Introducing Functional Programmers to Interactive Theorem Proving and Program Verification
Teaching Experience Report *

Ilya Sergey
IMDEA Software Institute
ilya.sergey@imdea.org

Aleksandar Nanevski
IMDEA Software Institute
aleks.nanevski@imdea.org

Abstract

We report on the design and preliminary evaluation of a short introductory course on interactive theorem proving and program verification using the Coq proof assistant, targeted at students with background in functional programming and software engineering.

The course builds on concepts familiar from functional programming to develop understanding of logic and mechanized proving by means of the Curry-Howard isomorphism. A particular emphasis is made of the computational nature of decidable properties of various data structures. This approach is of practical importance, as Coq’s normalization can automatically simplify or discharge such properties, thus reducing the burden of constructing the proofs by hand. As a basis for teaching this style of mechanization, we use Gonthier et al.’s Ssreflect extension of Coq and its associated libraries.

In the course, we minimize the exposure to ad-hoc proof automation via tactics, and request that students develop proofs using only a small set of proof-building primitives that they should clearly understand. In addition to introducing logic as an application of functional programming, the topics covered by the course include: implementation of custom rewriting principles as instances of indexed type families, boolean reflection, implementation of algebraic structures and inheritance between them, and verification of imperative programs in separation logic and Hoare Type Theory.

1. Introduction

The concept of a rigorous mathematical proof has a long story as an educational topic. In our experience, however, a typical undergraduate curriculum in computer science teaches proofs from the point of view of logic, and ignores the fundamental connection between logic and programming. Thus, most undergraduates in computer science receive a strong background in programming, imperative as well as functional, but will seldom relate their programming intuition to logic and formal proofs.

This situation is unfortunate, as recent years have seen the completion of a number of impressive and ground-breaking project in the field of formal mathematics and program verification. Examples include the four color theorem [8], the odd order theorem [10], seL4 kernel [15] and CompCert compiler infrastructure [16]. These advances attest that proof assistants have matured to the level at which they are ready for use by the wider community in mathematics and computer science.

Mechanized formalization of a large mathematical theory significantly resembles development of a large programming project with a rich infrastructure and a set of libraries. In this light, it is unsurprising that an effective use of a proof assistant requires remarkable programming skills. This insight is especially true of proof assistants such as Coq [4] or Agda [22], which include a powerful dependently typed lambda calculus, in which one can write both programs as well as proofs, via the Curry-Howard isomorphism. However, the connection between formal mathematics and programming goes much deeper than the mere fact that proofs and programs can both be written in the lambda calculus. Indeed, even the way one defines the basic predicates of interest, implements algebraic objects and structures such as groups or rings, or organizes formal theories, bears a lot of similarity with programming in the large. In particular, programming concepts such as modules, functions, objects, abstract types and predicates, higher-order functions, inductive and coinductive types and families, overloading and inheritance, very quickly arise as natural mechanisms for structuring formal mathematical developments.

Most fascinatingly—and, perhaps, confusingly to a newcomer with pure mathematical background—there may be many different ways, employing many different programming mechanisms, to formulate and mechanize the same mathematical problem. Each choice may present a number of tradeoffs that are not typically encountered in mere programming. For instance, should one encode a particular property as a function or as an inductive datatype? It is important to know the tradeoffs well; good choices lead to reusable, maintainable and short proofs, just like they would in good programs. But, conversely, suboptimal or “hacky” choices typically lead to an explosion in complexity, much more quickly and severely than they do in programming. In the light of this observation, one may say that effective construction of formal proofs is not just a programming challenge, but a programming challenge of the highest order, in which one’s coding skills, discipline and inventiveness can really shine, much more so than in ordinary programming (i.e., in which proofs are not required).

This article describes an introductory course on interactive theorem proving and verification using Coq, which we designed to embrace the uniformity of the tradeoffs, that pertain to both pro-

* A part of this work has been carried out while the first author was giving lectures in a summer school on interactive theorem proving, which was sponsored by JetBrains and took place in August 2014 at Saint Petersburg State University.

[Copyright notice will appear here once ‘preprint’ option is removed.]
gramming and proving. The considered issues appear frequently in our everyday formalization work, but because they have not been collected and emphasized in the existing introductory literature (rather, they are interspersed across research papers of many authors), we have frequently needed to devote time to introduce them to new students and collaborators (all with significant experience with ML and Haskell), individually. The idea for this course and its selection of topics arose out of such informal teaching experience. In a more formal setting, we report on the proof-of-concept evaluation of the course, which was delivered by the first author in a five-days summer school for a small group of students of Saint Petersburg State University (SPbSU), majoring in mathematics and software engineering and having necessary background in Haskell, thanks to the standard curriculum courses.

By necessity imposed by space limits, our presentation in this report assumes basic familiarity with Coq, though, of course, such familiarity is not assumed in the course itself, the associated lecture notes, slides, and code templates for hands-on classes. However, we do not assume that the reader will be able to follow the occasional Coq proofs we present. In such cases, we discuss the main ideas of the proof in prose. In the rest of the article, we present the broader outline of the course, focusing in more depth on a few specific topics that are not usually covered by the existing literature and courses on Coq.

2. Overview

Currently, there are several books by different authors on interactive theorem proving in Coq [1][2][26] (see Section 3 for the discussion). Although all these books have been successfully used in numerous introductory courses on Coq, we thought that there are still some topics, stemming from the proving-as-programming intuition and essential for effective and boilerplate-free mathematical reasoning via a proof assistant, that are left underrepresented. Our course is targeted to fill these gaps while still covering the common material required to get the students off the ground. In particular, in our course we emphasized the following aspects of proof engineering, most of which are enabled or empowered by Gonthier et al.’s small-scale reflection extension (Ssreflect) to Coq [9].

- Special treatment is given to the computational nature of reasoning about decidable propositions. In other words, many results about decidable properties can be computed as boolean values, rather than proven interactively. But to do so, one has to formulate the properties as computable recursive Coq functions with bool result, rather than as inductive predicates. The latter is more in the spirit of the traditional introductions to Coq.

- Instead of supplying the students with a large vocabulary of automated tactics necessary for everyday Coq hacking, we focus on a small but expressive set of primitives (about six in total), offered by Ssreflect or inherited from the vanilla Coq with notable enhancements.

- Reasoning by rewriting is presented from the perspective of Coq’s definition of the propositional equality and followed by elaboration on the idea of using index type families as a tool to define client-specific conditional rewrite rules. The usual way indexed type families are presented in the related work is for use in programming and pattern matching, rather than rewriting. Conversely, we advocate parametrized (but not indexed) types, for programming and pattern matching.

- We provide a detailed explanation of the essentials of Ssreflect’s boolean reflection between the sort Prop and the datatype bool as a particular case of conditional rewriting, following the computational approach to proving decidable properties.

- Formal encoding of familiar mathematical structures (e.g., monoids, partial orders, etc) is carried out by means of dependent records; mathematical operations are overloaded using the mechanism of canonical instances, similar to Haskell type classes. This analogy illustrates how the programming ideas of overloading and inheritance come into formal proving [17].

- A novel (from a teaching perspective) case study is considered, introducing the students to the concepts of stateful program verification using separation logic and Hoare Type Theory [19].

2.1 Why teach with Ssreflect?

A significant part of our material is presented using the Ssreflect extension of Coq [9]. Ssreflect is developed as a part of the Mathematical Components project to facilitate automated reasoning and simplification in very large mathematical developments, in particular, the formalizations of the four color theorem [5] and the Feit-Thompson (odd order) theorem [10].

