State Transition System alternative
to Linearizability

llya Sergey

joint work (in progress) with
Aleks Nanevski, Anindya Banerjee,
Ruy Ley-Wild and Germdn Delbianco

dea Concurrency Yak
San Diego, 21 January 2014

Linearizability

Herlihy-Wing: TOPLAS90

® Golden standard for canonical specifications

® A tool for granularity abstraction

Canonical Specifications

{S=xs} push(x) {S=x:uxs}

{S=xs} pop() { res=Nothing A S = Nil
V 3x, xs. res = Just(x) A S=x:xs A
$"=xs}

Suitable for sequential case

Canonical Specifications

{S=xs} push(x) {S=x:ixs}

{S=xs} pop() { res=Nothing A S=Nil
V 3x, xs.res = Just(x) A S=x:xs A
$"=xs}

Bad for concurrent use:
not stable under interference

Stable Concurrent
Specifications

Vv P: Elem — Prop.
{P(x)} push(x) {true}

{true} pop() { res = Nothing
V' 3x.res = Just(x) A P(x) }

Not a canonical spec:
the same one holds for

queues, sets bags Svendsen-al:ESOP1 3

Turon-al:ICFP13

Making things worse

Vv P: Elem — Prop.
{P(x)} push(x) {true}

{true } pop() { res = Nothing
V' 3x.res = Just(x) A P(x) }

{P(x)} contains(x) {res=127}

Linearizability to the rescue

canonical spec = sequential spec™
{S=xs} push(x) {S=x:uxs}
{S=xs} pop() { res = Nothing A S = Nil

V 3x, xs.res = Just(x) A S=x:xs A
S"=xs}

{S=xs}contains(x) {res=(xexs) A S =xs}

* or atomic operations with the sequential spec above

Can we provide a convenient
concurrent specification for contains ()
without appealing to linearizability?

(probably, it will also be more straightforward to prove)

Reasoning with hindsight

O’Hearn-al:PODCIO0

contains(x) = true x was in the contents of the stack S
at some moment before or during
the execution of contains ()

contains(x) = false x was notin the contents S
at some moment before or during
the execution of contains ()

Hindsight is a property of a resource’s past history

Formalising the idea of
hindsight
for a large class of
concurrent protocols.

A model for resources
with histories

® Resources represented by State-Transition Systems (STS)
® Transitions define Rely/Guarantee of a resource

® Auxiliaries are ghost parts of the resource’s state

DinsdaleYoung-al:ECOOPI10, O’Hearn-al:PODCI0, LeyWild-Nanevski:POPLI 3,
Turon-al:POPLI 3, Turon-al:ICFP13, Svendsen-al:ESOPI3, Svendsen-Birkedal:ESOP |4,
Nanevski-al:ESOP14, ...

Concurroids — Subjective STSs

Nanevski-al:ESOP | 4

C D

N—— —— ——— ——

Self Shared Other

® Self - (possibly ghost) resources owned by me

® (Other - (possibly ghost) resources owned by all others

® Shared - resources owned by the protocol module

® Self and Other are elements of a Partial Commutative
Monoid (PCM): (S, 0, @).

Specifications with Concurroids

(T D

(plefqt@C

defines Rely/Guarantee and R

A model for resources
with histories

® Resources represented by State-Transition Systems (STS)

® Transitions define Rely/Guarantee of a resource

® | Auxiliaries are ghost parts of the resource’s state

Dinsdale-Young-al:ECOOPI10, O’Hearn-al:PODCI0, Turon-al:POPLI3,
Turon-al:ICFP13, Svendsen-al:ESOPI3, Svendsen-Birkedal:ESOP 4,
Nanevski-al:ESOP14, ...

