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Abstract

We present a technique to calculate iterative, polynomial-time graph algorithms directly from the

definition of the properties. We do this by fixed-point fusion of (1) a least fixed point expressing

all finite paths through a directed graph and (2) Galois connections that capture the properties

of interest. We demonstrate the technique by constructing three algorithms from the literature: a

transitive closure algorithm, a dominance algorithm and an algorithm for the single-source shortest

path problem. Furthermore we show how the transitive closure algorithm can be understood as

an abstraction of a fourth iterative all-pairs shortest path algorithm.

The approach illustrates that reasoning in the style of fixed-point calculus extends gracefully to

the domain of graph algorithms. We thereby bridge common practice from the school of program

calculation with common practice from the school of static program analysis, where fixed-point

fusion is known as a complete abstraction, and build a novel view on iterative graph algorithms as

instances of abstract interpretation.

Keywords: graph algorithms, transitive closure, dominance, shortest path algorithm, fixed-point

fusion, fixed-point calculus, Galois connections

1. Introduction

Calculating an implementation from a specification is central to two active sub-fields of the-

oretical computer science, namely the calculational approach to program development [1, 13, 14]

and the calculational approach to abstract interpretation [19, 23, 36, 37]. The advantage of both

approaches is clear: the resulting implementations are provably correct by construction. Whereas

the former is a general approach to program development, the latter approach is mainly used for

developing provably sound static analyses (with notable exceptions [20, 26]). Both approaches are
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anchored in some of the same discrete mathematical structures, namely partial orders, complete

lattices, fixed points and Galois connections.

Graphs and graph algorithms are foundational to computer science as they capture the essence

of networks, compilers, social connections, and much more. One well-known class of graph algo-

rithms is the transitive closure algorithms that finds out all the connected nodes in a graph. The

shortest path algorithms, exemplified by Dijkstra’s single-source shortest path algorithm [29, 17],

are another class of widespread use. Dominance algorithms are a third family, employed ubiqui-

tously: for transforming programs into static single assignment form [6], for optimizing functional

programs [33], for ownership typing [38], for information flow analysis [11], etc. In this paper we

reconsider the calculational foundations for such algorithms in the context of fixed-point calculus

and Galois connections.

In order to bridge two worlds, namely, calculational program development and semantics-based

program analysis, we employ the toolset of both fixed-point calculus [1] and abstract interpreta-

tion [23], and show that solutions for finite path properties in graphs can be obtained by these

means, yielding polynomial-time algorithms that are correct by construction. In doing so, we uti-

lize Galois connections to extract properties (namely transitive closure, dominance and shortest

path) from sets of paths in graphs similar to how Galois connections are used to extract properties

from program executions in abstract interpretation.

The remainder of the paper is structured as follows. Section 2 explains the notation used

in the paper and provides necessary background on basic domain theory and relational algebra.

Section 3 presents directed graphs and finite paths in them from a fixed point perspective. Section 4

describes the derivation of a transitive closure algorithm. Subsequently, Sections 5 and 6 focus on

calculating algorithms for dominance and shortest paths. Section 7 recasts the transitive closure

algorithm as a systematic abstraction of a fourth algorithm for all-pairs shortest paths. Section 8

provides a survey of related work and Section 9 concludes.

2. Background

We first highlight the relevant mathematical preliminaries. Readers familiar with lattices and

orders [28] as found in the fixed-point calculus [1], basic abstract interpretation [27], and relational

algebra [8] may wish to proceed directly to Section 3.

2.1. Notation

We use the standard notation ℘(X) for the powerset of X. When working with sets and

relations, we will make use of Eindhoven notation for quantified expressions [42]. The general

pattern is 〈Q x : p(x) : t(x)〉, where Q is some quantifier (e.g., “∀” or “∃”), x is a sequence of free

variables (also called dummies), p(x) is a predicate, which must be satisfied by the dummies, and
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t(x) is an expression, defined in terms of the dummies. For instance, for cases “∀” or “∃”, we have

the following relations with the standard notation:

〈∀x : p(x) : q(x)〉 ⇐⇒ ∀x.(p(x)⇒ q(x))

〈∃x : p(x) : q(x)〉 ⇐⇒ ∃x.(p(x) ∧ q(x))

Following the same notation, we use set comprehensions {x : p(x) : q(x)} as a shorthand for

〈∪x : p(x) : {q(x)}〉, where x contains components to union over, p is a filtering condition and

{q(x)} is a yielded result for a particular combination from x.2 The square brackets around a

formula indicate a universal quantification over any free variables, not mentioned in the preamble.

For instance, [ x ∨ ¬x ].

In the proofs, we will overload the equality sign “=” to mean equivalence between two subse-

quent steps of a derivation, supplying a textual explanation in fancy brackets: H . . . I.

2.2. Basics of domain theory and abstract interpretation

A complete lattice 〈C;⊑,⊥,⊤,⊔,⊓〉 is a partial order 〈C;⊑〉 such that there exists a least

upper bound (or join) ⊔S and a greatest lower bound (or meet) ⊓S of all subsets S ⊆ C. In

particular ⊔C = ⊤ and ⊓C = ⊥.

A point x is a fixed point of a function f if f(x) = x. Given two partial orders, 〈C,⊑〉 and

〈A,≤〉, a function f of type C → A is monotone if [ x ⊑ y =⇒ f(x) ≤ f(y) ]. By the Knaster-

Tarski fixed-point theorem a monotone endo-function f over a complete lattice has a least fixed

point lfp⊑f = ⊓{x | f(x) ⊑ x}. Algorithmically the least fixed point of a monotone function

f over a complete lattice of finite height3 can be computed by Kleene iteration: ⊥ ⊑ f(⊥) ⊑

f2(⊥) ⊑ f3(⊥) ⊑ . . . since lfp⊑f = ⊔i≥0f
i(⊥). We will occasionally write lfpI⊑f to denote the

least fixed point of f greater than I.

A Galois connection is a pair of functions α, γ (in the present case, between two partial orders

〈C,⊑〉 and 〈A,≤〉), such that

[ α(c) ≤ a ⇐⇒ c ⊑ γ(a) ] (1)

The function α is referred to as the lower adjoint and the function γ is referred to as the upper

adjoint.4 We typeset Galois connections as:

〈C,⊑〉 −−−→←−−−α
γ
〈A,≤〉

2This notation is equivalent to the traditional notation {q(x) | p(x)}, which does not make explicit which vari-

ables are bound and which variables are free.
3Traditionally, the height of a lattice 〈C;⊑,⊥,⊤,⊔,⊓〉 denotes the maximal length of a (possibly infinite) strictly

increasing chain of elements x0 ⊑ x1 ⊑ . . . ⊑ xi ∈ C.
4In the abstract interpretation literature where they are typically associated with some information loss they

are known as the abstraction and concretization functions, respectively [24].

3



sometimes with double arrow heads to stress that an adjoint is surjective. Galois connections enjoy

a number of properties of which we only highlight a few. Both adjoints of a Galois connection are

monotone. Furthermore, for a Galois connection between two complete lattices the lower adjoint

distributes over the least upper bound: [ α(⊔X ) =
∨
α(X ) ]. Finally if a function between two

complete lattices distributes over the least upper bound, then it is the lower adjoint of a Galois

connection with its corresponding upper adjoint uniquely determined by γ(a) = ⊔{c | α(c) ≤

a}[24].

Galois connections can be constructed compositionally: given 〈C,⊑〉 −−−→←−−−
α1

γ1

〈A1,≤1〉 and

〈A1,≤1〉 −−−→←−−−
α2

γ2

〈A2,≤2〉, one has 〈C,⊑〉 −−−−−−→←−−−−−−
α2◦α1

γ1◦γ2

〈A2,≤2〉.

Galois connections interact with least fixed points by fixed-point fusion [1]:

α ◦ Fc ≤̇ Fa ◦ α =⇒ α(lfp Fc) ≤ lfp Fa (2)

α ◦ Fc = Fa ◦ α =⇒ α(lfp Fc) = lfp Fa (3)

for monotone functions Fc and Fa (where we have written f ≤̇ g for the pointwise ordering

[ f(x) ≤ g(x) ]).5 Note that we overload the notation for a least fixed point lfp, using it for

different domains and orders, without specifying them explicitly, when it is obvious from the

context. For instance, in the definitions (2) and (3) we use lfp in both cases, assuming in fact lfp⊑

for Fc and lfp≤ for Fa, respectively.

