
Towards Mechanising Probabilistic Properties of a Blockchain
Kiran Gopinathan

University College London, UK
kiran.gopinathan.16@ucl.ac.uk

Ilya Sergey
Yale-NUS College and School of Computing, NUS, Singapore

ilya.sergey@yale-nus.edu.sg

Abstract
We present our progress on the formalisation and mechanisation of
a probabilistic model of a blockchain consensus protocol in Coq, tak-
ing steps towards the formal verification of its security properties,
stated in terms of probabilities, in an adversarial environment.

1 Introduction
Blockchain consensus protocols are a family of open distributed
byzantine [5] consensus protocols, where an arbitrary number
of (potentially malicious) parties can participate at any point of
time. Previous formalisation efforts considered a simple model of
blockchain-based consensus and established its basic safety prop-
erties in Coq [8], yet they did not address any security properties,
which inherently require to incorporate some notion of probability.

Fundamentally, a blockchain consensus protocol allows a set of
independent actors communicating over an asynchronous network
to maintain a shared public ledger, robust to adversarial attacks; this
is achieved by using the calculation of a pre-image of a hash func-
tion as a validation tool [6]. Any adversary attempting to disrupt
the consensus must first produce a sufficiently long validated chain,
an action that becomes increasingly improbable as the length of
the public chain increases. The work on Bitcoin Backbone Protocol
(BBP) by Garay et al. [3] stated the Chain Growth and Common
Prefix properties. For example, the former states that, given certain
bounds on the ratio of adversarial parties, a consensus on the prefix
of any chain held by an honest actor could be guaranteed to a high
likelihood in a semi-synchronous setting. In this proposed talk, we
will present our ongoing work on the formalisation of the BBP
model and the proof of its security properties in Coq.

2 A Model for Bitcoin Backbone Protocol
2.1 State-Space of a Byzantine Distributed System
To capture the semantics of the BBP model, our formalisation must
encode the following components of the global system state:

• Network State.Our definition simulates a∆-bounded-synchronous
network (the network operation is modelled as occurring at the
level of discrete rounds, such that all messages will by delivered
after ∆ rounds) through the use of a queue of fixed length ∆ (i.e., a
delivery queue). To encode this, all messages sent by hosts in the
network during a round are stored in amessage pool; at the end of
the round this collection is then placed into the queue, removing
the first entry and delivering all its messages synchronously.

• Blockchains.We represent a blockchain in the system as a se-
quence of Block records [6, 8], where each Block, contains a se-
quence of transactions, the hash value (N[0..κ] < T) of the prior
block and an integer proof-of-work [2]. As in the BBP model, T
represents the globally fixed hashing difficulty and κ represents
the output size of the hash function.

• Actors andAdversaries.We represent the state of honest actors
as a collection of their local blockchains, received messages and
transactions.We encode an adversary as an opaque parameterised

type, thereby preventing introspection into its state and allowing
for arbitrary adversarial strategies. We associate a boolean value
with the internal state of each actor to record whether they are
honest or not. This simple dichotomy allows the model to repre-
sent varying numbers of malicious actors during the execution,
allowing the adversaries to corrupt honest actors.

• Oracle state. Oracles are a standard way of representing non-
determinism within Coq [8]; we utilise an oracle to capture the
non-deterministic nature of the hashing operation, whereby the
hashing of an unseen block returns a random value. To ensure
that the oracle produces consistent results (i.e., hashing the same
block twice produces the same output) we represent the state
of the oracle as a map between Block records andN[0..2κ]—an
integer representing a κ-length hash result.

We encapsulate all these components of the state-space within
the World data type, representing the entire history of the protocol
execution until a certain round. As the state of the oracle is tied
to the world state, representing the semantics of the system as a
binary relation on worlds would prevent a probabilistic analysis of
the random values returned by the oracle, we must instead define
the semantics as a probabilistic computation.

2.2 Modelling Randomised System Executions
We encode the protocol semantics as the following step function:

world_step : World → seq RndGen → Comp (option World)

The first parameter is the initial world to start an execution from.
The second parameter acts as a schedule [8], representing by the
sequence of events and internal choices (RndGen) leading to the
overall execution result. The system events from seq RndGen include
generation of a transaction, the corruption of an honest actor, or a
single call to a hash-function by an honest actor.

