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Abstract. Ownership types provide a declarative way to statically structure the
topology of the heap and control aliasing in object-oriented programs. However,
the relation between systematically derived static program analyses by abstract
interpretation and semantic properties enforced by ownership types has not yet
been investigated. In this work we build a framework to statically compute an
abstract object dominance tree, based on the information provided by ownership
types in the context of the owners-as-dominators policy. We develop a series of
concrete and abstract domains that enable us to abstract a tree-like structure in a
way that respects the ancestor relation between particular nodes of the tree and
prove them to be Galois connections. We then plug the developed domains into a
traditional abstract interpretation-based points-to analysis. The resulting abstract
semantics is derived systematically from the concrete transition relation instru-
mented for tree computation and proven to be sound. The presented framework
is tunable concerning polyvariance: the resulting abstract tree depends on the un-
derlying context picking strategy.

Keywords: ownership types, abstract interpretation, points-to analysis, Galois connec-
tions, dominance, uniqueness, object-orientation

1 Introduction

Ownership types have been introduced into object-oriented languages in order to allow
modular reasoning about aliasing and structure of the heap [4, 2]. Variants of ownership
types allow a program to enjoy computational properties such as data race-freedom, dis-
jointness of effects, various confinement properties and effective memory management.
However, the modularity has a downside: the reasoning about points-to information,
aliasing and heap structure via ownership types can be done only locally, i.e., in con-
texts where types are well-formed, e.g., methods and classes. Thus, given a program,
consisting of a set of classes, it is hard to extract information about the relation of ob-
jects in different classes with respect to the type-enforced policy.

This sort of global information about a program is normally revealed by a series of
static program analyses, such as control-flow or points-to analyses [15, 23, 24]. How-
ever, the existing analyses are not tailored to take the ownership information into ac-
count, which leads to imprecise and unsound results considering the property of interest.



class B {
B<this> inner;
void init() {
inner = new B<this>(); // N1

}
}

class A {
A<owner> myA;
B<this> myB;
A<owner> createA() {
myA = new A<owner>(); // N2
return myA;

}
void updateB() {
myB = new B<this>(); // N3
myB.init();

}
}
// The body of the Root object
A<this> a = new A<this>(); // N4
A<this> a1 = a.createA(); // make (A)N21
A<this> a2 = a.createA(); // make (A)N22
a1.updateB();

root

a

��

{a1, a2}

%%JJJJJJJJJ

(A)N4
myA

//

HH

(A)N2

myB

��

]]

(B)N1
,,
(B)N3

inner
oo

VV

(b) Flow-insensitive points-to graph and
an incorrect abstract dominance tree

root (B)N3oo

(A)N4

::

(A)N2

OO

(B)N1

OO

(a) Example program in Ownership Java (c) Correct abstract dominance tree

Fig. 1: An abstract object graph and corresponding dominance trees (dotted)

In this work we explore the marriage of ownership types and a family of semantics-
based points-to analyses via abstract interpretation [7, 8]. We focus on the owners-as-
dominators property [3] ensured by the type annotations, and build an analysis for static
detection of whole-program dominance patterns in object-oriented programs.

In order to do so, we develop a series of concrete and abstract domains that en-
able us to infer a tree-like structure on top of the object graph of the program in a way
that respects the ancestor relation between particular nodes. We prove these domains
to be Galois connections and then plug them into a traditional abstract interpretation-
based points-to analysis. The resulting abstract semantics for the analysis is derived sys-
tematically from the concrete transition relation instrumented for tree computation and
proven to be sound. The semantics is parametrized by context-sensitivity à la Shivers’s
k-CFA [23], in which a parameter can tune the precision of the computed abstraction.

A motivating example: abstracting dominance trees Figure 1 provides a motivating
example for this work. The program Fig. 1(a) contains two classes: A and B. Whenever
an instance of A or B is allocated, another object is assigned to it as its owner. This
might be an object, referred to by some immutable local variable, a this-reference, an
owner of the allocator object, which is denoted by owner, or root, which stands for
the unique top object, whose method main is invoked by an interpreter. In this settings,
the owners-as-dominators invariant (OAD) [4] can be informally stated as follows: in
the object graph of the program rooted with root, there are no paths from root along
field-references to an object o1 from another object o2 that bypass the owner of o1. In
other words, the owner of any object is its dominator in the object graph.

The OAD invariant is considered to be useful for eliminating synchronization locks
in concurrent programs and memory management in real-time applications. This is a
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good motivation for us to design an analysis that helps to answer the following question:
“Whether all object instances allocated at the site N1 in the context c1 are dominated by
all instances, allocated at N2 in the context c2?”

One can try to use traditional points-to analysis techniques to solve this problem. For
instance, building an abstract points-to graph using monovariant may-points-to analysis
for the considered program gives rise to Fig. 1(b), where all object instances are as-
sociated with their allocation sites. Solid arrows denote field references in the abstract
object graph. The dominance tree for the graph (denoted by dotted arrows) can be com-
puted by traditional means [16]. However, the resulting dominator tree is incorrect with
respect to the concrete object graph, since the abstract object (A)N2 is an ancestor (i.e.,
dominator) of (B)N3, whereas in the concrete execution it is not the case: only one of
two objects, allocated at N2, namely (A)N21, dominates (B)N3. In the absence of some
auxiliary context information, which could increase precision of the analysis, the cor-
rect dominance tree for this case is present at Fig. 1(c). Note, that the edge (B)N1 →
(B)N3 is correct, since in the concrete program execution all objects allocated at N3
dominate all objects, allocated at N1. Employing must-analysis also does not provide a
perfect solution, since it can give rise to non-connected points-to graphs.

The cause of the observed problem is the fact that the traditional domain for the
collecting semantics is not tailored to maintain dominance information in a way that can
be abstracted. Since information about owners of abstract objects can be lost because
of “merging” while abstracting program states, we consider some known-to-be-correct
dominator of an abstract object as an abstraction of its immediate dominator, i.e., its
owner. In the following sections we put this observation into the core of the dominance
analysis. In summary, this paper makes the following contributions:

– We describe and formalize two domains for maintaining information about ances-
tors in tree-like structures, which soundly approximate the ancestor relation, and
we prove these domains to be Galois connections;

– We formalize the concrete collecting semantics for computations that maintain the
tree of owners;

– We systematically build an abstract semantics for tunable dominance analysis by
abstracting the concrete semantics and prove it to be a sound approximation. The
developed analysis takes a program in a subset of Java with ownership annotations
as an input and returns a whole-program abstract dominance tree as an output;

– Finally, we discuss other applications of the developed framework, e.g., for type
inference and call graph analysis.

2 Abstractions for Trees and Uniqueness

In this section, we describe two families of domains: tree domains and uniqueness do-
mains. The first family is targeted toward maintaining evolving tree-like structures and
is inspired by ownership functions, introduced in Wren’s master’s thesis [26]. Because
of the abstraction in points-to analyses, multiple concrete objects may correspond to a
single abstract object, which complicates maintaining the ordering of nodes in an ab-
stract tree. In order to tackle this problem, we describe the second family of domains,
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which is aimed to track this fact similarly to the singleton abstraction typical for shape
analyses [13].

