
State Transition System alternative	

to Linearizability

Concurrency Yak 
San Diego, 21 January 2014

biennial report
2008-09

madrid institute
for advanced studies

memoria software v3.qxd 13/8/10 10:48 Página 1

Ilya Sergey

joint work (in progress) with 	

Aleks Nanevski, Anindya Banerjee, 	

Ruy Ley-Wild and Germán Delbianco

• Golden standard for canonical specifications	

!

• A tool for granularity abstraction

Herlihy-Wing:TOPLAS90

Linearizability

push(x){ S = xs } { S = x :: xs }

pop(){ S = xs }

Suitable for sequential case

Canonical Specifications

{ res = Nothing ⋀ S = Nil	

 ⋁ ∃x, xs. res = Just(x) ⋀ S = x :: xs ⋀  
 S′ = xs }

Canonical Specifications

push(x){ S = xs } { S = x :: xs }

pop()

Bad for concurrent use: 	

not stable under interference

{ res = Nothing ⋀ S = Nil	

 ⋁ ∃x, xs. res = Just(x) ⋀ S = x :: xs ⋀  
 S′ = xs }

{ S = xs }

push(x)

pop()

Turon-al:ICFP13

Svendsen-al:ESOP13

{ P(x) }

∀ P: Elem → Prop.

{ true }

{ true }

Stable Concurrent	

Specifications

{ res = Nothing 	

 ⋁ ∃x. res = Just(x) ⋀ P(x) }

Not a canonical spec:	

the same one holds for  

queues, sets, bags

Making things worse

push(x)

pop()

{ P(x) } { true }

{ true } { res = Nothing 	

 ⋁ ∃x. res = Just(x) ⋀ P(x) }

{ P(x) } { res = ??? }contains(x)

∀ P: Elem → Prop.

Linearizability to the rescue
canonical spec = sequential spec

push(x){ S = xs } { S = x :: xs }

pop(){ S = xs } { res = Nothing ⋀ S = Nil	

 ⋁ ∃x, xs. res = Just(x) ⋀ S = x :: xs ⋀  
 S′ = xs }

contains(x){ S = xs } { res = (x ∈ xs) ⋀ S′ = xs }

* or atomic operations with the sequential spec above

*

Can we provide a convenient
concurrent specification for contains()!

without appealing to linearizability?

(probably, it will also be more straightforward to prove)

Reasoning with hindsight
O’Hearn-al:PODC10

contains(x) = true x was in the contents of the stack S  
at some moment before or during  
the execution of contains()

contains(x) = false x was not in the contents S  
at some moment before or during  
the execution of contains()

Hindsight is a property of a resource’s past history

Formalising the idea of
hindsight	

for a large class of
concurrent protocols.

A model for resources
with histories

• Resources represented by State-Transition Systems (STS)	

• Transitions define Rely/Guarantee of a resource	

• Auxiliaries are ghost parts of the resource’s state

DinsdaleYoung-al:ECOOP10, O’Hearn-al:PODC10, LeyWild-Nanevski:POPL13,
Turon-al:POPL13, Turon-al:ICFP13, Svendsen-al:ESOP13, Svendsen-Birkedal:ESOP14,
Nanevski-al:ESOP14, …

| {z } | {z }| {z }

Self OtherShared

• Self - (possibly ghost) resources owned by me	

• Other - (possibly ghost) resources owned by all others	

• Shared - resources owned by the protocol module	

• Self and Other are elements of a Partial Commutative
Monoid (PCM): (S, 0, ⊕).

Concurroids — Subjective STSs
Nanevski-al:ESOP14

Specifications with Concurroids

C =

{ p } c { q } @ C
| {z }

defines Rely/Guarantee and RI

A model for resources

Dinsdale-Young-al:ECOOP10, O’Hearn-al:PODC10, Turon-al:POPL13,
Turon-al:ICFP13, Svendsen-al:ESOP13, Svendsen-Birkedal:ESOP14,	

Nanevski-al:ESOP14, …

with histories
• Resources represented by State-Transition Systems (STS)	

• Transitions define Rely/Guarantee of a resource	

• Auxiliaries are ghost parts of the resource’s state

A model for resources
with histories

• Resources represented by State-Transition Systems (STS)	

