
Introducing Functional Programmers
to Interactive Theorem Proving and Program Verification

Teaching Experience Report ∗

Ilya Sergey
IMDEA Software Institute

ilya.sergey@imdea.org

Aleksandar Nanevski
IMDEA Software Institute
aleks.nanevski@imdea.org

Abstract
We report on the design and preliminary evaluation of a short
introductory course on interactive theorem proving and program
verification using the Coq proof assistant, targeted at students with
background in functional programming and software engineering.

The course builds on concepts familiar from functional pro-
gramming to develop understanding of logic and mechanized prov-
ing by means of the Curry-Howard isomorphism. A particular em-
phasis is made of the computational nature of decidable proper-
ties of various data structures. This approach is of practical impor-
tance, as Coq’s normalization can automatically simplify or dis-
charge such properties, thus reducing the burden of constructing
the proofs by hand. As a basis for teaching this style of mecha-
nization, we use Gonthier et al.’s Ssreflect extension of Coq and its
associated libraries.

In the course, we minimize the exposure to ad-hoc proof au-
tomation via tactics, and request that students develop proofs us-
ing only a small set of proof-building primitives that they should
clearly understand. In addition to introducing logic as an applica-
tion of functional programming, the topics covered by the course
include: implementation of custom rewriting principles as instances
of indexed type families, boolean reflection, implementation of al-
gebraic structures and inheritance between them, and verification
of imperative programs in separation logic and Hoare Type Theory.

1. Introduction
The concept of a rigorous mathematical proof has a long story as an
educational topic. In our experience, however, a typical undergrad-
uate curriculum in computer science teaches proofs from the point
of view of logic, and ignores the fundamental connection between
logic and programming. Thus, most undergraduates in computer
science receive a strong background in programming, imperative

∗A part of this work has been carried out while the first author was giving
lectures in a summer school on interactive theorem proving, which was
sponsored by JetBrains and took place in August 2014 at Saint Petersburg
State University.

[Copyright notice will appear here once ’preprint’ option is removed.]

as well as functional, but will seldom relate their programming in-
tuition to logic and formal proofs.

This situation is unfortunate, as recent years have seen the com-
pletion of a number of impressive and ground-breaking project in
the field of formal mathematics and program verification. Examples
include the four color theorem [8], the odd order theorem [10], seL4
kernel [15] and CompCert compiler infrastructure [16]. These ad-
vances attest that proof assistants have matured to the level at which
they are ready for use by the wider community in mathematics and
computer science.

Mechanized formalization of a large mathematical theory sig-
nificantly resembles development of a large programming project
with a rich infrastructure and a set of libraries. In this light, it is un-
surprising that an effective use of a proof assistant requires remark-
able programming skills. This insight is especially true of proof
assistants such as Coq [4] or Agda [22], which include a pow-
erful dependently typed lambda calculus, in which one can write
both programs as well as proofs, via the Curry-Howard isomor-
phism. However, the connection between formal mathematics and
programming goes much deeper than the mere fact that proofs and
programs can both be written in the lambda calculus. Indeed, even
the way one defines the basic predicates of interest, implements al-
gebraic objects and structures such as groups or rings, or organizes
formal theories, bears a lot of similarity with programming in the
large. In particular, programming concepts such as modules, func-
tors, objects, abstract types and predicates, higher-order functions,
inductive and coinductive types and families, overloading and in-
heritance, very quickly arise as natural mechanisms for structuring
formal mathematical developments.

Most fascinatingly—and, perhaps, confusingly to a newcomer
with pure mathematical background—there may be many differ-
ent ways, employing many different programming mechanisms, to
formulate and mechanize the same mathematical problem. Each
choice may present a number of tradeoffs that are not typically en-
countered in mere programming. For instance, should one encode
a particular property as a function or as an inductive datatype? It is
important to know the tradeoffs well; good choices lead to reusable,
maintainable and short proofs, just like they would in good pro-
grams. But, conversely, suboptimal or “hacky” choices typically
lead to an explosion in complexity, much more quickly and severely
than they do in programming. In the light of this observation, one
may say that effective construction of formal proofs is not just a
programming challenge, but a programming challenge of the high-
est order, in which one’s coding skills, discipline and inventiveness
can really shine, much more so than in ordinary programming (i.e.,
in which proofs are not required).

This article describes an introductory course on interactive the-
orem proving and verification using Coq, which we designed to
embrace the uniformity of the tradeoffs, that pertain to both pro-

1 2014/10/11

gramming and proving. The considered issues appear frequently
in our everyday formalization work, but because they have not
been collected and emphasized in the existing introductory liter-
ature (rather, they are interspersed across research papers of many
authors [6, 7, 9, 11, 17, 23]), we have frequently needed to devote
time to introduce them to new students and collaborators (all with
significant experience with ML and Haskell), individually. The idea
for this course and its selection of topics arose out of such infor-
mal teaching experience. In a more formal setting, we report on the
proof-of-concept evaluation of the course, which was delivered by
the first author in a five-days summer school for a small group of
students of Saint Petersburg State University (SPbSU), majoring in
mathematics and software engineering and having necessary back-
ground in Haskell, thanks to the standard curriculum courses.

By necessity imposed by space limits, our presentation in this
report assumes basic familiarity with Coq, though, of course, such
familiarity is not assumed in the course itself, the associated lec-
ture notes, slides, and code templates for hands-on classes [29].
However, we do not assume that the reader will be able to follow
the ocasional Coq proofs we present. In such cases, we discuss the
main ideas of the proof in prose. In the rest of the article, we present
the broader outline of the course, focusing in more depth on a few
specific topics that are not usually covered by the existing literature
and courses on Coq.

2. Overview
Currently, there are several books by different authors on interac-
tive theorem proving in Coq [1, 3, 26] (see Section 5 for the dis-
cussion). Although all these books have been successfully used in
numerous introductory courses on Coq, we thought that there are
still some topics, stemming from the proving-as-programming in-
tuition and essential for effective and boilerplate-free mathematical
reasoning via a proof assistant, that are left underrepresented. Our
course is targeted to fill these gaps while still covering the common
teaching material required to get the students off the ground. In par-
ticular, in our course we emphasized the following aspects of proof
engineering, most of which are enabled or empowered by Gonthier
et al.’s small-scale reflection extension (Ssreflect) to Coq [9]:

• Special treatment is given to the computational nature of rea-
soning about decidable propositions. In other words, many re-
sults about decidable properties can be computed as boolean
values, rather than proven interactively. But to do so, one has to
formulate the properties as computable recursive Coq functions
with bool result, rather than as inductive predicates. The latter
is more in the spirit of the traditional introductions to Coq.

• Instead of supplying the students with a large vocabulary of au-
tomated tactics necessary for everyday Coq hacking, we focus
on a small but expressive set of primitives (about six in total),
offered by Ssreflect or inherited from the vanilla Coq with no-
table enhancements.

• Reasoning by rewriting is presented from the perspective of
Coq’s definition of the propositional equality and followed by
elaboration on the idea of using index type families as a tool to
define client-specific conditional rewrite rules. The usual way
indexed type families are presented in the related work is for
use in programming and pattern matching, rather than rewriting.
Conversely, we advocate parametrized (but not indexed) types,
for programming and pattern matching.

• We provide a detailed explanation of the essentials of Ssreflect’s
boolean reflection between the sort Prop and the datatype bool

as a particular case of conditional rewriting, following the com-
putational approach to proving decidable properties.

• Formal encoding of familiar mathematical structures (e.g.,
monoids, partial orders, etc) is carried out by means of de-

pendent records; mathematical operations are overloaded using
the mechanism of canonical instances, similar to Haskell type
classes. This analogy illustrates how the programming ideas of
overloading and inheritance come into formal proving [7].

• A novel (from a teaching perspective) case study is considered,
introducing the students to the concepts of stateful program
verification using separation logic and Hoare Type Theory [19].

2.1 Why teach with Ssreflect?
A significant part of our material is presented using the Ssreflect
extension of Coq [9]. Ssreflect is developed as a part of the Mathe-
matical Components project,1 to facilitate automated reasoning and
simplification in very large mathematical developments, in partic-
ular, the formalizations of the four color theorem [8] and the Feit-
Thompson (odd order) theorem [10].

Ssreflect includes a small but expressive (and comfortable for
practical work) set of primitives for proof construction, related to
but different from the traditional set provided by Coq. It also comes
with a large library of algebraic structures, ranging from natural
numbers to graphs, finite sets and algebras, formalized and shipped
with exhaustive toolkits of lemmas and facts about them. Finally,
Ssreflect introduces some mild modifications to Coq’s native syntax
and the semantics of the proof script interpreter, which makes the
proofs very concise.

Using Ssreflect for our development was not the goal by itself:
a large part of the course could be presented using traditional
Coq without any loss in the insights but, perhaps, some loss in
brevity. However, having been developed as part of a very large
formalization effort, Ssreflect’s libraries are well-tested in the wild,
and are an excellent example of good mechanization practice. In
particular, they make it very easy for us to emphasize the above-
listed mechanization aspects of the course. In fact, to the best of
our knowledge, it was the work on Ssreflect and the Four color
theorem [6–8] that first applied boolean reflection and canonical
structures in Coq to a larger-scale formalization effort.