2.3. Elements of relational algebra

Composition is a well-known operation on relations. For given relations R ⊆ A × B and

S ⊆ B × C, their composition R ◦ S ⊆ A× C is defined as follows:

R ◦ S ≡ {x, y, z : 〈x, y〉 ∈ R ∧ 〈y, z〉 ∈ S : 〈x, z〉}. (4)

A particular case of relation composition is function composition. In order for function composition

to be consistent with the right-to-left ◦-notation, we also think of a function of type A→ B as a

relation over B ×A [13].

Another important notion we are going to use is factors [8]. Given three relations R ⊆ A×B,

S ⊆ B × C and T ⊆ A× C, the left factor T/S ⊆ A× B and the right factor R\T ⊆ B × C are

defined pointwise as follows:

[ x T/S y ≡ 〈∀z : y S z : x T z〉 ] (5)

[ x R\T y ≡ 〈∀z : z R x : z T y〉 ] (6)

5The first implication is also referred to as the fixed-point transfer theorem [23] and the latter implication is

known as a complete abstraction [24].
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Both the notions of composition and factors are helpful for reasoning in point-free style: while

composition eliminates existential quantifications, the factor operations eliminate universal quan-

tification. It is also notable that

[ R ◦ S ⊆ T ⇐⇒ S ⊆ R\T ] (7)

[ R ◦ S ⊆ T ⇐⇒ R ⊆ T/S ] (8)

so we have

[ T/S ⊇ R ⇐⇒ S ⊆ R\T ] (9)

which makes it possible to consider the eta-expanded factors (T/) = λX .T/X and (\T ) = λX .X\T

as the adjoints of a Galois connection:

〈℘(B × C),⊆〉 −−−−−→←−−−−−
(T/)

(\T )
〈℘(A×B),⊇〉 (10)

3. Graphs and Finite Paths

Definition 3.1 (Directed Graph). A directed graph is a pair G = 〈V,E〉, where V is a set of

nodes and E ⊆ V × V is a set of edges. A rooted directed graph is a triple G = 〈V,E, v0〉, such

that v0 ∈ V is a designated initial node.

We use the notation (u→ v) to indicate the edge 〈u, v〉 ∈ E. A non-empty path σ ∈ V + in a

graph G is a sequence of nodes σ = u0 . . . un, such that for all i ∈ 1 . . . n, (ui−1 → ui). Given a

rooted graph G = 〈V,E, v0〉, all finite paths starting from v0 can be obtained by “walking through

the set of edges”, which leads to the following definition:

Definition 3.2 (Finite path functional). Given a fixed graph G = 〈V,E〉, a finite path functional

pG : ℘(V +)→ ℘(V +) is defined as follows:

pG(X ) = {σ, v : σ ∈ X ∧ (last(σ)→ v) : σv}, (11)

where the function last of type V + → V on non-empty paths is defined by

last(σu) = u. (12)

In some cases, we will also consider last as a relation (i.e., last ⊆ V × V +) in order to

compose it with other relations.

The same functional is traditionally used within the partial trace collecting semantics [27].

Using the well-known observation [8, 27] that 〈℘(V +),⊆〉 is a complete lattice with ⊔ = ∪, ⊓ = ∩,

⊥ = ∅ and ⊤ = V +, and the fact that pG is monotone, one can express the set of finite paths

through a rooted graph G, starting in v0 as the following least fixed point :
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P
v0

G = lfp(λX .{v0} ∪ pG(X )) (13)

By a simple inductive argument any finite path through G starting in v0 belongs to P
v0

G .

Similarly, the set of all finite paths in a (non-rooted) directed graph G = 〈V,E〉 can be expressed

as a least fixed point:

PG = lfp(λX .V ∪ pG(X )) (14)

By another simple inductive argument any finite path through G starting in an arbitrary node

v ∈ V belongs to PG.

4. Calculating a Transitive Closure Algorithm

As a gentle warm-up example in this section we calculate an algorithm for the transitive closure

property in directed graphs. We first express the property as a lower adjoint over sets of finite

paths and then employ fixed-point fusion with the set of all finite paths in a graph expressed as a

least fixed point. In the remainder of this section we consider a fixed directed graph G = 〈V,E〉.

4.1. Transitive closure in directed graphs

Traditionally, reachability in directed graphs is stated in terms of finite paths from one node

to another:

A node v is reachable from a node u

if there exists a path in the graph starting with u and ending with v.

A transitive closure algorithm computes the reachability between all such pairs of nodes in a

graph. Our goal is to construct an algorithm for computing the transitive closure directly from

the definition above. In order to do so, we formulate reachability formally in terms of sets of finite

paths:

Definition 4.1. The function rch of type ℘(V +) → ℘(V × V ) is defined for all X ⊆ V + as

follows:

rch(X ) = {σ : σ ∈ X : 〈first(σ), last(σ)〉}, (15)

where the function first of type V + → V is defined on non-empty paths naturally:

first(uσ) = u. (16)

Note that according to Definition 4.1, the image of rch is not necessarily a reflexive relation.

It is done intentionally in order to simplify the derivation of the algorithms. Instead, all one-node

paths are encoded in the least fixed point definition of all finite paths (14).
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4.2. A Galois connection between sets of finite paths and reachability relations

The function rch, as it is defined in Section 4.1 maps a set of finite paths in the graph to a

relation on the graph nodes. Since a computed set of reachable nodes for each node can only grow,

one can consider the codomain of rch as a lattice under the set inclusion ordering: 〈℘(V × V ),⊆〉

with ∪ as a natural least upper bound operation. This leads to the following Galois connection

which is well-known from the abstract interpretation literature [27]:

〈℘(V +),⊆〉 −−−−→−→←−−−−−
rch

rch
〈℘(V × V ),⊆〉

where rch(Y) = {σ : 〈first(σ), last(σ)〉 ∈ Y : σ}

4.3. A reachability functional

Since rch is a lower adjoint in a Galois connection between the lattice of sets of finite paths

and the lattice of relations on nodes, we can employ it to derive a reachability relation, induced

by the set of all paths PG. We do so by calculating a reachability computation functional

FR, such that

rch ◦ pG = FR ◦ rch. (17)

Given such an equation, we can use fixed point fusion (3), which will allow us to make the jump

from the potentially infinite set of all finite paths through a directed graph to a direct computation

of transitive closure as a fixed point iteration.

We derive the required functional by a straightforward set manipulation. For any X ∈ ℘(V +)

rch(pG(X ))

= H by definition of rch (15) I

{σ : σ ∈ pG(X ) : 〈first(σ), last(σ)〉}

= H by definition of pG (11) and renaming I

{σ′ : σ′ ∈ {σ, v : σ ∈ X ∧ (last(σ)→ v) : σv} : 〈first(σ′), last(σ′)〉}

= H by inlining the inner set production, definitions of first, last I

{σ, v : σ ∈ X ∧ (last(σ)→ v) : 〈first(σ), v〉}

= H one-point rule I

{σ, v, t, u : σ ∈ X ∧ 〈first(σ), last(σ)〉 = 〈u, t〉 ∧ (t→ v) : 〈u, v〉}
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= H folding according to the definition of rch (15) I

{t, v, u : 〈u, t〉 ∈ rch(X ) ∧ (t→ v) : 〈u, v〉}

= H taking [ t next v ≡ t→ v ] I

{t, v, u : (u rch(X ) t) ∧ (t next v) : 〈u, v〉}

= H by definition of relation composition (4) I

rch(X ) ◦ next

= H taking FR(X ) = X ◦ next I

FR(rch(X ))

The above derivation allows us to formulate the following lemma:

Lemma 4.1.

rch ◦ pG = FR ◦ rch,

where FR : 〈℘(V × V ),⊆〉 → 〈℘(V × V ),⊆〉 is defined by

FR(X ) = X ◦ next (18)

and with next defined as [ u next v ≡ u→ v ].

Now we can express the transitive closure in the graph rch(PG) in terms of the reachability

functional FR (18):

Theorem 4.1.

rch(PG) = lfp⊆(λX .id ∪ FR(X )), (19)

where id denotes the identity relation.