Ssreflect includes a small but expressive (and comfortable for practical work) set of primitives for proof construction, related to but different from the traditional set provided by Coq. It also comes with a large library of algebraic structures, ranging from natural numbers to graphs, finite sets and algebras, formalized and shipped with exhaustive toolkits of lemmas and facts about them. Finally, Ssreflect introduces some mild modifications to Coq’s native syntax and the semantics of the proof script interpreter, which makes the proofs very concise.

Using Ssreflect for our development was not the goal by itself: a large part of the course could be presented using traditional Coq without any loss in the insights but, perhaps, some loss in brevity. However, having been developed as part of a very large formalization effort, Ssreflect’s libraries are well-tested in the wild, and are an excellent example of good mechanization practice. In particular, they make it very easy for us to emphasize the above-listed mechanization aspects of the course. In fact, to the best of our knowledge, it was the work on Ssreflect and the Four color theorem [6][8] that first applied boolean reflection and canonical structures in Coq to a larger-scale formalization effort.

Last, but not least, Ssreflect comes with a much improved Search tool, compared to standard Coq. The Search tool is invaluable, given that a fair part of the time spent on mechanization is typically devoted to reading third-party code and lemma libraries.

3. Structure of the course

In this section we provide a detailed description of the structure of the course and refer the interested reader to the full syllabus and the accompanying exercises available online [29].

3.1 From functional programs to propositional logic

Assuming that the students are knowledgeable about the basic concepts of functional programming, such as algebraic datatypes, pattern matching and possibly higher-order functions, we begin the course by demonstrating the syntax for the same concepts in Coq, focusing solely on Coq’s programming language component.

3.1.1 Functional programming in Coq

We start by presenting simple datatypes, such as unit, bool, nat and empty (i.e., the type without constructors), proceeding shortly after to the definitions of functions on these datatypes. For example, addition on nat is defined by the program below, which introduces the students to Coq’s syntax for pattern matching and its abbreviated Ssreflect variant if-is. The latter is useful for cases with only one non-default branch. _+1 is Ssreflect notation for successor.

Fixpoint my_plus n m :=
 if n is n’+1 then (my_plus n’ m)+1 else m.

\[\text{http://www.msr-inria.fr/projects/mathematical-components-2/}\]
Next, we focus on the induction and recursion principles, generated by Coq automatically for each inductive definition. We explain these as higher-order functions, whose return types can depend on the value of the argument; hence, this gives us a way to introduce dependent function types as well. We show how the recursive function \texttt{my_plus} can be rewritten explicitly in terms of the recursion principles, and suggest a number of exercises intended to expose the students to working with higher-order dependently-typed functions. This lecture culminates with a short demonstration of custom dependently-typed functions, e.g., a function returning \texttt{unit} on some inputs and \texttt{nat} on some others.

Elaborating further on the types of generated recursion and induction principles, we draw the students’ attention to the recursion principle generated for the datatype \texttt{empty}:

\begin{verbatim}
empty_rect : forall (P : empty -> Type) (e : empty), P e
\end{verbatim}

A function with such a type allows one to obtain instance of any type, given an argument \(e \) of type \texttt{empty}, thanks to the argument \(P \), which can be instantiated by a constant function returning a necessary type. A closer examination of the body of \texttt{empty_rect} by means of \texttt{Print} machinery shows no doubts that it is well-typed. Therefore, an important conclusion follows: the existence of a value that cannot be constructed, we are able to construct anything. We next show that \texttt{empty} is not the only datatype that can have this “magical” property of allowing to construct a value of any type from it. In particular, we refer to the example with a type \texttt{strange}, taken from [1], which is also non-inhabited, even though it has a constructor:

\begin{verbatim}
Inductive strange := cs of strange.
\end{verbatim}

While the students don’t have all that much experience with the \texttt{empty} type, as it is not frequently encountered in programming, we point out that it will correspond to the empty set in mathematics, and to the false proposition in logic, and will thus have a significant role to play very soon in the course.

We continue by showing a number of familiar algebraic datatypes, such as pairs, sums, lists and trees as well as functions operating on these, suggesting a number of simple programming exercises. After successfully accomplishing a few of them, the students already feel relatively comfortable with Coq as a programming language and realize its main “limitation”. In particular, they notice they can’t define generally-recursive functions in the usual programming style, and are forced to rely on primitive recursion in order to convince Coq’s type checker that their functions terminate.

3.1.2 Searching and structuring libraries

In practical programming, it is important to be able to search for appropriate procedures in someone else’s libraries. The same holds for interactive proof development, where one needs to search for definitions and lemmas. When programming in Haskell, one may use search engines such as \texttt{Hoogle} and \texttt{Hayoo}.

This functionality is provided in Coq by the \texttt{Search} command, which is further enhanced by \texttt{Ssreflect} (see Chapter 10 of [2]). We decided to introduce the students to \texttt{Search} very early on. Even though by this moment in the course, they are not familiar with formal logic and proofs, they can already use \texttt{Search} to look for definitions and functions from the programming side, based on their types. For example, they can execute queries like the following one

\begin{verbatim}
\end{verbatim}

which returns all \texttt{map-like} functions currently available in the imported libraries.

Coq’s extensible parser is a powerful tool when defining custom notations for mathematical theories. From our experience it is also a source of constant frustration for the Coq newcomers, who struggle to figure out whether some notation is defined in a library, or is Coq’s native syntax. To avoid the pain of working with custom third-party notations, we teach them to use commands like \texttt{Locate} and \texttt{Print}. We also show how to “switch off” all the syntactic sugar from custom notations with the \texttt{Set Printing All} command. We also show how to define one’s own custom notation, with a warning that the feature should be used carefully, as it is easy to abuse and make one’s code unreadable.

At this point we also introduce the students to basic program structuring primitives of Coq, such as sections and modules. We explain the difference between the two (e.g., modules provide hierarchical name spaces, while sections declare local variables that generalize over the section body), and illustrate how to combine the two to achieve a degree of “locality” for definitions and hiding of the internal details.

3.1.3 Introducing logical connectives

By this moment, the students are familiar with the basic principles of programming in Coq. In particular, they understand that values of inductive datatypes are constructed by applying constructors to the arguments and “destructed” by pattern matching. They know how to define functions of appropriate types, and that a function should be applied to get the value of its result type. They have even seen dependently-typed functions whose return type can vary depending on the value of the arguments. In other words, everything is set up for the introduction of constructive logic by means of the Curry-Howard analogy.

First of all, we define when a logical statement will be true for us: when its proof can be built from hypotheses and rules by referring to the hypotheses and applying the rules, correspondingly. This definition has two important implications, which we elaborate upon: (1) this notion of truth is constructive; something is only true if its proof can be constructed in a finite number of steps, and (2) the truth is relative with respect to the initial hypotheses and the rules of the logic. In our experience, this definition most often matches very well the intuition that the students have from their classical mathematical education. Even if they haven’t been exposed to extensive study of mathematical logic and, hence, have only a very informal idea of what a formal proof is, they know how to write informal ones, and how to find flaws in them. The definition also makes it easy to introduce falsehood as a proposition whose proof cannot be constructed.

Next, we appeal to the analogy between the falsehood \texttt{False} and the datatype \texttt{empty}, defined previously, followed by the introduction of standard logical connectives by the Curry-Howard correspondence: conjunction corresponds to the product datatype \texttt{prod}, disjunction to \texttt{sum}, truth to a type with a single element (in Coq, the element is named \texttt{1}), implication to function type \(A \rightarrow B \), universal quantification to dependent function types, and existential quantification to a specific dependent record type. This intuition gradually leads to the idea that proving a logical proposition corresponds to building a program that has the proposition as its type. In other words, we’re trying to inhabit a type with a \texttt{proof term} element.