Last, but not least, Ssreflect comes with a much improved
Search tool, compared to standard Coq. The Search tool is invalu-
able, given that a fair part of the time spent on mechanization is
typically devoted to reading third-party code and lemma libraries.

3. Structure of the course
In this section we provide a detailed description of the structure of
the course and refer the interested reader to the full syllabus and the
accompanying exercises available online [29].

3.1 From functional programs to propositional logic
Assuming that the students are knowledgeable about the basic
concepts of functional programming, such as algebraic datatypes,
pattern matching and possibly higher-order functions, we begin the
course by demonstrating the syntax for the same concepts in Coq,
focusing solely on Coq’s programming language component.

3.1.1 Functional programming in Coq
We start by presenting simple datatypes, such as unit, bool, nat
and empty (i.e., the type without constructors), proceeding shortly
after to the definitions of functions on these datatypes. For example,
addition on nat is defined by the program below, which introduces
the students to Coq’s syntax for pattern matching and its abbrevi-
ated Ssreflect variant if-is. The latter is useful for cases with only
one non-default branch. _.+1 is Ssreflect notation for successor.

Fixpoint my_plus n m :=
if n is n’.+1 then (my_plus n’ m).+1 else m.

1 http://www.msr-inria.fr/projects/mathematical-components-2/

2 2014/10/11

http://www.msr-inria.fr/projects/mathematical-components-2/

Next, we focus on the induction and recursion principles, gener-
ated by Coq automatically for each inductive definition. We explain
these as higher-order functions, whose return types can depend on
the value of the argument; hence, this gives us a way to introduce
dependent function types as well. We show how the recursive func-
tion my_plus can be rewritten explicitly in terms of the recursion
principles, and suggest a number of exercises intended to expose
the students to working with higher-order dependently-typed func-
tions. This lecture culminates with a short demonstration of cus-
tom dependently-typed functions, e.g., a function returning unit

on some inputs and nat on some others.
Elaborating futher on the types of generated recursion and in-

duction principles, we draw the students’ attention to the recursion
principle generated for the datatype empty:

empty_rect : forall (P : empty -> Type) (e : empty), P e

A function with such a type allows one to obtain instance of any
type, given an argument e of type empty, thanks to the argument
P, which can be instantiated by a constant function returning a
necessary type. A closer examination of the body of empty_rect by
means of Print machinery leaves no doubts that it is well-typed.
Therefore, an important conclusion follows: assuming existence
of a value that cannot be constructed, we are able to construct
anything. We next show that empty is not the only datatype that
can have this “magical” property of allowing to construct a value
of any type from it. In particular, we refer to the example with a
type strange, taken from [1], which is also non-inhabited, even
though it has a constructor:

Inductive strange := cs of strange.

While the students don’t have all that much experience with the
empty type, as it is not frequently encountered in programming, we
point out that it will correspond to the empty set in mathematics,
and to the false proposition in logic, and will thus have a significant
role to play very soon in the course.

We continue by showing a number of familiar algebraic datatypes,
such as pairs, sums, lists and trees as well as functions operating on
these, suggesting a number of simple programming exercises. After
successfully accomplishing a few of them, the students already feel
relatively comfortable with Coq as a programming language and
realize its main “limitation”. In particular, they notice they can’t de-
fine generally-recursive functions in the usual programming style,
and are forced to rely on primitive recursion in order to convince
Coq’s type checker that their functions terminate.

3.1.2 Searching and structuring libraries
In practical programming, it is important to be able to search for
appropriate procedures in someone else’s libraries. The same holds
for interactive proof development, where one needs to search for
definitions and lemmas. When programming in Haskell, one may
use search engines such as Hoogle2 and Hayoo!.3 This functional-
ity is provided in Coq by the Search command, which is further
enhanced by Ssreflect (see Chapter 10 of [9]). We decided to in-
troduce the students to Search very early on. Even though by this
moment in the course, they are not familiar with formal logic and
proofs, they can already use Search to look for definitions and func-
tions from the programming side, based on their types. For exam-
ple, they can execute queries like the following one

Search _ ((?X -> ?Y) -> _ ?X -> _ ?Y).

which returns all map-like functions currently available in the im-
ported libraries.

2 http://www.haskell.org/hoogle/
3 http://hayoo.fh-wedel.de/

Coq’s extensible parser is a powerful tool when defining custom
notations for mathematical theories. From our experience it is also a
source of constant frustration for the Coq newcomers, who struggle
to figure out whether some notation is defined in a library, or is
Coq’s native syntax. To avoid the pain of working with custom
third-party notations, we teach them to use commands like Locate

and Print. We also show how to “switch off” all the syntactic sugar
from custom notations with the Set Printing All command. We
also show how to define one’s own custom notation, with a warning
that the feature should be used carefully, as it is easy to abuse and
make one’s code unreadable.

At this point we also introduce the students to basic program
structuring primitives of Coq, such as sections and modules. We
explain the difference between the two (e.g., modules provide hi-
erarchical name spaces, while sections declare local variables that
generalize over the section body), and illustrate how to combine the
two to achieve a degree of “locality” for definitions and hiding of
the internal details.

3.1.3 Introducing logical connectives
By this moment, the students are familiar with the basic principles
of programming in Coq. In particular, they understand that values
of inductive datatypes are constructed by applying constructors to
the arguments and “destructed” by pattern matching. They know
how to define functions of appropriate types, and that a function
should be applied to get the value of its result type. They have even
seen dependently-typed functions whose return type can vary de-
pending on the value of the arguments. In other words, everything
is set up for the introduction of constructive logic by means of the
Curry-Howard analogy.

First of all, we define when a logical statement will be true
for us: when its proof can be built from hypotheses and rules by
referring to the hypotheses and applying the rules, correspondingly.
This definition has two important implications, which we elaborate
upon: (1) this notion of truth is constructive; something is only
true if its proof can be constructed in a finite number of steps,
and (2) the truth is relative with respect to the initial hypotheses
and the rules of the logic. In our experience, this definition most
often matches very well the intuition that the students have from
their classical mathematical education. Even if they haven’t been
exposed to extensive study of mathematical logic and, hence, have
only a very informal idea of what a formal proof is, they know how
to write informal ones, and how to find flaws in them. The definition
also makes it easy to introduce falsehood as a proposition whose
proof cannot be constructed.

Next, we appeal to the analogy between the falsehood False

and the datatype empty, defined previously, followed by the intro-
duction of standard logical connectives by the Curry-Howard corre-
spondence: conjunction corresponds to the product datatype prod,
disjunction to sum, truth to a type with a single element (in Coq, the
element is named I), implication to function type A -> B, universal
quantification to dependent function types, and existential quantifi-
cation to a specific dependent record type. This intuition gradually
leads to the idea that proving a logical proposition corresponds to
building a program that has the proposition as its type. In other
words, we’re trying to inhabit a type with a proof term element.4

Given this relation, it is natural to explain the usual inference
rules in terms of functional programming. In particular, a func-
tion can be introduced by assuming its argument and construct-
ing its body, in which the argument is used, which corresponds to
the rules of implication introduction. The similar intuition holds

4 While drawing the analogy of types/propositions as sets of proofs is useful
for building intuition, we find it important to emphasize that, unlike sets
in set theory, types in Coq are always disjoint; that is, an element cannot
belong to more than one type.

3 2014/10/11

http://www.haskell.org/hoogle/
http://hayoo.fh-wedel.de/

for universal quantification. The introduction rules for other logi-
cal connectives correspond to application of a constructor of the
corresponding logical connective (e.g., conj in the case of conjunc-
tion, and similarly for existential quantification). As for elimina-
tion rules, most of the connectives (conjunction, disjunction, ex-
istentials) clearly correspond to case-analysis by means of Coq’s
match-with expression construct. The notable exceptions are the
modus ponens rule for implication, and the forall-specialization
rule, which both correspond to function application.

3.1.4 Interactive proof construction: first encounter
After concepts related to proofs have been introduced, we can
proceed to interactive proof development. We point out that even
though proofs are the same as programs, it’s frequently easier to
develop them not as explicit lambda-terms, but in a step-by-step
manner using proof scripting with a small (but expressive) set of
Ssreflect’s primitives.

First, we show the simplest possible proof script, which just
appeals to a known fact whose proof is constructed explicitly as
a lambda-term. This construction is done by the exact primitive, as
in the following proof of True, whose explicit proof is called I:

Theorem true_is_true : True.
Proof. exact: I. Qed.

Next, we demonstrate the machinery enabled by Ssreflect’s move

tactic placeholder and two bookkeeping tacticals, => and :. These
allow one to work with assumptions, moving them “bottom-up”
(i.e., from the goal to the context) and vice versa, respectively:

Theorem imp_trans (P Q R: Prop) :
(P -> Q) -> (Q -> R) -> P -> R.

Proof. move => H1 H2 p; exact: (H2 (H1 p)). Qed.

We emphasize that the proof by exact is and instance of so-called
forward reasoning style, in which assumptions are combined to
eventually obtain the proof of the goal. In the above proof, H1,
H2, p are proofs of P->Q, Q->R, and p, respectively, and the proof
of R is obtained as an application H2 (H1 p). We also exhibit the
opposite—backwards—reasoning style, which replaces the goal by
a number of obligations arising from the types of the applied func-
tion/hypothesis’ arguments. In Ssreflect, backwards reasoning is
implemented by the apply: tactic,5 the use of which we immedi-
ately demonstrate on a number of simple examples:

Theorem all_imp_dist A (P Q: A -> Prop) :
(forall x: A, P x -> Q x) -> (forall y, P y) ->
forall z, Q z.

