
Calculating Graph Algorithms

for Dominance and Shortest Path⋆

Ilya Sergey1, Jan Midtgaard2, and Dave Clarke1

1 KU Leuven, Belgium
{first.last}@cs.kuleuven.be
2 Aarhus University, Denmark

jmi@cs.au.dk

Abstract. We calculate two iterative, polynomial-time graph algorithms
from the literature: a dominance algorithm and an algorithm for the
single-source shortest path problem. Both algorithms are calculated di-
rectly from the definition of the properties by fixed-point fusion of (1) a
least fixed point expressing all finite paths through a directed graph and
(2) Galois connections that capture dominance and path length.
The approach illustrates that reasoning in the style of fixed-point calculus
extends gracefully to the domain of graph algorithms. We thereby bridge
common practice from the school of program calculation with common
practice from the school of static program analysis, and build a novel view
on iterative graph algorithms as instances of abstract interpretation.

Keywords: graph algorithms, dominance, shortest path algorithm, fixed-point
fusion, fixed-point calculus, Galois connections

1 Introduction

Calculating an implementation from a specification is central to two active sub-
fields of theoretical computer science, namely the calculational approach to pro-
gram development [1,12,13] and the calculational approach to abstract interpre-
tation [18, 22, 33, 34]. The advantage of both approaches is clear: the resulting
implementations are provably correct by construction. Whereas the former is a
general approach to program development, the latter approach is mainly used for
developing provably sound static analyses (with notable exceptions [19,25]). Both
approaches are anchored in some of the same discrete mathematical structures,
namely partial orders, complete lattices, fixed points and Galois connections.

Graphs and graph algorithms are foundational to computer science as they
capture the essence of networks, compilers, social connections, and much more.
One well-known class of graph algorithms is the shortest path algorithms, ex-
emplified by Dijkstra’s single-source shortest path algorithm [16,28]. Dominance

⋆ This work was carried out while the first author was visiting Aarhus University in
the fall of 2011.

algorithms are another class of widespread use: for transforming programs into
static single assignment form [5], for optimizing functional programs [30], for
ownership typing [35], for information flow analysis [10], etc. In this paper we
reconsider the calculational foundations for such algorithms in the context of
fixed-point calculus and Galois connections.

In order to bridge two worlds, namely, calculational program development
and semantics-based program analysis, we employ the toolset of both fixed-point
calculus [1] and abstract interpretation [22], and show that solutions for finite
path properties in graphs can be obtained by these means, yielding polynomial-
time algorithms that are correct by construction. In doing so, we utilize Galois
connections to extract properties (namely dominance and shortest path) from
sets of paths in graphs similar to how Galois connections are used to extract
properties from program executions in abstract interpretation.

2 Background

We first highlight the relevant mathematical preliminaries. Readers familiar with
lattices and orders [27] as found in the fixed-point calculus [1], basic abstract
interpretation [26], and relational algebra [7] may wish to proceed directly to
Section 3.

2.1 Notation

We use the standard notation ℘(X) for the powerset of X. When working with
sets and relations, we will make use of Eindhoven notation for quantified expres-
sions [40]. The general pattern is 〈Q x : p(x) : t(x)〉, where Q is some quantifier
(e.g., “∀” or “∃”), x is a sequence of free variables (also called dummies), p(x) is
a predicate, which must be satisfied by the dummies, and t(x) is an expression,
defined in terms of the dummies. For instance, for cases “∀” or “∃”, we have the
following relations with the standard notation:

〈∀x : p(x) : q(x)〉 ⇐⇒ ∀x.(p(x) ⇒ q(x))

〈∃x : p(x) : q(x)〉 ⇐⇒ ∃x.(p(x) ∧ q(x))

Following the same notation, we use set comprehensions {x : p(x) : q(x)} as a
shorthand for 〈∪x : p(x) : {q(x)}〉, where x contains components to union over, p
is a filtering condition and {q(x)} is a yielded result for a particular combination
from x.3 The square brackets around a formula indicate a universal quantification
over any free variables, not mentioned in the preamble. For instance, [x ∨ ¬x].

In the proofs, we will overload the equality sign “=” to mean equivalence
between two subsequent steps of a derivation, supplying a textual explanation
in fancy brackets: H . . . I.

3 This notation is equivalent to the traditional notation {q(x) | p(x)}, which does not
make explicit which variables are bound and which variables are free.

2

2.2 Basics of domain theory and abstract interpretation

A complete lattice 〈C;⊑,⊥,⊤,⊔,⊓〉 is a partial order 〈C;⊑〉 such that there
exists a least upper bound (or join) ⊔S and a greatest lower bound (or meet)
⊓S of all subsets S ⊆ C. In particular ⊔C = ⊤ and ⊓C = ⊥.

A point x is a fixed point of a function f if f(x) = x. Given two par-
tial orders, 〈C,⊑〉 and 〈A,≤〉, a function f of type C → A is monotone if
[x ⊑ y =⇒ f(x) ≤ f(y)]. By the Knaster-Tarski fixed-point theorem a mono-
tone endo-function f over a complete lattice has a least fixed point lfp⊑f =
⊓{x | f(x) ⊑ x}. Algorithmically the least fixed point of a monotone function
f over a complete lattice of finite height4 can be computed by Kleene iteration:
⊥ ⊑ f(⊥) ⊑ f2(⊥) ⊑ f3(⊥) ⊑ . . . since lfp⊑f = ⊔i≥0f

i(⊥).
A Galois connection is a pair of functions α, γ (in the present case, between

two partial orders 〈C,⊑〉 and 〈A,≤〉), such that [α(c) ≤ a ⇐⇒ c ⊑ γ(a)]. The
function α is referred to as the lower adjoint and the function γ is referred to as
the upper adjoint.5 We typeset Galois connections as:

〈C,⊑〉 −−−→←−−−
α

γ
〈A,≤〉

sometimes with double arrow heads to stress that an adjoint is surjective. Galois
connections enjoy a number of properties of which we only highlight a few. Both
adjoints of a Galois connection are monotone. Furthermore, for a Galois connec-
tion between two complete lattices the lower adjoint distributes over the least
upper bound: [α(⊔X) =

∨
α(X)]. Finally if a function between two complete

lattices distributes over the least upper bound, then it is the lower adjoint of a
Galois connection with its corresponding upper adjoint uniquely determined by
γ(a) = ⊔{c | α(c) ≤ a} [23].

Galois connections can be constructed compositionally: given 〈C,⊑〉 −−−→←−−−
α1

γ1

〈A1,≤1〉 and 〈A1,≤1〉 −−−→←−−−
α2

γ2

〈A2,≤2〉, one has 〈C,⊑〉 −−−−−−→←−−−−−−
α2◦α1

γ1◦γ2

〈A2,≤2〉.