Given this relation, it is natural to explain the usual inference rules in terms of functional programming. In particular, a function can be introduced by \texttt{assuming} its argument and constructing its body, in which the argument is used, which corresponds to the rules of implication introduction. The similar intuition holds

\footnote{While drawing the analogy of types/propositions as sets of proofs is useful for building intuition, we find it important to emphasize that, unlike sets in set theory, types in Coq are always disjoint; that is, an element cannot belong to more than one type.}

\[2\] \texttt{http://www.haskell.org/hoogle/}
\[3\] \texttt{http://hayoo.fh-wedel.de/}

\[4\] 2014/10/11
for universal quantification. The introduction rules for other logical connectives correspond to application of a constructor of the corresponding logical connective (e.g., \(\text{conj} \)) in the case of conjunction, and similarly for existential quantification. As for elimination rules, most of the connectives (conjunction, disjunction, existentials) clearly correspond to case-analysis by means of Coq’s \text{match}\text{-with} expression construct. The notable exceptions are the \text{modus ponens} rule for implication, and the \text{forall-specialization} rule, which both correspond to function application.

3.1.4 Interactive proof construction: first encounter

After concepts related to proofs have been introduced, we can proceed to interactive proof development. We point out that even though proofs are the same as programs, it’s frequently easier to proceed to interactive proof development. We point out that even proofs of the same examples without automation, using only the four basic primitives.

We conclude this part of the course by providing a brief overview of non-constructive axioms from classical propositional logic, such as the law of excluded middle, Peirce’s law, the law of double negation. Students are asked to prove that these are all equivalent, following an exercise by Bertot and Castéran [1]. We also briefly elaborate on the impredicativity of the sort \text{Prop} of propositions in Coq, and provide a short explanation of the basics of Coq’s hierarchy of universes.

3.2 Equality and rewriting

After explaining the basics of propositional logic, we proceed to address equational reasoning and the corresponding proof technique of rewriting. Propositional equality is defined in Coq by the following indexed type family (in this case, the index is the element of type \(A \) in the type signature \(A \to \text{Prop} \)):

\[
\text{eq} \; (A : \text{Type}) \to (x : A) : A \to \text{Prop} := \text{eq}_\text{refl} : \text{eq} \; x \; x.
\]

A common way of understanding indexed type families such as the one above is to compare them to generalized algebraic datatypes (GADTs) in Haskell [24, 33]. The latter allow the programmer to refine and guide the process of (dependent) pattern matching by the type index of the scrutinee. Studying indexed type families from this point of view is a very active research area [5, 18]. However, not wanting to get bogged down with too many details of dependent pattern matching, we decided to explain indexed type families by another well-known analogy [23], specifically useful in Coq: indexed type families correspond to custom (i.e., user-defined) simultaneous conditional rewrite rules.

The intuition about this is best built by examples. For instance, the proof of the equality’s symmetry will look as follows:

\[
\text{Lemma eq_sym} \; A \; (x \; y : \ A) : x = y \to y = x.
\]

\[
\text{Proof. by case. Qed.}
\]

The case-analysis on the assumption \(x = y \) essentially forces the unification mechanism of Coq to exploit the “implicit equality”, encoded via the eq’s index (i.e., the second argument), and \text{substitute} all occurrences of the index’s actual value by the value declared in the constructor \text{eq}_\text{refl} first argument. In other words, case-analysis of the assumption \(x = y \to y = x \) therefore leading to a subgoal \(x = x \) which trivially discharged by the terminator \text{by}. In a more pictorial analogy, one can think of the predicate \(x = y \) as of the following “rewriting” table:

\[
\begin{array}{|c|c|c|}
\hline
\text{eq}_\text{refl} & x & x \\
\hline
\end{array}
\]

In English, for the fixed value \(x \) (which is bound by the datatype’s parameter), the instance of eq \(x = y \) defines an “rewriting
table”, whose top-right cell specifies what should be replaced (in this case, this is y, which is captured by the datatype’s index). The bottom-right cell, thus, specifies what the actual value of the index, y, should be substituted with. Hence, case-analysis on such a rewriting table will replace all the occurrences of the columns’ “headers” (values of indices in the actual instance) by the corresponding values in the “cells” (values of indices in the constructors). In this analogy, the “rows” of the table correspond to particular constructors and their arguments, and in the case of eq there is just one, eq_refl, with a single argument x.

This intuition is further strengthened by more involved examples from the Ssreflect’s library of natural numbers (ssrrnat). In particular, we consider the following indexed family nat_rels and the companion lemma ltngtP:

\[
\text{Lemma ltngtP } m n : \text{nat_rels } m n \Rightarrow \text{ltngtP } m n (m < n) (n < m) (m == n).
\]

The parameters of nat_rels are the nats m and n. The definition also has three indexes, all boolean. Together, nat_rels and ltngtP encode the following rewriting table:

\[
\begin{array}{c|c|c|c|c}
\text{CompareNatLt} & m < n & \text{true} & \text{false} & \text{false} \\
\text{CompareNatGt} & m > n & \text{false} & \text{true} & \text{false} \\
\text{CompareNatEq} & m = n & \text{false} & \text{false} & \text{true} \\
\end{array}
\]

The column headers specify the subexpression in the goal to be substituted by case analysing on a proof of ltngtP (i.e., what is substituted). In this particular case, we want to simultaneously substitute for three different boolean expressions: \(m < n\), \(n < m\) and \(m == n\). The row headers specify when (i.e., under which conditions) the substitution takes place. The value identified by a given row and column says what we substitute with. More concretely, case analysing on a proof of ltngtP will make Coq substitute the occurrences of \(m == n\) in a goal as follows (and similarly for \(m < n\) and \(n < m\)). It will generate three subgoals, in which \(m == n\) is replaced with \text{false}, \text{false}, and \text{true}, respectively. The subgoals will contain hypotheses as read off from the row headers; the first subgoal will be conditioned on \(m < n\), the second on \(m > n\), and the third on \(m = n\). One can employ such simultaneous conditional rewriting to carry out very short and effective proofs. For example, the following proofs about min and max functions are taken from the ssrrnat library:

\[
\text{Definition minn } m n := \text{if } m < n \text{ then } n \text{ else } m.
\]

\[
\text{Definition maxn } m n := \text{if } m < n \text{ then } m \text{ else } n.
\]

\[
\text{Lemma addn_min_max } m n : \text{minn } m n + \text{maxn } m n = m + n.
\]

\[
\text{Proof by rewrite } /\text{minn } /\text{maxn}; \text{case: ltngtP} ; /\text{rewrite addnC}. \text{Qed.}
\]

In the proof of addn_min_max, right after unfolding the definitions of minn and maxn by the rewrite command, the case-analysis on the table constructed by ltngtP with simultaneous rewrites and reducing if-expressions, produces a number of subgoals, most of which are discharged by Ssreflect’s trailing tactical //, which can be expressed in somewhat standard Coq as try done for each of the subgoals. The observation about simultaneity of rewriting with respect to \(m < n\), \(n < m\) and \(m == n\) is of essence. Had we tried instead to build the proof of addn_min_max based on the case-

\[
\text{The ordering relations and the equality on natural numbers are implemented in Ssreflect as boolean functions, since they are decidable.}
\]

\[\text{9} \text{This is the lemma forall } m n, m < n \lor m == n \lor n > n. \]

\[\text{10} \text{In fact, Ssreflect’s library prime provides both definitions and proves them equivalent, so that the user can employ either one as needed.}
\]

\[\text{3.3 Boolean reflection and views}
\]

One confusing point for students with programming background, when they are exposed to Coq, is the difference between the two-constructor enumeration type bool = Coq’s sort of propositions Prop. At this point in the course, we explain the difference, but in a way that illustrates the trade-offs between the two concepts, when it comes to building interactive proofs. Following Ssreflect, we suggest that one should use boolean expressions to encode decidable properties, whereas the propositions from Prop should be used for undecidable properties, or properties whose decidability is not trivial to establish. Consequently, one obvious difference that can be immediately pointed out is that Prop allows quantification over infinite domains, while bool doesn’t. But more importantly, bool and Prop can be related by an indexed family (i.e. a “rewriting table”, as introduced in the previous section). This idea is at the core of Ssreflect and, if used properly, often leads to very effective and compact proofs.