Proof. First, we note that for all X ∈ ℘(V +)

rch(V ∪ pG(X ))

= H by distributivity of adjoints I

rch(V ) ∪ rch(pG(X ))

= H by definition of rch (15) and equality (17) I

id ∪ FR(rch(X ))
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1: TE ← ∅

2: TE’ ← id ∪ FR(TE)

3: while TE 6= TE’ do

4: TE ← TE’

5: TE’ ← id ∪ FR(TE)

Figure 1: A straightforward algorithm for computing transitive closure

1: TE ← ∅

2: for v ∈ V do

3: TE ← TE ∪ {v → v}

4: while TE ◦ next * TE do

5: TE ← TE ∪ TE ◦ next

Figure 2: An optimized imperative algorithm for computing transitive closure

Applying the property of Galois connections (3), we obtain

rch(PG)

= H by definition of PG (14) I

rch(lfp⊆(λX .V ∪ pG(X )))

= H by the derivation above I

lfp⊆(λX .id ∪ FR(X ))

By the derivation we have expressed transitive closure as a suitable abstraction of all finite

paths through a graph, which leads us to an iterative algorithm. Figure 1 pictures such a simple

iterative algorithm that computes the least fixed point of the function λX .id∪FR(X ) according to

Theorem 4.1, thereby delivering an actual transitive closure of the graph. The algorithm represents

the result as a set of transitive edges, TE.

As a first step, we can improve upon the algorithm by initiating the fixed point iteration from

id rather than ∅, at each iteration joining the previous iterate with the result of applying FR.

This alternative iteration effectively computes the Kleene iteration of lfpid⊆ (λX .X ∪ FR(X )).6.

The resulting version is presented in Figure 2. It proceeds by computing an increasing sequence

of transitive edges TE.

As a second step, one can represent the optimized algorithm in Figure 2 as Boolean matrices

of an adjacency matrix representation, in which case line 1-3 assigns the identity matrix to TE,

6Which is equivalent to (19), as the result is greater than id and is a post fixed point of FR: FR(X ) ⊆ X
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while line 5 computes the funny matrix product of TE and next [2].7 In this representation the

entire Kleene sequence computes the matrix closure next∗ of the Boolean matrix next, which is

a well-known transitive closure algorithm from the literature [2].

4.4. Complexity

Both algorithms have polynomial time complexity. In the worst case each iteration of FR

considers all O(|V |2) edges of its argument and pursues O(|V |) adjacent nodes for each. This

dominates the potential O(|V |2)-time equality test between two lattice elements in the first algo-

rithm in Figure 1. As the height of the abstract domain 〈℘(V × V ),⊆〉 is quadratic in the number

of nodes, this gives a crude O(|V |5) upper bound on both Kleene iterations. We only need |V |

iterations however to explore (acyclic) reachability through next between any two nodes, which

lowers the above bound to O(|V |4).

The optimized algorithm represented as computing the matrix closure of a Boolean matrix,

reduces to that of matrix multiplication [2]. Matrix multiplication itself can be carried out by

the straight-forward cubic algorithm or by more advanced sub-cubic algorithms, e.g., Strassen’s

algorithm or the Coppersmith-Winograd algorithm [2, 17], both of which run in O(|V |k), for a

constant 2 < k < 3.

5. Calculating a Dominance Algorithm

In this section we derive an algorithm to compute a dominance relation of a directed rooted

graph. We first express dominance as a lower adjoint over a set of finite paths. We then calculate

the dominance computation algorithm using fixed-point fusion with a least fixed point expressing

all finite paths through a graph.

In the remainder of this section we consider a fixed rooted graph G = 〈V,E, v0〉.

5.1. Dominance in finite paths

A classical definition of dominance in a graph is stated as follows [39]:

A node u dominates node v if u belongs to every path

from the initial node v0 of the graph to v.

Our goal is to derive an algorithm for computing dominators directly from the definition above.

Clearly, the set of all finite paths cannot be examined in general, since it is infinite in the presence

of cycles in the graph. Nevertheless, we start from the definition of dominance in a set of paths.

7with “Boolean multiplication” being conjunction and “Boolean addition” being disjunction.
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Definition 5.1. The function dom of type ℘(V +) → ℘(V × V ) is defined for all X ⊆ V + as

follows:

[ u dom(X ) v = 〈∀σ : σ ∈ X ∧ last(σ) = v : u in σ〉 ], (20)

where the relation in ⊆ V × V + is defined by:

in = lfp(λX .last ∪ X ◦ pre) (21)

and pre ⊆ V + × V + is {σ, v : σ ∈ V + ∧ σv ∈ V + : 〈σ, σv〉}.

In words, Definition 5.1 says that u antecedes v for all paths in X trailed by v. One can notice

that if there are no paths in X that end with v, then all nodes u dominate v. Also, a node u

dominates itself for any X .

5.2. A Galois connection between sets of finite paths and dominance relations

We proceed by building a Galois connection between the lattice of finite paths through a graph

and a lattice of relations on the nodes, using the dominance function dom from Definition 5.1 as a

lower adjoint:

〈℘(V +),⊆〉 −−−−→−→←−−−−−
dom

dom
〈℘(V × V ),⊇〉 (22)

In order to do so, we first reformulate dominance in point-free style using factors (see Section 2).

The new equivalent definition is established by the following lemma:

Lemma 5.1.

dom = (in/) ◦ f (23)

where

f(X ) = {σ : σ ∈ X : 〈last(σ), σ〉} (24)

If we consider last as a relation, we can construct its powerset, ℘(last). If we furthermore

view the latter as a type, f ’s signature is ℘(V +)→ ℘(last).

Proof. For all u, v ∈ V

u dom(X ) v

= H by definition of dom (20) I

〈∀σ : σ ∈ X ∧ last(σ) = v : u in σ〉

= H by definition of f (24), definition of / (5) I

u in/f(X ) v

11



Second, we show that dom is indeed a lower adjoint of the desired Galois connection. Since dom

is equivalent to a composition of in/ and f and we already know that in/ is a lower adjoint from

〈℘(last),⊆〉 to 〈℘(V × V ),⊇〉 (see Section 2.3), we only need to show that f is a lower adjoint

from 〈℘(V +),⊆〉 to 〈℘(last),⊆〉. The following lemma delivers this result.

Lemma 5.2. f is a lower adjoint in a Galois connection

〈℘(V +),⊆〉 −−−→−→←−−−−
f

f
〈℘(last),⊆〉.

Proof. Suppose, X ⊆ V + and T ⊆ last (i.e., [ u T σ ⇒ u = last(σ) ]). Then

f(X ) ⊆ T

= H by definition of f (24) I

〈∀σ : σ ∈ X : last(σ) T σ〉

= H by definition of ⊆ I

X ⊆ {σ : last(σ) T σ : σ}

= H T ⊆ last, taking T ′ = {v, σ : v T σ : σ} I

X ⊆ T ′

Therefore, f is a lower adjoint with upper adjoint the function that maps a relation T which is a

subset of last to its right component:

f(T ) = {v, σ : v T σ : σ}

The following corollary states the fixed-point fusion property (3) with respect to dom:

Corollary 5.1. The function dom is a lower adjoint in a Galois connections between sets of paths

ordered by the ⊆ relation and subsets of V × V ordered by the ⊇ relation. Furthermore, if h

is a monotone function of type 〈℘(V +),⊆〉 → 〈℘(V +),⊆〉 and g is a monotone function of type

〈℘(V × V ),⊇〉 → 〈℘(V × V ),⊇〉, then

dom ◦ h = g ◦ dom⇒ dom(lfp⊆ h) = lfp⊇ g,

where the least fixed points are computed with respect to the appropriate order relations: ⊆ for h

and ⊇ for g.

Proof. Follows from the fact that dom = (in/) ◦ f (Lemma 5.1), the composition property of

Galois connections applied to (3) and Lemma 5.2.
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5.3. A dominance computation functional

Having a Galois connection between the lattice of sets of finite paths and the lattice of domi-

nance relations enable us to derive a functional for computing the dominance relation, induced by

the set of all paths, which we defined as Pv0

G . In this section, we extract an algorithm to compute

the actual dominance relation corresponding to all finite paths in the graph.

We construct the dominance computation functional FD from the finite path functional

pG and the lower adjoint dom, such that:

dom ◦ pG = FD ◦ dom (25)

Then we can just apply Corollary 5.1, taking h = pG and g = FD .

We derive FD by a two-staged derivation. First, we find a function k, such that

f ◦ pG = k ◦ f (26)

Second, we find FD such that

(in/) ◦ k = FD ◦ (in/) (27)

One can then see that for FD defined in such a way we have:

dom ◦ pG

= H by Lemma 5.1 I

(in/) ◦ f ◦ pG

= H by (26) I

(in/) ◦ k ◦ f

= H by (27) I

FD ◦ (in/) ◦ f

= H by Lemma 5.1 I

FD ◦ dom

and hence satisfy the requirement from equation (25).