2.1 Tree functions and tree domains

Definition 1 (Tree functions). A triple 〈S, root,θ〉 defines a tree function on the set S
iff root ∈ S, θ : S→ S and

1. θ(root) = root
2. ∀a ∈ S ∃k ≥ 0 : θk(a) = root

The following proposition states the correspondence between tree functions and
traditional definition of a tree from graph theory.

Proposition 1. A tree function 〈S, root,θ〉 defines a tree structure τ with the root root
and nodes from S, such that for all a ∈ S, a 6= root : θ(a) = parent(a).

Proof. Using the definition of a tree as an undirected graph, which is (a) connected and
(b) has no cycles [6], we show by contradiction that

(a) τ is connected, otherwise root is not reachable from some nodes by iterating θ⇒
a contradiction;

(b) τ is acyclic. Assuming the existence of a simple cycle in τ (otherwise just break the
cycle into simple ones), there must be a,a1,a2 ∈ S, such that θ(a) = a1 and θ(a) =
a2 and a1 6= a2, which contradicts to the fact that θ is a function⇒ a contradiction.

ut
In the rest of the paper we will abuse notation, referring to some θ as a tree func-

tion, assuming a triple 〈S, root,θ〉, such that S = dom(θ), root ∈ S and θ satisfies the
conditions of Definition 1. Employing the correspondence from Proposition 1, we will
use the following definition of θ-children:

∀ a 6= root, childrenθ(a) = {a′ ∈ dom(θ) | θ(a′) = a}.

A tree function θ with S = dom(θ) induces a partial ordervθ on S, i.e., for all a1,a2 ∈ S

a1 vθ a2 , ∃k ≥ 0 : a2 = θ
k(a1)

Given a1,a2 ∈ S and a tree function θ, such that S = dom(θ), we say that a2 θ-
antecedes a1 iff a1 vθ a2. We will be using the term “antecedence” when talking about
elements of the domain of some tree function without specifying the function if it is
clear from the context. The tree-order vθ induces the least upper bound tθ, which is
defined naturally as a least common θ-ancestor of two elements: a1tθ a2 , a∈ dom(θ),
such that a1 vθ a and a2 vθ a and ∀a′ : (a1 vθ a′ ∧ a2 vθ a′)⇒ avθ a′.

Definition 2 (Tree domains). Given a set A, such that root ∈ A, then 〈T (A),vT 〉 is a
tree domain, where T (A) = {θ | S⊆ A and 〈S, root,θ〉 defines a tree function} and the
relation vT is defined by the following rule:

(TREE-PREC)

dom(θ1)⊆ dom(θ2)
∀a ∈ dom(θ1) ∃k > 0 : θk

1(a) = θ2(a)
θ1 vT θ2
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Proposition 2. Given a set A, then vT is a partial order on T (A).3

In the terms of Definition 2, define tT , >T and ⊥T as follows:

>T = λa. root ⊥T = λa.

{
root if a = root
undefined otherwise

θ1tT θ2 = λa.


θ1(a) if a ∈ dom(θ1)\dom(θ2)
θ2(a) if a ∈ dom(θ2)\dom(θ1)

a′ : avθ1 a′ ∧ avθ2 a′ ∧
∀k ≥ 0 : θk

1(a
′) = θk

2(a
′) otherwise

The last clause of the definition of tT finds the least upper bound of two tree func-
tions by “pulling” the nodes until the greatest common sub-branch in both trees, in-
duced by θ1 and θ2 will be found. It is easy to show that 〈T (A),vT 〉 is a semilattice.
The following lemma relates the tree order and antecedence in tree functions.

Lemma 1 (Tree order and antecedence). If θ1 vT θ2 iff for all a1,a2 ∈ dom(θ1)
a1 vθ2 a2⇒ a1 vθ1 a2.

Proof. (⇒). By induction on k≥ 0 such that a2 = θk
2(a1). The case k = 0 is trivial. The

case k = 1 matches the rule (TREE-PREC), and for k > 1 one should apply the induction
hypothesis to a′ = θ2(a1). Since a1 vθ1 a′ and a′ vθ2 a2, conclude a′ vθ1 a2.

(⇐). By contradiction using the rule (TREE-PREC). Assuming ∃a ∈ dom(θ1), such
that ∀k > 0,θk

1(a) 6= θ2(a), obtain avθ2 θ2(a) 6⇒ avθ1 θ2(a). Contradiction. ut

2.2 Abstracting tree domains

Given sets A, Â and a surjection η : A→ Â, one can build a Galois connection between
the domains of powersets: 〈℘(A),⊆〉 −−→←−−

α

γ

〈℘(Â),⊆〉, where α(S) = {η(a) | a ∈ S} is

an element-wise abstraction and γ(Ŝ) = {a | â ∈ Ŝ and η(a) = â}. This Galois connec-
tion is widely employed to build families of polyvariant control-flow analysis using
context abstractions [25]. In this case, η is referred to as an extraction function [18].
In this section, we assume A, Â and η to be fixed and focus on building the following
Galois connection: 〈℘(T (A)),⊆〉 −−→←−−

α

γ

〈T (Â),vT 〉 for some α and γ.

Define αT : T (A)→ T (Â) as follows:

αT (θ) = λâ. βθ

(
tθ

{
θ(a) | a ∈ η−1(â)

})
,where

βθ = λa.η
(
uθ

{
a′ ∈ S | avθ a′ and ∀a′′ ∈ (η−1 ◦ η)(a′) : avθ a′′

})
The function αT works as an abstraction from the domain of concrete tree functions

T (A) to the domain of abstract tree functions T (Â). More precise, the θ-induced least
upper bound of all immediate θ-ancestors of elements a∈η−1(â) is being abstracted via
βθ The auxiliary helper function βθ maps an element a∈A to the closest (with respect to

3 See Wren’s master’s thesis for the detailed proof [26, Section 7.6].
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θ-antecedence) abstract element â∈ Â, such that all a′ ∈ η−1(â) non-strictly θ-antecede
a. The result is expressed via a greatest lower bound uθ since the set {a′ | avθ a′} for
some fixed a is a complete ordered chain. Informally, it is a “branch” in a tree θ.

The design concern behind the definition of αT is to build an abstraction of trees
that respects antecedence. The following lemma formalizes this result and states the
inverse of αT to be monotone with respect to the antecedence.

Lemma 2 (Abstract antecedence). In the stated definitions, for fixed A, Â,η : A→ Â
and θ ∈ T (A), for all a1,a2 ∈ dom(θ), â1 = η(a1), â2 = η(a2), such that â1 6= â2, one
has â1 vθ̂

â2⇒ a1 vθ a2, where θ̂ = αT (θ).