• Transitions define Rely/Guarantee of a resource	

• Auxiliaries are ghost parts of the resource’s state	

• Histories are a particular case of ghosts

Capturing histories  
with timestamps

✻ ti

per-resource shared	

timestamp counter

…

tk →
tk+1 →

tk+2 →
tk+3 →

…
…

tk+n → |
{z

}

time increased	

at every change	

in “visible” state

tk+4 →

tk →

tk+1 →
tk+2 →

tk+3 →
tk+4 → …

…

tk+n →

We will record only interesting projections  
of the shared state

Modified by Self Modified by Other

tk+n

tk+1 →

tk+3 →
tk+4 →

tk+n →

tk →

tk+2 →

…
…

Hs Ho… ✻

Modified by Self Modified by Other

• Hs, Ho — self/other contributions to the protocol history	

• Timestamped histories form a PCM ⇒ can be split

write_x(v) { <x := (x.v, x.s++)> }!
!
write_y(v) { <y := (y.v, y.s++)> }!
!
letrec read_pair(): (Val, Val) = {!
 (v, s) <- <read_x()>;!
 (w, _) <- <read_y()>;!
 if (s == <read_x()>.s)!
 then (v, w);!
 else read_pair();!
}

Atomically read	

each component
If x wasn’t changed 	

until this moment, then 	

return a snapshot,  
else try again.

Reasoning about pair snapshots

Atomically update and increase the version

Qadeer-al:TR09,Liang-Feng:PLDI3

Pair snapshot concurroid
x ↦ (vx, sx)∗  
y ↦ (vy, sy)∗tiHs HoFps =

• Hs, Ho = { tk ↦ (vx, vy, sx), … }	

• H = Hs ⨃ Ho	

• Additional coherence constraint:  
(H(t) = (vx, vy, sx) ⋀ H′(t′) = (v′x, v′y, sx)) ⇒ vx = v′x	

• Transitions (R/G) are writes with versions incrementation

Pair snapshot specification

write_x(v){ Hs = ∅ } { ∃t, vy, sx. H′(t) = (-, vy, sx)  
 ⋀ H′s = [t+1 ↦ (v, vy, sx+1)] }@Fps

H′ = H′s ∪ H′o

write_y(v){ Hs = ∅ } { ∃t, vx, sx. H′(t) = (vx, -, sx)  
 ⋀ H′s = [t+1 ↦ (vx, v, sx)] }@Fps

read_pair(){ Hs = ∅ } { ∃t, vx, vy, sx. H′(t) = (vx, vy, sx) ⋀ H′s = ∅  
 ⋀ res = (vx, vy) }@Fps

The proof is trivial, by coherence requirement and Rely

push(x){ Hs = ∅ } { ∃t, xs. H′(t) = xs ⋀ H′s = [t+1 ↦ (x::xs)] }@Cstack

pop(){ Hs = ∅ } { if (res = Just(x))	

 then ∃t, xs. H′(t) = x::xs ⋀ H′s = [t+1 ↦ xs] 	

 else ∃t. H′s = ∅ ⋀ H′(t) = Nil }@Cstack

contains(x)

H′ = H′s ∪ H′o

{ H′s = Hs ⋀ 	

 if (res) then ∃t, xs. H′(t) = xs ⋀ x ∈ xs	

 else ∃t. H(t) = xs ⋀ x ∉ xs }@Cstack

{ Hs = ∅ }

Stacks specification

What about	

granularity abstraction?

(for the sake of Hoare-style reasoning simplification)

Granularity abstraction 
via linearizability

• If and ADT c1 is linearizable wrt to c2, we can replace c1 by c2

for the sake of simpler reasoning (Vafeiadis:PhD08, Liang-Feng:PLDI13)	

• Alternatively, if c1 is contextual refinement of c2, its clients can

reason as about c2 (Filipović-al:TCS10, Turon-al:ICFP13)	

• Both linearizability and CR are relations on program modules	

• Logics for them are inherently relational

Why don’t us relate	

state-transition systems instead?

(which is, presumably, easier than relating programs)

{ p } c { q } @ F

|{z}defines Rely/Guarantee

“fine-grained” 
concurroid

Abadi-Lamport:LICS88

Ф: F → C
Refinement function:

{ p } c { q } @ F

{ Ф(p) } refineФ (c) { Ф(q) } @ C

Ф: F → C
simple “coarse-grained” 

concurroid
Refinement function:

σfg

A state in implementation  
concurroid

Establishing Refinement

σfg σ´fg

σcg σ´cg

Ф Ф

……
z }| {

Transitions of implementation concurroid

z}|{

Transitions of specification concurroid

stuttering

Refinement for 	

pair snapshots

write_x(v){ Hs = ∅ } { ∃t, vy, sx. H′(t) = (-, vy, sx)  
 ⋀ H′s = [t+1 ↦ (v, vy, sx+1)] }@Fps

write_y(v){ Hs = ∅ } { ∃t, vx, sx. H′(t) = (vx, -, sx)  
 ⋀ H′s = [t+1 ↦ (vx, v, sx)] }@Fps

read_pair(){ Hs = ∅ } { ∃t, vx, vy, sx. H′(t) = (vx, vy, sx) ⋀ H′s = Hs  
 ⋀ res = (vx, vy) }@Fps