Informally, we obtain the function k from (26) by “pushing” the lower adjoint f under the

function definition pG, a well-known “recipe” within the abstract interpretation community [25]:
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f(pG(X ))

= H by definition of f (24) I

{σ : σ ∈ pG(X ) : 〈last(σ), σ〉}

= H by definition of pG (11) I

{σ, v : σ ∈ X ∧ (last(σ)→ v) : 〈last(σv), σv〉}

= H one-point rule, definition of last I

{σ, u, v : σ ∈ X ∧ last(σ) = u ∧ (u→ v) : 〈v, σv〉}

= H by definition of f (24) I

{σ, u, v : 〈u, σ〉 ∈ f(X ) ∧ (u→ v) : 〈v, σv〉}

= H taking k(X ) = {σ, u, v : 〈u, σ〉 ∈ X ∧ (u→ v) : 〈v, σv〉} I

k(f(X ))

Hence the following lemma:

Lemma 5.3.

f ◦ pG = k ◦ f,

where k : 〈℘(last),⊆〉 → 〈℘(last),⊆〉 is defined as follows:

k(X ) = {σ, u, v : 〈u, σ〉 ∈ X ∧ (u→ v) : 〈v, σv〉} (28)

Now, we obtain FD using the same technique as in the previous derivation. Assume R ∈

℘(last), then for all u, v ∈ V ,

14



u (in/k(R)) v

= H by definition of / (5) I

〈∀σ : v k(R) σ : u in σ〉

= H by definition of k (28) I

〈∀σ : 〈∃w : w → v : w R σ〉 : u in σv〉

= H by definition of in (21) I

〈∀σ : 〈∃w : w → v : w R σ〉 : u = v ∨ u in σ〉

= H by distributivity and range splitting I

u = v ∨ 〈∀w : w → v : 〈∀σ : w R σ : u in σ〉〉

= H taking [ v pred w ≡ w → v ] I

u = v ∨ u ((in/R)/pred) v

= H taking FD(X ) = id ∪ X/pred I

u FD(in/R) v

The presented derivation proves the following lemma:

Lemma 5.4.

(in/) ◦ k = FD ◦ (in/),

where FD : 〈℘(V × V ),⊇〉 → 〈℘(V × V ),⊇〉 is defined by

FD(X ) = id ∪ X/pred (29)

and with id denoting the identity relation and pred defined as [ v pred u ≡ u→ v ].

We now have all the ingredients to express dom(Pv0

G ) in terms of the dominance functional

FD (29):

Theorem 5.1.

dom(Pv0

G ) = lfp⊇(λX .dom({v0}) ∩ FD(X )) (30)

where the least fixed point lfp⊇ is computed with respect to the partial order 〈℘(V × V ),⊇〉.
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Proof. First, we note that for all X ∈ ℘(V +)

dom({v0} ∪ pG(X ))

= H by Corollary 5.1 and distributivity of adjoints I

dom({v0}) ∩ dom(pG(X ))

= H by the properties of FD (25) I

dom({v0}) ∩ FD(dom(X ))

Applying Corollary 5.1, one can see that

dom(Pv0

G ) = lfp⊇(λX .dom({v0}) ∩ FD(X )), (31)

where the least fixed point lfp⊇ is computed with respect to the ⊇ ordering.

5.4. Dominance equations

From a practical point of view, one is usually more interested in computing a representation of

the dominance relation as a map Dom, such that Dom(v) = {u : u dom(Pv0

G ) v : u}. In this section

we construct equivalent data-flow equations and iterative algorithms based on this representation,

on the definition of the dominance functional FD (29), and on the result of Theorem 5.1. We

thereby bridge the computation of dominance as a least fixed point of the path functional and the

more traditional approaches [16].

First, we notice that

u dom({v0}) v

= H definition (20) I

〈∀σ : σ ∈ {v0} ∧ last(σ) = v : u in σ〉

= H since σ ∈ {v0} ⇐⇒ σ = v0 and u in v0 ⇐⇒ u = v0 I

v = v0 ⇒ u = v0

Therefore, we obtain
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u dom(Pv0

G ) v0

= H definition (13) I

u dom({v0} ∪ pG(P
v0

G )) v0

= H since dom is distributive I

u dom({v0}) v0 ∧ u dom(pG(P
v0

G )) v0

= H by the observation above, taking v = v0, [ u dom(Pv0

G ) u ] I

u = v0

So, we have an equivalence

[ u dom(Pv0

G ) v0 ⇐⇒ u = v0 ] (32)

Also, for v 6= v0,

u dom(Pv0

G ) v

= H by Theorem 5.1, since lfp is a fixed-point operator I

u (dom({v0}) ∩ (id ∪ dom(Pv0

G )/pred)) v

= H by assumption v 6= v0, so u dom({v0}) v I

u (id ∪ dom(Pv0

G )/pred) v

= H by definitions of / (5) and pred I

u = v ∨ [ ∀w : w → v : u dom(Pv0

G ) w ]

So, we obtain the second equivalence

[ u dom(Pv0

G ) v ⇐⇒ u = v ∨ 〈∀w : w → v : u dom(Pv0

G ) w〉 ] (33)

Taking Dom = dom(Pv0

G ) not as a relation, but as a function of type V → ℘(V ) defined

as [ u ∈ Dom(v) ≡ u dom(Pv0

G ) v ] and the equivalences (32) and (33), we discover the following

equivalent data-flow equations for Dom [3]:8

Dom(v0) = {v0}

Dom(v) =
⋂

w∈pred(v)

Dom(w) ∪ {v}
(34)

The statement of Theorem 5.1 can also be exploited to obtain a simple iterative algorithm for

computing the least fixed point of the functional FD using Kleene iteration. Figure 3 presents

such an algorithm, writing dom({v0}) for the map λv.(v = v0 ? {v0} : V ).
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1: for v ∈ V do

2: Dom[v] ← V

3: Dom’ ← dom({v0}) ∩ FD(Dom)

4: while Dom 6= Dom’ do

5: Dom ← Dom’

6: Dom’ ← dom({v0}) ∩ FD(Dom)

Figure 3: A straightforward algorithm for computing dominance

1: for v ∈ V do

2: Dom[v] ← V

3: Dom[v0] ← {v0}

4: Changed ← true

5: while Changed do

6: Changed ← false

7: for v ∈ V do

8: newSet ←
(⋂

w∈pred(v) Dom[w]
)
∪ {v}

9: if newSet 6= Dom[v] then

10: Dom[v] ← newSet

11: Changed ← true

Figure 4: An optimized iterative dominator algorithm [16]
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Initially, the dominance set for every node is the entire set of nodes, according to the lattice

〈℘(V × V ),⊇〉 (i.e., ⊥ = V × V ). This dominance set is then being “shrunk”, as the algorithm

proceeds to consider more paths. In the output of the algorithm every node is dominated by itself.

The initial node v0 in particular is dominated only by itself. All disconnected nodes in the graph

are dominated by all nodes.

This algorithm can be optimized further although we make no attempt to calculate our way

to these changes. For example, rather than maintaining two dominance maps Dom and Dom’ one

can make do with a single map. In each iteration one then needs to keep track of stabilization

by other means than map comparison, e.g., using a Boolean flag to signal changes to an entry.

By unfolding FD and making these changes we arrive at the classic algorithm from Figure 4 (see

Cooper et al. [16] for more details on the implementation).

5.5. Complexity

The complexity of the derived algorithm is polynomial: the height of the lattice of dominance

functions is O(|V |2), which is an upper bound on the number of iterations. Each iteration of

the first algorithm in Figure 3 requires (1) an O(|V |2)-time equality test between two lattice

elements and (2) computing an intersection for each node over all its predecessors in FD which

takes O(|V | × |E|) operations. As a consequence the algorithm takes O(|V |2(|V |2 + |V | × |E|)) =

O(|V |4 + |V |3 × |E|) time. The optimized algorithm in Figure 4 uses a constant time stabilization

test, but still requires computing an intersection over all predecessors for each node. As a result

it has O(|V |3 × |E|) worst case time complexity.

The bottleneck of the optimized algorithm is the strategy by which it chooses a node to process

in line 7 of Figure 4. By instead iterating through the vertices in reverse postorder [4] (i.e., a node

is visited before all its successor nodes have been visited), we can avoid a general fixed-point

computation. By this strategy we can obtain a O(|V | × |E|) time algorithm. By a clever choice

of data structures, representing sets using dominator trees, this can be improved to O(|V |2) [16].