Proof. By induction on k, such that â2 = θ̂k(â1) and the definition of αT .4 ut

Lemma 3. αT is monotone with respect to vT .

Since αT is proven to be monotone with respect to vT , it is tempting now to
state the Galois connection between concrete and abstract trees 〈T (A),vT 〉 −−−→←−−−

αT

γT

〈T (Â),vT 〉, where γT (θ̂) = tT
{

θ | αT (θ)vT θ̂
}

and employ it directly for the anal-
ysis. However, one can see that such connection does not bring much benefit because
of loss of information when computing a concretization γT by merging concrete trees,
i.e., using tT for concretization is very inaccurate. Instead, we build the Galois con-
nection between a powerset over a concrete tree domain and an abstract tree domain.
Intuitively, it’s preferable to merge abstract trees once all information about antecedence
is abstracted, rather than to merge various concrete trees, retrieved from an abstract one.

The resulting Galois connection between ℘(T (A)) and T (Â) is built via functions
α# :℘(T (A))→ T (Â) and γ# : T (Â)→℘(T (A)), defined as follows:

α#(S) =
F

T {αT (θ) | θ ∈ S} γ#(θ̂) =
{

θ | αT (θ)vT θ̂
}

Lemma 4. For fixed sets A, Â and a surjection η : A→ Â, the functions α# and γ# form

a Galois connection 〈℘(T (A)),⊆〉 −−−→←−−−
α#

γ#

〈T (Â),vT 〉.

The last theorem of this section connects the antecedence in the abstract tree func-
tion θ̂ and its concrete counterpart θ by giving an interpretation of the abstract result.

Theorem 1 (Sound approximation of antecedence). For fixed sets A, Â, a surjection

η : A→ Â, and a Galois connection 〈℘(T (A)),⊆〉−−−→←−−−
α#

γ#

〈T (Â),vT 〉, given an abstract

tree function θ̂ ∈ T (Â), and a concrete one θ ∈ T (A). Then θ ∈ γ#(θ̂) iff

(a) η(dom(θ))⊆ dom(θ̂) and
(b) for all â1, â2 ∈ dom(θ̂), such that â1 6= â2 and â1 vθ̂

â2, for all a1 ∈ η−1(â1)∩
dom(θ), a2 ∈ η−1(â2)∩dom(θ), one has a1 vθ a2.

Proof. (⇒): The proof is using Lemma 2 and the definition of γ#. (⇐): The proof is
by definition of αT and the optimality of αT (θ) with respect to θ̂ using Lemma 1 and
monotonicity of αT by Lemma 3, i.e., αT (θ)vT θ̂. ut

4 For full proofs, see Appendix A.
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2.3 Uniqueness domain

One disadvantage of the concretization function γT is its imprecision with respect to
the evolution of the abstract tree. For instance, given an abstract tree function θ̂ and
â ∈ dom(θ̂). Assume, one wants to attach a new element a to all the concretizations
of θ̂ and then compute the abstraction following the strategy of “pushing alphas” to
compute an abstract transition function [17], i.e.,

αT (
{

θ[a 7→ a′] | for some a′ ∈ η
−1(â) and θ ∈ γT (θ̂)

}
).

Since there might be multiple different “parents” a′ ∈ η−1(â), the result of the ab-
straction will certainly erase the fact of θ-antecedence of a concrete a by some concrete
a′. In this situation the information about uniqueness of a′ could be helpful. In other
words, if for all θ ∈ γT (θ̂) there exists a unique a′ ∈ η−1(â), then after updating each
θ ∈ γT (θ̂), the antecedence will be preserved in the abstract result.

This brings us to the idea of an abstract domain that helps to keep the track of unique
elements of A serving as nodes of the concrete θ with respect to the surjection η. The
necessary technique can be adapted from the studies on shape analysis [13].

We define the uniqueness domain as a three-point partially-ordered set U = {⊥,1,+},
such that ⊥v 1v+. We will use the following notation for total functions having A as
their domain and U as their codomain: U(A) , 〈A→U ,v̇〉, where the partial order
v̇ is defined point-wise and helps to track cardinality of the set of objects, associated
with some a ∈ A.

For a fixed surjection η, we build the following composition of Galois connections
between sets of tree functions ℘(T (A)) over a concrete set A and uniqueness functions
U(Â) over an abstract set Â = η(A):

〈℘(T (A)),⊆〉 −−−→←−−−
α1

γ1 〈℘(U(A)),⊆〉 −−−→←−−−
α2

γ2 〈℘(U(Â)),⊆〉 −−−→←−−−
α3

γ3 〈U(Â),v̇〉,

where
α1(S) = {λa.if (a ∈ dom(θ)) then 1 else ⊥ | θ ∈ S}
γ1(Ŝ) =

S
{S′ | α1(S′)⊆ Ŝ}

α2(S) =
{

λâ.
U

a∈η−1(â) u(a) | u ∈ S
}

γ2(Ŝ) =
S
{S′ | α2(S′)⊆ Ŝ}

α3(S) = λâ.
F

u∈S u(â)
γ3(Ŝ) =

S
{S′ | α2(S′) v̇ Ŝ}

The symmetric binary operation ] ⊆ U ×U is defined as follows: ⊥]⊥ = ⊥,
1]⊥=⊥]1 = 1, 1]1 = +, and for all e ∈U , +] e = e]+ = +.

Informally, the abstraction function α1 maps a tree function θ into a uniqueness
function u in a straightforward way. The function α2 collects information about unique
elements in u with respect to the surjection η. Finally, α3 computes the maximal abstract
number of occurrences of every abstract element among the set of abstract uniqueness
functions u ∈ S by taking a least upper bound

F
u∈S. We define α[ = α3 ◦ α2 ◦ α1 and

γ[ = γ1 ◦ γ2 ◦ γ3. The following theorem states the main property of the Galois connection

〈℘(T (A)),⊆〉 −−−→←−−−
α[

γ[

〈U(Â),v̇〉:
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Theorem 2 (Sound approximation of uniqueness in trees). For fixed sets A, Â, a

surjection η : A→ Â, and a Galois connection 〈℘(T (A)),⊆〉 −−−→←−−−
α[

γ[

〈U(Â),v̇〉, given

an abstract uniqueness function u ∈U(Â), θ ∈ γ[(u), then for all â ∈ Â:

(a) u(â) =⊥ implies for all a ∈ η−1(â), a /∈ dom(θ);
(b) u(â) = 1 implies there exists at most one a ∈ η−1(â), such that a ∈ dom(θ).

2.4 Reduced product

Following Cousot and Cousot’s cookbook on compositional design of Galois connec-
tions [8], we use a reduced product of abstract tree and uniqueness domains in order to
improve the abstraction of the concrete tree domain.