Proof. move => H1 H2 z; apply: H1; apply: H2. Qed.

We elaborate that constructing proofs by means of apply: essen-
tially corresponds to reading logical introduction rules “bottom-
up”. In this way, constructors of logical connectives are essentially
equated with hypotheses in context.

At this point, students are equipped with three main proof build-
ing primitives, and can already construct simple proofs. The main
missing component is the primitive for case analysis (i.e., pattern-
matching), which we introduce next. As most of the Ssreflect tac-
tics, case can be effectively combined with bookkeeping tacticals,
which we make use of immediately.6

Theorem conj_comm P Q : P /\ Q -> Q /\ P.
Proof. case=> p q; apply: conj; [exact: q|exact: p]. Qed.

If no specific argument is provided, the tactics move and case by
default always work with the leftmost assumption of the goal.

5 Which is somewhat more powerful than Coq’s native apply (without “:”).
6 The necessary syntax for working with multiple subgoals, e.g., the [||]
tactical, is introduced on the way by gradually “compressing” the proofs in
front of the students during the hands-on recitations.

The four primitives introduced by now: exact, move, case and
apply, together with Ssreflect’s bookkeeping machinery, are suffi-
cient for building proofs of arbitrary logical propositions. We next
explain a number of “shortcut” tactics that simplify the work with
particular logical connectives and predicates. Examples include:
split, exists, left, right, etc. While explaining the shortcut tac-
tics, we ask the students to express them through the four basic
ones. We also explain Ssreflect’s terminators by and done, which
raise an error message if they fail to discharge the goal. Finally,
we illustrate the tactic intuition on a few examples. This tactic
attempts to prove propositions in intuitionistic logic automatically.
In this case too, we ask the students to prove the same examples
without automation, using only the four basic primitives.

We conclude this part of the course by providing a brief
overview of non-constructive axioms from classical propositional
logic, such as the law of excluded middle, Peirce’s law, the law
of double negation. Students are asked to to prove that these are
all equivalent, following an excercise by Bertot and Castéran [1].
We also briefly elaborate on the impredicativity of the sort Prop of
propositions in Coq, and provide a short explanation of the basics
of Coq’s hierarchy of universes.

3.2 Equality and rewriting
After explaining the basics of propositional logic, we proceed to ad-
dress equational reasoning and the corresponding proof technique
of rewriting. Propositional equality is defined in Coq by the fol-
lowing indexed type family (in this case, the index is the element of
type A in the type signature A -> Prop):

Inductive eq (A : Type) (x : A) : A -> Prop :=
eq_refl : eq x x.

Notation "x = y" := (eq x y) (at level 70).

A common way of understanding indexed type families such as the
one above is to compare them to generalized algebraic datatypes
(GADTs) in Haskell [24, 33]. The latter allow the programmer to
refine and guide the process of (dependent) pattern matching by
the type index of the scrutinee. Studying indexed type families
from this point of view is a very active research area [5, 18].
However, not wanting to get bogged down with too many details
of dependent pattern matching, we decided to explain indexed type
families by another well-known analogy [23], specifically useful in
Coq: indexed type families correspond to custom (i.e., user-defined)
simultaneous conditional rewrite rules.

The intuition about this is best built by examples. For instance,
the proof of the equality’s symmetry will look as follows:7

Lemma eq_sym A (x y: A) : x = y -> y = x.
Proof. by case. Qed.

The case-analysis on the assumption x = y essentially forces
the unification mechanism of Coq to exploit the “implicit equal-
ity”, encoded via the eq’s index (i.e., the second argument), and
substitute all occurrences of the index’s actual value by the value
declared in the constructor eq_refl first argument. In other words,
case-analysing the assumption rewrites the occurrence of y by x,
therefore leading to a subgoal x = x which trivially discharged by
the terminator by. In a more pictorial analogy, one can think of the
predicate eq x y as of the following “rewriting” table:

y

eq_refl x x

In English, for the fixed value x (which is bound by the
datatype’s parameter), the instance of eq x y defines an “rewriting

7 In fact, the case-analysis on Coq’s predicate family eq is overloaded by
Ssreflect, so this example is presented in the course using an equivalent,
user-defined, equality predicate family my_eq.

4 2014/10/11

table”, whose top-right cell specifies what should be replaced (in
this case, this is y, which is captured by the datatype’s index). The
bottom-right cell, thus, specifies what the actual value of the index,
y, should be substituted with. Hence, case-analysis on such a rewrit-
ing table will replace all the occurrences of the columns’ “headers”
(values of indices in the actual instance) by the corresponding val-
ues in the “cells” (values of indices in the constructors). In this
analogy, the “rows” of the table correspond to particular construc-
tors and their arguments, and in the case of eq there is just one,
eq_refl, with a single argument x.

This intuition is further strenghtened by more involved exam-
ples from the Ssreflect’s library of natural numbers (ssrnat). In
particular, we consider the following indexed family nat_rels and
the companion lemma ltngtP:

Inductive nat_rels m n : bool -> bool -> bool -> Set :=
| CompareNatLt of m < n : nat_rels m n true false false
| CompareNatGt of m > n : nat_rels m n false true false
| CompareNatEq of m = n : nat_rels m n false false true.

Lemma ltngtP m n: nat_rels m n (m < n) (n < m) (m == n).

The parameters of nat_rels are the nats m and n. The definition
also has three indexes, all boolean. Together, nat_rels and ltngtP

encode the following rewriting table.

m < n n < m m == n

CompareNatLt m < n true false false

CompareNatGt m > n false true false

CompareNatEq m = n false false true

The column headers specify the subexpression in the goal to be
substituted by case analysing on a proof of ltngtP (i.e., what is
substituted). In this particular case, we want to simultanously sub-
stitute for three different boolean expressions: m < n, n < m and
m == n.8 The row headers specify when (i.e., under which condi-
tions) the substitution takes place. The value identified by a given
row and column says what we substitute with. More concretely,
case analysing on a proof of ltngtP will make Coq substitute the
occurrences of m == n in a goal as follows (and similarly for m < n

and n < m). It will generate three subgoals, in which m == n is
replaced with false, false, and true, respectively. The subgoals
will contain hypotheses as read off from the row headers; the first
subgoal will be conditioned on m < n, the second on m > n, and
the third on m = n. One can employ such simultaneous conditional
rewriting to carry out very short and effective proofs. For example,
the following proofs about minn and maxn functions are taken from
the ssrnat library:

Definition maxn m n := if m < n then n else m.
Definition minn m n := if m < n then m else n.

Lemma addn_min_max m n : minn m n + maxn m n = m + n.
Proof.
by rewrite /minn /maxn; case: ltngtP=>//; rewrite addnC.
Qed.

In the proof of addn_min_max, right after unfolding the definitions
of minn and maxn by the rewrite command, the case-analysis on
the table constructed by ltngtP with simultaneous rewritings and
reducing if-expressions, produces a number of subgoals, most of
which are discharged by Ssreflect’s trailing tactical //, which can
be expressed in somewhat standard Coq as try done for each of
the subgoals. The observation about simultaneity of rewriting with
respect to m < n, n < m and m == n is of essence. Had we tried
instead to build the proof of addn_min_max based on the case-

8 The ordering relations and the equality on natural numbers are imple-
mented in Ssreflect as boolean functions, since they are decidable.

analysis over a lemma stating the totality of <,9 we would first
have to prove a series of auxiliary properties, such as that n < m

is false when m < n is true, and vice versa. The latter increases
the proof burden. The simultaneous rewriting via the ltngtP lemma
“packages” these facts together in the truth table nat_rels.

While case analysis on lemmas over indexed families logically
corresponds to rewriting, the above example readily illustrates that
a separate rewrite primitive is also very useful, in particular with
a number of enhancements provided by Ssreflect. The usage sce-
narious of a separate rewrite primitive include folding/unfolding
definitions (by means of the / modality in Ssreflect), rewriting in
assumptions and sub-expressions, and using occurrence switches to
select specific subexpressions for rewriting (see Chapter 7 of [9]).

In the excercises for this module, we ask the students to prac-
tice with rewrite tactics on a number of examples involving natural
numbers. The selection of exercises also familiarizes them with the
ssrnat library, where most of the lemmas take the form of equal-
ity. One such lemma is addnC employed in the proof above, which
states commutativity of addition. The students also get to practice
with the Search tool to find lemmas that encode the familiar proper-
ties of natural numbers such as associativity of addition, neutrality
of zero, etc.

3.3 Boolean reflection and views
One confusing point for students with programming background,
when they are exposed to Coq, is the difference between the two-
constructor enumeration type bool and Coq’s sort of propositions
Prop. At this point in the course, we explain the difference, but
in a way that illustrates the trade-offs between the two concepts,
when it comes to building interactive proofs. Following Ssreflect,
we suggest that one should use boolean expressions to encode
decidable properties, whereas the propositions from Prop should be
used for undecidable properties, or properties whose decidability is
not trivial to establish. Consequently, one obvious difference that
can be immediately pointed out is that Prop allows quantification
over infinite domains, while bool doesn’t. But more importantly,
bool and Prop can be related by an indexed family (i.e, a “rewriting
table”, as introduced in the previous section). This idea is at the core
of Ssreflect and, if used properly, often leads to very effective and
compact proofs.