Galois connections interact with least fixed points by fixed-point fusion [1]:

α ◦ Fc ≤̇ Fa ◦ α =⇒ α(lfp Fc) ≤ lfp Fa (1)

α ◦ Fc = Fa ◦ α =⇒ α(lfp Fc) = lfp Fa (2)

for monotone functions Fc and Fa (where we have written f ≤̇ g for the pointwise
ordering [f(x) ≤ g(x)]).6 Note that we overload the notation for a least fixed
point lfp, using it for different domains and orders, without specifying them
explicitly, when it is obvious from the context. For instance, in the definitions (1)
and (2) we use lfp in both cases, assuming in fact lfp⊑ for Fc and lfp≤ for Fa,
respectively.

4 Traditionally, the height of a lattice 〈C;⊑,⊥,⊤,⊔,⊓〉 denotes the maximal length
of a (possibly infinite) strictly increasing chain of elements x0 ⊑ x1 ⊑ . . . ⊑ xi ∈ C.

5 In the abstract interpretation literature where they are typically associated with
some information loss they are known as the abstraction and concretization func-
tions, respectively [23].

6 The first implication is also referred to as the fixed-point transfer theorem [22] and
the latter implication is known as a complete abstraction [23].

3

2.3 Elements of relational algebra

Composition is a well-known operation on relations. For given relations R ⊆
A × B and S ⊆ B × C, their composition R ◦ S ⊆ A × C is defined as follows:

R ◦ S ≡ {x, y, z : 〈x, y〉 ∈ R ∧ 〈y, z〉 ∈ S : 〈x, z〉}. (3)

A particular case of relation composition is function composition. In order for
function composition to be consistent with the right-to-left ◦-notation, we also
think of a function of type A → B as a relation over B × A [12].

Another important notion we are going to use is factors [7]. Given three
relations R ⊆ A × B, S ⊆ B × C and T ⊆ A × C, the left factor T/S ⊆ A × B
and the right factor R\T ⊆ B × C are defined pointwise as follows:

[x T/S y ≡ 〈∀z : y S z : x T z〉] (4)

[x R\T y ≡ 〈∀z : z R x : z T y〉] (5)

Both the notions of composition and factors are helpful for reasoning in point-

free style: while composition eliminates existential quantifications, the factor
operations eliminate universal quantification. It is also notable that

[R ◦ S ⊆ T ⇐⇒ S ⊆ R\T] (6)

[R ◦ S ⊆ T ⇐⇒ R ⊆ T/S] (7)

so we have

[T/S ⊇ R ⇐⇒ S ⊆ R\T] (8)

which makes it possible to consider the eta-expanded factors (T/) = λX .T/X
and (\T) = λX .X\T as the adjoints of a Galois connection:

〈℘(B × C),⊆〉 −−−−−→←−−−−−
(T/)

(\T)
〈℘(A × B),⊇〉 (9)

3 Calculating a Dominance Algorithm

In this section we derive an algorithm to compute a dominance relation of a
directed graph. We first express dominance as a lower adjoint over a set of finite
paths. We then calculate the dominance computation algorithm using fixed-point
fusion with a least fixed point expressing all finite paths through a graph.

3.1 Graphs and finite paths

Definition 1 (Directed Graph). A rooted directed graph is a triple G =
〈V,E, v0〉, where V is a set of nodes, E ⊆ V × V is a set of edges and v0 ∈ V is

a designated initial node.

4

We use the notation (u → v) to indicate the edge 〈u, v〉 ∈ E. A non-empty
path σ ∈ V + in a graph G is a sequence of nodes σ = u0 . . . un, such that for all
i ∈ 1 . . . n, (ui−1 → ui). Given a graph G = 〈V,E, v0〉, all finite paths starting
from v0 can be obtained by “walking through the set of edges”, which leads to
the following definition:

Definition 2 (Finite path functional). 7 Given a fixed graph G = 〈V,E, v0〉,
a finite path functional pG : ℘(V +) → ℘(V +) is defined as follows:

pG(X) = {σ, v : σ ∈ X ∧ (last(σ) → v) : σv}, (10)

where the function last of type V + → V on non-empty paths is defined by

last(σu) = u. (11)

In some cases, we will also consider last as a relation (i.e., last ⊆ V × V +) in
order to compose it with other relations.

Using the well-known observation [7,26] that 〈℘(V +),⊆〉 is a complete lattice
with ⊔ = ∪, ⊓ = ∩, ⊥ = ∅ and ⊤ = V +, and the fact that pG is monotone,
one can express the set of finite paths through a graph G, starting in v0 as the
following least fixed point :

PG = lfp(λX .{v0} ∪ pG(X)) (12)

By a simple inductive argument any finite path through G starting in v0

belongs to PG. In the remainder of this section we consider a fixed graph G =
〈V,E, v0〉.

3.2 Dominance in finite paths

A classical definition of dominance in a graph is stated as follows [36]:

A node u dominates node v if u belongs to every path

from the initial node v0 of the graph to v.

Our goal is to derive an algorithm for computing dominators directly from
the definition above. Clearly, the set of all finite paths cannot be examined in
general, since it is infinite in the presence of cycles in the graph. Nevertheless,
we start from the definition of dominance in a set of paths.

Definition 3. The function dom of type ℘(V +) → ℘(V × V) is defined for all

X ⊆ V + as follows:

[u dom(X) v = 〈∀σ : σ ∈ X ∧ last(σ) = v : u in σ〉], (13)

7 The same functional is traditionally used within the partial trace collecting seman-
tics [26].

5

where the relation in ⊆ V × V + is defined by:

in = lfp(λX .last ∪ X ◦ pre) (14)

and pre ⊆ V + × V + is {σ, v : σ ∈ V + ∧ σv ∈ V + : 〈σ, σv〉}

In words, Definition 3 says that u antecedes v for all paths in X trailed by v.
One can notice that if there are no paths in X that end with v, then all nodes
u dominate v. Also, a node u dominates itself for any X .

3.3 A Galois connection between sets of finite paths and dominance
relations

We proceed by building a Galois connection between the lattice of finite paths
through a graph and a lattice of relations on the nodes, using the dominance
function dom from Definition 3 as a lower adjoint:

〈℘(V +),⊆〉 −−−−→−→←−−−−−
dom

dom
〈℘(V × V),⊇〉 (15)

In order to do so, we first reformulate dominance in point-free style using factors
(see Section 2). The new equivalent definition is established by the following
lemma:

Lemma 1.

dom = (in/) ◦ f (16)

where

f(X) = {σ : σ ∈ X : 〈last(σ), σ〉} (17)

If we consider last as a relation, we can construct its powerset, ℘(last). If we
furthermore view the latter as a type, f ’s signature is ℘(V +) → ℘(last).

Proof. For all u, v ∈ V

u dom(X) v

= H by definition (13) I

〈∀σ : σ ∈ X ∧ last(σ) = v : u in σ〉

= H by definition of f (17), definition of / (4) I

u in/f(X) v

⊓⊔

Second, we show that dom is indeed a lower adjoint of the desired Galois
connection. Since dom is equivalent to a composition of in/ and f and we al-
ready know that in/ is a lower adjoint from 〈℘(last),⊆〉 to 〈℘(V × V),⊇〉 (see
Section 2.3), we only need to show that f is a lower adjoint from 〈℘(V +),⊆〉 to
〈℘(last),⊆〉. The following lemma delivers this result.