〈℘(T (A)),⊆〉 −−−→←−−−
α\

γ\

〈T (Â),vT 〉×〈U(Â),v̇〉, where

α\(S) = 〈α#(S),α[(S)〉 γ\(〈θ̂,u〉) = γ#(θ̂)∩ γ[(u)

Intuitively, by tracking the cardinality of nodes in a concrete tree θ, we can recom-
pute effectively an abstraction αT (θ), just by picking the closest uniquely-abstracted
nodes as abstract ancestors. This observation will be employed when building an ab-
stract transition function of the dominance analysis in Section 4.

3 FJO: a Core Calculus for Java with Ownership Hierarchies

In this section, we describe A-Normal Featherweight Java with Ownership (FJO)—
a simplified language, based on Featherweight Java [14] and JOE1 [2] and aimed to
to model key aspects of Java-like programming languages extended with ownership
parameters in order to preserve the owners-as-dominators invariant. We also provide
the definition of the concrete semantics of FJO, which, being abstracted in Section 4,
gives rise to the dominance analysis.

3.1 Syntax

Figure 2 provides the definition of the syntax of FJO. To specify the ownership relation
between objects, the language features implicit ownership parametrization, i.e., each
class carries an implicit parameter, which stands for the owner of a particular instance
of this class and is instantiated when a new object instance is created.

Types in FJO are different from the traditional Featherweight Java in the sense that
they are parameterized with an ownership parameter p. For the sake of simplicity we
restrict the number of ownership parameters to one, which is referred to inside the
body of a particular class as owner.5 Alternatively, one can specify an owner of a new

5 However, more expressive possibilities exist in the literature, for example, by allowing the
programmer to declare an arbitrary number of ownership class parameters and the expected
relationship between owner parameters of a class [3].
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P ∈ Program ::=
−→
C ; e

C ∈ Class ::= class C extends C′ {−→t f ;
−→
M}

M ∈Method ::= t m(t v) {−→t v ; −→s }
p ∈Owner ::= this | owner | root | v

t ∈ Type ::= C〈p〉
s ∈ Stmt ::= v = e;` | v. f = v;` |

return v;`

e ∈ Exp ::= v | v. f | new t | v.m(v)

C ∈ ClassName is a set of class names
v ∈ Var is a set of variable names

f ∈ FName is a set of field names
m ∈MName is a set of method names

` ∈ Lab is a set of labels

Fig. 2: Syntax of A-Normal Featherweight Java with Ownership

instances using this-reference, the reference to the global object root or some local
variable v. When a new object new C〈p〉 is allocated, its owner p should be specified
explicitly. This enables a tree of owners to be maintained at runtime.

Type soundness and confinement preservation theorems ensure that the OAD in-
variant is not violated during the program execution [4, 2]. We omit the typing rules
for the sake of brevity, and instead refer the interested reader to the third author’s PhD
dissertation [3].

3.2 A concrete state space of FJO

The concrete state space of execution of FJO (Figure 3) is similar to the formalism of
Smaragdakis et al. [24]. Every concrete state of the corresponding abstract machine
contains a local environment B, a shared store σ and a tree function θ, which describes
the ownership tree, as its components. The state space is parametrized by the sets of
contexts and heap contexts. Contexts are used by a store to maintain information about
local variables of methods and serialized continuations. Heap contexts are used to store
values of objects fields. The purpose of the contexts is to introduce an extra level of
indirection through a store, which makes it easy to collapse information about different

ς ∈ Σ = Stmt×Env×Store×ContSensAddr×Context×Tree
B ∈ Env = (Var ⇀ ContSensAddr)×HContext

σ ∈ Store = ContSensAddr ⇀ (Obj+Continuation)
o ∈ Obj = HContext× (FName ⇀ ContSensAddr)

k ∈ Continuation = (ContSensAddr×Env×Stmt×Context×ContSensAddr)
a ∈ ContSensAddr = (Var×Context)+(FName×HContext)+(MName×Context)

θ ∈ Tree = T (HContext)
c ∈ Context is an infinite set of contexts

hc ∈ HContext is an infinite set of heap contexts ∪ {root}

Fig. 3: A concrete state-space of A-Normal Featherweight Java with Ownership
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program paths just by limiting the sets Context and HContext. Both these sets are left
unspecified to make context-sensitivity an external parameter.

In the described settings, heap contexts play the role of object identifiers. In the
concrete semantics, one should chose the strategy of heap context allocation in a way
that every new object has a unique heap context, so each object is represented by its heap
context and a map of fields. The tree domain, Tree, is built on top of the set of heap
contexts combined with root, which is assumed to be the root of all trees from Tree.
When a method is invoked, the corresponding continuation is allocated in the store. A
continuation consist of the return address, the callee’s environment, the next statement
to be executed, the callee’s local context and the address of the previous serialized
continuation. Storing continuations in the same store as objects gives an easy way to
eliminate infinite recursive calls when building a context-sensitive analysis. Finally,
each local environment B is a tuple that consists of a map from local variables to store
addresses and an identifier of an object, referred by the current this-reference.

3.3 A concrete semantics of FJO

The runtime semantics of FJO is expressed using a small-step CEK machine [9], defined
by the transition relation (⇒)⊆ Σ×Σ. We assume each statement and the program has
a unique label `, and the helper function succ returns the subsequent statement for a
statements label. The semantics is parametrized by two helper functions that define
context allocating strategies: merge and record [24]. We omit most of the transition
rules as they are not relevant to the computation of ownership trees and provide the
concrete semantics for the only essential rule, object instance allocation:6

 (Jv = new C〈p〉;`K,B,σ,ak,c,θ)⇒ (succ(`),B,σ′,ak,c,θ′), where
hc = record(`,c)

−→
f = F (C) ai = ( fi,hc)

o′ = (hc, [ fi 7→ ai]) σ′ = σ+[B(v) 7→ o′] θ′ = adjust(θ, p,hc,B,σ)


Informally, each new object creation in the concrete execution semantics will in-

crease the tree by attaching a new node to it. The possible growth of the tree is not
limited, because the set of heap contexts HContext is considered infinite. The function
adjust, responsible for maintaining the tree of owners θ, is crucial in our semantics:

adjust(θ, p,hc,B,σ) = θ[hc 7→ hc′],where

hc′ =


root if p = root
π2(B) if p = this
θ(π2(B)) if p = owner
hc′′, where (hc′′, ) = σ(B(v)) if p = v for some v ∈ Var

Depending on the syntactic form of the specified owner p, an owner is assigned
to a newly allocated object with an id hc. If p = root, the owner is obviously root. If
p = this, the owner is retrieved as a second projection π2 of the local environment B,

6 Full description of the concrete semantics is provided in Appendix C.
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ς̂ ∈ Σ̂ = Stmt× Ênv× Ŝtore× ̂ContSensAddr× Ĉontext× T̂ree
B̂ ∈ Ênv = (Var ⇀ ̂ContSensAddr)× ̂HContext

σ̂ ∈ Ŝtore = ̂ContSensAddr ⇀ (℘(Ôbj)+℘( ̂Continuation))
ô ∈ Ôbj = ̂HContext× (FName ⇀ ̂ContSensAddr)

k̂ ∈ ̂Continuation = ( ̂ContSensAddr× Ênv×Stmt× Ĉontext× ̂ContSensAddr)
â ∈ ̂ContSensAddr = (Var× Ĉontext)+(FName× ̂HContext)+(MName× Ĉontext)

θ̂u ∈ T̂ree = T ( ̂HContext)×U( ̂HContext)
ĉ ∈ Ĉontext is a finite set of contexts

ĥc ∈ ̂HContext is a finite set of heap contexts ∪ {root}

Fig. 4: Abstract state-space of A-Normal Featherweight Java with Ownership for a
context-sensitive dominance analysis

i.e., the current id of an object, referred to by this-reference. In the case p = owner, the
owner is taken from the tree θ as an immediate θ-ancestor of this. Finally, if an owner
is specified by a variable v, it’s retrieved using environment B and a store σ.