3.3.1 Coercing bool into Prop

We start by pointing out that booleans can be naturally injected into
propositions by equating their value to true, using propositional
equality defined in the previous section. This injection is done in
Ssreflect by the implicit coercion, defined in the ssrbool library:

Coercion is_true (b: bool) : Prop := b = true

We explain this coercion as an implicit type conversion, famil-
iar to students from languages like Scala or Haskell, which Coq
inserts automatically every time it “expects to see” a proposition,
but instead encounters a boolean. We next show that, given a suit-
ably formulated boolean expressions, reasoning with booleans can
be surprisingly nifty, as demonstrated by the following example,
involving Ssreflect’s bool-returning function prime, which imple-
ments Erathostenes’ sieve:

Goal prime (16 + 13). Proof. done. Qed.

Indeed, the proof would have been much longer had one used the
usual definition of prime numbers as those with only trivial divi-
sors.10 This example, and a number of similar ones, convey the idea
that decidable properties, if implemented as computable functions

9 This is the lemma forall m n, m < n \/ m == n \/ m > n.
10 In fact, Ssreflect’s library prime provides both definitions and proves
them equivalent, so that the user can employ either one as needed.

5 2014/10/11

returning a boolean result, allow Coq to perform automatic simpli-
fications, and even obtain results by computation, without imposing
any proving burden on the user.

3.3.2 Introducing the reflect datatype
Coercing booleans into propositions is easy enough by an im-
plicit coercion, but going in the opposite direction is a somewhat
more complicated. Ssreflect suggests a general methodology for
implementing the equivalence between particular propositions and
boolean expressions by means of the following reflect indexed
family:

Inductive reflect (P : Prop) : bool -> Set :=
| ReflectT of P : reflect P true
| ReflectF of ~ P : reflect P false.

Indeed, following the “rewriting table” analogy (defined in § 3.2),
one can think of reflect as a generic rewrite rule, parametrized
with respect to “logically equivalent” proposition P and a boolean bP.

bP
ReflectT P true

ReflectF ~ P false

We illustrate the use of the reflect datatype by examples involving
reflection of logic connectives, e.g., conjunction

Lemma andP (b1 b2 : bool) : reflect (b1 /\ b2) (b1 && b2).

The students are asked to prove a number of similar lemmas,
e.g., for disjunction, in order to master the principles of providing
custom instances of reflect.

We next explain the use of views and view hints, which are part
of Ssreflect’s bookkeeping machinery (see Chapter 9 of [9]). We
omit the discussion here, but briefly note for the reader unfamiliar
with Ssreflect, that views are simply reflect lemmas which can
be employed to on-the-fly convert a boolean expression into the
equivalent proposition. For example, the above lemma andP can be
used as a view to transform b1 && b2 into a conjunction b1 /\ b2.
The latter form may be preferable at times; for example, the con-
junction can be destructed into component conjuncts by the usual
case analysis, whereas the similar destruction is much more cum-
bersome in the case of b1 && b2. Of course, the advantage of the
b1 && b2 form is that it may often simplify by computation, for
special values of b1 and b2, whereas those simplification won’t be
carried out automatically by Coq in the case of the b1 /\ b2 form.
A particularly useful view is the lemma eqP which relates boolean
and propositional equality, in the special case of eqTypes, i.e., types
with decidable equality. We refer to such types as equality types, but
postpone the definition of eqType until one of the future lectures.

Lemma eqP (A : eqType) (x y : A): reflect (x = y)(x == y).

We use the eqP lemma to illustrate the interoperatbility between
the two different equalities. For example, the boolean equality
x == y can be used in the scrutinee of conditionals, as the following
example shows, whereas the propositional one cannot. However, in
proofs, we may need to use eqP to switch between the two forms.

Definition foo (x y : nat) := if x == y then 1 else 0.
Goal forall x y, x = y -> foo x y = 1.
Proof. by rewrite /foo => x y /eqP ->. Qed.

To prove the goal, one first has to unfold foo. Then the view /eqP

is used to covert the proposition x = y into the boolean x == y, or
more precisely, into (x == y) = true. The later is subsequently
used (by ->), to rewrite the condition in if-then-else to true.
By computation, this reduces the goal into 1 = 1, which is then
trivially discharged.

3.4 Proofs about inductive predicates and recursive functions
The next course module is dedicated to proofs by induction on
custom datatypes and inductively-defined predicates.

Proof by induction in Ssreflect are usually done using the elim

tactic. It has a number of enhancements over the standard Coq
induction, and in particular, it keeps with the semantic of Ssreflect,
already introduced with move and case, that the proof-scripting
primitives by default always apply to the leftmost assumption in
the goal, initiating the proof by induction on it.

We begin by pointing out that elim can be seen as a special
case of apply, where the lemma chosen for application is the
default induction principle generated automatically by Coq for the
datatype in question. For example, inducting on natural numbers
corresponds to applying nat_ind lemma, which expresses the well-
known Peano induction schema. Similarly, eliminating falsehood
(or, equivalently, the empty set) applies the lemma empty_ind.

We illustrate the usual patterns of inductive reasoning by work-
ing out a number of examples related to decidable properties of
natural numbers. Here, we focus on evenness. We tie to the pre-
vious lecture by expressing the property in two ways: as a boolean
expressions evenb, and as an inductive proposition evenP in Prop.11

Inductive evenP n : Prop :=
Even0 of n = 0 | EvenSS m of n = m.+2 & evenP m.

Fixpoint evenb n := if n is n’.+2 then evenb n’ else n==0.

We consider the proofs of following two logically equivalent state-
ments formulated using the two definitions given above.

Lemma evenP_contra n : evenP (n + 1 + n) -> False.
Proof.
elim: n=>[|n IH]; first by rewrite addn0 add0n; case.
rewrite addn1 addnS addnC !addnS.
rewrite addnC addn1 addnS in IH.
by case=>// m /eqP; rewrite !eqSS => /eqP <-.
Qed.

Lemma evenb_contra n: evenb (n + 1 + n) -> False.
Proof. by elim: n=>[//|n IH]; rewrite addSn addnS. Qed.

We do not expect the reader to understand the two proofs, but it
can be noticed that the first proof is significantly more verbose and
requires a number of rewritings. Pleasantly, in the second proof,
the burden of rewritings is much smaller, thanks to the boolean and
computational nature of evenb, which automatically performs sim-
plification and partial evaluation in both the base and the inductive
case. Intuitively, in the second proof, the boolean computation au-
tomatically discharges the base case (//), and produces a residual
subgoal for the inductive case which is almost identical to the in-
duction hypothesis. We only need a few simple commutations of
“1”, performed by the lemmas addSn and addnS from the ssrnat

library, to finish the proof.
Sometimes, it may happen that a boolean property is less con-

venient than propositional ones. In the case of evenb, the problem
arises because the property has an “orbit”, which differs from the
constructors of the underlying datatype. In the case of evenness, the
orbit is 2 (i.e., if a number n is even, then so is n + 2), but natural
numbers are constructed by incrementing by 1. This makes the fol-
lowing lemma a bit more cumbersome to prove in the boolean case
than in the propositional one.

Lemma even_add n m : evenb n -> evenb m -> evenb (n + m).

11 In the definition of evenP, we make the equalities such as n = m.+2
explicit in the constructor EvenSS. This can be avoided by switching to in-
dexed families, but we reserve indexed families for implementing “rewriting
tables” only, as shown in § 3.2. With explicit equalities, we can avoid the
inversion tactic, whose behavior is not trival to explain.

6 2014/10/11

In the propositional case, it turns out one can use induction either
on the first or the second assumption. Contrarily, in the boolean
version, it is only natural to induct on n and m. Either way, the
inductive case is decremented by 1, but to exploit the orbit, we need
to decrement by 2. In the course, we illustrate several ways in which
this proof can be carried out. One is by generalizing the induction
hypothesis in a reasonably simple way to quantify over all numbers
smaller than n (or m), not just over the immediate predecessor. But
we also illustrate that one can build and then use custom induction
principles with elim. In this particular case, the following custom
induction principle suffices.

Lemma nat2_ind (P: nat -> Prop) : P 0 -> P 1 ->
(forall n, P n -> P n.+2) -> forall n, P n.

With this lemma, the proof of even_add reduces to a half-liner:
by elim/nat2_ind : n.

The module concludes by summarizing the observed patterns of
inductive definitions using predicates and recursive boolean func-
tions, and enumerating the common practices of proving in both
styles. A number of follow-up exercises in the hands-on recitations
motivates the students to master both techniques, and familiarizes
them with the basic Ssreflect libraries about the datatypes nat, bool
and functional lists.

3.5 Programming with abstract algebraic structures
At this point in the course, the students are sufficiently proficient
in proving statements in equational logic over natural numbers.
We next introduce them to building their own theories of algebraic
structures, familiar from the university classes on abstract algebra.

One can initiate the discussion of abstract algebraic structure
with an intuition from programming. Indeed, an abstract algebraic
structure is similar to the notion of class from object-oriented
programming, module from Standard ML, or type class from
Haskell [32]. In simply-typed languages, these mechanisms al-
low the programmer to aggregate, i.e., package together, a number
of operations over some datatype, potentially abstracting over the
datatype implementation. In a dependently-typed language such as
Coq, we can do a bit more: we can package the operations together
with proofs of their important properties, such as commutativity or
associativity, to obtain an abstract structure.