6

Lemma 2. f is a lower adjoint in a Galois connection

〈℘(V +),⊆〉 −−−→−→←−−−−
f

f
〈℘(last),⊆〉.

Proof. Suppose, X ⊆ V + and T ⊆ last (i.e., [u T σ ⇒ u = last(σ)]). Then

f(X) ⊆ T

= H by definition (17) I

〈∀σ : σ ∈ X : last(σ) T σ〉

= H by definition of ⊆ I

X ⊆ {σ : last(σ) T σ : σ}

= H T ⊆ last, taking T ′ = {v, σ : v T σ : σ} I

X ⊆ T ′

Therefore, f is a lower adjoint with upper adjoint the function that maps a
relation T which is a subset of last to its right component:

f(T) = {v, σ : v T σ : σ}

⊓⊔

The following corollary states the fixed-point fusion property (2) with respect
to dom:

Corollary 1. The function dom is a lower adjoint in a Galois connections be-

tween sets of paths ordered by the ⊆ relation and subsets of V × V ordered by

the ⊇ relation. Furthermore, if h is a monotone function of type 〈℘(V +),⊆〉 →
〈℘(V +),⊆〉 and g is a monotone function of type 〈℘(V × V),⊇〉 → 〈℘(V × V),⊇〉,
then

dom ◦ h = g ◦ dom ⇒ dom(lfp⊆ h) = lfp⊇ g,

where the least fixed points are computed with respect to the appropriate order

relations: ⊆ for h and ⊇ for g.

Proof. Follows from the fact that dom = (in/) ◦ f (Lemma 1), the composition
property of Galois connections applied to (2) and Lemma 2. ⊓⊔

3.4 A dominance computation functional

Having a Galois connection between the lattice of sets of finite paths and the
lattice of dominance relations enable us to derive a functional for computing the
dominance relation, induced by the set of all paths, which we defined as PG. In
this section, we extract an algorithm to compute the actual dominance relation
corresponding to all finite paths in the graph.

We construct the dominance computation functional FD from the finite
path functional pG and the lower adjoint dom, such that:

7

dom ◦ pG = FD ◦ dom (18)

Then we can just apply Corollary 1, taking h = pG and g = FD .
We derive FD by a two-staged derivation. First, we find a function k, such

that

f ◦ pG = k ◦ f (19)

Second, we find FD such that

(in/) ◦ k = FD ◦ (in/) (20)

One can then see that for FD defined in such a way we have:

dom ◦ pG

= H by Lemma 1 I

(in/) ◦ f ◦ pG

= H by (19) I

(in/) ◦ k ◦ f

= H by (20) I

FD ◦ (in/) ◦ f

= H by Lemma 1 I

FD ◦ dom

and hence satisfy the requirement from equation (18).
Informally, we obtain the function k from (19) by “pushing” the lower adjoint

f under the function definition pG, a well-known “recipe” within the abstract
interpretation community [24]:

f(pG(X))

= H by definition (17) I

{σ : σ ∈ pG(X) : 〈last(σ), σ〉}

= H by definition (10) I

{σ, v : σ ∈ X ∧ (last(σ) → v) : 〈last(σv), σv〉}

= H one-point rule, definition of last I

{σ, u, v : σ ∈ X ∧ last(σ) = u ∧ (u → v) : 〈v, σv〉}

= H by definition (17) I

{σ, u, v : 〈u, σ〉 ∈ f(X) ∧ (u → v) : 〈v, σv〉}

= H taking k(X) = {σ, u, v : 〈u, σ〉 ∈ X ∧ (u → v) : 〈v, σv〉} I

k(f(X))

Hence the following lemma:

8

Lemma 3.

f ◦ pG = k ◦ f,

where k : 〈℘(last),⊆〉 → 〈℘(last),⊆〉 is defined as follows:

k(X) = {σ, u, v : 〈u, σ〉 ∈ X ∧ (u → v) : 〈v, σv〉} (21)

Now, we obtain FD using the same technique as in the previous derivation.
Assume R ∈ ℘(last), then for all u, v ∈ V ,

u (in/k(R)) v

= H by definition (4) I

〈∀σ : v k(R) σ : u in σ〉

= H by definition of k (21) I

〈∀σ : 〈∃w : w → v : w R σ〉 : u in σv〉

= H by definition of in (14) I

〈∀σ : 〈∃w : w → v : w R σ〉 : u = v ∨ u in σ〉

= H by distributivity and range splitting I

u = v ∨ 〈∀w : w → v : 〈∀σ : w R σ : u in σ〉〉

= H taking [v pred w ≡ w → v] I

u = v ∨ u ((in/R)/pred) v

= H taking FD(X) = id ∪ X/pred I

u FD(in/R) v

The presented derivation proves the following lemma:

Lemma 4.

(in/) ◦ k = FD ◦ (in/),

where FD : 〈℘(V × V),⊇〉 → 〈℘(V × V),⊇〉 is defined by

FD(X) = id ∪ X/pred (22)

with id denoting the identity relation and pred defined as [v pred u ≡ u → v].

We now have all the ingredients to express dom(PG) in terms of FD :

Theorem 1.

dom(PG) = lfp⊇(λX .dom({v0}) ∩ (id ∪ X/pred)) (23)

where the least fixed point lfp⊇ is computed with respect to the partial order

〈℘(V × V),⊇〉.

9

Proof. First, we note that for all X ∈ ℘(V +)

dom({v0} ∪ pG(X))

= H by corollary 1 and distributivity of adjoints I

dom({v0}) ∩ dom(pG(X))

= H by the properties of FD (18) I

dom({v0}) ∩ FD(dom(X))

Applying Corollary 1, one can see that

dom(PG) = lfp⊇(λX .dom({v0}) ∩ FD(X)), (24)

where the least fixed point lfp⊇ is computed with respect to the ⊇ ordering.
Finally, unfolding the definition of FD (22) concludes the proof of the theorem.

⊓⊔

3.5 Dominance equations

From a practical point of view, one is usually more interested in computing a
representation of the dominance relation as a map Dom, such that Dom(v) =
{u : u dom(PG) v : u}. In this section we construct equivalent data-flow equations
and iterative algorithms based on this representation, on the definition of the
dominance functional FD (22), and on the result of Theorem 1. We thereby
bridge the computation of dominance as a least fixed point of the path functional
and the more traditional approaches [15].