It is important to notice that the described semantics accounting to ownership trees
is not supposed be implemented in the real compiler. In the original work on ownership
types, an ownership tree is a purely virtual concept. The only purpose of having the tree
as a component in the instrumented concrete state space is to build a static analysis by
a systematic abstraction of a concrete semantics.

4 Abstract Semantics of FJO and Dominance Analysis

In this section, we convert the concrete semantics of FJO into an abstract interpretation
of itself using the recipe of Van Horn and Might [25]. The abstraction over contexts
and heap contexts is determined by an opaque surjection η, which accounts for poly-
variance. Figure 4 provides a definition of the abstract state-space, which reflects its
concrete counterpart and is obtained via a structural abstraction map (Figure 5). The
partial order on domains of the state-space is obtained by the natural point-wise and
element-wise lifting of the original partial orders. The only interesting detail to notice
is that the concrete tree domain Tree = T (HContext) is being abstracted using the re-
duced product from Section 2.4 via α\ : T (HContext)→ T ( ̂HContext)×U( ̂HContext).

The abstract semantics is encoded as a small-step nondeterministic transition rela-
tion (;) ⊆ Σ̂× Σ̂. The operation t for stores merges the sets for the same key value.
Again, we provide only a selected rule for object allocation:7

 (Jv = new C〈p〉;`K, B̂, σ̂, âk, ĉ, θ̂u) ; (succ(`), B̂, σ̂′, âk, ĉ, θ̂′u′), where
ĥc = r̂ecord(`, ĉ)

−→
f = F (C) âi = ( fi, ĥc)

ô′ = (ĥc, [ fi 7→ âi]) σ̂′ = σ̂t [B̂(v) 7→ ô′] θ̂′u′ = âdjust(θ̂u, p, ĥc, B̂, σ̂)


7 The rest of abstract semantics is provided in Appendix C.
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αΣ(S) = {αState(s,B,σ,ak,c,θ) | (s,B,σ,ak,c,θ) ∈ S}
αState(s,B,σ,ak,c,θ) = (s,αEnv(B),αStore(σ),η(ak),η(c),α\(θ))

αEnv(B) = λv. η(B(v))
αStore(σ) = λâ.{αD(σ(a)) | η(a) = â}

αD(aret,B,s,c,ak) = (η(aret),αEnv(B),s,η(c),η(ak))
αD(hc, [ f 7→ a f ]) = (η(hc), [ f 7→ η(a f )])

η is defined by polyvariance

Fig. 5: A structural abstraction map

The abstracted function âdjust merges abstract ownership trees in a way that re-
spects antecedence in the concrete counterpart. In order to define it, we need introduce
an auxiliary function to compute the least unique θ̂-ancestor:

uniqueu
θ̂
(ĥc) , ĥc

′
,where

ĥcv
θ̂

ĥc
′
, u(ĥc′) = 1 and for all ĥc

′′
, ĥcv

θ̂
ĥc
′′⇒ ĥc

′ v
θ̂

ĥc
′′
.

The abstracted version of âdjust is defined as follows:

âdjust(θ̂u, p, ĥc, B̂, σ̂) = θ̂′′u′ , where

(θ̂,u) = θ̂u

u′ = u[ĥc 7→ u(ĥc)]1]
ĥci = children

θ̂
(ĥc)

θ̂′ = θ̂[ĥci 7→ θ̂(ĥc)]
θ̂′′ =

F
T (θ̂ j ∪{θ̂′})

θ̂ j =


θ̂[ĥc 7→ root] if p = root

θ̂[ĥc 7→ uniqueu′

θ̂
(π2(B̂))] if p = this

θ̂[ĥc 7→ uniqueu′

θ̂
(θ̂(π2(B̂)))] if p = owner{

θ̂[ĥc 7→ uniqueu′

θ̂
(ĥc
′
)] | (ĥc

′
, ) ∈ σ̂(B̂(v))

}
if p = v

If a node ĥc is already present in the abstract tree, attaching of it as a leaf might
violate the antecedence in the concrete tree. For this purpose, all children of ĥc in the
abstract tree are “reattached” to the θ̂-ancestor of ĥc. Lemma 5 formalizes the obser-
vation that only heap contexts, whose pre-images are unique in the concretization with
respect to η, may serve as non-leaf nodes in an abstract tree function.

Lemma 5. Define the invariant I (θ̂u) as follows:

I (θ̂u) , ∀â ∈ dom(θ̂) : children
θ̂
(â) 6= /0⇒ u(â) = 1.

Then I (θ̂u) and θ̂′u′ = âdjust(θ̂u, p, ĥc, B̂, σ̂) imply I (θ̂′u′)

Proof. The proof is by the definition of âdjust and case analysis on p. ut

We assume the stated invariant to be held for the initial abstract state ς̂0.
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Termination and complexity The state space is implemented following the method-
ology of Might [18], so its dependence structure is a directed acyclic graph. All leaf
nodes of this graph correspond to finite sets thanks to the chosen extraction function η,
so the whole state space is finite. One can consider an abstract collecting semantics as
an iteration over a set of reachable abstract states F̂ :℘(Σ̂)→℘(Σ̂):

F̂ (Ŝ) = {ς̂0}∪{ς̂′ | ς̂ ∈ Ŝ and ς̂ ; ς̂
′},

where ς̂0 is an initial abstract state. By Kleene’s fixed point theorem there exists n ∈ N,
such that lfp(F̂ ) = F̂ n( /0).

To estimate the complexity of the analysis (with η implementing Shivers’s time-
based k-CFA) we apply the single-threaded store optimization [19] and a similar single-
threaded tree-uniqueness optimization. In these settings, |T̂ree|= O(|Lab|3k) = O(n3k),
where n is the size of the program and k is k-CFA’s polyvariance parameter. Hence for
a fixed k the overall complexity remains polynomial in the size of the program.

Soundness The soundness of the analysis is stated by the following theorem:

Theorem 3 (Soundness of the dominance analysis). If αState(ς)v ς̂ and ς⇒ ς′, then
there must exist a state ς̂′, such that αState(ς′)v ς̂′ and ς̂ ; ς̂′.