3.5.1 Defining abstract structures
As a running example, we consider partial commutative monoids
(PCMs); an algebraic structure which recurrs in our current on-
going work on the verification of stateful and concurrent pro-
grams [21]. We implement PCMs using two of the Coq’s native
constructs: dependent records and canonical structures. We follow
the estasblished Ssreflect design pattern of defining algebraic data
structures by means of mix-in composition [6], whereby different
dependent records formalize different algebraic properties, which
can be combined using packed classes mechanism. The latter also
defines the field resolution strategy [7] in a case of overlapping
names. For instance, the mix-in defining PCMs is represented by
the following dependent record:

Record mixin_of (T : Type) := Mixin {
valid_op : T -> bool;
join_op : T -> T -> T;
unit_op : T;
_ : commutative join_op;
_ : associative join_op;
_ : left_id unit_op join_op;
_ : forall x y, valid_op (join_op x y) -> valid_op x;
_ : valid_op unit_op }.

The type T is the carrier type of the structure. The field valid_op

selects a subset of T, standing for the “defined” elements. The
invalid (or “undefined”) elements help model partiality: a partial

function over T will return some invalid element on an input on
which it is mathematically undefined. join_op is the binary oper-
ation of the PCM, and unit_op is the unit element. The remaining
five unnamed fields enumerate the axioms that have to be satisfied
by each PCM instance.

Next, the mix-in “interface” is packaged with a carrier type, into
a dependent record type, which represents PCMs. We also intro-
duce a coercion from the package to the underlying carrier type, so
that the two can be conflated. This coercion essentially accounts for
the delegation hierarchy from object-oriented languages.

Structure pcm : Type :=
Pack {type : Type; _ : mixin_of type}.

Coercion type : pcm >-> Sortclass.

Next, we explain the mechanism of packaging all necessary defini-
tions along with lemmas about data structures (such as join’s com-
mutativity and associativity in the case of PCMs) into a single mod-
ule that should be imported by the clients of the algebraic structure.
For example, we introduce appropriate notation for the join opera-
tion, and specifically name and prove the lemmas that correspond
to the PCM properties that we left unnamed in the mixin.

Notation x \+ y := (join_op x y).
Lemma joinC (U : pcm) (x y : U) : x \+ y = y \+ x.
Lemma joinA (U : pcm) (x y z : U) :

x \+ y \+ z = x \+ (y \+ z).

The lemmas such as joinC and joinA are proved by destructing the
package U, but notice how the coercion allows conflating U with its
carrier type. Also notice how the notation x \+ y allows the PCM U

to be ommitted from the equations themselves, as the typechecker
can infer it from the context.

Algebraic structures can inherit the properties of other, more ba-
sic structures. Thus, we also require an analogue of object-oriented
inheritance. We illustrate how this can be done in Coq, by defin-
ing an interface for a cancellative PCM, which inherits from an
ordinary PCM. The cancellative PCM is defined as the following
mix-in record:

Record mixin_of (U : pcm) := Mixin {
_ : forall a b c: U, valid (a \+ b) ->

a \+ b = a \+ c -> b = c }.

Notice that the dependent record mixin_of in this case is parametrized
via the carrier PCM U, which is used as a target for a coercion when-
ever an instance of a plain PCM or a carrier type U is required, since
coercions a transitive.

3.5.2 Canonical instances of abstract structures
We proceed to show how to instantiate the definition of abstract
structure with concrete datatypes. It turns out that it is insufficient
to merely prove that a datatype satisfies the PCM axioms. To work
comfortably with an algebraic structure in practice, one has to
explicitly “register” the structure with the type inference engine.

We first show what goes wrong if one doesn’t perform the
“registration”. For instance, assume we first define an instance of
a PCM for nat with addition, by proving that + with 0 satisfies the
PCM axioms. Then the following lemma which uses the generic
notation \+ for the PCM operation, is considered ill-formed by
Coq. The reason is that Coq cannot figure that there is a PCM
associated with nat, and that the generic notation \+ should be
resolved with addition. Indeed, we could have defined the PCM
for nat via multiplication (×) with 1, in which case \+ should be
resolved by ×.

Lemma add_perm (a b c : nat) :
a \+ (b \+ c) = c \+ (b \+ a).

This is why for any given type such as nat, we need to register
which structure should be considered as its “default” PCM. We do

7 2014/10/11

so using canonical instances mechanism of Coq [17, 28]. In the
above case, once a structure is registered as the default PCM for
nat, the add_perm lemma can be proved by selective rewriting using
the standard PCM properties.12

Proof. by rewrite joinA [c \+ _]joinC [b \+ _]joinC. Qed.

We conclude this module by presenting a few more examples of
algebraic structures. We recal the structure eqType of types with
decidable equality from (§ 3.3.2), and present Ssreflect’s definition
of a mix-in for eqType (defined in the eqtype library). The instances
of this structure provide definitions of the boolean equality opera-
tion ==, and proofs that == is a decidable version of propositional
equality =. We exhibit a number of instances for standard datatypes
such as nat and bool. As an exercise in the recitations, the students
have to implement an interface for the partially-ordered set struc-
ture, and to provide a number of canonical instances for it.

3.6 Case study: verifying imperative programs using
separation logic in Hoare Type Theory

The last module of the course presents a large case study, which em-
ploys all of the Coq programming and proving skills acquired by
now: specification and verification of imperative programs in Hoare
Type Theory (HTT) [19, 20]. HTT is an implementation of separa-
tion logic, formalized as a shallow embedding in Coq. In particu-
lar, types are used to implement specifications in the style of Hoare
triples. The implementation provides a number of lemmas that cor-
respond to the customary inference rules of separation logic, and
are used to interactively establish that an imperative program sat-
isfies a type that corresponds to a Hoare triple. The soundness of
HTT is proved with respect to standard state-transformer denota-
tional semantics, which is formalized in Coq.

3.6.1 Introducing Hoare triples using the types analogy
We expected that the students of the course would all have been
exposed to Hoare logic in their university education. Nevertheless,
to set up the stage, we begin the module by revisiting the main con-
cepts, such as partial correctness, notations and rules. In particular,
we stress a number of points to build an intuition that Hoare triples
are a kind of “types in disguise”. This is not a standard way of un-
derstanding Hoare logic, but it is reasonably accurate, especially in
the case of separation logic. Indeed, an essential property of separa-
tion logic is fault avoidance—a property that verified programs are
memory-safe. This insight can be summarized by the slogan “well-
proved programs don’t go wrong”, which is a slight modification of
Milner’s motto about typability, generalized to a dependently-typed
setting.

Another point relating Hoare triples to types is the rule of conse-
quence, which allows for strengthening the precondition and weak-
ening the postcondition.

P =⇒ P ′
{
P ′

}
c
{
Q′

}
Q′ =⇒ Q

{P} c {Q}
(CONSEQ)

The rule features a very similar variance policy as the rule of
subtyping for arrow types in the simply typed lambda-calculus with
records [25, Chapter 15]:

P <: P ′ Q′ <: Q

P ′ → Q′ <: P → Q
(S-ARROW)

3.6.2 Basics of separation logic
After a short tour of Hoare logic, we demonstrate a number of well-
known scalability problems that arise in the presence of pointers

12 The rewriting selectors, e.g., [c + _], specify by means of regular ex-
pressions, in which subterms of the goal the rewriting should be performed.

and aliasing. We proceed to introduce the main ideas behind sep-
aration logic [14, 27], focusing mainly on definition of heaps, and
explicit heap disjointness.

We expected that our students will not be familiar with separa-
tion logic, as it is not typically a topic covered in standard univer-
sity curricula. This fact embolded us to take a very non-standard
approach in our presentation, and in particular, tailor the ideas be-
hind separation logic to Coq-supported mechanized reasoning.

First of all, we ommitted stack variables from the presentation.
As in functional programming, all our variables will be immutable.
If mutation is required, it should be done via heap references. A
consequence is that the effectful commands of our programs has to
be able to return non-unit results, unlike in separation logic, where
no results are returned. Second, we introduce higher-order func-
tions and the fixed-point combinator, therefore removing while-
loops (and loop invariants), as they can be expressed through re-
cursion. Third, and perhaps most drastically, we avoid using the
separation logic’s standard separating conjunction connective ∗. In
the way we will work with Coq, ∗ introduces a level of indirec-
tion; the first move in almost all the proofs is to unfold the defini-
tion of ∗, and reveal the existential quantification over the disjoint
heaps. Instead, we base the specifications on the operation of dis-
joint heap union. The latter is well-known as the semantic foun-
dation behind ∗ [2], but we found that it works well in practical
mechanization too. Finally, we freely use heap-valued variables in
our specs, which is not a particularly accepted practice in the world
of separation logic, but (1) it works well in Coq, and (2) it also
seems unavoidable in the absence of native logical infrastructure to
reason about bunches [20].