First, we notice that

u dom({v0}) v

= H definition (13) I

〈∀σ : σ ∈ {v0} ∧ last(σ) = v : u in σ〉

= H since σ ∈ {v0} ⇐⇒ σ = v0 and u in v0 ⇐⇒ u = v0 I

v = v0 ⇒ u = v0

Therefore, we obtain

u dom(PG) v0

= H definition (12) I

u dom({v0} ∪ pG(PG)) v0

= H since dom is distributive I

u dom({v0}) v0 ∧ u dom(pG(PG)) v0

= H by the observation above, taking v = v0, [u dom(PG) u] I

u = v0

10

So, we have an equivalence

[u dom(PG) v0 ⇐⇒ u = v0] (25)

Also, for v 6= v0,

u dom(PG) v

= H by Theorem 1, since lfp is a fixed-point operator I

u (dom({v0}) ∩ (id ∪ dom(PG)/pred)) v

= H by assumption v 6= v0, so u dom({v0}) v I

u (id ∪ dom(PG)/pred) v

= H by definitions of / (4) and pred I

u = v ∨ [∀w : w → v : u dom(PG) w]

So, we obtain the second equivalence

[u dom(PG) v ⇐⇒ u = v ∨ 〈∀w : w → v : u dom(PG) w〉] (26)

Taking Dom = dom(PG) not as a relation, but as a function of type V → ℘(V)
defined as [u ∈ Dom(v) ≡ u dom(PG) v] and the equivalences (25) and (26), we
discover the following equivalent data-flow equations for Dom [2]:8

Dom(v0) = {v0}

Dom(v) =
⋂

w∈pred(v)

Dom(w) ∪ {v} (27)

The statement of Theorem 1 can also be exploited to obtain a simple iterative
algorithm for computing the least fixed point of the functional FD using Kleene
iteration. Figure 1 presents such an algorithm, writing dom({v0}) for the map
λv.(v = v0 ? {v0} : V).

1: for v ∈ V do

2: Dom[v] ← V

3: Dom’ ← dom({v0}) ∩ FD(Dom)
4: while Dom 6= Dom’ do

5: Dom ← Dom’
6: Dom’ ← dom({v0}) ∩ FD(Dom)

Fig. 1: A straightforward algorithm for computing dominance

Initially, the dominance set for every node is the entire set of nodes, according
to the lattice 〈℘(V × V),⊇〉 (i.e., ⊥ = V ×V). This dominance set is then being

8 In order to mimic the traditional presentation [2], we consider pred as a function of
type V → ℘(V) defined as [w ∈ pred(v) ≡ w → v].

11

1: for v ∈ V do

2: Dom[v] ← V

3: Dom[v0] ← {v0}
4: Changed ← true
5: while Changed do

6: Changed ← false
7: for v ∈ V do

8: newSet ←
“

T

w∈pred(v) Dom[w]
”

∪ {v}

9: if newSet 6= Dom[v] then

10: Dom[v] ← newSet
11: Changed ← true

Fig. 2: An optimized iterative dominator algorithm [15]

“shrunk”, as the algorithm proceeds to consider more paths. In the output of
the algorithm every node is dominated by itself. The initial node v0 in particular
is dominated only by itself. All disconnected nodes in the graph are dominated
by all nodes.

This algorithm can be optimized further although we make no attempt to
calculate our way to these changes. For example, rather than maintaining two
dominance maps Dom and Dom’ one can make do with a single map. In each
iteration one then needs to keep track of stabilization by other means than map
comparison, e.g., using a Boolean flag to signal changes to an entry. By unfolding
FD and making these changes we arrive at the classic algorithm from Figure 2
(see Cooper et al. [15] for more details on the implementation).

3.6 Complexity

The complexity of the derived algorithm is polynomial: the height of the lat-
tice of dominance functions is O(|V |2), which is an upper bound on the number
of iterations. Each iteration of the first algorithm in Figure 1 requires (1) an
O(|V |2)-time equality test between two lattice elements and (2) computing an in-
tersection for each node over all its predecessors in FD which takes O(|V | × |E|)
operations. As a consequence the algorithm takes O(|V |2(|V |2 + |V | × |E|)) =
O(|V |4 + |V |3 × |E|) time. The optimized algorithm in Figure 2 uses a con-
stant time stabilization test, but still requires computing an intersection over
all predecessors for each node. As a result it has O(|V |3 × |E|) worst case time
complexity.

The bottleneck of the optimized algorithm is the strategy by which it chooses
a node to process in line 7 of Figure 2. By instead iterating through the vertices
in reverse postorder [3] (i.e., a node is visited before all its successor nodes
have been visited), we can avoid a general fixed-point computation. By this
strategy we can obtain a O(|V | × |E|) time algorithm. By a clever choice of
data structures, representing sets using dominator trees, this can be improved
to O(|V |2) [15].

12

Even linear time dominance algorithms exist [4], but the O-notation for these
hide a non-negligible constant factor. For practical purposes they do not fare as
well as a well-engineered iterative algorithm [32]. We refer to Cooper, Harvey,
and Kennedy [15] for a historical account of dominator algorithms.

4 Calculating a Shortest Path Algorithm

In this section, we calculate an algorithm solving the single-source shortest path
problem for a weighted graph with non-negative edge costs. We augment the
definition of directed graphs from Section 3.1 with a function assigning weights to
edges. The shortest distance from the source to a target node is then formulated
for sets of finite weighted paths and an iterative algorithm is derived by fixed-
point fusion. Finally, we modify the property to compute the actual shortest
paths and not only the shortest distances.

4.1 Weighted graphs and paths

Definition 4 (Weighted rooted graph). A weighted rooted graph Gw =
〈V,E, v0,W 〉 is a rooted directed graph 〈V,E, v0〉 with a weight function W :
E → N.

For nodes u, v ∈ V , we use the notation (u
w
−→ v) to indicate the edge 〈u, v〉 ∈ E

and W (〈u, v〉) = w. A weighted path τ ∈ V +
w is a non-empty sequence of

interleaving nodes and weights τ = u0w1 . . . un−1wnun, starting and ending by

a node, such that for all i ∈ 1 . . . n, (ui−1
wi−→ ui).

Definition 5 (Weight of a path [16]). The weight of a weighted path τ =
u0w1 . . . un−1wnun is the sum of the weights of its constituent edges:

‖τ‖ =
n∑

i=1

wi (28)

In the remainder of this section we consider a fixed weighted graph Gw =
〈V,E, v0,W 〉.

4.2 The single-source shortest path property for finite paths

In this section we will focus on the single-source shortest-path problem,
which can be defined as follows:

Given a node u0 and a set of weighted paths

X = {τ : τ = u0w1 . . . un−1wnun : τ}, for each v, such that

τv = u0 . . . v ∈ X , what is the minimum of ‖τv‖?

13

Again, our goal is to compute an iterative algorithm for the defined property
directly from its definition. In order to do so, we first define the shortest-path

weight for a set of paths similarly to the canonical property by Cormen et al. [16].

Definition 6 (Shortest-path weight). Given a set of weighted paths X , then

the shortest-path weight from u to v in X is

dist(X)(u, v) = min{τ : τ ∈ X ∧ τ = u . . . v : ‖τ‖}, where

min(∅) = ∞.