Even linear time dominance algorithms exist [5], but the O-notation for these hide a non-

negligible constant factor. For practical purposes they do not fare as well as a well-engineered

iterative algorithm [35]. We refer to Cooper, Harvey, and Kennedy [16] for a historical account of

dominator algorithms.

6. Calculating a Shortest Path Algorithm

In this section, we calculate an algorithm solving the single-source shortest path problem for

a weighted graph with non-negative edge costs. We augment the definition of directed graphs

8In order to mimic the traditional presentation [3], we consider pred as a function of type V → ℘(V ) defined as

[ w ∈ pred(v) ≡ w → v ].
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from Section 3 with a function assigning weights to edges. The shortest distance from the source

to a target node is then formulated for sets of finite weighted paths and an iterative algorithm

is derived by fixed-point fusion. Finally, we modify the property to compute the actual shortest

paths and not only the shortest distances.

6.1. Weighted graphs and paths

Definition 6.1 (Weighted rooted graph). A weighted rooted graph Gw = 〈V,E, v0,W 〉 is a rooted

directed graph 〈V,E, v0〉 with a weight function W : E → N.

For nodes u, v ∈ V , we use the notation (u
w
−→ v) to indicate the edge 〈u, v〉 ∈ E and

W (〈u, v〉) = w. A weighted path τ ∈ V +
w is a non-empty sequence of interleaving nodes and

weights τ = u0w1 . . . un−1wnun, starting and ending by a node, such that for all i ∈ 1 . . . n,

(ui−1
wi−→ ui).

Definition 6.2 (Weight of a path [17]). The weight of a weighted path τ = u0w1 . . . un−1wnun

is the sum of the weights of its constituent edges:

‖τ‖ =
n∑

i=1

wi (35)

In the remainder of this section we consider a fixed weighted rooted graph Gw = 〈V,E, v0,W 〉.

6.2. The single-source shortest path property for finite paths

In this section we will focus on the single-source shortest-path problem, which can be

defined as follows:

Given a node u0 and a set of weighted paths

X = {τ : τ = u0w1 . . . un−1wnun : τ}, for each v, such that τv = u0 . . . v ∈ X ,

what is the minimum of ‖τv‖?

Again, our goal is to compute an iterative algorithm for the defined property directly from its

definition. In order to do so, we first define the shortest-path weight for a set of paths similarly to

the canonical property by Cormen et al. [17].

Definition 6.3 (Shortest-path weight). Given a set of weighted paths X , then the shortest-path

weight from u to v in X is

dist(X )(u, v) = min{τ : τ ∈ X ∧ τ = u . . . v : ‖τ‖}, where

min(∅) =∞.
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By overloading notation, the single-source shortest-path weight from v0 to any other node in

X is defined naturally using the function last (12) for weighted paths:

dist(X ) = λv.min{τ : τ ∈ X ∧ last(τ) = v : ‖τ‖}. (36)

As in the canonical definition [17], we define the shortest-path weights as a function from a set of

finite paths to a mapping from nodes to natural numbers extended with infinity. Still, an arbitrary

weighted graph can contain a possibly infinite number of paths from a node u to v. We connect

the world of weighted graphs with sets of weighted paths by redefining the path functional from

Section 3.2 to the single-source weighted paths of a weighted graph Gw.

Definition 6.4 (Weighted finite path functional). Given a weighted graph9 Gw = 〈V,E, v0,W 〉,

a weighted finite path functional pGw
: ℘(V +

w )→ ℘(V +
w ) is defined as follows:

pGw
(X ) = {τ, w, v : τ ∈ X ∧ (last(τ)

w
−→ v) : τwv}. (37)

Similarly to Section 3, 〈℘(V +
w ),⊆〉 is a complete lattice, so the set of all weighted single-source

finite paths in a weighted rooted graph is defined as the following least fixed point:

P
v0

Gw
= lfp(λX .{v0} ∪ pGw

(X )) (38)

Again by a simple inductive argument any finite weighted path starting in v0 belongs to P
v0

Gw
. In

this setting, dist(Pv0

Gw
) specifies the single-source shortest path property for the whole graph. In

the remainder of this section we will derive an algorithm to compute it using fixed-point fusion.

6.3. A Galois connection between sets of finite paths and the shortest path weights

The function dist defined in Section 6.2 maps a set of paths to a function, mapping a node

to a non-negative weight or infinity (in case a node is unreachable from v0), so the codomain of

dist is E = V → N ∪ {∞}. In order to make it a complete lattice we extend natural arithmetic

to infinity:

∀n ∈ N : n+∞ =∞+ n =∞+∞ =∞

∀n ∈ N : n <∞

∞ ≤∞

Next, we introduce a partial order and the least upper bound on elements δ of E :

[ δ1 ≥̇ δ2 ≡ ∀u ∈ V : δ1(u) ≥ δ2(u) ] (39)

[ δ1 ⊔ δ2 = λu.min{δ1(u), δ2(u)} ] (40)

9rooted or not
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Finally, one can observe that 〈E , ≥̇〉 is a complete lattice with the meet operation provided

by (40), ⊥E = λv.∞ and ⊤E = λv.0. This follows, e.g, from realizing that 〈N ∪ {∞},≥〉 is a

complete lattice10 that can be lifted into a complete lattice over functions with the above pointwise

operations.

In order to build the Galois connection between 〈℘(V +
w ),⊆〉 and 〈E , ≥̇〉 using dist as a lower

adjoint, we need to show that dist is distributive with respect to ⊔.

Lemma 6.1. [
⊔

i

dist(Xi) = dist(
⋃

i

Xi)

]

Proof. Let a sequence Xi ∈ ℘(V +
w ) be given

⊔

i

dist(Xi)

= H by definition of ⊔ (40) I

λu.min
i
(dist(Xi)(u))

= H by definition of dist (36) I

λu.min
i
(min{τ : τ ∈ Xi ∧ last(τ) = u : ‖τ‖})

= H min is associative and commutative I

λu.min{τ : τ ∈
⋃

i

Xi ∧ last(τ) = u : ‖τ‖}

= H by definition of dist (36) I

dist(
⋃

i

Xi)

Recall from Section 2.2 that Lemma 6.1 guarantees the existence of a Galois connection between

the two complete lattices, including a unique upper adjoint dist:

〈℘(V +
w ),⊆〉 −−−−→−→←−−−−−

dist

dist
〈E , ≥̇〉

6.4. A shortest-path functional

In this section, we extract an algorithm to compute the shortest-path weight function corre-

sponding to all finite paths in the graph. In order to do so, first, we derive the shortest-path

functional Fδ by the “pushing” the lower adjoint dist under pGw
:

10The construction corresponds roughly to half an interval domain formalized by Cousot and Cousot as a complete

product lattice ({−∞} ∪ Z)× (Z ∪ {∞}) [21].
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dist(pGw
(X ))

= H by definition of pGw
(37) I

dist({τ, w, v : τ ∈ X ∧ (last(τ)
w
−→ v) : τwv})

= H by definition of dist (36) I

λv.min{τ, w : τ ∈ X ∧ (last(τ)
w
−→ v) : ‖τwv‖}

= H by definition of ‖τwv‖ (35) I

λv.min{τ, w : τ ∈ X ∧ (last(τ)
w
−→ v) : ‖τ‖+ w}

= H taking u = last(τ) I

λv.min{τ, u, w : τ ∈ X ∧ (u
w
−→ v) ∧ last(τ) = u : ‖τ‖+ w}

= H by the property of min I

λv.min{u,w : (u
w
−→ v) :

dist(X )(u)︷ ︸︸ ︷
min{τ : τ ∈ X ∧ last(τ) = u : ‖τ‖}+w}

= H by folding definition of dist (36) I

λv.min{u,w : (u
w
−→ v) : dist(X )(u) + w}

= H taking pred(v) = {u : u
w
−→ v : u} and W (〈u, v〉) = w I

λv.min{u : u ∈ pred(v) : dist(X )(u) +W (〈u, v〉)}

= H defining Fδ(Y) = λv.min{u : u ∈ pred(v) : Y(u) +W (〈u, v〉)} I

Fδ(dist(X ))

The derivation above proves the following lemma:

Lemma 6.2.

dist ◦ pGw
= Fδ ◦ dist

where the function Fδ : 〈E , ≥̇〉 → 〈E , ≥̇〉 is defined for all X by

Fδ(X ) = λv.min{u : u ∈ pred(v) : X (u) +W (〈u, v〉)} (41)

We can now notice that dist({v0}) = λv.(v = v0 ? 0 : ∞), so the following theorem follows

naturally:

Theorem 6.1.

dist(Pv0

Gw
) = lfp≥̇ (λX .(λv.(v = v0 ? 0 :∞)) ⊔ Fδ(X )) (42)

where the least fixed point lfp≥̇ is computed with respect to the ordering ≥̇ over E , starting from

⊥E = λv.∞.