Therefore, our separation logic specs have the following form,
featuring explicitly-quantified initial/final heaps h and the result
res, as illustrated by the rules for writing to a pointer x (the rule
from reading !x is similar)

{h | h = x 7→ −} x ::= e {res : unit, h | h = x 7→ e} (WRITE)

and for a pointer allocation

{h | h = empty} alloc(v) {res, h | h = res 7→ v} (ALLOC)

Defining an appropriate form of a frame rule is possible, so working
with explicit heap and result variables in assertions is pleasant,
perhaps surprisingly so.

With only immutable variables allowed, sequential composition
has to explicitly account for the results of commands, binding the
result to a variable in the continuation.

{h | P (h)} c1 {res, h |Q(res, h)}
{h |Q(x, h)} c2 {res, h | R(res, h)}

{h | P (h)} x← c1; c2 {res, h | R(res, h)}
(BIND)

One can also inject a pure expression into a command by means
of the ret-statement. The corresponding rule is an equivalent of
Hoare-logic rule for variable assignment:

{h | P (h)} ret e {res, h | P (h) ∧ res = e} (RETURN)

3.6.3 Effectful computations as monads
A functional programmer will imediately notice that the rules
(BIND) and (RETURN), shown in § 3.6.2, bear a lot of similar-
ity with the monadic operations bind and return, familiar from the
Haskell’s parametrized type class Monad:

class Monad m where
(>>=) :: m a -> (a -> m b) -> m b
return :: a -> m a

More specifically, each command in HTT returns a result of
some type, similarly to monadic programs. Furthermore, com-
mands can be bound by means of the x ← c1; c2 syntax, and

8 2014/10/11

the corresponding logic rule checks that the pre/postconditions of
c1 and c2 agree with each other (modulo the rule of consequence),
so they could be chained. Finally, similarly to how pure expres-
sions in Haskell can be embedded into a monad using the return
command, one can construct commands from expressions using the
ret e syntax. All these observations illustrate that there is a corre-
spondence in the style of the Curry-Howard isomorphism between
monadic programs and inference rules in Hoare/separation logic,
thereby lifting the Curry-Howard theme of the course to stateful
programming as well.

3.6.4 HTT essentials
We can now present the main concepts of HTT, such as the no-
tion of monadic Hoare type and the notation for writing effectful
programs and their specifications in Coq. But before we do so, we
remind the students that in general, one cannot implement effect-
ful and potentially non-terminating general recursive computations
as pure expressions in Coq. (They have already faced this issue
wrt. recursion in one of the previous lectures). To encode such
computations, similar as in Haskell, one has to encapsulate their
side-effects by a monad. However, in the case of Coq and HTT,
the monad will be more general than in Haskell. First, it will enca-
puslate recursion, in addition to the effects related to mutable state,
whereas Haskell doesn’t consider recursion to be an effect in this
sense. Second, the type will include the precondition and the post-
condition of the specified computation; thus such monadic types
are called Hoare types.

A Hoare type is written using the notation of the form {x1 x2

...}, STsep (p, q). Here p and q are heap predicates, standing
for the pre and postcondition. More specifically, the type of p is
heap -> Prop and the type of q is A -> heap -> Prop, where A is
the type of the result of the command being specified. The iden-
tifiers x1, x2 etc. bind the logical variables that scope over both
p and q, and are implicitly universally quantified, as customary in
Hoare logics. For example, the allocation procedure, mentioned in
§ 3.6.2 is given the following Hoare type, which is a straightfor-
ward rephrasing of its Hoare-style specification with a small (i.e.,
minimal) heap footprint:13

alloc : forall (A : Type) (v : A),
STsep (fun h => h = Unit,

[vfun (res : ptr) h => h = res :-> v])

3.6.5 Verifying an imperative factorial implementation
We illustrate the HTT verification machinery on an imperative
implementation of the factorial procedure (Figure 1). This program
will be our main running example for the section. In the course,
we first present a paper-and-pencil proof outline for this program
(ommitted here). The proof outline lists the assertions that are valid
at each program point, and how they have been justified by the
inference rules of separation logic. This demonstration introduces
the students to how separation logic is used in practice.

Next we show how the same reasoning is implemented in Coq.
We start with providing a declarative definition fact_pure of a
factorial by means of Coq’s primitive recursion.

Fixpoint fact_pure n :=
if n is n’.+1 then n * (fact_pure n’) else 1.

Our goal will be to demonstrate that the procedure fact from
Figure 1 computes fact_pure of its input value. We will also prove
that fact does not leak memory.

To stress the compositionality of the verification, we will break
the proof into two parts. We will first verify the recursive loop

13 We omit the discussion on the distinction between fun and vfun; it
has to do with the treatment of exceptions in HTT, but we don’t consider
exceptions in the course.

1 fun fact (N : nat) : nat = {
2 n ← alloc(N);
3 acc ← alloc(1);
4 res ←
5 (fix loop (_ : unit).
6 a’ ← !acc;
7 n’ ← !n;
8 if n’ is m’ + 1 then
9 acc ::= a’ * n’;;

10 n ::= m’;;
11 loop(tt)
12 else ret a’
13)(tt);
14 dealloc(n);;
15 dealloc(acc);;
16 ret res
17 }

Figure 1. A pseudocode implementation of an imperative facto-
rial procedure with pointer allocation. The notation ;; stands for
sequential composition without result binding.

function on lines 5-13. After that, we refactor the factorial program
so that it invokes the recursive function, rather than inline it. Then
we verify that program, reusing the already developed proof for the
recursive loop function.

The “loop invariant” of the recursive function is defined as a type
fact_tp below. It constrains the heap inside the loop to consist of
the two pointers: the counter n and the accumulator acc, storing
values n’ and a’, respectively. These facts are stated by using heap
values n :-> n’ and acc :-> a’. Heaps form a PCM under the
operation of disjoint union, so we use the familiar operator \+ from
the lecture on PCMs (§ 3.5) to combine the two single-pointer
heaps into a disjoint union. Thus, the verification in HTT in general,
and of the factorial example in particular, will rely heavily on the
PCM library that the students practiced with previously. Once the
loop terminates, the postcondition of the type fact_tp says that the
counter n is decremented to 0, and the accumulator stores the return
result, which equals a’ * fact_pure n’.

Notation fact_tp n acc :=
{n’ a’},

STsep (fun h => h = n :-> n’ \+ acc :-> a’,
[vfun res h => h = n :-> 0 \+ acc :-> res /\

res = a’ * fact_pure n’]).

Program Definition fact_acc (n acc : ptr):
fact_tp n acc :=
Fix (fun (loop : unit -> fact_tp n acc) (_ : unit) =>
Do (a’ <-- read nat acc;

n’ <-- read nat n;
if n’ is m’.+1 then
acc ::= a’ * n’;;
n ::= m’;;
loop tt

else ret a’)) tt.

One can see that the implementation of fact_acc almost exactly
matches the pseudocode of the lines 5–13 from Figure 1. The nota-
tions Fix and Do for effectful and generally-recursive computations
are provided by HTT. The Coq’s command Program Definition

is similar to the standard definition, except that it allows the ex-
pression being defined to have uninstantiated components, which
are left as obligations to be filled later [30]. In this particular case,
what is omitted is the proof that fact_acc meets the type.

We next show how this proof is built. It essentially amounts to
the application of the rule (CONSEQ) (§ 3.6.1) to demonstrate that
the type automatically computed by Coq for the loop body (and
containing the weakest precondition and strongest postcondition of

9 2014/10/11

the loop body) can be weakened to the explicitly provided type
fact_tp n acc. Application of (CONSEQ) issues a pair of impli-
cations, which can be discharged together by applying a number
of helper lemmas that correspond to structural rules in separation
logic. All in all, the proof script looks as follows.

Next Obligation.
apply: ghR=>_ [n’ a’] /= -> _; heval.
case: n’=>[|m’] /=; rewrite ?muln1 ?mulnA; heval=>//.
by do 2![apply: (gh_ex _)]; apply: val_doR.
Qed.

While the script is cryptic, it is conceptually straightforward.
The first line applies HTT’s lemma ghR, which applies the rule
of consequence, and “pulls out” all logical variables occurring in
the specification (i.e., n’ and a’ in this case). In Hoare logic par-
lance, this amounts to an iterated application of the rule of uni-
versal quantification (infinitary version of the rule of conjunction).
The application of this lemma is followed by some bookkeeping of
assumptions and use of HTT’s heval tactic to symbolically evalu-
ate the program; that is, automatically apply the rules for writing
and reading from the pointers. The symbolic evaluation stops at the
conditional. Next, case-analysis on n’ considers the two branches
of the conditionals: then-branch is when the counter n’ has not
reached zero; else-branch is when zero has been reached. Both
branches are first simplified by rewriting with mulnA and muln1

lemmas. These two lemmas are taken from the standard ssrnat li-
brary, and express the associativity of multiplication, and neutrality
of 1. After the simplification, the else-branch is trivially discharged
by symbolic evaluation. The then-branch requires application of a
procedure call, in this case a recursive call to loop. The fixed-point
combinator tells us that loop has the type fact_tp n acc, but we
need to instruct the system as to the values of logical variables n’

and a’ to be used in the recursive call. We do so by using the lemma
gh_ex twice; once for n’ and again for a’. In the particular case of
fact_acc, we don’t actually have to provide the values for n’ and
acc’ explicitly, as the unification mechanism of Coq’s will be able
to infer them from the equations in the residual subgoals. Thus, we
provide underscore _ as an argument to gh_ex. Finally, we apply
the lemma val_doR, which allows the system to verify that by mak-
ing the function call to loop, under the assumption that loop has the
type fact_tp n acc, as specified by the fixed-point combinator, we
can reach the specification for fact_acc.