By overloading notation, the single-source shortest-path weight from v0 to
any other node in X is defined naturally using the function last (11) for weighted
paths:

dist(X) = λv.min{τ : τ ∈ X ∧ last(τ) = v : ‖τ‖}. (29)

As in the canonical definition [16], we define the shortest-path weights as a
function from a set of finite paths to natural numbers extended with infinity.
Still, an arbitrary weighted graph can contain a possibly infinite number of
paths from a node u to v. We connect the world of weighted graphs with sets of
weighted paths by redefining the path functional from Section 2 for the single-
source weighted paths of a weighted graph Gw.

Definition 7 (Weighted finite path functional). Given a weighted graph

Gw = 〈V,E, v0,W 〉, a weighted finite path functional pGw
: ℘(V +

w) → ℘(V +
w) is

defined as follows:

pGw
(X) = {τ, w, v : τ ∈ X ∧ (last(τ)

w
−→ v) : τwv}. (30)

Similarly to Section 3.1, 〈℘(V +
w),⊆〉 is a complete lattice, so the set of all

weighted single-source finite paths in the graph is defined as the following least
fixed point:

PGw
= lfp(λX .{v0} ∪ pGw

(X)) (31)

Again by a simple inductive argument any finite weighted path starting in v0

belongs to PGw
. In this setting, dist(PGw

) specifies the single-source shortest
path property for the whole graph. In the remainder of this section we will
derive an algorithm to compute it using fixed-point fusion.

4.3 A Galois connection between sets of finite paths and the
shortest path weights

The function dist defined in Section 4.2 maps a set of paths to a function,
mapping a node to a non-negative weight or infinity (in case a node is unreachable
from v0), so the codomain of dist is E = V → N ∪ {∞}. In order to make it a
complete lattice we extend natural arithmetic to infinity:

∀n ∈ N : n + ∞ = ∞ + n = ∞ + ∞ = ∞
∀n ∈ N : n < ∞

∞ ≤ ∞

14

Next, we introduce a partial order and the least upper bound on elements δ of E :

[δ1 ≥̇ δ2 ≡ ∀u ∈ V : δ1(u) ≥ δ2(u)] (32)

[δ1 ⊔ δ2 = λu.min{δ1(u), δ2(u)}] (33)

Finally, one can observe that 〈E , ≥̇〉 is a complete lattice with the meet
operation provided by (33), ⊥E = λv.∞ and ⊤E = λv.0. This follows, e.g,
from realizing that 〈N ∪ {∞},≥〉 is a complete lattice9 that can be lifted into a
complete lattice over functions with the above pointwise operations.

In order to build the Galois connection between 〈℘(V +
w),⊆〉 and 〈E , ≥̇〉 using

dist as a lower adjoint, we need to show that dist is distributive with respect
to ⊔.

Lemma 5. [
⊔

i

dist(Xi) = dist(
⋃

i

Xi)

]

Proof. Let a sequence Xi ∈ ℘(V +
w) be given

⊔

i

dist(Xi)

= H by definition of ⊔ I

λu.min
i

(dist(Xi)(u))

= H by definition of dist I

λu.min
i

(min{τ : τ ∈ Xi ∧ last(τ) = u : ‖τ‖})

= H min is associative and commutative I

λu.min{τ : τ ∈
⋃

i

Xi ∧ last(τ) = u : ‖τ‖}

= H by definition of dist I

dist(
⋃

i

Xi)

⊓⊔

Recall from Section 2.2 that Lemma 5 guarantees the existence of a Galois
connection between the two complete lattices, including a unique upper adjoint
dist:

〈℘(V +
w),⊆〉 −−−−→−→←−−−−−

dist

dist
〈E , ≥̇〉

9 The construction corresponds roughly to half an interval domain formalized by
Cousot and Cousot as a complete product lattice ({−∞} ∪ Z) × (Z ∪ {∞}) [20].

15

4.4 A shortest-path functional

In this section, we extract an algorithm to compute the shortest-path weight
function corresponding to all finite paths in the graph. In order to do so, first,
we derive the shortest-path functional Fδ by the “pushing” the lower adjoint
dist under pGw

:

dist(pGw
(X))

= H by the definition of pGw
(30) I

dist({τ, w, v : τ ∈ X ∧ (last(τ)
w
−→ v) : τwv})

= H by definition of dist (29) I

λv.min{τ, w : τ ∈ X ∧ (last(τ)
w
−→ v) : ‖τwv‖}

= H by definition of ‖τwv‖ (28) I

λv.min{τ, w : τ ∈ X ∧ (last(τ)
w
−→ v) : ‖τ‖ + w}

= H taking u = last(τ) I

λv.min{τ, u, w : τ ∈ X ∧ (u
w
−→ v) ∧ last(τ) = u : ‖τ‖ + w}

= H by the property of min I

λv.min{u,w : (u
w
−→ v) :

dist(X)(u)
︷ ︸︸ ︷

min{τ : τ ∈ X ∧ last(τ) = u : ‖τ‖}+w}

= H by folding definition of dist (29) I

λv.min{u,w : (u
w
−→ v) : dist(X)(u) + w}

= H taking pred(v) = {u : u
w
−→ v : u} and W (〈u, v〉) = w I

λv.min{u : u ∈ pred(v) : dist(X)(u) + W (〈u, v〉)}

= H defining Fδ(Y) = λv.min{u : u ∈ pred(v) : Y(u) + W (〈u, v〉)} I

Fδ(dist(X))

The derivation above proves the following lemma:

Lemma 6.
dist ◦ pGw

= Fδ ◦ dist

where Fδ is of type 〈E , ≥̇〉 → 〈E , ≥̇〉 is defined for all X by

Fδ(X) = λv.min{u : u ∈ pred(v) : X (u) + W (〈u, v〉)} (34)

We can now notice that dist({v0}) = λv.(v = v0 ? 0 : ∞), so the following
theorem follows naturally:

Theorem 2.

dist(PGw
) = lfp≥̇ (λX .(λv.(v = v0 ? 0 : ∞)) ⊔ Fδ(X)) (35)

where the least fixed point lfp≥̇ is computed with respect to the ordering ≥̇ over

E , starting from ⊥E = λv.∞.

16

Proof. Similarly to the proof of Theorem 1, using distributivity of dist, Lemma 6,
fixed-point fusion (2) and inlining dist({v0}). ⊓⊔

1: for v ∈ V do

2: δ(v) ← ∞
3: δ′ ← dist({v0}) ⊔ Fδ(δ)
4: while δ′ 6= δ do

5: δ ← δ′

6: δ′ ← dist({v0}) ⊔ Fδ(δ)

Fig. 3: A straightforward algorithm for single-source shortest paths

Figure 3 provides a first iterative algorithm for computing the least fixed
point of the functional Fδ using Kleene iteration. Again the algorithm has room
for improvement.