Pair spec we used to have
H′ = H′s ∪ H′o

write_x(v){ Hs = ∅ } { ∃t, vy, sx. H′(t) = (-, vy, sx)  
 ⋀ H′s = [t+1 ↦ (v, vy, sx+1)] }@Fps

write_y(v){ Hs = ∅ } { ∃t, vx, sx. H′(t) = (vx, -, sx)  
 ⋀ H′s = [t+1 ↦ (vx, v, sx)] }@Fps

read_pair(){ Hs = ∅ } { ∃t, vx, vy, sx. H′(t) = (vx, vy, sx) ⋀ H′s = Hs  
 ⋀ res = (vx, vy) }@Fps

Pair spec we used to have
H′ = H′s ∪ H′o

write_x(v){ Hs = ∅ } { ∃t, vy, sx. H′(t) = (-, vy, sx)  
 ⋀ H′s = [t+1 ↦ (v, vy, sx+1)] }@Fps

write_y(v){ Hs = ∅ } { ∃t, vx, sx. H′(t) = (vx, -, sx)  
 ⋀ H′s = [t+1 ↦ (vx, v, sx)] }@Fps

read_pair(){ Hs = ∅ } { ∃t, vx, vy, sx. H′(t) = (vx, vy, sx) ⋀ H′s = Hs  
 ⋀ res = (vx, vy) }@Fps

Pair spec we used to have
H′ = H′s ∪ H′o

Coarse-grained Pair concurroid

x ↦ vx∗ y ↦ vyHs HoCps =

• No timestamps, no value versions	

• Hs, Ho = { (vx, vy), … } — multi-sets	

• H = Hs ∪ Ho	

• Transitions (R/G) are just atomic writes	

• Ф: Fps → Cps erases versions and timestamps

write_x(v){ Hs = ∅ } { ∃vy. (-, vy) ∈ H′ 
 ⋀ H′s = {(v, vy)}] }@Cps

write_y(v){ Hs = ∅ } { ∃vx, sx. H′(t) = (vx, -)  
 ⋀ H′s = {(vx, v)} }@Cps

read_pair(){ Hs = ∅ } { ∃vx, vy. (vx, vy) ∈ H′ ⋀ H′s = Hs  
 ⋀ res = (vx, vy) }@Cps

H′ = H′s ∪ H′o

Pair spec we have now

Meeting some  
old friends

Г, r: I ⊢ { p } c { q }

Г ⊢ { p ∗ I } resource r in c { q ∗ I }

CSL Resource Rule
O’Hearn:TCS07

FCSL Generalized Resource Rule

⊢ { priv ↦s h ∗ p } c { priv ↦s h′ ∗ q } @ (P ⋊ U) ⋊ V

Nanevski-al:ESOP14

⊢ { Ф(g, h)∗(Ψ(g) → p) } hideΨ,g(c) { ∃g′.Ф(g, h)∗(Ψ(g) → q) } @ P ⋊ U

Scoped resource allocation is a particular case of refinement!

∗ ∗

where Ф is defined as Ψ-based refinement

Exploring the zoo	

of STS simulations

Lynch-Vaandrager:InfComp95

fine-grained implementation

Ф refinement

coarse-grained implementation

push(x)

pop()

{ P(x) }

∀ P: Elem → Prop.

{ true }

{ true }

Restricted Stacks

{ res = Nothing 	

 ⋁ ∃x. res = Just(x) ⋀ P(x) }

fine-grained implementation

Ф refinement

coarse-grained implementation restricted implementation

S

simulation

coarse-grained implementation restricted implementation

S

simulation

{ p } c { q } @ C

{ S(p) } simulateS (c) { S(q) } @ CR

Restricted stacks

accepts any elements

simulation

accepts P-admissible elements

push(x)

pop()

{ P(x) }

∀ P: Elem → Prop.

{ true }

{ true } { res = Nothing 	

 ⋁ ∃x. res = Just(x) ⋀ P(x) }

S(P)

• What is use for other simulation (backwards, FB, BF)?	

• So far we didn’t need prophecy variables? Can we avoid them at all?	

• Can we define the notion of “atomicity” in terms of STS and simulations?

To take away
• We suggest an alternative to linearizability as the only way  

 to provide canonical specifications and establish granularity abstraction;	

• Histories-as-resource give “canonical” concurrent specs;	

• Granularity abstraction could be established via  
STS simulation techniques (hopefully).

Some open questions:

Thanks!