\[
\text{3.3.1 Coercing bool into Prop}
\]

We start by pointing out that booleans can be naturally injected into propositions by equating their value to true, using propositional equality defined in the previous section. This injection is done in Ssreflect by the implicit coercion, defined in the ssrbool library:

\[
\text{Coercion is_true } (b : \text{bool}) : \text{Prop} := b = \text{true}
\]

We explain this coercion as an implicit type conversion, familiar to students from languages like Scala or Haskell, which Coq inserts automatically every time it “expects to see” a proposition, but instead encounters a boolean. We next show that, given a suitably formulated boolean expressions, reasoning with booleans can be surprisingly nifty, as demonstrated by the following example, involving Ssreflect’s bool-returning function prime, which implements Erathostenes’ sieve:

\[
\text{Goal prime } (16 + 13). \text{Proof. done.Qed.}
\]

Indeed, the proof would have been much longer had one used the usual definition of prime numbers as those with only trivial divisors.\[9\] This example, and a number of similar ones, convey the idea that decidable properties, if implemented as computable functions

\[\text{5} \text{The ordering relations and the equality on natural numbers are implemented in Ssreflect as boolean functions, since they are decidable.}
\]

\[\text{9} \text{This is the lemma forall } m n, m < n \lor m == n \lor n > n. \]

\[\text{10} \text{In fact, Ssreflect’s library prime provides both definitions and proves them equivalent, so that the user can employ either one as needed.}
\]
returning a boolean result, allow Coq to perform automatic simplifications, and even obtain results by computation, without imposing any proving burden on the user.

3.3.2 Introducing the reflect datatype

Coercing booleans into propositions is easy enough by an implicit coercion, but going in the opposite direction is a somewhat more complicated. Ssreflect suggests a general methodology for implementing the equivalence between particular propositions and boolean expressions by means of the following `reflect` indexed family:

```coq
Inductive reflect (P : Prop) : bool -> Set :=
| ReflectT of P : reflect P true |
| ReflectF of ~ P : reflect P false.
```

Indeed, following the “rewriting table” analogy (defined in § 3.2), one can think of `reflect` as a generic rewrite rule, parametrized with respect to “logically equivalent” propositions P and a boolean bp.

| ReflectT | P true |
| ReflectF | ~ P false |

We illustrate the use of the `reflect` datatype by examples involving reflection of logic connectives, e.g., conjunction

```coq
Lemma andP (b1 b2 : bool) : reflect (b1 \land b2) (b1 && b2).
```

The students are asked to prove a number of similar lemmas, e.g., for disjunction, in order to master the principles of providing custom instances of `reflect`.

We next explain the use of `views` and `view hints`, which are part of Ssreflect’s bookkeeping machinery (see Chapter 9 of [9]). We omit the discussion here, but briefly note for the reader unfamiliar with Ssreflect, that views are simply `reflect` lemmas which can be employed to on-the-fly convert a boolean expression into the equivalent proposition. For example, the above lemma `andP` can be used as a view to transform $b1 \land b2$ into a conjunction $b1 \land b2$. The latter form may be preferable at times; for example, the conjunction can be destructed into component conjuncts by the usual case analysis, whereas the similar destruction is much more cumbersome in the case of $b1 \land b2$. Of course, the advantage of the $b1 \land b2$ form is that it may often simplify by computation, for special values of $b1$ and $b2$, whereas those simplification won’t be carried out automatically by Coq in the case of the $b1 \land b2$ form. A particularly useful view is the lemma `eqP` which relates boolean and propositional equality, in the special case of `eqType`, i.e., types with decidable equality. We refer to such types as `equality types`, but postpone the definition of `eqType` until one of the future lectures.

```coq
Lemma eqP (A : eqType) (x y : A) : reflect (x = y) (x == y).
```

We use the `eqP` lemma to illustrate the interoperability between the two different equalities. For example, the boolean equality $x == y$ can be used in the scrutinee of constructors, as the following example shows, whereas the propositional one cannot. However, in proofs, we may need to use `eqP` to switch between the two forms.

```coq
Definition foo (x y : nat) := if x == y then 1 else 0.
Goal forall x y, x = y -> foo x y = 1.
Proof. by rewrite /foo => x y /eqP ->. Qed.
```

To prove the goal, one first has to unfold `foo`. Then the view `/eqP` is used to covert the proposition $x = y$ into the boolean $x == y$, or more precisely, into $(x == y) = true$. The later is subsequently used (by `->`), to rewrite the condition in `if-then-else` to `true`. By computation, this reduces the goal into $1 = 1$, which is then trivially discharged.

3.4 Proofs about inductive predicates and recursive functions

The next course module is dedicated to proofs by induction on custom datatypes and inductively-defined predicates.

Proof by induction in Ssreflect are usually done using the `elim` tactic. It has a number of enhancements over the standard Coq `induction`, and in particular, it keeps with the semantic of Ssreflect, already introduced with `move` and `case`, that the proof-scripting primitives by default always apply to the leftmost assumption in the goal, initiating the proof by induction on it.

We begin by pointing out that `elim` can be seen as a special case of `apply`, where the lemma chosen for application is the default induction principle generated automatically by Coq for the datatype in question. For example, inducting on natural numbers corresponds to applying `nat_ind` lemma, which expresses the well-known Peano induction schema. Similarly, eliminating falsehood (or, equivalently, the empty set) applies the lemma `empty_ind`.

We illustrate the usual patterns of inductive reasoning by working out a number of examples related to decidable properties of natural numbers. Here, we focus on evenness. We tie to the previous lecture by expressing the property in two ways: as a boolean expression `evenb`, and as an inductive proposition `evenP`.

```coq
Inductive evenP n : Prop :=
| Even0 of n = 0 | EvenSS m of m = m.+2 & evenP m.
```

```coq
Fixpoint evenb n : bool := if n is n'.+2 then evenb n' else true.
```

We consider the proofs of following two logically equivalent statements formulated using the two definitions given above.

```coq
Lemma evenP_contra n : evenP (n + 1 + n) -> False.
Proof.
elim: n=>[//|n IH]; first by rewrite addn0 add0n; case.
rewrite addn1 addnS addnC !addnS.
rewrite addnC addn1 addnS in IH.
by case=>// m /eqP; rewrite /eqP => /eqP ->. Qed.
```

```coq
Lemma evenb_contra n : evenb (n + 1 + n) -> False.
Proof. by elim: n=>[//|n IH]; rewrite addSn addnS in IH.
```

We do not expect the reader to understand the two proofs, but it can be noticed that the first proof is significantly more verbose and requires a number of rewritings. Pleasantly, in the second proof, the burden of rewritings is much smaller, thanks to the boolean and computational nature of `evenb`, which automatically performs simplification and partial evaluation in both the base and the inductive case. Intuitively, in the second proof, the boolean computation automatically discharges the base case `/`, and produces a residual subgoal for the inductive case which is almost identical to the induction hypothesis. We only need a few simple commutations of “1”, performed by the lemmas `addSn` and `addnS` from the `sarrnat` library, to finish the proof.