Proof. Similarly to the proof of Theorem 5.1, using distributivity of dist, Lemma 6.2, fixed-point

fusion (3) and inlining dist({v0}).
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1: for v ∈ V do

2: δ(v)←∞

3: δ′ ← dist({v0}) ⊔ Fδ(δ)

4: while δ′ 6= δ do

5: δ ← δ′

6: δ′ ← dist({v0}) ⊔ Fδ(δ)

Figure 5: A straightforward algorithm for single-source shortest paths

1: for u ∈ V do

2: δ[u] ←∞

3: δ[v0] ← 0

4: Changed ← true

5: while Changed do

6: Changed ← false

7: for v ∈ V do

8: for u ∈ pred(v) do

9: if δ[u] + W [u, v] < δ[v] then

10: δ[v] ← δ[u] + W [u, v]

11: Changed ← true

Figure 6: An optimized imperative single-source shortest path algorithm

Figure 5 provides a first iterative algorithm for computing the least fixed point of the functional

Fδ using Kleene iteration. Again the algorithm has room for improvement.

By unfolding Fδ and maintaining only a single δ-map as in Section 5.4 we arrive at the single-

source shortest-path algorithm in Figure 6. The resulting algorithm is strikingly similar to Bell-

man’s iterative algorithm [12] for computing shortest paths: as Bellman’s algorithm proceeds by

computing a “monotone sequence” of “successive approximations” so does the derived algorithm.

The algorithms differ in that Bellman assumes that all nodes are connected, which allows him

initialize the distance to a node with the weight of the direct edge from the source node. For an

account of the early history of shortest path algorithms we refer to Schrijver [40].

6.5. Complexity

As Bellman’s algorithm [12] the derived algorithm has polynomial time complexity. One can

see that the lattice 〈E , ≥̇〉 is noetherian, i.e., it satisfies the ascending chain condition [30] (i.e.,

every strictly ascending chain x1 ≥̇x2 ≥̇ . . . of elements eventually terminates), which guarantees

termination of the iterative algorithm, since Fδ is monotone. Now let the constant L be the

maximal weight of an edge between any two nodes in a given graph. For each node an initial path
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from the source node cannot contain cycles. Moreover its distance from the source node cannot

be improved more than L× |V | times by a strictly increasing chain. Therefore, for a fixed graph,

the length of a corresponding ascending chain in 〈E , ≥̇〉 is O(|V |2) which bounds the number of

while-loop iterations.

Both the first algorithm in Figure 5 and the optimized algorithm in Figure 6 iterate through

the predecessors of each node, which takes O(|V |+ |E|) operations for each while-loop iteration.

In addition the first algorithm requires an O(|V |) time stabilization test. Therefore, the worst-

case time complexity of both algorithms is O(|V |3 + |V |2 × |E|), or O(|V |2 × |E|) for a connected

graph.

The bottleneck of the optimized algorithm is again the non-optimized iteration in lines 7–11.

Since u ∈ pred(v) if and only if v ∈ next(u), looping through all nodes u, v such that u ∈ pred(v)

is equivalent to looping through all nodes u, v such that v ∈ next(u). We can therefore rewrite

the for-loops into:

for u ∈ V do

for v ∈ next(u) do

if δ[u] + W [u, v] < δ[v] then

δ[v] ← δ[u] + W [u, v]

Changed ← true

Using an observation from Dijkstra’s algorithm, we can process the nodes with less distance

from v0 first. As a consequence each edge will be examined only once, which leads to the origi-

nal complexity O(|V |2 + |E|) = O(|V |2). By further improving the algorithm to quickly locate the

next node to process (employing a binary min-heap), we obtain the complexityO((|V |+ |E|)× log(|V |))

(which is an improvement for sparse graphs [17]).

6.6. Computing the shortest paths

Usually, one wants to compute not only shortest-path weights, but the vertices on shortest paths

as well. Traditionally, the representation for shortest paths is implemented by a predecessor map

π. In the canonical literature on graph algorithms [17], for a given graph node v, π(v) is either

another node or NIL, which means that the node is either the source or that it is unreachable.

The shortest-paths algorithms traditionally set the values of π so that the chain of predecessors,

originating at a vertex v, runs backwards along some shortest path from v0 to v. In practice, it

means that there might be several shortest paths from v0 to v, however, the canonical algorithm

chooses one of them arbitrarily [17].

In order to compute the predecessors for the shortest path, we will use the shortest-path weight

property from Section 6.2. The shortest path predecessors of v with respect to the set of finite

25



paths X are then defined as the predecessors of v on paths from v0 with the minimal possible

weight:

distπ(X ) = λv.〈dist(X )(v), {τ, u, w : τuwv ∈ X ∧ ‖τ‖ = dist(X )(v) : u}〉 (43)

where the codomain of distπ is

P = V → (N ∪ {∞})× ℘(V ) (44)

To derive an algorithm to compute the shortest path predecessors for a given graph, we for-

mulate P as a complete lattice with an order ⊑, build a Galois connection between 〈℘(V +
w ),⊆〉

and 〈P,⊑〉, and employ fixed-point fusion.

In order to simplify the notation, in the remainder of this section we use ↓1 and ↓2 to refer to

the first and second projections of a pair, respectively. The partial order and meet operations on

elements π1, π2 of P use a function-lifted lexicographical ordering with respect to componentwise

orders ≥ and ⊆:


 π1 ⊑ π2 ≡ ∀u ∈ V : π1(u) ↓1> π2(u) ↓1 ∨

(π1(u) ↓1= π2(u) ↓1 ∧ π1(u) ↓2⊆ π2(u) ↓2)


 (45)

[ π1 ⊔ π2 = λu.φ(π1(u), π2(u)) ], where

φ(〈m1, r1〉, 〈m2, r2〉) =





〈m2, r1〉 if m1 > m2

〈m1, r2〉 if m2 > m1

〈m1, r1 ∪ r2〉 otherwise

(46)

One can see, that 〈P,⊑〉 is a complete lattice with ⊥P = λu.〈∞, ∅〉. Similarly to Section 6.3,

in order to build a Galois connection between 〈℘(V +
w ),⊆〉 and 〈P,⊑〉, using distπ as a lower

adjoint, we show again that distπ is distributive with respect to ⊔:

Lemma 6.3. [
⊔

i

distπ(Xi) = distπ(
⋃

i

Xi)

]

Proof. Similar to the proof of Lemma 6.1, using case analysis on the arguments to the helper

function φ (46).

The computation of the functional Fπ for the shortest-path predecessors, such that

distπ ◦ pGw
= Fπ ◦ distπ (47)

is similar to the derivation from Section 6.3, using Lemma 6.3. The final result is stated by the

following lemma:
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Lemma 6.4.

distπ ◦ pGw
= Fπ ◦ distπ

where Fπ is of type 〈P,⊑〉 → 〈P,⊑〉 is defined for all X by

Fπ(X ) = λv.〈m, r〉, where m = min{u : u ∈ pred(v) : X (u) ↓1 +W (〈u, v〉)}

r =




u

∣∣∣∣∣∣∣∣∣

u ∈ pred(v)

X (u) ↓1<∞

X (u) ↓1 +W (〈u, v〉) = m





(48)

Thus, the sets of predecessors in the single-source shortest paths are then computed as a least

fixed point according to the following theorem:

Theorem 6.2.

distπ(Pv0

Gw
) = lfp⊑ (λX .(λv.〈(v = v0 ? 0 :∞), ∅〉) ⊔ Fπ(X )) (49)

where the least fixed point lfp⊑ is computed with respect to the ordering ⊑ over P, starting from

⊥P = λu.〈∞, ∅〉.