A model for resources
with histories

Resources represented by State-Transition Systems (STS)
Transitions define Rely/Guarantee of a resource
Auxiliaries are ghost parts of the resource’s state

Histories are a particular case of ghosts

Capturing histories
with timestamps

per-resource shared
timestamp counter

time increased
at every change
\ in “visible” state

D

Modified by Self Modified by Other

A ER e-amD

k+3
| ten = (_ D

We will record only interesting
of the shared state

Modified by Self Modified by Other

tk+n

® H H, — selflother contributions to the protocol history

® [imestamped histories form a PCM = can be split

Reasoning about pair snapshots

Qadeer-al: TRO9,Liang-Feng:PLDI3

Atomically update and increase the version

write x(v) { <x := (Xx.v, X.s++)> }

write y(v) { <y := (y.v, y.s++)> }

letrec read pair(): (Val, Val) = {

(v, s) <- <read_x()>;| Atomically read

) <- <read y/()>;]| each component

if (s == <read x()>.s)]If x wasn’t changed
then (v, w); until this moment, then

else read pair(); return a snapshot,
} else try again.

Pair snapshot concurroid

X = (Vx, Sx) *

Fps — y = (Vy Sy) *1

Hs, Ho = {tk'—> (Vx, Vy;, SX)’ }
H=H;u H,
Additional coherence constraint:

(H(t) = (Vx Vy, Sx) A H'(t)) = (V'x, V'y, 5x)) = vx = V'«

Transitions (R/G) are writes with versions incrementation

Pair snapshot specification

H =H's uH,

{Hs= @ }write x(v) {3t vy, sx. H (t) = (-, vy, sx)
AH's=[t+] o (v vy, st 1)] Y@Fos

{Hs= 2 }write y(v) {3t Ve Sx. H' (t) = (Vx, - Sx)
A H's = [t+] & (vx v, 5x)] }@Fps

{Hs=2} read_pair(){ 3t vx vy, sx[H'(t) = (vx, vy, s)| AlH's = T |
Alres = (Vx, vy)] }@Fps

The proof is trivial, by coherence requirement and Rely

Stacks specification
H =H's uH'
{ Hs= & }pUSh (X) { ¢, Xs. H,(t) =xs A H's = [t+| = (XIZXS)] }@Cstack

{Hs=2} pop () {if (res = Just(x))
then 3t,xs. H'(t) = x:xs A H's = [t+] — xs]
else 3t. H's=a A H'(t) = Nil }@Cstack

{Hi=2} contains (x) {Hs=HsA
if (res) then 3t,xs. H'(t) = xs /\(x S xs)
else 3t. H(t) = xs /\(x & xs] 1@ Cstack

VVhat about
granularity abstraction?

(for the sake of Hoare-style reasoning simplification)

Granularity abstraction
via linearizability

If and ADT c is linearizable wrt to c;, we can replace ¢ by ¢
for the sake of simpler reasoning (Vafeiadis:PhD08, Liang-Feng:PLDI | 3)
Alternatively, if c| is contextual refinement of c, its clients can
reason as about ¢ (Filipovi¢-al:TCS10, Turon-al:ICFP | 3)

Both linearizability and CR are relations on program modules

Logics for them are inherently relational

Why don'’t us relate
state-transition systems instead!?

(which is, presumably, easier than relating programs)

defines Rely/Guarantee
1Prciq @ F\

“fine-grained”
concurroid

Refinement function:

O:F = C

Abadi-Lamport:LICS88

{ptc{q}l@F
{ D(p) } refines (c) { P(q) } @ C

/

Refinement function: simple “coarse-grained”

O:F = C

A state in implementation
concurroid

O-fg

Establishing Refinement

Transitions of implementation concurroid

O-fg # oo * oo #O-,fg

l [/ /

stuttering o

O'Cg — O"Cg
N ————— —

Transitions of specification concurroid

Refinement for
pair snapshots

Pair spec we used to have

H =H's uH’

{Hs= @ }write x(v) {3t vy, sx. H (t) = (-, vy, sx)
AH's=[t+] o (v vy, st 1)] Y@Fos