Sometimes, it may happen that a boolean property is less convenient than propositional ones. In the case of `evenb`, the problem arises because the property has an “orbit”, which differs from the constructors of the underlying datatype. In the case of evenness, the orbit is 2 (i.e., if a number n is even, then so is $n + 2$), but natural numbers are constructed by incrementing by 1. This makes the following lemma a bit more cumbersome to prove in the boolean case than in the propositional one.

```coq
Lemma evenb_add n m : evenb n -> evenb m -> evenb (n + m).
```

11 In the definition of `evenP`, we make the equalities such as $n = m.+2$ explicit in the constructor `EvenSS`. This can be avoided by switching to indexed families, but we reserve indexed families for implementing “rewriting tables” only, as shown in § 3.2. With explicit equalities, we can avoid the `inversion` tactic, whose behavior is not trivial to explain.
In the propositional case, it turns out one can use induction either on the first or the second assumption. Contrarily, in the boolean version, it is only natural to induct on \(n \) and \(n \). Either way, the inductive case is decremented by 1, but to exploit the orbit, we need to decrement by 2. In the course, we illustrate several ways in which this proof can be carried out. One is by generalizing the induction hypothesis in a reasonably simple way to quantify over all numbers smaller than \(n \) (or \(m \)), not just over the immediate predecessor. But we also illustrate that one can build and then use custom induction principles with `elim`. In this particular case, the following induction principle suffices.

```coq
Lemma nat2_ind (P : nat -> Prop) : P 0 -> P 1 ->
(forall n, P n -> P n+2) -> forall n, P n.
```

With this lemma, the proof of `even_add` reduces to a half-liner:

```coq
by elim/nat2_ind : n.
```

The module concludes by summarizing the observed patterns of inductive definitions using predicates and recursive boolean functions, and enumerating the common practices of proving in both styles. A number of follow-up exercises in the hands-on recitations motivates the students to master both techniques, and familiarizes them with the basic Ssreflect libraries about the datatypes `nat`, `bool` and functional lists.

3.5 Programming with abstract algebraic structures

At this point in the course, the students are sufficiently proficient in proving statements in equational logic over natural numbers. We next introduce them to building their own theories of algebraic structures, familiar from the university classes on abstract algebra.

One can initiate the discussion of abstract algebraic structure with an intuition from programming. Indeed, an abstract algebraic structure is similar to the notion of class from object-oriented programming, module from Standard ML, or type class from Haskell. In simply-typed languages, these mechanisms allow the programmer to aggregate, i.e., `package` together, a number of operations over some datatype, potentially abstracting over the datatype implementation. In a dependently-typed language such as Coq, we can do a bit more: we can package the operations together with proofs of their important properties, such as commutativity or associativity, to obtain an abstract structure.

3.5.1 Defining abstract structures

As a running example, we consider partial commutative monoids (PCMs); an algebraic structure which recurs in our current ongoing work on the verification of stateful and concurrent programs. We implement PCMs using two of the Coq’s native constructs: dependent records and canonical structures. We follow the established Ssreflect design pattern of defining algebraic data structures by means of mix-in composition, whereby different dependent records formalize different algebraic properties, which can be combined using packed classes mechanism. The latter also defines the field resolution strategy in a case of overlapping names. For instance, the mix-in defining PCMs is represented by the following dependent record:

```coq
Record mixin_of (U : pcm) := Mixin {
  valid_op : T -> bool;
  join_op : T -> T -> T;
  unit_op : T;
  _  : commutative join_op;
  _  : associative join_op;
  _  : left_id unit_op join_op;
  _  : forall x y, valid_op (join_op x y) -> valid_op x;
  _  : valid_op unit_op .
}
```

The type `T` is the carrier type of the structure. The field `valid_op` selects a subset of `T`, standing for the “defined” elements. The invalid (or “undefined”) elements help model partiality: a partial function over `T` will return some invalid element on an input on which it is mathematically undefined. `join_op` is the binary operation of the PCM, and `unit_op` is the unit element. The remaining five unnamed fields enumerate the axioms that have to be satisfied by each PCM instance.

Next, the mix-in “interface” is packaged with a carrier type, into a dependent record type, which represents PCMs. We also introduce a coercion from the package to the underlying carrier type, so that the two can be conflated. This coercion essentially accounts for the delegation hierarchy from object-oriented languages.

```coq
Structure pcm : Type :=
  Pack {type : Type; _ : mixin_of type}.
Coercion type : pcm >-> Sortclass.
```

Next, we explain the mechanism of packaging all necessary definitions along with lemmas about data structures (such as `join`’s commutativity and associativity in the case of PCMs) into a single module that should be imported by the clients of the algebraic structure. For example, we introduce appropriate notation for the join operation, and specifically name and prove the lemmas that correspond to the PCM properties that we left unnamed in the mixin.

3.5.2 Canonical instances of abstract structures

We proceed to show how to instantiate the definition of abstract structure with concrete datatypes. It turns out that it is insufficient to merely prove that a datatype satisfies the PCM axioms. To work comfortably with an algebraic structure in practice, one has to explicitly “register” the structure with the type inference engine.

We first show what goes wrong if one doesn’t perform the “registration”. For instance, assume we first define an instance of a PCM for `nat` with addition, by proving that `+` with `0` satisfies the PCM axioms. Then the following lemma which uses the generic notation `\forall` for the PCM operation, is considered ill-formed by Coq. The reason is that Coq cannot figure that there is a PCM associated with `nat`, and that the generic notation `\forall` should be resolved with addition. Indeed, we could have defined the PCM for `nat` via multiplication (`\times`) with `1`, in which case `\forall` should be resolved by `\times`.

```coq
Lemma add_perm (a b c : nat) :
  a \forall (b \forall c) = c \forall (b \forall a).
```

This is why for any given type such as `nat`, we need to register which structure should be considered as its “default” PCM. We do
so using canonical instances mechanism of Coq \[17\] [28]. In the above case, once a structure is registered as the default PCM for nat, the add_perm lemma can be proved by selective rewriting using the standard PCM properties.\[12\]

Proof. by rewrite joinA \[c \+ _\]joinC \[b \+ _\]joinC. Qed.

We conclude this module by presenting a few more examples of algebraic structures. We recall the structure \(eqType\) of types with decidable equality from [5, 3, 2], and present SStrflect’s definition of a mix-in for \(eqType\) (defined in the eqtype library). The instances of this structure provide definitions of the boolean equality operation \(==\), and proofs that \(==\) is a decidable version of propositional equality \(\equiv\). We exhibit a number of instances for standard datatypes such as nat and bool. As an exercise in the recitations, the students have to implement an interface for the partially-ordered set structure, and to provide a number of canonical instances for it.

3.6 Case study: verifying imperative programs using separation logic in Hoare Type Theory

The last module of the course presents a large case study, which employs all of the Coq programming and proving skills acquired by now: specification and verification of imperative programs in Hoare Type Theory (HTT) \([19, 20]\). HTT is an implementation of separation logic, formalized as a shallow embedding in Coq. In particular, types are used to implement specifications in the style of Hoare triples. The implementation provides a number of lemmas that correspond to the customary inference rules of separation logic, and are used to interactively establish that an imperative program satisfies a type that corresponds to a Hoare triple. The soundness of HTT is proved with respect to standard state-transformer denotational semantics, which is formalized in Coq.

3.6.1 Introducing Hoare triples using the types analogy

We expected that the students of the course would all have been exposed to Hoare logic in their university education. Nevertheless, to set up the stage, we begin the module by revisiting the main concepts, such as partial correctness, notations and rules. In particular, we stress a number of points to build an intuition that Hoare triples are a kind of “types in disguise”. This is not a standard way of understanding Hoare logic, but it is reasonably accurate, especially in the case of separation logic. Indeed, an essential property of separation logic is fault avoidance—a property that verified programs are memory-safe. This insight can be summarized by the slogan “well-proved programs don’t go wrong”, which is a slight modification of Milner’s motto about typability, generalized to a dependently-typed setting.