Proof. (Sketch) The proof is a standard one by the case-analysis of the concrete transi-
tion relation (⇒). The only non-trivial case is an object allocation. For this particular
case the soundness if reformulated in terms of concretization γ\ of an abstracted tree
function and proven separately for both abstract domains T ( ̂HContext) and U( ̂HContext),
employing Theorem 1 and the invariant from Lemma 5.8 ut

5 Discussion and Related Work

Similar analyses and formalisms We developed our work mainly by exploring two
domains: of trees and uniqueness functions, combining and embedding them into Cousot
and Cousot’s work on abstract interpretation [7, 8]. The resulting framework is built
using an adapted idea of Shivers’s k-CFA [23] and systematic abstraction of the store-
based semantic formalism [18, 19, 24, 25].

Our analysis has been developed independently from a recently published similar
work on analyses for concurrent higher-order programs [20]. Although the later one
solves a different class of problems, it employs the same sort of uniqueness abstraction
to track the cardinality of allocated abstract thread identifiers. It would be interesting to
investigate the impact of the dominance analysis in a concurrent setting.

Ownership and dominance inference The idea of tree domains originates in the no-
tion of ownership functions, introduced by Wren is his master’s thesis [26] and em-
ployed by him for ownership inference. The author describes a dynamic analysis via

8 The detailed proof is provided in Appendix A.

13



runtime recomputing the dominance tree. We believe that, using abstraction of tree do-
mains from our work, it is possible to develop a corresponding static analysis by abstract
interpretation, using a function similar to our âdjust. Such an analysis could utilize Al-
strup and Lauridsen’s dynamic algorithm for efficiently maintaining a dominator tree
during the fixed point computation [1].

Our result is close to the static dominance inference by Milanova and Vitek [21].
Their work however requires a complex correctness proof. We believe that the system-
atic abstract interpretation approach is preferable as the close connection between the
formal semantics and the analysis eases the proof burden. Also, their analysis is not tun-
able with respect to polyvariance. Fluet and Weeks [10] develop a contification analysis
by employing dominance in abstract call graphs of functional programs. We believe that
reformulating their analysis using tree domains would allow to tune the precision of the
result. Geilmann and Poetschz-Heffter [12] developed a modular abstract interpretation
analysis to discover simple (i.e., non-hierarchical) confinement properties in Java-like
programs. This work employs a box model instead of tree domains.

Trees as an abstract domain We suspect that the tree semi-lattice underlies the effi-
cient algorithms for dominators of control-flow graphs in the work of Cooper et al. [5],
which is formulated in terms of the monotone framework. Gallagher et al. have used tree
domains extensively in abstract interpretation however in the form of tree automata or
tree grammars [11].

6 Conclusion and Future Work

We have presented a static analysis to determine dominance in object graphs. Existing
points-to analyses are not designed to properly abstract this relation between objects.
Our framework employs information, provided by ownership type annotations and op-
erates on a product of two formalized domains: of trees and uniqueness functions. The
analysis was developed by using Galois connections for systematic abstraction of a
small-step abstract machine instrumented for dominance tree computations and proven
to be sound. We have developed a prototype implementation of the resulting analysis in
Scala along with a series of examples.9

As future work, we believe that employing gradual ownership types [22] will help
to overcome the verbosity of the type annotations and make them a powerful tool for
static analyses. For instance, the presented analysis uses only a minimal amount of
annotations at allocation sites. Going in the other direction, we plan to use tree domains
for building ownership inference algorithms by systematic abstraction of a dynamic
semantics of dominance tree computation [1, 26]. In our formalism, classes are limited
to only one ownership parameter. In future work, we plan to remove this restriction by
keeping a separate map of ownership parameters for each heap context and maintain it
according to the ownership tree structure to preserve the ordering [2].

It is also an open question, which context allocation strategies would yield the most
precise analysis in terms of dominance trees and how one can use ownership informa-
tion to improve the results of traditional points-to analyses.

9 Available at http://people.cs.kuleuven.be/ilya.sergey/ownership-cfa
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A Proofs of Some Statements From Sections 2 and 4

Lemma 2 (Abstract antecedence). In the definitions of Section 2, for fixed A, â,η :
A→ â and θ∈ T (A), for all a1,a2 ∈ dom(θ), â1 = η(a1), â2 = η(a2), such that â1 6= â2,
one has â1 vθ̂

â2⇒ a1 vθ a2, where θ̂ = αT (θ).

Proof. By induction on k, such that â2 = θ̂k(â1) and the definition of βT .

Case k = 1. By the definition of tree functions,

â2 = θ̂(â1) = βθ

tθ

{
θ(a) | a ∈ η

−1(â1)
}︸ ︷︷ ︸

(ζ)


By assumption a1 ∈ ζ, which implies a1 vθ a′ (a), where a′ = tθζ.
Taking â2 = βθ(a′), we obtain â2 = η(θk(a′)) for some k ≥ 0. Moreover, by as-
sumptions a2 ∈ η−1(â2) and θk(a′) ∈ η−1(â2), so by the definition of βθ, we have
a′ vθ a2 (b).
Using transitivity of vθ, combining of (a) and (b) conclude the proof for this case.

Case k > 1. Take â′ = θ̂(â1). Then for all a′ ∈ η−1(â′) : a1 vθ a′. Using induction
hypothesis for any taken a′ and a2 concludes the proof.

ut

Lemma 3. αT is monotone with respect to vT .

Proof. Assume, there are θ1,θ2, θ̂1 = αT (θ1) and θ̂2 = αT (θ2), such that θ1 vT θ2 and
θ̂1 6vT θ̂2. Then by Lemma 1, there must exist â1, â2 ∈ dom(θ̂1)∩ dom(θ̂2), â1 6= â2,
such that

(a) â1 vθ̂2
â2;

(b) â1 6vθ̂2
â1.

From (a), using Lemma 2, conclude: ∀a1 ∈ η−1(â1)∩ dom(θ1), a2 ∈ η−1(â2)∩
dom(θ1), (c) a1 vθ2 a2, which implies, by Lemma 1, (d) a1 vθ1 a2. Employing the
fact that dom(θ1) ⊆ dom(θ2) and the definition of αT , one can see, that â1 6vθ̂1

â2 ⇔
∃a′2 ∈ η−1(â2)∩dom(θ1), such that a1 6vθ1 a2, but this contradicts (d). A contradiction
proves θ̂1 vT θ̂2. ut

Lemma 4. For fixed sets A, Â and a surjection η : A→ Â, the functions α# and γ# form
a Galois connection

〈℘(T (A)),⊆〉 −−−→←−−−
α#

γ#

〈T (Â),vT 〉,where

α#(S) = tT {αT (θ) | θ ∈ S}
γ#(θ̂) =

{
θ | αT (θ)vT θ̂

}
.
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Proof. The proof of using the traditional characteristics of a Galois connection for the
statement of the lemma:

∀S ∈℘(T (A)), θ̂ ∈ T (Â) : α
#(S)vT θ̂⇐⇒ S⊆ γ

#(θ̂).