Proof. Similarly to the proof of Theorem 6.1, using distributivity of dist, Lemma 6.4, fixed-point

fusion (3) and inlining distπ({v0}) = λv.〈(v = v0 ? 0 :∞), ∅〉

Note that unlike traditional algorithms for the single-source shortest path problem [12, 29],

our algorithm computes all possible shortest paths from the source node. The complexity of the

algorithm is determined by the height of the lattice 〈P,⊑〉, which is O(|V |3). However, updating

the minimum and the set of predecessors can be performed within the same loop (lines 8–11 in

Figure 6):

for v ∈ V do

for u ∈ pred(v) do

d← δ[u] + W [u, v]

if d ≤ δ[v] then

δ[v] ← d

if d < δ[v] then

π[v] ← {u}

else

π[v] ← π[v] ∪ {u}

Changed ← true

This gives the same complexity boundary as in Section 6.5: O(|V |3 × |E|) in the worst case. By

rewriting the algorithm with next() instead of pred() and applying observations from Dijkstra’s
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algorithm analysis, one can obtain the complexity bound O(|V |2) for the optimized iteration

through the set of nodes.

7. From All-Pairs Shortest Paths to Transitive Closure

To illustrate how Galois connections can be used to relate algorithms, in this section we describe

how to abstract an all-pairs shortest path algorithm into the transitive closure algorithm from

Section 4.

7.1. Calculating an all-pairs shortest path algorithm

The algorithm we calculated in Section 6 computes the shortest path from a single source node

in the graph to all remaining nodes. A related algorithmic problem is that of computing shortest

paths between all pairs of nodes [32, 43]. Such an algorithm can be calculated similarly to the one

in section 6 given the following lower adjoint of type ℘(V +
w ) → (V × V → (N ∪ {∞})), mapping

sets of weighted paths into all-pairs shortest paths:

distall(X ) = λ〈u, v〉.min{τ : τ ∈ X ∧ 〈u, v〉 = 〈first(τ), last(τ)〉 : ‖τ‖}. (50)

As in Section 6, we assume min(∅) =∞, and define the least upper bound operation ⊔ for the

codomain of distall in a natural way:

[ δ1 ⊔ δ2 = λ〈u, v〉.min{δ1(〈u, v〉), δ2(〈u, v〉)} ] (51)

Distributivity of distall with respect to the set union operation ∪ can be proven in straight-

forward way, similarly to Lemma 6.1, hence the following lemma:

Lemma 7.1. [
⊔

i

distall(Xi) = distall(
⋃

i

Xi)

]

Lemma 7.1 guarantees the existence of a Galois connection between the two complete lattice

based on a unique upper adjoint distall. Therefore, we have:

〈℘(V +
w ),⊆〉 −−−−−−→←−−−−−−

dist
all

distall

〈V × V → (N ∪ {∞}), ≥̇〉

Note how the formulation of all-pairs shortest paths is close to an adjacency matrix repre-

sentation of a graph’s edges. The only difference is that “adjacent nodes” are supplied with

non-infinity weights, corresponding to paths between them in the original graph. Conversely,

pairs of non-adjacent nodes are mapped to∞, corresponding to unconnected nodes in the original

graph.

28



Repeating the derivation of the shortest path functional from Section 6.4 with the only differ-

ence in maintaining a pair of nodes as an argument, e.g.,

distall(pGw
(X ))

= H derivations similar to those of Lemma 6.2 I

λ〈u, v〉.min{t : t ∈ pred(v) : distall(X )(〈u, t〉) +W (〈t, v〉)}

it is straightforward to derive an all-pairs shortest path functional, hence, the following lemma:

Lemma 7.2.

distall ◦ pGw
= Fall

δ ◦ distall,

where Fall
δ : 〈V × V → (N ∪ {∞}), ≥̇〉 → 〈V × V → (N ∪ {∞}), ≥̇〉 is defined by

Fall
δ (X ) = λ〈u, v〉.min{t : t ∈ pred(v) : X (〈u, t〉) +W (〈u, v〉)} (52)

where pred(v) = {u : u
w
−→ v : u}.

To compute the weights of the shortest paths for all pairs of nodes, we consider paths origi-

nating from all possible nodes, taking [ W (〈v, v〉) = 0 ]. The next theorem follows naturally:

Theorem 7.1.

distall(PGw
) = lfp≥̇

(
λX .(λ〈u, v〉.(u = v ? 0 :∞)) ⊔ Fall

δ (X )
)

(53)

where PGw
is defined as the weighted graph equivalent of PG (14) and where the least fixed point

lfp≥̇ is computed with respect to the ordering ≥̇ over 〈V × V → (N ∪ {∞}), ≥̇〉, starting from ⊥ =

λ〈u, v〉.∞.

7.2. A Galois connection from path weights to reachability

A shortest path weight between two nodes represents strictly more information than simply

the reachability between the two nodes. We can formalize that information loss as another Galois

connection:

〈N ∪ {∞},≥〉 −−−→−→←−−−−
αB

γB

〈B, =⇒ 〉

where the complete lattice B = {t, f} consisting of the boolean values t and f is ordered under

implication and the least upper bound operation is logical disjunction ⊔ = ∨. The adjoints read

as follows:

αB(n) = t

αB(∞) = f

γB(f) =∞

γB(t) = 0
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We can show that 〈αB, γB〉 form a Galois connection as described above by checking the defining

property (1). Indeed, for any c ∈ N ∪ {∞}, a ∈ B, we have

[ αB(c) =⇒ a ] ⇐⇒ [ c ≥ γB(a) ]

Both complete lattices can be lifted point-wise to form a new Galois connection between

functions:

〈V × V → (N ∪ {∞}), ≥̇〉 −−−→−→←−−−−
α̇B

γ̇B

〈V × V → B, ˙=⇒ 〉

A predicate from the abstract domain on the right-hand side returns f iff there is no path between

two nodes, i.e., the weight of the shortest path between them is infinity. In the next section we

capture this observation by computing a transitive closure algorithm as a systematic abstraction

of the all-pairs shortest algorithm from Section 7.1.

Note that, although the equality γB(t) = 0 looks somewhat surprising, it is consistent with

the built abstraction for the transitive closure. Indeed, the transitive closure provides an over-

approximation of the distance between two nodes in the ≥-ordering, or equivalently: an under-

approximation of the distance in the ≤-ordering, assuming the least possible distance between two

reachable nodes, i.e., 0.

7.3. Transitive closure as an abstraction of shortest paths

We derive a transitive closure algorithm as an abstraction of the all-pairs shortest path al-

gorithm by a familiar technique, starting from the composition α̇B ◦ Fall
δ , such that for any

X ∈ V × V → (N ∪ {∞})

α̇B(F
all
δ (X ))

= H by definition of the lifted α̇B and Fall
δ (52) I

λ〈u, v〉.αB(min{t : t ∈ pred(v) : X (〈u, t〉) +W (〈u, v〉)})

= H by distributivity of αB over min I

λ〈u, v〉.
∨
{t : t ∈ pred(v) : αB(X (〈u, t〉) +W (〈u, v〉))})

= H assuming only finite weight on edges I

λ〈u, v〉.
∨
{t : t ∈ pred(v) : αB(X (〈u, t〉))})

= H by definition of the lifted α̇B and pred I

λ〈u, v〉.
∨
{t : t→ v : α̇B(X )(〈u, t〉)}

= H taking F̂R(Y) = λ〈u, v〉.〈∃t : t→ v : Y(〈u, t〉)〉 I

F̂R(α̇B(X ))
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The derivation above allows us to formulate the following lemma:

Lemma 7.3.

α̇B ◦ Fall
δ = F̂R ◦ α̇B

where F̂R : 〈V × V → B, ˙=⇒ 〉 → 〈V × V → B, ˙=⇒ 〉 is defined by

F̂R(X ) = λ〈u, v〉.〈∃t : t→ v : X (〈u, t〉)〉 (54)

The last thing we need to do in order to complete the connection between the result stated in

Lemma 7.3 and the reachability functional from Section 4 is to recall the isomorphism between

predicates on pairs and relations, which can be expressed as the following Galois connection:

〈V × V → B, ˙=⇒ 〉 −−−→−→←←−−−−
αP

γP

〈℘(V × V ),⊆〉, (55)

where

αP(P ) = {u, v : P (〈u, v〉) : 〈u, v〉} (56)

γP(R) = λ〈u, v〉.(〈u, v〉 ∈ R) (57)

since, by the property (1),

αP(P ) ⊆ R

= H by definition of αP (56) I

{u, v : P (u, v) : 〈u, v〉} ⊆ R

= H by definition of ⊆ I

∀u, v : P (u, v) =⇒ (〈u, v〉 ∈ R)

= H by definition of ˙=⇒ I

P ˙=⇒ λ〈u, v〉.(〈u, v〉 ∈ R)

= H by definition of γP (57) I

P ˙=⇒ γP(R).