Another point relating Hoare triples to types is the rule of consequence, which allows for strengthening the precondition and weakening the postcondition.

\[P \implies P' \quad \{ P' \} c \{ Q' \} \quad Q' \implies Q \]
\(\text{(CONSEQ)} \)

The rule features a very similar variance policy as the rule of subtyping for arrow types in the simply typed lambda-calculus with records \([25\ Chapter 15]: \)

\[P <; P' \quad Q' <; Q \quad P' \rightarrow Q <; P \rightarrow Q \]
\(\text{(S-ARROW)} \)

3.6.2 Basics of separation logic

After a short tour of Hoare logic, we demonstrate a number of well-known scalability problems that arise in the presence of pointers

\[\text{12}\] The rewriting selectors, e.g., \([c \+ _\]\], specify by means of regular expressions, in which subterms of the goal the rewriting should be performed. and aliasing. We proceed to introduce the main ideas behind separation logic \([14, 27]\), focusing mainly on definition of heaps, and explicit heap disjointness.

We expected that our students will not be familiar with separation logic, as it is not typically a topic covered in standard university curricula. This fact emboldened us to take a very non-standard approach in our presentation, and in particular, tailor the ideas behind separation logic to Coq-supported mechanized reasoning.

First of all, we omitted stack variables from the presentation. As in functional programming, all our variables will be immutable. If mutation is required, it should be done via heap references. A consequence is that the effectful commands of our programs has to be able to return non-unit results, unlike in separation logic, where no results are returned. Second, we introduce higher-order functions and the fixed-point combinator, therefore removing while-loops (and loop invariants), as they can be expressed through recursion. Third, and perhaps most drastically, we avoid using the separation logic’s standard separating conjunction connective \(\ast\). In the way we will work with Coq, \(\ast\) introduces a level of indirection; the first move in almost all the proofs is to unfold the definition of \(\ast\), and reveal the existential quantification over the disjoint heaps. Instead, we base the specifications on the operation of disjoint heap union. The latter is well-known as the semantic foundation behind \(\ast\) \([2]\), but we found that it works well in practical mechanization too. Finally, we freely use heap-valued variables in our specs, which is not a particularly accepted practice in the world of separation logic, but (1) it works well in Coq, and (2) it also seems unavoidable in the absence of native logical infrastructure to reason about bunches \([20]\).

Therefore, our separation logic specs have the following form, featuring explicitly-quantified initial/final heaps \(h\) and the result \(res\), as illustrated by the rules for writing to a pointer to \(x\) (the rule from reading \(!x\) is similar)

\[\{ h | h \Rightarrow x \Rightarrow _ \} x \Rightarrow e \{ \text{res: unit, } h | h \Rightarrow x \Rightarrow e \} \]
(\text{Write})

and for a pointer allocation

\[\{ h | h = \text{empty} \} \text{alloc}(v) \{ \text{res, } h | h \Rightarrow \text{res} \Rightarrow v \} \]
(\text{ALLOC})

Defining an appropriate form of a frame rule is possible, so working with explicit heap and result variables in assertions is pleasant, perhaps surprisingly so.

With only immutable variables allowed, sequential composition has to explicitly account for the results of commands, binding the result to a variable in the continuation.

\[\{ h | P(h) \} c_1 \{ \text{res, } h | Q(res, h) \} \quad \{ h | Q(x, h) \} c_2 \{ \text{res, } h | R(res, h) \} \]
\(\{ h | P(h) \} x \leftarrow c_1; c_2 \{ \text{res, } h | R(res, h) \} \)
(BIND)

One can also inject a pure expression into a command by means of the ret-statement. The corresponding rule is an equivalent of Hoare-logic rule for variable assignment:

\[\{ h | P(h) \} \text{ ret } e \{ \text{res, } h | P(h) \land \text{res} = e \} \]
(RETURN)

3.6.3 Effectful computations as monads

A functional programmer will immediately notice that the rules (BIND) and (RETURN), shown in § 3.6.2 bear a lot of similarity with the monadic operations bind and return, familiar from the Haskell’s parameterized type class Monad:

class Monad m where

\(\langle\rangle\rangle\) : m a -> (a -> m b) -> m b

\text{return} : a -> m a

More specifically, each command in HTT returns a result of some type, similarly to monadic programs. Furthermore, commands can be bound by means of the \(x \leftarrow c_1; c_2\) syntax, and
the corresponding logic rule checks that the pre/postconditions of c_1 and c_2 agree with each other (modulo the rule of consequence), so they could be chained. Finally, similarly to how pure expressions in Haskell can be embedded into a monad using the return command, one can construct commands from expressions using the ret e syntax. All these observations illustrate that there is a correspondence in the style of the Curry-Howard isomorphism between monadic programs and inference rules in Hoare/separation logic, thereby lifting the Curry-Howard theme of the course to stateful programming as well.

3.6.4 HTT essentials

We can now present the main concepts of HTT, such as the notion of monadic Hoare type and the notation for writing effectful programs and their specifications in Coq. But before we do so, we remind the students that in general, one cannot implement effectful and potentially non-terminating general recursive computations as pure expressions in Coq. (They have already faced this issue wrt. recursion in one of the previous lectures). To encode such computations, similar as in Haskell, one has to encapsulate their side-effects by a monad. However, in the case of Coq and HTT, the monad will be more general than in Haskell. First, it will encapsulate recursion, in addition to the effects related to mutable state, whereas Haskell doesn’t consider recursion to be an effect in this sense. Second, the type will include the precondition and the postcondition of the specified computation; thus such monadic types are called Hoare types.

A Hoare type is written using the notation of the form $\{x_1 x_2 \ldots \} \ STsep \ (p, q)$. Here p and q are heap predicates, standing for the pre and postcondition. More specifically, the type of p is $\text{heap} \rightarrow \text{Prop}$ and the type of q is $\text{A} \rightarrow \text{heap} \rightarrow \text{Prop}$, where A is the type of the result of the command being specified. The identifiers x_1, x_2 etc. bind the logical variables that scope over both p and q, and are implicitly universally quantified, as customary in Hoare logics. For example, the allocation procedure, mentioned in § 3.6.2 is given the following Hoare type, which is a straightforward refactoring of its Hoare-style specification with a small (i.e., minimal) heap footprint.\footnote{We omit the discussion on the distinction between fun and vfun; it has to do with the treatment of exceptions in HTT, but we don’t consider exceptions in the course.}

\[
\text{alloc : forall \ (A : Type) \ (v : A),} \\
\text{STsep \ (fun h h' = Unit,} \\
\text{[vfun \ (res : ptr) h h' = h = res :-> v])}
\]

3.6.5 Verifying an imperative factorial implementation

We illustrate the HTT verification machinery on an imperative implementation of the factorial procedure (Figure 1). This program will be our main running example for the section. In the course, we first present a paper-and-pencil proof outline for this program (omitted here). The proof outline lists the assertions that are valid at each program point, and how they have been justified by the inference rules of separation logic. This demonstration introduces the students to how separation logic is used in practice.

Next we show how the same reasoning is implemented in Coq. We start with providing a declarative definition fact_pure of a factorial by means of Coq’s primitive recursion.

```
1: fun fact (N: nat) : nat = \\
2: n => alloc(N); \\
3: acc <-- alloc(1); \\
4: res <-- \\
5: (fix loop (_ : unit). \\
6: a' <-- !acc; \\
7: n' <-- !n; \\
8: if n' = n + 1 then \\
9: acc ::= a' * n'; \\
10: n ::= m'; \\
11: loop tt; \\
12: else ret a' \\
13: ) (tt); \\
14: dealloc(n); \\
15: dealloc(acc); \\
16: ret res \\
17: )
```

Figure 1. A pseudocode implementation of an imperative factorial procedure with pointer allocation. The notation ;; stands for sequential composition without result binding.

function on lines 5-13. After that, we refactor the factorial program so that it invokes the recursive function, rather than inline it. Then we verify that program, reusing the already developed proof for the recursive loop function.