⇒ Assume α#(S) vT θ̂, but S 6⊆ γ#(θ̂). Then, by the definition of γ#, there must exist
θ′ ∈ S, such that αT (θ′) 6vT θ̂. But by the definition of α#,

θ̂
′′ = tT {αT (θ) | θ ∈ S} vT θ̂

and αT (θ′)vT θ̂′′, which means that αT (θ′)vT θ̂. A contradiction.
⇐ Assume S⊆ γ#(θ̂), but α#(S) 6vT θ̂, i.e., there exists θ′ ∈ S, such that αT (θ′) 6vT θ̂.

But by the definition of γ#,

S⊆
{

θ | αT (θ)vT θ̂
}

,

which implies that αT (θ′)vT θ̂. A contradiction completes the proof.
ut

Theorem 3 (Soundness of the antecedence analysis). If αState(ς) v ς̂ and ς⇒ ς′,
then there must exist a state ς̂′, such that αState(ς′)v ς̂′ and ς̂ ; ς̂′.

Proof. The proof is a standard one by the case-analysis of the concrete transition rela-
tion (⇒) [19]. The only non-trivial case is an object allocation. For this particular case,
since the abstract transition relation (;) is deterministic, we reformulate the statement
of the theorem as follows (in the definitions of Section 4), using the definition of the
Galois connection 〈α\,γ\〉:

θ ∈ γ\(θ̂u)
I (θ̂u)

θ′ = adjust(θ, p,hc,B,σ)
θ̂′u′ = âdjust(θ̂, p, ĥc, B̂, σ̂)

⇒ θ′ ∈ γ\(θ̂′u′),

where the invariant I (θ̂u) is defined in Lemma 5 and obviously preserved during
the abstract execution of the program. Assume η : HContext → ̂HContext is a fixed
surjection, defined by polyvariance. Consider the abstraction componentwise:

Uniqueness domain Assume u′ = π2(âdjust(θ̂u, p, ĥc, . . .)) and u′′ = α[(θ′). Then hc =
η(hc). By the definition of âdjust, u′(ĥc) = u(ĥc)]1. One can see that for all ĥc

′ 6= ĥc :
u′(ĥc

′
)= u′′(ĥc

′
) and by the definition of α[ (Section 2.3), u′′(ĥc)=

U
hc′′∈η−1(ĥc) α1(θ)]

1 v u(ĥc)] 1 = u′(ĥc), so we have u′′ v̇ u′, i.e., α[(θ′) v̇ u′, which is equivalent to
θ′ ∈ γ[(u′) by the main property of Galois connections.

Tree domain Taking θ ∈ γ#(θ̂), by Theorem 1, we have for all ĥc1, ĥc2 ∈ dom(θ̂), such
that ĥc1 6= ĥc2 and ĥc1 vθ̂

ĥc2, for all hc1 ∈ η−1(ĥc1)∩ dom(θ), hc2 ∈ η−1(ĥc2)∩
dom(θ) imply hc1 vθ hc2.
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Using the same theorem, we will show θ′ ∈ γ#(θ̂′) as for all ĥc1, ĥc2 ∈ dom(θ̂′),
such that ĥc1 6= ĥc2 and ĥc1vθ̂′ ĥc2, for all hc1 ∈η−1(ĥc1)∩dom(θ′), hc2 ∈η−1(ĥc2)∩
dom(θ′) one has hc1 vθ′ hc2.

Assume children
θ̂
(ĥc) = /0. Proof the statement of the theorem by the case analysis

on p.

Case p = root. The proof for this case is trivial since root is unique in any abstrac-
tion.

Case p = this. Let ĥc
′
= π1(B̂), then by the polyvariance there must exist hc′ ∈

η−1(ĥc
′
), such that θ′ = θ[hc 7→ hc′]. By the definition of âdjust, θ̂′ = θ̂tT θ̂[ĥc 7→

ĥc
′′
], such that (a) ĥc

′ v
θ̂

ĥc
′′

and (b) u′(ĥc
′′
) = 1.

Together, (a) and (b) imply that there must exist a unique hc′′ ∈ dom(θ′), such that
hc′ vθ hc′′⇒ hcvθ′ hc′′, i.e. ∀hc′′ ∈ η−1(ĥc

′′
) : hcvθ′ hc′′.

All other hc′′′ ∈ η−1(ĥc) are handled by the least upper bound tT in the definition
of âdjust. More precise, we employ the invariant I (θ̂u) and Lemma 5 in the sense
that there must exists a u-unique hc0 ∈ η−1(ĥc0), such that θ̂(ĥc) = ĥc0, ĥc0 6= ĥc
and hc′′′ vθ h0. In the resulting abstract tree θ̂′ = θ̂tT θ̂[ĥc 7→ ĥc

′′
], θ̂′(ĥc) = ĥc

∗
,

so ĥc
′′ v

θ̂′ ĥc
∗

and ĥc0 vθ̂′ ĥc
∗
. Therefore, by Lemma 5 and Theorem 2, ∃! hc∗ ∈

η−1(ĥc
∗
), such that for all hc′′′ ∈ η−1(ĥc)∩dom(θ′), hc′′′ vθ′ hc∗.

For other abstract contexts ĥc
′′′ 6= ĥc the proof follows from the application of The-

orem 1 to θ and θ̂, since children
θ̂
(ĥc) = /0 by assumption.

Case p = owner. Assuming ĥc
′
= θ̂(π1(B̂)) and hc′ ∈ η−1(ĥc

′
), consider the unique

hc′′ ∈ η−1(ĥc
′′
), where ĥc

′′
= uniqueu′

θ̂
(ĥc
′
), such that hcvθ′ hc′ vθ′ hc′′. The rest

of the proof is similar to the case p = this.

Case p = v. The proof for this case is similar to the two previous cases. The only
difference is that the least upper bound is computed, taking into account all possible
abstract ancestors of an object, referred by v, so the resulting abstract tree function
is vT -greater than all of them, i.e., less precise and more general.