By employing the above Galois connection and the familiar abstraction “swap”, we construct

a monotone functional of type 〈℘(V × V ),⊆〉 → 〈℘(V × V ),⊆〉, such that for any X ∈ ℘(V × V )
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αP(F̂R(X ))

= H by definition of αP (56) and F̂R (54) I

{u, v : 〈∃t : t→ v : X (〈u, t〉)〉 : 〈u, v〉}

= H by equivalent rewriting of ∃-quantification I

{u, v, t : (t→ v) ∧ X (〈u, t〉) : 〈u, v〉}

= H taking [ t next v ≡ t→ v ] I

{u, v, t : (t next v) ∧ X (〈u, t〉) : 〈u, v〉}

= H by definition of relation composition (4) I

{u, t : X (〈u, t〉) : 〈u, t〉} ◦ next

= H by definition of αP (56) I

αP(X ) ◦ next

= H by definition of FR (18) I

FR(αP(X ))

The observed derivation shows that the functional F̂R on predicates can be isomorphically

translated to the functional FR defined on relations, so we can substitute the fixed-point com-

putation according to equation (3). Moreover, the initial element of the iteration in the lattice

of predicates, namely λ〈u, v〉.(u = v) translates to the identity relation id on nodes, thereby

delivering the transitive closure algorithm (19) from Theorem 4.1.

8. Related Work

Two different schools have been working in parallel for the last forty years: the school of

program calculation and the school of static program analysis. The intrinsic goal of the first

school is to derive algorithms from the specification of properties of interest. The second school was

historically interested in computing a sound approximation of a property of a program semantics.

In this section we give a brief overview of these two lines of research which we have attempted to

bridge in the present paper.

Calculational approaches to graph algorithms. A number of approaches have been applied to derive

graph algorithms since the seventies, originating in formulating path problems in terms of linear

algebra. Carré [15] presented an algebraic structure to solve extremal network routing problems,

such that a function is minimized or maximized on a particular path in a graph. He showed how

extremal problems from this class can be expressed in terms of matrix equations and solved using
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a toolset from linear algebra. Later, Backhouse and Carré [9] showed the correspondence of the

algebra for extremal graph problems and the algebra of regular languages. The idea was later

extended to derive the exact implementation of Dijkstra’s shortest path algorithm [10].

In the beginning of the nineties ideas from domain theory were applied to compute extremal

properties on paths of graphs using fixed-point computations: Van den Eijnde [31] considered

computation of path properties in graphs using monotone operators, satisfying certain restrictions

and called these operators conservative. Van den Eijnde formulated a generalized fixed-point

theorem, stating computation of a least fixed point of a monotone functional as a Kleene iteration.

The property of interest was then defined as an under-approximation of the monotone function.

As an example, this approach was applied to the ascending reachability problem. In contrast to

our work, Van den Eijnde did not apply the Galois connection machinery to define the properties

and prove them appropriate for an algorithm derivation. All the used toolset was later formalized

as the fixed-point calculus [1]. The interplay between Galois connections and fixed points has later

been established by Backhouse [7].

Abstract interpretation and distributive frameworks. In parallel with the above line of research,

Cousot and Cousot developed and refined the abstract interpretation framework [21, 22]. In their

1979 paper [23], they mention various instances of distributive frameworks for imperative program

analysis as particular cases of abstract interpretation, i.e., constant propagation, trace (or path)

reachability properties, where Galois connections are defined appropriately [23]. In the same work,

they prove a connection between properties, defined as meet-over-all paths and ones described by

monotone functions: the former is generally more precise than the latter but the two are identical

in a distributive framework. Ten years later, Cai and Paige describe a nondeterministic iterative

schema that in the case of finite iteration generalizes the “chaotic iteration” of Cousot and Cousot

for computing fixed points of monotone functions efficiently (in particular, incrementally) and show

how to apply this technique to design fast non-numerical algorithms, such as variable reachability

and cycle detection in a program flow graph [14]. Whereas the current paper illustrates how to

get from a graph specification to a provably correct (but not necessarily O-optimal) algorithm, we

believe that such chaotic iteration techniques may be the key to derive optimized versions of our

calculated graph algorithms in a more principled manner.

Cousot and Cousot [23] initially formalized programs as flow graphs, but the framework was

later generalized to transition systems [18, 24] which are not limited to describing formal seman-

tics. Since then the abstract interpretation framework has been used to formalize other concepts

than static analyses, e.g., program transformations [26] and to connect various forms of formal se-

mantics [20]. Cousot and Cousot [27] also use transitive closure as an example in their introduction

to abstract interpretation, albeit in a single-source variant.
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Cooper, Harvey and Kennedy [16] point out that the equations to compute dominance form

a distributive framework [34]. This fact allows them to state that the iterative algorithm for

dominance computation will discover the maximal fixed-point solution and halt. Notably, the

equations for Dom, presented by Cooper, Harvey and Kennedy in [16] are given as is, i.e., with no

connection to the definition of dominance in terms of paths. In contrast we justify these equations

by deriving them and a corresponding algorithm directly from the definition.

Backhouse [7, Section 6.2] used shortest paths as a motivating example for introducing fixed-

point fusion in his lecture notes. In a later work on the shortest-path problem, Backhouse applied

the fixed-point fusion theorem to a set of all paths, considered as a context-free language [8,

Example 57], which gave the same solution as we obtained. We have nevertheless chosen to

include the detailed development along with our complexity boundary discussion, as a second

example of the technique.

Aho, Hopcroft and Ullman [2] present a generic cubic-time algorithm parameterized by a closed

semiring. They present three possible instantiations as examples, of which one is Booleans which

leads to transitive closure, and another is weights (extended with infinity) which leads to all-pairs

shortest paths. Our Galois connection between the individual properties (semirings) goes beyond

this parameterization as it relates the individual properties being computed.

8.1. Future work

A natural next step is to incorporate more benefits of point-free style, such as those provided

by relational compositions and factors for the systematic calculation of program analyses, as well

as make use of tool support [41] for deriving graph algorithms.

9. Conclusion

In this work we applied the toolset traditional to fixed-point calculus and semantics-based pro-

gram analysis, to derive iterative, polynomial-time algorithms for four classical graph problems,

formulated in terms of finite paths through a graph: transitive closure, dominance, single-source

shortest paths, and all-pairs shortest paths. We formalized definitions of the properties as adjoints

in appropriate Galois connections. By fusing these with a least fixed point of a monotone path

functional, we obtained polynomial-time algorithms for computing the properties directly. We

furthermore related the two iterative algorithms for all-pairs shortest paths and transitive closure

by means of an additional Galois connection. The tour of graph properties has let us derive algo-

rithms for set-based, numerical, and Boolean properties, all cast in the unifying Galois connection

framework.

To synthesize, the common pattern for calculating graph algorithms amounts to picking a

concrete domain for paths and an abstract domain for the property of interest. A monotone
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“concrete” functional should be chosen to generate all eligible elements of the concrete domain as

its fixed point. A lower adjoint, i.e., an abstraction, captures a notion of the property with respect

to elements of a concrete domain, so the appropriate Galois connection should be proven. Finally,

an iterative algorithm for the property is obtained as a computation of the least fixed point of

the “abstract” functional, resulting from the abstraction “swapping”. Table 9 summarizes the

systematic construction pattern, as presented by the examples in Sections 4, 5, 6 and 7.1.

The derived algorithms obtained are strikingly similar to independently discovered algorithms

from the literature. Their calculations constitute constructive correctness proofs in contrast to,

e.g., an invariant argument for Dijkstra’s algorithm by contradiction [17]. The derivations further

witness the wide applicability of the toolset behind fixed-point calculus and abstract interpretation.
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[9] R.C. Backhouse, B.A. Carré, Regular algebra applied to path-finding problems, Journal of the Institute of

Mathematics and Applications 15 (1975) 161–186.

[10] R.C. Backhouse, J.P.H.W. van den Eijnde, A.J.M. van Gasteren, Calculating path algorithms, Sci. Comput.

Program. 22 (1994) 3–19.

[11] R. Barbuti, C. Bernardeschi, N. De Francesco, Checking security of Java bytecode by abstract interpretation,

in: Proceedings of the 2002 ACM Symposium on Applied Computing, ACM, Madrid, Spain, 2002, pp. 229–236.

[12] R. Bellman, On a routing problem, Quarterly of Applied Mathematics 16 (1958) 87–90.

[13] R. Bird, O. de Moor, The Algebra of Programming, Prentice-Hall, 1996.

[14] J. Cai, R. Paige, Program derivation by fixed point computation, Sci. Comput. Program. 11 (1989) 197–261.
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