One can see that most of the proof script has to do with book-
keeping technicalities, such as starting symbolic evaluation and
naming the variables that arise from case analysis. The only non-
trivial insight was that we need to rewrite by muln1 and mulnA at an
appropriate place.

We can now specify and verify the full procedure fact, which
wraps the allocation and deallocation of the around fact_acc.

Program Definition fact (N : nat) :
STsep (fun h => h = Unit,

[vfun res h => res = fact_pure N /\ h = Unit]) :=
Do (n <-- alloc N;

acc <-- alloc 1;
res <-- fact_acc n acc;
dealloc n;;
dealloc acc;;
ret res).

The equalities h = Unit in fact’s pre- and postconditions ensure
that the procedure does not leak any memory. The proof of the
specification is straightforward and mostly carried out by symbolic
evaluation via the heval tactic. We omit it here, but it can be found
in the lecture notes [29] and the code accompanying them.

3.6.6 Proving specifications with and without automation
Too much reliance on proof automation implemented by unspeci-
fied third-party tactics can easily obscure the arguments behind the
proof. To avoid such situations in the case of HTT, this module asks
the students to perform a few program verifications, without relying
on the automation provided by heval. The students are supposed to
figure out the lemmas applied by heval in the course of its run, and
apply these lemmas by hand as appropriate.

As an example, we consider a simple program that swaps the
natural values of two pointers, x and y.

Program Definition swap (x y : ptr):
{a b : nat},
STsep (fun h => h = x :-> a \+ y :-> b,

[vfun _ h => h = x :-> b \+ y :-> a]) :=
Do (vx <-- read nat x;

vy <-- read nat y;
x ::= vy;;
y ::= vx).

The proof can be carried out by first “pulling out” the logical
variables and applying automation by heval.

Next Obligation. by apply: ghR=> _ [a b]-> _; heval. Qed.

However, in a paper-and-pencil proof one would consistently apply
a series of the rules, such as (BIND), (WRITE) etc. Therefore,
we suggest the students to use the Search machinery to find the
appropriate lemmas and apply them, which leads to the following
proof of swap’s specification, exactly in the spirit of Hoare-style
reasoning.

Next Obligation.
apply: ghR => _ [a b]-> _.
apply: bnd_seq; apply: val_read => _.
apply: bnd_seq; apply: val_readR => _.
apply: bnd_seq; apply: val_write => _.
by apply val_writeR.
Qed.

Indeed, each line of the proof decomposes a sequential composi-
tion by means of (BIND)-like lemma bnd_seq and then applies a
necessary lemma for writing or reading a pointer, and the variant
val_readR allows one to avoid making rewritings in the heap to
bring it to the “right” shape.14

Our introduction to the imperative program verification and
HTT is concluded by a series of exercises, including a proof of
an imperative Fibonacci procedure and a verification of number of
procedures operating on singly-linked lists.

4. Evaluation and experience
A preliminary proof-of-concept evaluation of the described course
has been conducted by the first author in a form of a five-days sum-
mer school, which took place in Saint Petersburg State University
(SPbSU) in August 2014. The school was advertised amongst the
senior-years students specializing in mathematics and software en-
gineering. Overall, five students enrolled for the course.

As one of the main prerequisites for the school, we listed good
knowledge of functional programming (preferably, based on a
statically-typed language, such as ML, Haskell or Scala), which the
students of the software engineering chair obtain from the standard
curriculum that includes, in particular, a course on Haskell. Passing
familiarity with classical propositional logic was desired, and stu-
dents at SPbSU take such a course during their second or third year.
We didn’t assume any knowledge of intuitionistic logic or Hoare
logic, although simple Hoare logic is usually briefly mentioned in
one of the introductory computer science courses at SPbSU.

14 This problem can be avoided by means of lemma overloading, as demon-
strated in [11], but we do not discuss this technique in the course.

10 2014/10/11

Every day of the school featured four hours of lectures, which
were mostly delivered in a hands-on mode, with the instructor pre-
senting the material through interaction with Coq. The exceptions
were the introductory lecture and parts of the last lecture on sepa-
ration logic and HTT, which required some amount of theoretical
background to be presented beforehand using slides. In the after-
noon, four hours were dedicated to solving homework assignments
under supervision of the lecturer. Every lecture started from the dis-
cussion on the solutions of the exercises from the previous day. The
exercises on HTT on the very last day of the lectures were discussed
immediately after the lab session.

4.1 Observations
Students had little trouble learning Coq’s programming syntax.
They quickly mastered writing simple recursive programs, and
satisfying the requirements imposed by Coq’s termination checker.
Some of the students expressed a lot of eagerness to test their
code. Before being introduced to formal proofs, they started writing
“proofs” that correspond to unit tests, such as the one below.

Theorem test_plus_3_8 : my_plus 3 8 = 11.
Proof. reflexivity. Qed.

Surprisingly, such clever hackers experienced most troubles later
on, when making transition from programming to proving, until
they finally understood the semantics of proof primitives such as
move and case.

In the process of explaining the basic concepts of the interac-
tive proof (§ 3.1.4), we noticed that, when it comes to applying
a tactic, the students often confuse goals and assumptions. Specifi-
cally, some of the student had trouble deciding whether they should
use split or case when a conjunction is encountered in a goal. It
helped when we repeated the explanation of the four basic primi-
tives (exact:, move, case and apply:), and emphasize that all other
proof constructions can be expressed through them.

Being dedicated hackers, about a half of the students often found
themselves in a situation that, after some progress with the proof,
they no longer understand the proof state. This situation typically
occurs when doing proofs by induction (§ 3.4). In such cases, the
students often went to the Coq manual in search of a powerful tactic
that would solve the problem for them. We tried to prevent these
situations by suggesting them to reflect on a problem and construct
a paper-and-pencil proof first. For those who insisted on using some
standard library tactics (i.e., inversion, which usually resulted
from the definitions following the traditional Coq style [3, 26] of
using indexed type families as GADTs), we allowed them to do so
once they were able to explain the outcome through the use of only
the basic primitives.

The students found the way we introduced Hoare-style reason-
ing about imperative programs out of the type analogy (§ 3.6.1)
to be quite natural. Moreover, right after the scalability problems
of the traditional Hoare logic were listed (i.e., the proof burden ap-
pearing when reasoning about aliasing), and before the introduction
of separation logic, one of the students has immediately suggested
to make the fact of heap disjointness to be explicit in the assertions,
which is the crucial idea of the separation logic.

We were pleasantly surprised to find some of the students’
proofs of the exercises (§ 3.2, § 3.4) were shorter and conceptually
simpler than those we developed ourselves as model solutions.

4.2 Feedback from the participants
In the post-school anonymous evaluation, we received largely pos-
itive feedback. The course has been praised for a selection of top-
ics with an emphasis on verification of imperative programs, which
some of the students found to be an “impressive piece of real-world
research project that can be taught in a comprehensible way”.

One major criticism we got had to do with a way the proofs
were presented in the files accompanying the lectures and used for
the hands-on sessions. In the later lectures we have “compressed”
some of the proof steps into non-atomic lines (e.g., several rewrit-
ings followed by the bookkeeping machinery). Although not com-
plex conceptually, some students found such proofs hard to follow
without breaking the lines into more atomic steps. And while do-
ing so, they would lose the pace of the lecture, and had to ask the
lecturer to start the example over. We intend to revise the code sup-
porting the course to avoid this problem in the future.

5. Related courses and future work

The Coq proof assistant has been in development since 1983, and
by now there are a number of courses that provide introductions
to Coq-powered proving and programming. The book Interac-
tive Theorem Proving and Program Development. Coq’Art: The
Calculus of Inductive Constructions by Yves Bertot and Pierre
Castéran [1] is an exhaustive overview of Coq as a formal system
and tool, covering both logical foundations, reasoning methodolo-
gies and automation, and offering large number of examples and
exercises. Benjamin Pierce et al.’s Software Foundations electronic
book [26] introduces Coq development from an angle of the basic
research in programming languages, focusing primarily on for-
malization of language semantics and type systems, which serve
both as main motivating examples of Coq usage and as a source
of intuition for explaining Coq’s logical foundations. The most
recently published book, Certified Programming with Dependent
Types by Adam Chlipala [3] provides an introduction to Coq from
the perspective of writing programs that manipulate certificates,
i.e., first-class proofs of the program’s correctness. The idea of
certified programming is a natural fit for a programming language
with dependent types, which Coq offers, and the book is structured
as a series of examples that make the dependently-typed aspect of
Coq shine, along with the intuition behind these examples and a
detailed overview of state-of-the-art proof automation techniques.

While designing the course, we have drawn a lot of inspiration
from these books, from which we also borrowed a number of exam-
ples and exercises. However, we often had to redesign these exam-
ples and exercises in order to keep to the explicit but minimalistic
Ssreflect style of proof, based on the small set of core tactics, and
in order to emphasize the computational nature of properties being
defined and verified.