1: for u ∈ V do

2: δ[u] ← ∞
3: δ[v0] ← 0
4: Changed ← true
5: while Changed do

6: Changed ← false
7: for v ∈ V do

8: for u ∈ pred(v) do

9: if δ[u] + W [u, v] < δ[v] then

10: δ[v] ← δ[u] + W [u, v]
11: Changed ← true

Fig. 4: An optimized imperative single-source shortest path algorithm

By unfolding Fδ and maintaining only a single δ-map as in Section 3.5 we
arrive at the single-source shortest-path algorithm in Figure 4. The resulting
algorithm is strikingly similar to Bellman’s iterative algorithm [11] for computing
shortest paths: as Bellman’s algorithm proceeds by computing a “monotone

sequence” of “successive approximations” so does the derived algorithm. The
algorithms differ in that Bellman assumes that all nodes are connected, which
allows him initialize the distance to a node with the weight of the direct edge from
the source node. For an account of the early history of shortest path algorithms
we refer to Schrijver [37].

4.5 Complexity

As Bellman’s algorithm [11] the derived algorithm has polynomial time com-
plexity. One can see that the lattice 〈E , ≥̇〉 is noetherian, i.e., it satisfies the

17

ascending chain condition [29] (i.e., every strictly ascending chain x1 ≥̇x2 ≥̇ . . .
of elements eventually terminates), which guarantees termination of the iterative
algorithm, since Fδ is monotone. Now let the constant L be the maximal weight
of an edge between any two nodes in a given graph. For each node an initial
path from the source node cannot contain cycles. Moreover its distance from the
source node cannot be improved more than L×|V | times by a strictly increasing
chain. Therefore, for a fixed graph, the length of a corresponding ascending chain
in 〈E , ≥̇〉 is O(|V |2) which bounds the number of while-loop iterations.

Both the first algorithm in Figure 3 and the optimized algorithm in Figure 4
iterate through the predecessors of each node, which takes O(|V | + |E|) oper-
ations for each while-loop iteration. In addition the first algorithm requires an
O(|V |) time stabilization test. Therefore, the worst-case time complexity of both
algorithms is O(|V |3 + |V |2 × |E|), or O(|V |2 × |E|) for a connected graph.

The bottleneck of the optimized algorithm is again the non-optimized itera-
tion in lines 7–11. Since u ∈ pred(v) if and only if v ∈ next(u), looping through
all nodes u, v such that u ∈ pred(v) is equivalent to looping through all nodes
u, v such that v ∈ next(u). We can therefore rewrite the for-loops into:

for u ∈ V do
for v ∈ next(u) do

if δ[u] + W [u, v] < δ[v] then
δ[v] ← δ[u] + W [u, v]
Changed ← true

Using an observation from Dijkstra’s algorithm, we can process the nodes
with less distance from v0 first. As a consequence each edge will be examined only

once, which leads to the original complexity O(|V |2 + |E|) = O(|V |2). By further
improving the algorithm to quickly locate the next node to process (employing
a binary min-heap), we obtain the complexity O((|V | + |E|) × log(|V |)) (which
is an improvement for sparse graphs [16]).

4.6 Computing the shortest paths

Usually, one wants to compute not only shortest-path weights, but the vertices
on shortest paths as well. Traditionally, the representation for shortest paths
is implemented by a predecessor map π. In the canonical literature on graph
algorithms [16], for a given graph node v, π(v) is either another node or NIL,
which means that the node is either the source or that it is unreachable. The
shortest-paths algorithms traditionally set the values of π so that the chain of
predecessors, originating at a vertex v, runs backwards along some shortest path
from v0 to v. In practice, it means that there might be several shortest paths from
v0 to v, however, the canonical algorithm chooses one of them arbitrarily [16].

In order to compute the predecessors for the shortest path, we will use the
shortest-path weight property from Section 4.2. The shortest path predecessors
of v with respect to the set of finite paths X are then defined as the predecessors

18

of v on paths from v0 with the minimal possible weight:

distπ(X) = λv.〈dist(X)(v), {τ, u, w : τuwv ∈ X ∧ ‖τ‖ = dist(X)(v) : u}〉
(36)

where the codomain of distπ is

P = V → (N ∪ {∞}) × ℘(V) (37)

To derive an algorithm to compute the shortest path predecessors for a given
graph, we formulate P as a complete lattice with an order ⊑, build a Galois
connection between 〈℘(V +

w),⊆〉 and 〈P,⊑〉, and employ fixed-point fusion.
In order to simplify the notation, in the remainder of this section we use ↓1

and ↓2 to refer to the first and second projections of a pair, respectively. The
partial order and meet operations on elements π1, π2 of P use a function-lifted
lexicographical ordering with respect to componentwise orders ≥ and ⊆:

[
π1 ⊑ π2 ≡ ∀u ∈ V : π1(u) ↓1> π2(u) ↓1 ∨

(π1(u) ↓1= π2(u) ↓1 ∧ π1(u) ↓2⊆ π2(u) ↓2)

]

(38)

[π1 ⊔ π2 = λu.φ(π1(u), π2(u))], where

φ(〈m1, r1〉, 〈m2, r2〉) =

〈m2, r1〉 if m1 > m2

〈m1, r2〉 if m2 > m1

〈m1, r1 ∪ r2〉 otherwise

(39)

One can see, that 〈P,⊑〉 is a complete lattice with ⊥P = λu.〈∞, ∅〉. Simi-
larly to Section 4.3, in order to build a Galois connection between 〈℘(V +

w),⊆〉
and 〈P,⊑〉, using distπ as a lower adjoint, we show again that distπ is dis-
tributive with respect to ⊔:

Lemma 7. [
⊔

i

distπ(Xi) = distπ(
⋃

i

Xi)

]

Proof. Similar to the proof of Lemma 5, using case analysis on the arguments
to the helper function φ (39). ⊓⊔

The computation of the functional Fπ for the shortest-path predecessors,
such that

distπ ◦ pGw
= Fπ ◦ distπ (40)

is similar to the derivation from Section 4.3, using Lemma 7. The final result is
stated by the following lemma:

Lemma 8.

distπ ◦ pGw
= Fπ ◦ distπ

19

where Fπ is of type 〈P,⊑〉 → 〈P,⊑〉 is defined for all X by

Fπ(X) = λv.〈m, r〉, where m = min{u : u ∈ pred(v) : X (u) ↓1 + W (〈u, v〉)}

r =

u

∣
∣
∣
∣
∣
∣

u ∈ pred(v)
X (u) ↓1< ∞
X (u) ↓1 +W (〈u, v〉) = m

(41)

Thus, the sets of predecessors in the single-source shortest paths are then
computed as a least fixed point according to the following theorem:

Theorem 3.

distπ(PGw
) = lfp⊑ (λX .(λv.〈(v = v0 ? 0 : ∞), ∅〉) ⊔ Fπ(X)) (42)

where the least fixed point lfp⊑ is computed with respect to the ordering ⊑ over

P, starting from ⊥P = λu.〈∞, ∅〉.