The “loop invariant” of the recursive function is defined as a type fact_tp below. It constrains the heap inside the loop to consist of the two pointers: the counter n and the accumulator acc, storing values n' and a' respectively. These facts are stated by using heap values $n' :-> n$ and $acc :-> a'$. Heaps form a PCM under the operation of disjoint union, so we use the familiar operator \setminus from the lecture on PCMs to combine the two single-pointer heaps into a disjoint union. Thus, the verification in HTT in general, and of the factorial example in particular, will rely heavily on the PCM library that the students practiced with previously. Once the loop terminates, the postcondition of the type fact_tp says that the counter n is decremented to 0, and the accumulator stores the return result, which equals $a' * \text{fact_pure} \ n'$.

Notation fact_tp n acc :=

\[
\text{fun fact (_ : unit) =>} \\
\text{Do (a' <- read nat acc;} \\
\text{n' <- read nat n;} \\
\text{if n' = m'.+1 then} \\
\text{acc ::= a' * n';} \\
\text{n ::= m';} \\
\text{loop tt;} \\
\text{else ret a')) tt.}
\]

Program Definition fact_acc (n acc : ptr):

\[
\text{fix (fun loop (_ : unit) =>} \\
\text{fact_tp n acc) (_ : unit) =>} \\
\text{Do (a' <- read nat acc;} \\
\text{n' <- read nat n;} \\
\text{if n' is m'.+1 then} \\
\text{acc ::= a' * n';} \\
\text{n ::= m';} \\
\text{loop tt;} \\
\text{else ret a')) tt.}
\]

One can see that the implementation of fact_acc almost exactly matches the pseudocode of the lines 5–13 from Figure 1. The notations Fix and Do for effectful and generally-recursive computations are provided by HTT. The Coq’s command Program Definition is similar to the standard definition, except that it allows the expression being defined to have uninstatiated components, which are left as obligations to be filled later. In this particular case, what is omitted is the proof that fact_acc meets the type.

We next show how this proof is built. It essentially amounts to the application of the rule (Conseq) (§ 3.6.1) to demonstrate that the type automatically computed by Coq for the loop body (and containing the weakest precondition and strongest postcondition of
the loop body) can be weakened to the explicitly provided type $\text{fact}_{\text{tp}} \ n \ \text{acc}$. Application of (Conseq) issues a pair of implications, which can be discharged together by applying a number of helper lemmas that correspond to structural rules in separation logic. All in all, the proof script looks as follows.

Next Obligation.
apply: ghR => _ [a b] -> _ ; heval.
case: n'->[m'] => rewrite ?muln1 ?mulnA ; heval=>//.
by do 2! [apply: (gh_ex _,_)] ; apply: val_doR.
Qed.

While the script is cryptic, it is conceptually straightforward. The first line applies HTT’s lemma gh_ex, which applies the rule of consequence, and “pulls out” all logical variables occurring in the specification (i.e., n' and a' in this case). In Hoare logic parlance, this amounts to an iterated application of the rule of universal quantification (infinite version of the rule of conjunction). The application of this lemma is followed by some bookkeeping of assumptions and use of HTT’s heval tactic to symbolically evaluate the program; that is, automatically apply the rules for writing and reading from the pointers. The symbolic evaluation stops at the conditional. Next, case-analysis on n' considers the two branches of the conditionals: then-branch is when the counter n' has not reached zero; else-branch is when zero has been reached. Both branches are first simplified by rewriting with mulnA and muln1 lemmas. These two lemmas are taken from the standard sernat library, and express the associativity of multiplication, and neutrality of 1. After the simplification, the else-branch is trivially discharged by symbolic evaluation. The then-branch requires application of a procedure call, in this case a recursive call to loop. The fixed-point combinator tells us that loop has the type $\text{fact}_{\text{tp}} \ n \ \text{acc}$, but we need to instruct the system as to the values of logical variables n' and a' to be used in the recursive call. We do so by using the lemma gh_ex twice; once for n' and again for a'. In the particular case of fact_{acc}, we don’t actually have to provide the values for n' and a' explicitly, as the unification mechanism of Coq’s will be able to infer them from the equations in the residual subgoals. Thus, we provide underscore _ as an argument to gh_ex. Finally, we apply the lemma val_doR, which allows the system to verify that by making the function call to loop, under the assumption that loop has the type $\text{fact}_{\text{tp}} \ n \ \text{acc}$, as specified by the fixed-point combinator, we can reach the specification for fact_{acc}.

One can see that most of the proof script has to do with bookkeeping technicalities, such as starting symbolic evaluation and naming the variables that arise from case analysis. The only non-trivial insight was that we need to rewrite by mulnA and muln1 at an appropriate place.

We can now specify and verify the full procedure fact, which wraps the allocation and deallocation of the around fact_{acc}.

Program Definition $\text{fact} (N : \text{nat})$:
STtep (fun h => h = Unit, [vfun res h => res = fact_pure N \ h = Unit]) :=
Do (n <-- alloc N;
acc <-- alloc 1;
res <-- fact_acc n acc;
dealloc n ;
dealloc acc ;
ret res).

The equalities $h = \text{Unit}$ in fact’s pre- and postconditions ensure that the procedure does not leak any memory. The proof of the specification is straightforward and mostly carried out by symbolic evaluation via the heval tactic. We omit it here, but it can be found in the lecture notes [29] and the code accompanying them.

3.6.6 Proving specifications with and without automation

Too much reliance on proof automation implemented by unspecified third-party tactics can easily obscure the arguments behind the proof. To avoid such situations in the case of HTT, this module asks the students to perform a few program verifications, without relying on the automation provided by heval. The students are supposed to figure out the lemmas applied by heval in the course of its run, and apply these lemmas by hand as appropriate.

As an example, we consider a simple program that swaps the natural values of two pointers, x and y.

Program Definition $\text{swap} (x \ y : \text{ptr})$:
{a b : \text{nat}},
STtep (fun h => h = x :=> a \ \text{\or} y :=> b,
[vfun h => h = x := b \ \text{\or} y :=> a]) :=
Do (vx <-- read nat x;
vx <-- read nat y;
\text{x} := vy;\n\text{y} := vx).

The proof can be carried out by first “pulling out” the logical variables and applying automation by heval.

Next Obligation. by apply: ghR => _ [a b] -> _ ; heval. Qed.

However, in a paper-and-pencil proof one would consistently apply a series of the rules, such as (Bind), (Write) etc. Therefore, we suggest the students to use the Search machinery to find the appropriate lemmas and apply them, which leads to the following proof of swap’s specification, exactly in the spirit of Hoare-style reasoning.

Next Obligation.
apply: ghR => _ [a b] -> _.
apply: bnd_seq; apply: val_read => _.
apply: bnd_seq; apply: val_readR => _.
apply: bnd_seq; apply: val_write => _.
by apply val_writeR.
Qed.

Indeed, each line of the proof decomposes a sequential composition by means of (Bind)-like lemma bnd_seq and then applies a necessary lemma for writing or reading a pointer, and the variant val_readR allows one to avoid making rewritings in the heap to bring it to the “right” shape.

Our introduction to the imperative program verification and HTT is concluded by a series of exercises, including a proof of an imperative Fibonacci procedure and a verification of number of procedures operating on singly-linked lists.

4. Evaluation and experience

A preliminary proof-of-concept evaluation of the described course has been conducted by the first author in a form of a five-days summer school, which took place in Saint Petersburg State University (SPbSU) in August 2014. The school was advertised amongst the senior-years students specializing in mathematics and software engineering. Overall, five students enrolled for the course.