{Hs= 2 }write y(v) {3t Ve Sx. H' (t) = (Vx, - Sx)
A H's = [t+] & (vx v, 5x)] }@Fps

{Hs= 2} read pair () {3t vk Vy, Sx. H (t) = (Vx, Vy, 5x) A H's = H,
A res = (Vx, Vy) J@Fps

Pair spec we used to have

H =H's uH’

{Hs= 2 }write x(v) {3t vy, s H'(t) = (-, vy,

AH's=[ttl — (v, Vy] }@Fps

{Hs= 2 }write y(v) {3t Vs sx. H' (t) = (vx, -,
/\ H,S - [t+| = (VX9 V,] }@FPS

{Hs= 2} read_pair(){ 3t vx vy, sx. H'(t) = (vx Vy[sx) A H's = Hs
A res = (Vx, Vy) J@Fps

Pair spec we used to have

H =H's uH’

{Hs= 2 }write x(v) {3t vy, sx H= (-, Vy, Sx)
AH's =[] (v vy st)] J@Fps

{Hs= 2 }write y(v) {3t vx sx H@ = (Vx, -, Sx)
AHs=[t+l|~ (Vx, \L Sx)] }@Fps

{Hs= 2 } read pair(){ 3t vx, Vy, Sx. H = (Vx, Vy, Sx) A H's = H,
A res = (Vx, Vy) J@Fps

Coarse-grained Pair concurroid

® No timestamps, no value versions

® Hy, Ho={ (vx Vy), ... } — multi-sets

® H=H;u H,

® Transitions (R/G) are just atomic writes

® O:F,s = C,serases versions and timestamps

Pair spec we have now

H =H's uH’

{Hs= 2 }write x(v) {3vy.(-Vvy) e H
A H's ={(v, vy}] }@Cps

{Hs= 2 }write y(v) { Ive sx. H' () = (v, -)

A H's = {(vx v)} }@Cos

{Hs= 2} read pair(){3ve Vy. (VxVy) € H A H's=H,
A res = (Vx, Vy) 1@ Cops

Meeting some
old friends

CSL Resource Rule

O’Hearn: TCS07

Ne:D={p}c{q}
'+ {p(« I} resourcerin c { q(x I)}

FCSL Generalized Resource Rule

Nanevski-al:ESOP | 4

= {prive>shsplc{privsh" +q} @ (P X U)
- {*(\V(g) —* p) } hidey(c) { Elg'* Y(e) *q)}@P XU

where @ is defined as V-based refinement

Scoped resource allocation is a particular case of refinement!

Exploring the zoo
of STS simulations

Lynch-Vaandrager:InfComp95

fine-grained implementation

‘i /C

@D 0§ refinement

coarse-grained implementation

Restricted Stacks

vV P: Elem — Prop.
{P(x)} push(x) {true}

{true} pop() { res = Nothing
V. 3x.res = Just(x) A P(x) }

fine-grained implementation

‘i /Q

@D 0§ refinement

S
e

simulation

<
>

coarse-grained implementation restricted implementation

{pic{q;@C
{ S(p) } simulates (c) { S(q) } @ Cr

S

< <
> . . I >
simulation

coarse-grained implementation restricted implementation

Restricted stacks

Vv P: Elem — Prop.
{P(x)} push(x) {true}

{true} pop() { res= Nothing
vV 3x.res = Just(x) A P(x) }

S(P)
simulation

accepts any elements accepts P-admissible elements

To take away

® Ve suggest an alternative to linearizability as the only way
to provide canonical specifications and establish granularity abstraction;
® Histories-as-resource give “canonical’” concurrent specs;

® Granularity abstraction could be established via

STS simulation techniques (hopefully).

Some open questions:

® What is use for other simulation (backwards, FB, BF)?
® So far we didn’t need prophecy variables! Can we avoid them at all?

® Can we define the notion of “atomicity” in terms of STS and simulations?

Thanks!