Initially, we intended to adopt some of the teaching insights
from Henz and Hobor’s (H&H) experience report [12]. Alas, a
majority of the practices described there are quite specific to the
teaching program of National University of Singapore’s School of
Computing (in particular, some background on modal logic was
assumed). The introduction into formal proofs in H&H’s course is
made through the Aristotles term logic, whereas we deliberately
strived to employ the students’ intuition acquired from the courses
on functional programming. Both approaches have their strengths.
In particular H&H’s seems to be more approachable by students
with no background in formal methods. On the other hand, our
course is at freedom to employ a richer vocabulary of programming
analogies, making it easier to explain the notions such as induc-
tive proof, dependent records and Hoare types. Noteworthy, H&H
notice the same anti-patterns, exhibited by the students during the
learning process, in particular, the undue “hacking” with tactics.

In the future, we plan to extend the course with a discussion
on co-fixpoints and proofs by coinduction, supported by recent ad-
vances on the mechanized proof construction in this area [13]. We
also intend to enhance the course with a survey of proof automa-
tion techniques by means of of tactic engineering [31, 34] or lemma
overloading via canonical structures [11, 17].

11 2014/10/11

6. Conclusion
Programming and proving are the two sides of the same coin: con-
struction of scalable and reusable formal proofs can be effectively
taught basing on the knowledge of constructing scalable software
systems. In this report, we have described the design of an experi-
mental course on mechanized reasoning in the Coq proof assistant,
which embraces the proving-as-programming insight. The partic-
ular cases of this duality, which we have instantiated as teaching
principles in a class, are the computational approach to decidable
properties, boolean reflection, implementation of algebraic struc-
tures as dependent records with inheritance, and reasoning about
effectful programs in a Hoare-style program logic.

It is our belief that the proposed approach to teaching mech-
anized theorem proving and formal reasoning can be adopted in
educational programs for students, who already have background
in software engineering and program design, and we support this
claim by reporting on our preliminary teaching experience, which
is positive.

All the materials of the course, including the lecture notes,
exercises, source files for the hands-on lectures, and necessary
libraries, are available online [29].

Acknowledgments
We are grateful to Dmitri Boulytchev for his initiative to organize
a summer school on dependent types at SPbSU. We also thank
Anindya Banerjee, Olivier Danvy, Michael D. Ernst, Rémy Haem-
merlé, José Francisco Morales and Éric Tanter for their comments
on the lecture notes and on earlier drafts of this article.

References
[1] Y. Bertot and P. Castéran. Interactive Theorem Proving and Pro-

gram Development. Coq’Art: The Calculus of Inductive Construc-
tions. Springer Verlag, 2004.

[2] C. Calcagno, P. W. O’Hearn, and H. Yang. Local action and abstract
separation logic. In LICS. IEEE Computer Society, 2007.

[3] A. Chlipala. Certified Programming with Dependent Types. The MIT
Press, 2013.

[4] Coq Development Team. The Coq Proof Assistant – Reference Man-
ual, Version 8.4pl4, July 2014. Available at http://coq.inria.fr/
refman/.

[5] P.-E. Dagand and C. McBride. Transporting functions across orna-
ments. In ICFP. ACM, 2012.

[6] F. Garillot. Generic Proof Tools and Finite Group Theory. PhD thesis,
École Polytechnique, Palaiseau, France, 2011.

[7] F. Garillot, G. Gonthier, A. Mahboubi, and L. Rideau. Packaging
mathematical structures. In TPHOLs, volume 5674 of LNCS. Springer,
2009.

[8] G. Gonthier. Formal Proof – The Four-Color Theorem. Notices of the
American Mathematical Society, 55(11), Dec. 2008.

[9] G. Gonthier, A. Mahboubi, and E. Tassi. A Small Scale Reflection
Extension for the Coq system. Technical Report 6455, Microsoft
Research – Inria Joint Centre, 2009.

[10] G. Gonthier, A. Asperti, J. Avigad, Y. Bertot, C. Cohen, F. Garillot,
S. Le Roux, A. Mahboubi, R. O’Connor, S. Ould Biha, I. Pasca,
L. Rideau, A. Solovyev, E. Tassi, and L. Théry. A Machine-Checked
Proof of the Odd Order Theorem. In ITP, volume 7998 of LNCS.
Springer, 2013.

[11] G. Gonthier, B. Ziliani, A. Nanevski, and D. Dreyer. How to make
ad hoc proof automation less ad hoc. Journal of Functional Program-
ming, 23(4), 2013.

[12] M. Henz and A. Hobor. Teaching experience: Logic and formal
methods with Coq. In CPP, volume 7086 of LNCS. Springer, 2011.

[13] C.-K. Hur, G. Neis, D. Dreyer, and V. Vafeiadis. The power of
parameterization in coinductive proof. In POPL. ACM, 2013.

[14] S. S. Ishtiaq and P. W. O’Hearn. BI as an assertion language for
mutable data structures. In POPL. ACM, 2001.

[15] G. Klein, J. Andronick, K. Elphinstone, T. Murray, T. Sewell,
R. Kolanski, and G. Heiser. Comprehensive Formal Verification of
an OS Microkernel. ACM Transactions on Computer Systems, 32(1):
2:1–2:70, 2014.

[16] X. Leroy. Formal certification of a compiler back-end or: program-
ming a compiler with a proof assistant. In POPL. ACM, 2006.

[17] A. Mahboubi and E. Tassi. Canonical Structures for the Working Coq
User. In ITP, volume 7998 of LNCS. Springer, 2013.

[18] P. Morris, T. Altenkirch, and N. Ghani. A universe of strictly positive
families. International Journal of Foundations of Computer Science,
20(1), 2009.

[19] A. Nanevski, J. G. Morrisett, and L. Birkedal. Hoare type theory,
polymorphism and separation. Journal of Functional Programming,
18(5-6), 2008.

[20] A. Nanevski, V. Vafeiadis, and J. Berdine. Structuring the verification
of heap-manipulating programs. In POPL. ACM, 2010.

[21] A. Nanevski, R. Ley-Wild, I. Sergey, and G. A. Delbianco. Commu-
nicating state transition systems for fine-grained concurrent resources.
In ESOP, volume 8410 of LNCS. Springer, 2014.

[22] U. Norell. Towards a practical programming language based on de-
pendent type theory. PhD thesis, Chalmers University of Technology,
SE-412 96 Göteborg, Sweden, September 2007.

[23] C. Paulin-Mohring. Inductive Definitions in the System Coq—Rules
and Properties. In TLCA, volume 664 of LNCS. Springer-Verlag, 1993.

[24] S. L. Peyton Jones, D. Vytiniotis, S. Weirich, and G. Washburn. Sim-
ple unification-based type inference for GADTs. In ICFP. ACM,
2006.

[25] B. C. Pierce. Types and Programming Languages. The MIT Press,
2002.

[26] B. C. Pierce, C. Casinghino, M. Gaboardi, M. Greenberg, C. Hriţcu,
V. Sjöberg, and B. Yorgey. Software Foundations. Electronic textbook,
2014. Available at http://www.cis.upenn.edu/~bcpierce/sf.

[27] J. C. Reynolds. Separation logic: A logic for shared mutable data
structures. In LICS. IEEE Computer Society, 2002.

[28] A. Saı̈bi. Outils Génériques de Modélisation et de Démonstration pour
la Formalisation des Mathématiques en Théorie des Types: applica-
tion à la Théorie des Catégories. PhD thesis, Université Paris VI,
Paris, France, 1999.

[29] I. Sergey. Programs and Proofs: Mechanizing Mathematics with
Dependent Types. Lecture notes with exercises, 2014. Available at
http://ilyasergey.net/pnp.

[30] M. Sozeau. Subset Coercions in Coq. In TYPES, volume 4502 of
LNCS. Springer, 2006.

[31] A. Stampoulis and Z. Shao. VeriML: typed computation of logical
terms inside a language with effects. In ICFP. ACM, 2010.

[32] P. Wadler and S. Blott. How to Make ad-hoc Polymorphism Less ad-
hoc. In POPL. ACM Press, 1989.

[33] H. Xi, C. Chen, and G. Chen. Guarded recursive datatype constructors.
In POPL. ACM, 2003.

[34] B. Ziliani, D. Dreyer, N. R. Krishnaswami, A. Nanevski, and
V. Vafeiadis. Mtac: a monad for typed tactic programming in Coq.
In ICFP. ACM, 2013.

12 2014/10/11

http://coq.inria.fr/refman/
http://coq.inria.fr/refman/
http://www.cis.upenn.edu/~bcpierce/sf
http://ilyasergey.net/pnp

	Introduction
	Overview
	Why teach with Ssreflect?

	Structure of the course
	From functional programs to propositional logic
	Functional programming in Coq
	Searching and structuring libraries
	Introducing logical connectives
	Interactive proof construction: first encounter

	Equality and rewriting
	Boolean reflection and views
	Coercing bool into Prop
	Introducing the reflect datatype

	Proofs about inductive predicates and recursive functions
	Programming with abstract algebraic structures
	Defining abstract structures
	Canonical instances of abstract structures

	Case study: verifying imperative programs using separation logic in Hoare Type Theory
	Introducing Hoare triples using the types analogy
	Basics of separation logic
	Effectful computations as monads
	HTT essentials
	Verifying an imperative factorial implementation
	Proving specifications with and without automation

	Evaluation and experience
	Observations
	Feedback from the participants

	Related courses and future work
	Conclusion