The world_step function, when provided an initial World and
a schedule, iteratively consumes each event in the schedule and
probabilistically updates the world state. The probabilistic result
is represented by a value of type option to allow the execution to
fail, as not all sequences of events are valid: for instance, it would
not be valid for an honest actor to call the hash function if the
adversary was active at that time. The crucial component of the
world_step definition is its monadic return type Comp, representing
the outcome of a randomised computation [9]. As embedded into
Coq, expressions of type Comp define a domain-specific language for
representing operations for generating and working with random
bits [7]—precisely what we need to encode the random results of
hashing used to generating transactions and blocks by actors.

Implemented in the style of the FCF library [7], randomised
expressions (of type Comp A for some value type A, e.g., World) pro-
vide an ergonomic Haskell-style do-notation for constructing ran-
domised computations. For example, the following code snippet
shows a part of our definition of world_step in Coq that draws
random hash values from the corresponding primitive hash, while
randomly generating a new world with a freshly minted block:

Conference’17, July 2017, Washington, DC, USA Kiran Gopinathan and Ilya Sergey

(* For a current state of a given honest actor... *)

let: tx_pool := get_honest_tx_pool state in

(* find a set of transactions to include in the new block *)

let: txs := get_latest_txs tx_pool best_chain in

(* calculate the hash of the new block *)

do (hash_result <-$ hash (nonce, txs) oracle_state;

newWorld <-$ (* create a new world using hash_result *);

return (Some newWorld))

2.3 Reasoning about Randomised Executions
As customary when reasoning about randomised algorithms, we
state properties of our BBP executions in terms of probabilities.

Since the results of an execution (Comp (option World)) represent
the “syntax” of probabilisitc distributions (distA : A → R[0,1]), we
can convert our computations into distributions of possible results
via the probability monad defined by Affeldt and Hagiwara [1]:

bind : dist A → (A → dist B) → dist B

ret : A → dist A

eval_dist : Comp A → dist A

Now suppose we wish to reason about the probability that a
given property F : option World → bool holds. We can represent
that by stating that for all worlds reachable from some initial world
w0 via some schedule sc, by expressing the statement in terms of
probabilities as follows:

∀sc, ∀w, eval_dist (world_step w0 sc) w > 0 =⇒ F w

This can be reformulated via more transitional notation:
∀sc, P[(world_step w0 sc) ▷ F] = 1, where

P[a = b] ≜ eval_dist a b

P[a] ≜ P[a = true]
fmap : Comp A → (A → B) → Comp B

c ▷ f ≜ fmap f c

3 Properties of the Bitcoin Backbone Protocol
Using constructions from Section 2, we state the security properties.

The first property, which asserts that there is an overall “progress”
in the system with honest actors, relies on the auxiliary character-
istic function X ′

i : N→ World → {0, 1}, such that X ′
i w returns 1

iff the round i was bounded successful in a worldw , i.e., any honest
actors were able to successfully mine a block during that round
and all rounds from i − ∆ to i had no successful mining attempts
for the globally-fixed network delay ∆; otherwise, X ′

i w returns 0.

Definition 3.1 (Chain Growth Property). The property CGP :
World → bool is defined with respect to a finite number of rounds
Nrounds, fixed number of actors maxactors, and holds iff for a given
worldw , any round r ∈ [0, . . . ,Nrounds], blockchain c , actor address
addr ∈ [0, . . . ,maxactors], such that addr is honest in the worldw
and has c as its chain at round r , it is the case that for a “later” round
s , such that s > r + ∆, and any other actor addr ′ in the system,
whose chain in s is c ′, len c ′ ≥

(
len c +

∑
i ∈[r ..s−∆] X

′
i w

)
.

The second property defines a “preservation”-like notion similar
to the classical consensus in a randomised blockchain-based setting.

Definition 3.2 (Common Prefix Property). The property CPP :
World → bool is defined with respect to a consecutive sequence of
rounds starting at i to j, a number of blocks k , and holds iff for a
given worldw , for any blockchains c1, c2, round r ∈ [i, . . . , j], such

that chain c1 is adopted by some actor1 at round r , and c2 is either
adopted or diffused at round r , it is the case that pruning k blocks
off the end of c1 produces a prefix of c2 and pruning k blocks off
the end of c2 produces a prefix of c1.

Typical Executions A key innovation in the BBP proof is the
choice to restrict the state of the model used to exclude exceptional
situations, and instead consider the “average” case. Informally, this
typical execution property can be described as follows:

Definition 3.3 (Typical Execution Property). The property TEPε :
seq RndGen → World → bool is defined wrt. a parameter ε : R(0,1)
and holds iff for a schedule sc and a world w resulting from sc:
(a) the number of bounded successful rounds and bounded uniquely
successful rounds for the world are no more than an ε-ratio below
their expected value given the schedule; (b) the number of successful
rounds for the world is less than an ε-ratio above its expected value;
(c) the number of blocks hashed by the adversary is less than an
ε-ratio above its expected value.

