completely to Ret v in some final configura-
tion w′. Since after employs the always predicate, it also implies the progress property
(Lemma 7) for all action trees from [[c]].

Auxiliary modal lemmas The proof of the soundness result will rely on a number
of auxiliary modal lemmas, which are listed below. For lack of space, we omit their
proofs. They are relatively straightforward, usually by an induction on the schedule ζ
used by always predicate. We have carried all of proofs for these lemmas in Coq [12],
they usually proceed by an induction on the schedule ζ. In the statements of the lemmas
below, we always assume U to be some fixed concurroid, t ranges over action trees and
w ranges over states.

The Universal lemma states that the modal predicate always commutes with uni-
versal quantification, which yields to the soundness of an infinitary CONJunction rule
(Figure 2). The assumption alwaysU w t (λ w′ t′.True) makes the lemma hold when the
quantification over x is vacuous.

Lemma 9 (Universal). If alwaysU w t (λ w′ t′.True), then always commutes with uni-
versal quantification:

alwaysU w t (λw′ t′.∀x. P x w′ t′) ⇐⇒ ∀x. alwaysU w t (λw′ t′. P x w′ t′)

The implication lemma corresponds to weakening the postcondition, which is nec-
essary for the proof of CONSEQ rule.

Lemma 10 (Implication for after). If afterU w t Q1 and Q1 v w =⇒ Q2 v w, for all
v and w ∈ WU , then afterU w t Q2.

Closure under sequential composition justifies the Seq rule: q holds at the end of
the composed tree if final configuration of the prefix t1 can be used as an initial config-
uration for the suffix to show q holds after.

Lemma 11 (Closure under sequential composition). For some action tree t1 : tree U B
and K : B→ P(tree U A), if t2 ∈ {Seq t1 k | ∀x. k x ∈ K x} and

afterU w1 t1 (λv w. ∀t. (t ∈ K v) =⇒ afterU w t q),

then afterU w1 t2 q.
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Closure under parallel composition justifies the PAR rule. Intuitively, it holds be-
cause when (an approximation t2 of) c2 takes a step over its private and shared state, it
amounts to RU environment interference on (an approximation t1 of) c1, and vice versa.
Note that the pattern of rearranging subjective self /other components recurs at the level
of triples w = [s | j | o]: the parallel composition uses [s1 ◦ s2 | j | o] and the left and
right child threads use [s1 | j | o ◦ s2] and [s2 | j | o ◦ s1], respectively.

Lemma 12 (Closure under parallel composition). If afterU ([s1 ◦ s2 | j | o]) t1 Q1 and
afterU ([s2 ◦ s1 | j | o]) t2 Q2, then

afterU ([s1 ◦ s2 | j | o]) (Par t1 t2 (λx.Ret x))
(λv′ w′.∃s′1 s′2 j′ o′. w′ = [s′1 ◦ s′2 | j′ | o′] ∧

P1 π1 v′ [s′1 | j′ | o′ ◦ s′2] ∧

P2 π2 v′ [s′2 | j′ | o′ ◦ s′1]).

Closure under injection is targeted to justify the INJECT rule. It states that if after
for some predicate Q holds on a state wU from a “small” concurroid V , it will hold in a
large concurroid U = V §đ W with an additional state, reachable by the RW relation of
an addition W (Definition 17).

Lemma 13 (Closure under injection). For the states wV and w0, such that U = V§đW,
wV ∈ WU , w0 ∈ WW and wV ·∪ w0 ∈ WV . If afterV wV t Q, then

afterU (wV ·∪ w0) (Inject t) (λ v′ w′. ∃w′V w′0. w′ = w′V ·∪ w′0 ∧ w′V ∈ WU ∧

(w0,w′0) ∈ RW ∧ Q v′ w′V ).

Closure under hiding justifies the rule HIDE. It is important to notice that in the
final state w′V of the refined execution in V is related to the final state w′U of the coarse
execution in U by the same refinement function Φ̂ (Definition 18), but with different
auxiliaries g′, hence the conjunct Φ̂(g′)(w′U ,w

′
V ).

Lemma 14 (Closure under hiding). If Φ̂(g)(wU ,wV ), such that refines U V Φ̂, and
afterV wV t Q, then

afterU wU (Hide Φ g t) (λv w′U . ∃w′V g′. Φ̂(g′)(w′U ,w
′
V ) ∧ Q v w′V )

Finally, we can formulate and prove the main theorem. The theorem essentially
states that if a judgment Γ ` J can be derived in FCSL, its translation (Figure 4) can be
also derived in CiC.

Theorem 3 (Soundness). If Γ ` J, then [[Γ ` J]].

Proof. The proof goes by induction on the derivation of J. The proof for pure expres-
sion is straightforward, since [[Γ ` e : A]] is just [[Γ]] `CiC e : A. So let us focus on
the judgments of the form Γ ` {p} c : A {q}@U that check the specifications of FCSL
commands (Figure 2).

Each basic command (e.g., return, act) is sound because its pre- and postcondi-
tions are stable under environment interference, the precondition implies the command
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is safe (by Definition 23 and through the after predicate), and the resulting configura-
tion satisfies the postcondition. The SEQ, INJECT and HIDE rules are sound by Lem-
mas 11, 13 and 14. The PAR rule is sound by Lemma 12, as the self /other exchange in
the lemma accounts exactly for the interpretation of the subjective separate conjunction
~ (Figure 1), and the rule FRAME is just a particular case of PAR with c2 being an idle
thread (e.g., return ();), hence the stability requirement. The fix rule is sound by the
Knaster-Tarski theorem. The CONJ rule is sound by Lemma 9, and the CONSEQ rule
by Lemma 10. The EXISTential rule and IF rules are derivable. Since SCSL procedures
are interpreted as (monadic) CiC functions. the procedure APPlication and HYPothesis
rules are sound by the function application and hypothesis rules of CiC. ut
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