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class List { 
  Link head; 
  void add(Data d) {
    head = new Link(head, d);
  } 
  Iterator makeIterator() { 
    return new Iterator(head);
  }
}
class Link { 
  Link next; 
  Data data; 
  Link(Link next, Data data) { 
    this.next = next; this.data = data;
  }
}
class Iterator { 
  Link current; 
  Iterator(Link first) { 
    current = first; 
  } 
  void next() { current = current.next; } 
  Data elem() { return current.data; } 
  boolean done() { 
    return (current == null); 
  }
}
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class List<owner, data> { 
  Link head<this, data>; 
  void add(Data<data> d) {
    head = new Link<this, data>(head, d);
  } 
  Iterator<this, data> makeIterator() { 
    return new Iterator<this, data>(head);
  }
}
class Link<owner, data> { 
  Link<owner, data> next; 
  Data<data> data; 
  Link(Link<owner, data> next, Data<data> data) { 
    this.next = next; this.data = data;
  }
}
class Iterator<owner, data> { 
  Link<owner, data> current; 
  Iterator(Link<owner, data> first) { 
    current = first; 
  } 
  void next() { current = current.next; } 
  Data<data> elem() { return current.data; } 
  boolean done() { 
    return (current == null); 
  }
}
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• data-race freedom [Boyapati-Rinard:OOPSLA01]

• disjointness of effects  [Clarke-Drossopoulou:OOPSLA02]

• various confinement properties  [Vitek-Bokowski:OOPSLA99]

• effective memory management [Boyapati-et-al:PLDI03]

• modular reasoning about aliasing [Müller:VSTTE05]

Ownership Types
Good things about



Verbose 
and 

Restrictive

Ownership Types
Bad things about
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  }
}
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  Link<owner, data> next; 
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  Link(Link<owner, data> next, Data<data> data) { 
    this.next = next; this.data = data;
  }
}
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  Link<owner, data> current; 
  Iterator(Link<owner, data> first) { 
    current = first; 
  } 
  void next() { current = current.next; } 
  Data<data> elem() { return current.data; } 
  boolean done() { 
    return (current == null); 
  }
}
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  }
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The intention
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Can we implement 
the same intention with a 

fewer amount of annotations?



A few analogies

• properties of data ~ types

• OAD invariant ~ more precise types

Untyped 
program

Typed 
program

Even more
typed 

program



Type Inference

• SmallTalk  [Palsberg-Schwartzbach:OOPSLA91]

• Ruby  [Fur-An-Foster-Hicks:SAC09,  An-Chaudhuri-Foster-Hicks:POPL11]

• JavaScript [Jensen-Møller-Thiemann:SAS10, Guha-al:ESOP11]

From untyped to typed - I



Ownership (Type) Inference

• Profiling-based approaches 

• Wren:MS03, Dietl-Müller:IWACO’07...

• Static CFA-based approaches  

• Ownership Types: Moelius-Souter:MASPLAS04, Huang-
Milanova:IWACO11, Milanova-Vitek:TOOLS10, Milanova-Liu:TR10, Dietl-
Ernst-Muller:ECOOP11 ...

• Ownership properties: Geilman-Poetzsch-Heffer:IWACO11, Ma-
Foster:OOPSLA07, Greenfieldboyce:Foster:OOPSLA07, Aldrich-
Kostadinov-Chambers:OOPSLA02 ...



Why not 
ownership inference?

• Correctness of inference with respect to 
the type system is hard to prove

• Inferred results might be imprecise and 
difficult to analyze



From untyped to typed - II
(Partially) relying on dynamic checks

• Gradual Typing  [Siek-Taha:ECOOP07, Herman-Tomb-Flanagan:TFP07]

• Hybrid Types  [Flanagan:POPL06]

• Contracts [Findler-Felleisen:ICFP02, Gray-Findler-Flatt:OOPSLA05]

• Like types [Wrigstad-ZappaNardelli-Lebresne-Östlund-Vitek:POPL10]

* Detailed comparison: Greenberg-Pierce-Weirich:POPL10

• Dynamic ownership [Gordon-Noble:DLS07]

• No relation to the type system( )

}*



• Programmers may omit type annotations and 
run the program immediately

• Run-time checks are inserted to ensure type safety

• Programmers may add type annotations to 
increase static checking

• When all sites are annotated, all type errors are caught at 
compile-time

Gradual Types



A syntactic type parametrized with owners:

C<owner, outer>

Gradual Ownership Types

Some owners might be unknown:

C<?, outer>

Or even all of them:

CC ≡ C<?, ?>



Type equality: types T1 and  T2 are equal: 

C<owner, outer> = C<owner, outer>

Type equality: types T1 and  T2 are consistent 

C<owner, ?> ~ C<?, outer>

I.e., T1 and T2  might correspond to the same 

runtime values



Subtyping:  T1 is a subtype of  T2 

C<owner, outer> ≤ D<owner>

class D<MyOwner> {...}

class C<Owner1, Owner2> extends D<Owner1> {...}

E;B � p ⇤ p⇧

(CON-REFL)

E;B � p
E;B � p ⇤ p

(CON-RIGHT)

E;B � p
E;B � ? ⇤ p

(CON-LEFT)

E;B � p
E;B � p ⇤?