Proof. Similarly to the proof of Theorem 2, using distributivity of dist, Lemma 8,
fixed-point fusion (2) and inlining distπ({v0}) = λv.〈(v = v0 ? 0 : ∞), ∅〉 ⊓⊔

Note that unlike traditional algorithms for the single-source shortest path
problem [11, 28], our algorithm computes all possible shortest paths from the
source node. The complexity of the algorithm is determined by the height of the
lattice 〈P,⊑〉, which is O(|V |3). However, updating the minimum and the set
of predecessors can be performed within the same loop (lines 8–11 in Figure 4):

for v ∈ V do
for u ∈ pred(v) do

d ← δ[u] + W [u, v]
if d ≤ δ[v] then

δ[v] ← d
if d < δ[v] then

π[v] ← {u}
else

π[v] ← π[v] ∪ {u}
Changed ← true

This gives the same complexity boundary as in Section 4.5: O(|V |3 × |E|) in
the worst case. By rewriting the algorithm with next() instead of pred() and
applying observations from Dijkstra’s algorithm analysis, one can obtain the
complexity bound O(|V |2) for the optimized iteration through the set of nodes.

5 Related Work

Two different schools have been working in parallel for the last forty years: the
school of program calculation and the school of static program analysis. The

20

intrinsic goal of the first school is to derive algorithms from the specification of
properties of interest. The second school was historically interested in computing
a sound approximation of a property of a program semantics. In this section we
give a brief overview of these two lines of research which we have attempted to
bridge in the present paper.

Calculational approaches to graph algorithms A number of approaches have been
applied to derive graph algorithms since the seventies, originating in formulat-
ing path problems in terms of linear algebra. Carré [14] presented an algebraic
structure to solve extremal network routing problems, such that a function is
minimized or maximized on a particular path in a graph. He showed how ex-
tremal problems from this class can be expressed in terms of matrix equations
and solved using a toolset from linear algebra. Later, Backhouse and Carré [8]
showed the correspondence of the algebra for extremal graph problems and the
algebra of regular languages. The idea was later extended to derive the exact
implementation of Dijkstra’s shortest path algorithm [9].

In the beginning of the nineties ideas from domain theory were applied to
compute extremal properties on paths of graphs using fixed-point computations:
Van den Eijnde [39] considered computation of path properties in graphs us-
ing monotone operators, satisfying certain restrictions and called these opera-
tors conservative. Van den Eijnde formulated a generalized fixed-point theorem,
stating computation of a least fixed point of a monotone functional as a Kleene
iteration. The property of interest was then defined as an under-approximation

of the monotone function. As an example, this approach was applied to the as-
cending reachability problem. In contrast to our work, Van den Eijnde did not
apply the Galois connection machinery to define the properties and prove them
appropriate for an algorithm derivation. All the used toolset was later formal-
ized as the fixed-point calculus [1]. The interplay between Galois connections and
fixed points has later been established by Backhouse [6].

Abstract interpretation and distributive frameworks In parallel with the above
line of research, Cousot and Cousot developed and refined the abstract interpre-
tation framework [20,21]. In their 1979 paper [22], they mention various instances
of distributive frameworks for imperative program analysis as particular cases of
abstract interpretation, i.e., constant propagation, trace (or path) reachability
properties, where Galois connections are defined appropriately [22]. In the same
work, they prove a connection between properties, defined as meet-over-all paths

and ones described by monotone functions: the former is generally more precise
than the latter but the two are identical in a distributive framework. Ten years
later, Cai and Paige describe a nondeterministic iterative schema that in the
case of finite iteration generalizes the “chaotic iteration” of Cousot and Cousot
for computing fixed points of monotone functions efficiently (in particular, in-

crementally) and show how to apply this technique to design fast non-numerical
algorithms, such as variable reachability and cycle detection in a program flow
graph [13]. Whereas the current paper illustrates how to get from a graph spec-
ification to a provably correct (but not necessarily O-optimal) algorithm, we

21

believe that such chaotic iteration techniques may be the key to derive opti-
mized versions of our calculated graph algorithms in a more principled manner.

Cousot and Cousot [22] initially formalized programs as flow graphs, but
the framework was later generalized to transition systems [17,23] which are not
limited to describing formal semantics. Since then the abstract interpretation
framework has been used to formalize other concepts than static analyses, e.g.,
program transformations [25] and to connect various forms of formal seman-
tics [19].

Cooper, Harvey and Kennedy [15] point out that the equations to compute
dominance form a distributive framework [31]. This fact allows them to state
that the iterative algorithm for dominance computation will discover the maxi-
mal fixed-point solution and halt. Notably, the equations for Dom, presented by
Cooper, Harvey and Kennedy in [15] are given as is, i.e., with no connection
to the definition of dominance in terms of paths. In contrast we justify these
equations by deriving them and a corresponding algorithm directly from the
definition.

Backhouse [6, Section 6.2] used shortest paths as a motivating example for
introducing fixed-point fusion in his lecture notes. In a later work on the shortest-
path problem, Backhouse applied the fixed-point fusion theorem to a set of
all paths, considered as a context-free language [7, Example 57], which gave
the same solution as we obtained. We have nevertheless chosen to include the
detailed development along with our complexity boundary discussion, as a second
example of the technique.

Future work A natural next step is to incorporate more benefits of point-
free style, such as those provided by relational compositions and factors for
the systematic calculation of program analyses, as well as make use of tool
support [38] for deriving graph algorithms.

6 Conclusion

In this work we explored two classical graph problems, formulated in terms of
finite paths through a graph: dominance and the single-source shortest paths.
Applying the toolset traditional to fixed-point calculus and semantics-based pro-
gram analysis, we derived iterative, polynomial-time algorithms for both proper-
ties. We formalized definitions of the properties as adjoints in appropriate Galois
connections. By fusing these with a least fixed point of a monotone path func-
tional, we obtained polynomial-time algorithms for computing the properties
directly.

The derived algorithms obtained are strikingly similar to independently dis-
covered algorithms from the literature. Their calculations constitute construc-
tive correctness proofs in contrast to, e.g., an invariant argument for Dijkstra’s
algorithm by contradiction [16]. The derivations further witness the wide appli-
cability of the toolset behind fixed-point calculus and abstract interpretation.

22

Acknowledgements

We are grateful to Olivier Danvy for comments, which helped to improve the
presentation of the paper, and to Jeremy Gibbons for suggestions on both for-
malism and terminology. We sincerely acknowledge the MPC 2012 reviewers,
who all provided excellent feedback on the submission. In particular, we want to
thank Reviewer #1 for suggesting the idea of using factors and showing how to
apply it to compute the dominance algorithm,10 which drastically simplified the
derivations in Section 3. Finally, we want to express our gratitude to Shin-Cheng
Mu for his dedication to bring out the best of the paper.

References

1. C. Aarts, R. C. Backhouse, E. A. Boiten, H. Doornbos, N. van Gasteren, R. van
Geldrop, P. F. Hoogendijk, E. Voermans, and J. van der Woude. Fixed-point
calculus. Information Processing Letters, 53:131–136, 1995.

2. F. E. Allen. Control flow analysis. SIGPLAN Not., 5:1–19, July 1970.
3. F. E. Allen and J. Cocke. Graph theoretic constructs for program control flow

analysis. Technical Report IBM Research Report RC 3923, Thomas J. Watson
Research Center, Yorktown Heights, NY, USA, 1972.