Now assume ĥci = children
θ̂
(ĥc) 6= /0. Then θ̂ vT θ̂∗ = θ̂[ĥci 7→ θ̂(ĥc)]. As in the

case p = this, we employ the invariant I (θ̂u) and Lemma 5, for the u-unique ĥc0 =
θ̂(ĥc), while merging the tree functions via tT . It is important to note that ĥc0 6= ĥc, so
the “tree” θ̂′ will not be “disconnected” after reattaching ĥc to the new abstract ancestor.

ut
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B Uniqueness Domain as Tracking the Cardinality of Abstraction

There is a trivial Galois connection between the counting and uniqueness domains:

〈℘(N),⊆〉 −−−→←−−−
α′

γ′

〈U ,v〉, where

α′(S) =

⊥ if S = /0

1 if S = {1}
+ otherwise

γ′(u) =


/0 if u =⊥
{1} if u = 1
N otherwise

Indeed, both 〈℘(N),⊆〉 and 〈U ,v〉 are complete lattices, so for an arbitrary set A
one can consider complete lattices of total functions 〈A→℘(N),⊆̇〉 and 〈A→U ,v̇〉.
There is a point-wise Galois connection between these lattices. The domain of count-
ing functions 〈A→℘(N),⊆̇〉 answers the question “for any element a ∈ A, how many
times a has been used?” and plays a role of a cardinality counter, which can be attached
to each state of a computation to count, for instance, how many object in the particu-
lar context have been allocated. In the meanwhile, the domain of uniqueness functions
U(A) = 〈A→U ,v̇〉 helps to answer the question “whether some a ∈ A has been used
zero, one or more than one times?” and works as an abstract counter, which, for in-
stance, helps to know precisely, whether zero, one or more objects have been allocated
in the particular context.

C Full Concrete and Abstract Semantics of A-Normal
Featherweight Java with Ownership

In this section we give the full description of concrete semantics of A-Normal Feather-
weight Java with Ownership as well as well as of its abstract counterpart.

C.1 Concrete semantics of FJO

Concrete semantics is a binary relation (⇒) ⊆ Σ×Σ in the form of a small-step CEK
machine with heap-allocated continuations and an extra state component to maintain
an ownership tree. The opaque functions M and F are standard lookup functions for
class methods and fields respectively. The semantics is parametrized by two functions:
merge and record, which serve for allocating local and heap contexts respectively. An
interested reader should take a look on the work of Smaragdakis et al. on context-
sensitive points-to analyses [24] for more details.

Variable reference

(Jv = v′;`K,B,σ,ak,c,θ)⇒ (succ(`),B,σ′,ak,c,θ), where
σ′ = σ+[B(v) 7→ σ(B(v′))].

Return

(Jreturn v;`K,B,σ,ak,c,θ)⇒ (s,B′,σ′,a′k,c
′,θ), where

(aret,B′,s,c′,a′k) = σ(ak) σ′ = σ+[aret 7→ σ(B(v))].
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Field lookup

(Jv = v′. f ;`K,B,σ,ak,c,θ)⇒ (succ(`),B,σ′,ak,c,θ), where
( , [ f 7→ a f ]) = σ(B(v′)) σ′ = σ+[B(v) 7→ σ(a f )].

Field update

(Jv. f = v′;`K,B,σ,ak,c,θ)⇒ (succ(`),B,σ′,ak,c,θ), where
(hc, ) = σ(B(v)) a f = ( f ,hc) σ′ = σ+[a f 7→ σ(B(v′))].

Method call

(Jv = v0.m(v′);`K,B,σ,ak,c,θ)⇒ (s0,B′,σ′,a′k,c
′,θ), where

M = Jt m(t v′′) {
−−→
t v′′′ ; −→s }K = M (o0,m)

o0 = (hc0, ) = σ(B(v0)) o′ = σ(B(v′)) c′ = merge(`,hc0,c)
a′ = (v′′,c′) a′′j = (v′′′j ,c′) B′ = ([v′′ 7→ a′,v′′′j 7→ a′′j ],hc0)

k = (B(v),B,succ(`),c,ak) a′k = (m,c) σ′ = σ+[a′ 7→ o′]+ [a′k 7→ k]

Object allocation

(Jv = new C〈p〉;`K,B,σ,ak,c,θ)⇒ (succ(`),B,σ′,ak,c,θ′), where
hc = record(`,c)

−→
f = F (C) ai = ( fi,hc)

o′ = (hc, [ fi 7→ ai]) σ′ = σ+[B(v) 7→ o′] θ′ = adjust(θ, p,hc,B,σ)

C.2 Abstract semantics of FJO

Abstract semantics (;) ⊆ Σ̂× Σ̂ is a sound approximation of the abstract transition
function. It is described in the form of a non-deterministic small-step abstract machine.
The operation t for stores merges the sets for the same key value. The rules comprising
∈when performing lokup into an abstract store σ̂ are the source of the non-determinism.

Variable reference

(Jv = v′;`K, B̂, σ̂, âk, ĉ, θ̂u) ; (succ(`), B̂, σ̂′, âk, ĉ, θ̂u), where
σ̂′ = σ̂t [B̂(v) 7→ σ̂(B̂(v′))].

Return

(Jreturn v;`K, B̂, σ̂, âk, ĉ, θ̂u) ; (s, B̂′, σ̂′, â′k, ĉ
′, θ̂u), where

(âret, B̂′,s, ĉ′, â′k) ∈ σ(âk) σ̂′ = σ̂t [âret 7→ σ̂(B̂(v))].

Field lookup

(Jv = v′. f ;`K, B̂, σ̂, âk, ĉ, θ̂u) ; (succ(`), B̂, σ̂′, âk, ĉ, θ̂u), where
( , [ f 7→ â f ]) ∈ σ̂(B̂(v′)) σ̂′ = σ̂t [B̂(v) 7→ σ̂(â f )].

Field update

(Jv. f = v′;`K, B̂, σ̂, âk, ĉ, θ̂u) ; (succ(`), B̂, σ̂′, âk, ĉ, θ̂u), where
(ĥc, ) ∈ σ̂(B̂(v)) â f = ( f , ĥc) σ̂′ = σ̂t [â f 7→ σ̂(B̂(v′))].
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Method call

(Jv = v0.m(v′);`K, B̂, σ̂, âk, ĉ, θ̂u) ; (s0, B̂′, σ̂′, â′k, ĉ
′, θ̂u), where

M = Jt m(t v′′) {
−−→
t v′′′ ; −→s }K = M (ô0,m)

ô0 = (ĥc0, ) ∈ σ̂(B̂(v0)) ô′ ∈ σ̂(B̂(v′)) ĉ′ = m̂erge(`, ĥc0, ĉ)
â′ = (v′′, ĉ′) â′′j = (v′′′j , ĉ′) B̂′ = ([v′′ 7→ â′,v′′′j 7→ â′′j ], ĥc0)

k̂ = (B̂(v), B̂,succ(`), ĉ, âk) â′k = (m, ĉ) σ̂′ = σ̂t [â′ 7→ ô′]t [â′k 7→ k̂]

Object allocation

(Jv = new C〈p〉;`K, B̂, σ̂, âk, ĉ, θ̂u) ; (succ(`), B̂, σ̂′, âk, ĉ, θ̂′u′), where
ĥc = r̂ecord(`, ĉ)

−→
f = F (C) âi = ( fi, ĥc)

ô′ = (ĥc, [ fi 7→ âi]) σ̂′ = σ̂t [B̂(v) 7→ ô′] θ̂′u′ = âdjust(θ̂u, p, ĥc, B̂, σ̂)
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