As one of the main prerequisites for the school, we listed good knowledge of functional programming (preferably, based on a statically-typed language, such as ML, Haskell or Scala), which the students of the software engineering chair obtain from the standard curriculum that includes, in particular, a course on Haskell. Passing familiarity with classical propositional logic was desired, and students at SPbSU take such a course during their second or third year. We didn’t assume any knowledge of intuitionistic logic or Hoare logic, although simple Hoare logic is usually briefly mentioned in one of the introductory computer science courses at SPbSU.

\[14\] This problem can be avoided by means of lemma overloading, as demonstrated in [31], but we do not discuss this technique in the course.
Every day of the school featured four hours of lectures, which were mostly delivered in a hands-on mode, with the instructor presenting the material through interaction with Coq. The exceptions were the introductory lecture and parts of the last lecture on separation logic and HTT, which required some amount of theoretical background to be presented beforehand using slides. In the afternoon, four hours were dedicated to solving homework assignments under supervision of the lecturer. Every lecture started from the discussion on the solutions of the exercises from the previous day. The exercises on HTT on the very last day of the lectures were discussed immediately after the lab session.

4.1 Observations

Students had little trouble learning Coq’s programming syntax. They quickly mastered writing simple recursive programs, and satisfying the requirements imposed by Coq’s termination checker. Some of the students expressed a lot of eagerness to test their code. Before being introduced to formal proofs, they started writing “proofs” that correspond to unit tests, such as the one below.

\[\text{Theorem test_plus_3.8 : my_plus 3 8 = 11.}\]
\[\text{Proof. reflexivity. Qed.}\]

Surprisingly, such clever hackers experienced most troubles later on, when making transition from programming to proving, until they finally understood the semantics of proof primitives such as `move` and `case`.

In the process of explaining the basic concepts of the interactive proof (§ 3.1.3), we noticed that, when it comes to applying a tactic, the students often confuse goals and assumptions. Specifically, some of the student had trouble deciding whether they should use `split` or `case` when a conjunction is encountered in a goal. It helped when we repeated the explanation of the four basic primitives (``exact; move; case` and `apply;`), and emphasize that all other proof constructions can be expressed through them.

Being dedicated hackers, about a half of the students often found themselves in a situation that, after some progress with the proof, they no longer understand the proof state. This situation typically occurs when doing proofs by induction (§ 3.4). In such cases, the students often went to the Coq manual in search of a powerful tactic that would solve the problem for them. We tried to prevent these situations by suggesting them to reflect on a problem and construct a paper-and-pencil proof first. For those who insisted on using some standard library tactics (i.e., `inversion`), which usually resulted from the definitions following the traditional Coq style (§ 3.2.6) of using indexed type families as GADTs), we allowed them to do so once they were able to explain the outcome through the use of only the basic primitives.

The students found the way we introduced Hoare-style reasoning about imperative programs out of the type analogy (§ 3.6.1) to be quite natural. Moreover, right after the scalability problems of the traditional Hoare logic were listed (i.e., the proof burden appearing when reasoning about aliasing), and before the introduction of separation logic, one of the students had immediately suggested to make the fact of heap disjointness to be `explicit` in the assertions, which is the crucial idea of the separation logic.

We were pleasantly surprised to find some of the students’ proofs of the exercises (§ 3.2, § 3.4) were shorter and conceptually simpler than those we developed ourselves as model solutions.

4.2 Feedback from the participants

In the post-school anonymous evaluation, we received largely positive feedback. The course has been praised for a selection of topics with an emphasis on verification of imperative programs, which some of the students found to be an “impressive piece of real-world research project that can be taught in a comprehensible way”.

One major criticism we got had to do with a way the proofs were presented in the files accompanying the lectures and used for the hands-on sessions. In the later lectures we have “compressed” some of the proof steps into non-atomic lines (e.g., several rewritesings followed by the bookkeeping machinery). Although not complex conceptually, some students found such proofs hard to follow without breaking the lines into more atomic steps. And while doing so, they would lose the pace of the lecture, and had to ask the lecturer to start the example over. We intend to revise the course according to this problem in the future.

5. Related courses and future work

The Coq proof assistant has been in development since 1983, and by now there are a number of courses that provide introductions to Coq-powered proving and programming. The book Interactive Theorem Proving and Program Development. Coq’Art: The Calculus of Inductive Constructions by Yves Bertot and Pierre Castéran [1] is an exhaustive overview of Coq as a formal system and tool, covering both logical foundations, reasoning methodologies and automation, and offering large number of examples and exercises. Benjamin Pierce et al.’s Software Foundations electronic book [25] introduces Coq development from an angle of the basic research in programming languages, focusing primarily on formalization of language semantics and type systems, which serve both as main motivating examples of Coq usage and as a source of intuition for explaining Coq’s logical foundations. The most recently published book, Certified Programming with Dependent Types by Adam Chlipala [3] provides an introduction to Coq from the perspective of writing programs that manipulate certificates, i.e., first-class proofs of the program’s correctness. The idea of certified programming is a natural fit for a programming language with dependent types, which Coq offers, and the book is structured as a series of examples that make the dependently-typed aspect of Coq shine, along with the intuition behind these examples and a detailed overview of state-of-the-art proof automation techniques.

While designing the course, we have drawn a lot of inspiration from these books, from which we also borrowed a number of examples and exercises. However, we often had to redesign these examples and exercises in order to keep to the explicit but minimalist Ssrreflect style of proof, based on the small set of core tactics, and in order to emphasize the computational nature of properties being defined and verified.

Initially, we intended to adopt some of the teaching insights from Henz and Hобор’s (H&H) experience report [12]. Alas, a majority of the practices described there are quite specific to the teaching program of National University of Singapore’s School of Computing (in particular, some background on modal logic was assumed). The introduction into formal proofs in H&H’s course is made through the Aristotles term logic, whereas we deliberately strove to employ the students’ intuition acquired from the courses on functional programming. Both approaches have their strengths. In particular H&H’s seems to be more approachable by students with no background in formal methods. On the other hand, our course is at freedom to employ a richer vocabulary of programming analogies, making it easier to explain the notions such as inductive proof, dependent records and Hoare types. Noteworthy, H&H notice the same anti-patterns, exhibited by the students during the learning process, in particular, the undue “hacking” with tactics.

In the future, we plan to extend the course with a discussion on co-fixpoints and proofs by coinduction, supported by recent advances on the mechanized proof construction in this area [13]. We also intend to enhance the course with a survey of proof automation techniques by means of tactic engineering [31, 34] or lemma overloading via canonical structures [11, 17].
6. Conclusion

Programming and proving are the two sides of the same coin: construction of scalable and reusable formal proofs can be effectively taught basing on the knowledge of constructing scalable software systems. In this report, we have described the design of an experimental course on mechanized reasoning in the Coq proof assistant, which embraces the proving-as-programming insight. The particular cases of this duality, which we have instantiated as teaching principles in a class, are the computational approach to decidable properties, boolean reflection, implementation of algebraic structures as dependent records with inheritance, and reasoning about effectful programs in a Hoare-style program logic.

It is our belief that the proposed approach to teaching mechanized theorem proving and formal reasoning can be adopted in educational programs for students, who already have background in software engineering and program design, and we support this claim by reporting on our preliminary teaching experience, which is positive.

All the materials of the course, including the lecture notes, exercises, source files for the hands-on lectures, and necessary libraries, are available online [29].

Acknowledgments

We are grateful to Dmitri Boultychev for his initiative to organize a summer school on dependent types at SPbSU. We also thank Anindya Banerjee, Olivier Danvy, Michael D. Ernst, Rémy Haenmerlé, José Francisco Morales and Eric Tanter for their comments on the lecture notes and on earlier drafts of this article.

References