In our development, the typical nature of the considered execu-
tions is encoded by the following assumption.

Assumption 3.1 (Typical Executions). ∀sc : seq RndGen, ε : R(0,1),

P[world_step sc ▷ TEPε sc] = 1 − e−Ω(κ),

where Ω(κ) refers to any function that grows linearly in κ.

3.1 Main Theorems
We state the main theorems in terms of the defined above properties.
“Dotted” logical conjunction denotes its point-wise lifting to worlds.

Theorem 3.1 (Chain Growth Lemma). ∀sc : seq RndGen,

P[world_step sc w0 ▷ CGP] = 1

Theorem 3.2 (Common Prefix Theorem). ∀sc, k : N, k > 2κ T
2κ ,

P[world_step sc w0 ▷ (CPPk Û∧ TEPε sc)] =
P[world_step sc w0 ▷ TEPε sc]

Care has been taken in the formulation of Theorem 3.2 to avoid
incorporating the complex probabilities of the typical execution
property into the theorem statement. Rather than proving the prob-
ability of a typical execution and the Common Prefix Property
holding, we formulate the property as that given a typical execu-
tion, the Common Prefix Property holds with probability 1.
3.2 Elements of Our Mechanisation and Future Work
We built our mechanisation using the libraries by Affeldt and Hagi-
wara [1], which provides a probability framework implemented
on top of the Ssreflect extension for Coq [4]. The mechanised ver-
sions of Definitions 3.1 and 3.2 are given as decidable predicates
(i.e., returning bool), and require a careful choice of types of values
they quantify over, which all must be finite. This, “Ssreflect-style”
approach pays off by giving an access to a large library of rewrit-
ing lemmas for Σ-notation of sums, enabling very concise proofs
(mostly, by rewriting) of classical probability properties.

Our proofs of Theorems 3.1 and 3.2 are by induction on the length
of the schedule and are partially complete; most remaining efforts
relate to verifying the message delivery mechanism. In the future,
we are also planning to promote the statement of Assumption 3.1 to
a Lemma, as its paper-and-pencil proof is given in the BBP paper [3].
1We adopt the BBP terminology here, and define an actor as adopting a chain c at
round r if the actor accepts chain c as its local chain during round r .

Towards Mechanising Probabilistic Properties of a Blockchain Conference’17, July 2017, Washington, DC, USA

References
[1] Reynald Affeldt and Manabu Hagiwara. 2012. Formalization of Shannon’s Theo-

rems in SSReflect-Coq. In ITP (LNCS), Vol. 7406. Springer, 233–249.
[2] Cynthia Dwork and Moni Naor. 1992. Pricing via Processing or Combatting Junk

Mail. In CRYPTO (LNCS), Vol. 740. Springer, 139–147.
[3] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. 2015. The Bitcoin Backbone

Protocol: Analysis and Applications. In EUROCRYPT (Part 2) (LNCS), Vol. 9057.
Springer, 281–310.

[4] Georges Gonthier, Assia Mahboubi, and Enrico Tassi. 2009. A Small Scale Reflection
Extension for the Coq system. Technical Report 6455. Microsoft Research – Inria
Joint Centre.

[5] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. 1982. The Byzantine
Generals Problem. ACM Trans. Program. Lang. Syst. 4, 3 (1982), 382–401.

[6] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. http:
//bitcoin.org/bitcoin.pdf.

[7] Adam Petcher and Greg Morrisett. 2015. The Foundational Cryptography Frame-
work. In POST (LNCS), Vol. 9036. Springer, 53–72.

[8] George Pîrlea and Ilya Sergey. 2018. Mechanising blockchain consensus. In CPP.
ACM, 78–90.

[9] Norman Ramsey and Avi Pfeffer. 2002. Stochastic lambda calculus and monads of
probability distributions. In POPL. ACM, 154–165.

http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf

	Abstract
	1 Introduction
	2 A Model for Bitcoin Backbone Protocol
	2.1 State-Space of a Byzantine Distributed System
	2.2 Modelling Randomised System Executions
	2.3 Reasoning about Randomised Executions

	3 Properties of the Bitcoin Backbone Protocol
	3.1 Main Theorems
	3.2 Elements of Our Mechanisation and Future Work

	References