4. S. Alstrup, D. Harel, P. W. Lauridsen, and M. Thorup. Dominators in linear time.
SIAM J. Comput., 28(6):2117–2132, 1999.

5. A. W. Appel. Modern Compiler Implementation in {C, Java, ML}. Cambridge
University Press, New York, 1998.

6. R. C. Backhouse. Galois connections and fixed point calculus. In Algebraic and
Coalgebraic Methods in the Mathematics of Program Construction, volume 2297 of
Lecture Notes in Computer Science, pages 89–148. Springer, 2002.

7. R. C. Backhouse. Regular algebra applied to language problems. J. Log. Algebr.
Program., 66(2):71–111, 2006.

8. R. C. Backhouse and B. A. Carré. Regular algebra applied to path-finding prob-
lems. Journal of the Institute of Mathematics and Applications, 15:161–186, 1975.

9. R. C. Backhouse, J. P. H. W. van den Eijnde, and A. J. M. van Gasteren. Calcu-
lating path algorithms. Sci. Comput. Program., 22(1-2):3–19, 1994.

10. R. Barbuti, C. Bernardeschi, and N. De Francesco. Checking security of Java
bytecode by abstract interpretation. In Proceedings of the 2002 ACM Symposium
on Applied Computing, pages 229–236, Madrid, Spain, Mar. 2002. ACM.

11. R. Bellman. On a routing problem. Quarterly of Applied Mathematics, 16:87–90,
1958.

12. R. Bird and O. de Moor. The Algebra of Programming. Prentice-Hall, 1996.
13. J. Cai and R. Paige. Program derivation by fixed point computation. Sci. Comput.

Program., 11(3):197–261, 1989.
14. B. A. Carré. An algebra for network routing problems. J. Inst. Maths Applics.,

7:273–294, 1971.
15. K. D. Cooper, T. J. Harvey, and K. Kennedy. A simple, fast dominance algorithm.

Technical report, Rice University Houston, Texas, USA, 2001.
16. T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to Algo-

rithms. McGraw-Hill Higher Education, 2nd edition, 2001.

10 The degree of elaboration of the review made us speechless for a while.

23

17. P. Cousot. Semantic foundations of program analysis. In S. S. Muchnick and N. D.
Jones, editors, Program Flow Analysis: Theory and Applications, chapter 10, pages
303–342. Prentice-Hall, 1981.

18. P. Cousot. The calculational design of a generic abstract interpreter. In M. Broy
and R. Steinbrüggen, editors, Calculational System Design. NATO ASI Series F.
IOS Press, Amsterdam, 1999.

19. P. Cousot. Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. Theoretical Comput. Sci., 277(1–2):47–103, 2002.

20. P. Cousot and R. Cousot. Static determination of dynamic properties of programs.
In Proceedings of the Second International Symposium on Programming, pages 106–
130. Dunod, Paris, France, 1976.

21. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In R. Sethi,
editor, Proceedings of the Fourth Annual ACM Symposium on Principles of Pro-
gramming Languages, pages 238–252, Los Angeles, California, Jan. 1977.

22. P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In
B. K. Rosen, editor, Proceedings of the Sixth Annual ACM Symposium on Princi-
ples of Programming Languages, pages 269–282, San Antonio, Texas, Jan. 1979.

23. P. Cousot and R. Cousot. Abstract interpretation and application to logic pro-
grams. Journal of Logic Programming, 13(2–3):103–179, 1992.

24. P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logic
and Computation, 2(4):511–547, Aug. 1992.

25. P. Cousot and R. Cousot. Systematic design of program transformation frame-
works by abstract interpretation. In J. C. Mitchell, editor, Proceedings of the 29th
Annual ACM Symposium on Principles of Programming Languages, pages 178–190,
Portland, Oregon, Jan. 2002.

26. P. Cousot and R. Cousot. Basic concepts of abstract interpretation. In R. Jacquart,
editor, Building the Information Society, pages 359–366. Kluwer Academic Pub-
lishers, 2004.

27. B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge
University Press, Cambridge, England, second edition, 2002.

28. E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959.

29. D. Dummit and R. Foote. Abstract algebra. Prentice Hall, 1999.

30. M. Fluet and S. Weeks. Contification using dominators. In X. Leroy, editor,
Proceedings of the Sixth ACM SIGPLAN International Conference on Functional
Programming (ICFP’01), pages 2–13, Firenze, Italy, Sept. 2001.

31. J. B. Kam and J. D. Ullman. Global data flow analysis and iterative algorithms.
J. ACM, 23:158–171, January 1976.

32. T. Lengauer and R. E. Tarjan. A fast algorithm for finding dominators in a flow-
graph. ACM Trans. Program. Lang. Syst., 1:121–141, January 1979.

33. J. Midtgaard and T. Jensen. A calculational approach to control-flow analysis by
abstract interpretation. In M. Alpuente and G. Vidal, editors, Static Analysis, 15th
International Symposium, SAS 2008, volume 5079 of Lecture Notes in Computer
Science, pages 347–362, Valencia, Spain, July 2008. Springer-Verlag.

34. M. Might. Abstract interpreters for free. In R. Cousot and M. Martel, editors,
SAS’10: Proceedings of the 17th international conference on Static analysis, volume
6337 of Lecture Notes in Computer Science, pages 407–421, Perpignan, France,
2010. Springer-Verlag.

24

35. A. Milanova and J. Vitek. Static dominance inference. In J. Bishop and A. Valle-
cillo, editors, Proceedings of the 49th international conference on Objects, models,
components, patterns (TOOLS 2011), volume 6705 of Lecture Notes in Computer
Science, pages 211–227, Zurich, Switzerland, 2011. Springer-Verlag.

36. R. T. Prosser. Applications of boolean matrices to the analysis of flow diagrams.
In Proceeding of the Eastern Joint IRE-AIEE-ACM Computer Conference, pages
133–138, Boston, Massachusetts, 1959. ACM.

37. A. Schrijver. On the History of Combinatorial Optimization (till 1960). In
K. Aardal, G. L. Nemhauser, and R. Weismantel, editors, Handbook of Discrete
Optimization, pages 1–68, 2005.

38. P. F. Silva and J. N. Oliveira. ’Galculator’: functional prototype of a Galois-
connection based proof assistant. In S. Antoy and E. Albert, editors, PPDP’08:
Proceedings of the 10th ACM-SIGPLAN International Conference on Principles
and Practice of Declarative Programming, pages 44–55, July 2008.

39. J. P. H. W. van den Eijnde. Conservative fixpoint functions on a graph. In R. S.
Bird, C. Morgan, and J. Woodcock, editors, Second International Conference on
Mathematics of Program Construction (MPC 1992), volume 669 of Lecture Notes
in Computer Science, pages 80–99, Oxford, U.K., July 1992. Springer.

40. A. J. M. van Gasteren. On the shape of mathematical arguments. Springer-Verlag
New York, Inc., 1990.

25