(CON-DEPENDENT1)

E;B � p E;B � xc.i

E;B � p ⇤ xc.i

(CON-DEPENDENT2)

E;B � p E;B � xc.i

E;B � xc.i ⇤ p

E;B � t � t ⇧

(SUB-REFL)

E;B � t
E;B � t � t

(SUB-TRANS)

E;B � t � t ⇧ E;B � t ⇧ � t ⇧⇧

E;B � t � t ⇧⇧

(SUB-CLASS)

E;B � c ⇥⌦
class c �i⌃1..n⌦ extends c⇧ ri⌃1..n⇧ ⌦{. . .}

E;B � c ⇥⌦ � c⇧ ⇥(ri)i⌃1..n⇧ ⌦

E;B � t ⇤ t ⇧ E;B � t � t ⇧ E;B � t

(CON-TYPE)

E;B � c pi⌃1..n⌦ E;B � c qi⌃1..n⌦
pi ⇤ qi⌥i ⌃ 1..n

E;B � c pi⌃1..n⌦ ⇤ c qi⌃1..n⌦

(GRAD-SUB)

E;B � c ⇥⌦ � c⇧ ⇥⇧⌦
E;B � c⇧ ⇥⇧⌦ ⇤ c⇧ ⇥⇧⇧⌦
E;B � c ⇥⌦ � c⇧ ⇥⇧⇧⌦

(G-TYPE)

arity(c) = n
E;B � p1 ⇥ pi ⌥i ⌃ 1..n

E;B � c pi⌃1..n⌦

Figure 5: Type consistency and subtyping

Definition 3.1 (Well-formed typing environment). A typing environment E is well-formed if ⌅ is a partial
order on {r | r ⌃ dom(E)}.

3.3 Type consistency and subtyping
Types can be constructed from any class using any owner in scope (including an unknown owner “?”),
as long as the correct number of arguments are supplied and the owner (the first parameter), if present, is
provably consistently-inside all other parameters. The corresponding relation E;B � t is defined in Figure 5.
This is a relaxed requirement to ensure that the OAD property is maintained.

The type consistency relation answers the question: which pairs of static types could possibly cor-
respond to comparable run-time types? It allows the type checker to compare types with dependent and
unknown owners. Since two types sharing the same class name can differ in the owner substitutions, we de-
fine the type consistency relation ⇤ on types parametrized with partially known and dependent owners via
the rules in Figure 5 (the relation E;B � t ⇤ t ⇧). The definition of the subtyping is standard for parametrized
object-oriented type systems (Figure 5, E;B � t � t ⇧).

In order to eliminate non-determinacy from the type-checking algorithms we need to construct a rela-
tion that combines two kinds of subsumption of types: type consistency and subtyping. This relation is
used then in type rules whenever an implicit upcast is necessary Pierce (2002). Siek and Taha suggest a
way to design such consistent-subtyping relation for the calculus Ob<: of Abadi and Cardelli Abadi and
Cardelli (1996). However, the proposed approach handles structural rather than nominal subtyping. The
latter one is typical for Java-like languages and is the norm in mainstream object-oriented programming
languages.

If two types t = c ⇥⌦ and t ⇧ = c⇧ ⇥⇧⇧⌦ are related via the consistent-subtyping relation, i.e., t � t ⇧, they
can differ along both directions: the type consistency relation ⇤ and the subtyping relation �. This is

8
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class D<MyOwner> {...}

class C<Owner1, Owner2> extends D<Owner1> {...}

Gradual Subtyping

C<?, outer>  D<owner>.

D<owner>

C<?, outer>

D<?>

.

⇠



Static semantics
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Example I

List list;  // = List<?,?>
list = new List<p, world>();
list = new List<this, world>();
List<p, world> newList = list;
    

Dangerous assignment!



Example I

List list;  // = List<?,?>
list = new List<p, world>();
list = new List<this, world>();
List<p, world> newList = 
              (List<p, world>)list;    

Dynamic type cast inserted



Example II
class D<owner> {
  D myD; // = D<?>
}
...
D<q> otherD = ...;
D<p> d = new D<p>();
d.myD = otherD;
          

Possible OAD violation

p

otherD: D<q>

 d: D<p>

q

myD



Example II
class D<owner> {
  D myD; // = D<?>
}
...
D<q> otherD = ...;
D<p> d = new D<p>();
d.myD = 
      bcheck(d, otherD);        

p

otherD: D<q>

 d: D<p>

q

myD

Boundary check inserted
d   owner(otherD)�⇤



Type-directed compilation
Dynamic casts and boundary checks are inserted 

basing on type information.

E;B � b : s

(T-NEW)

E;B � c�ri�1..n✏
E;B � new c�ri�1..n✏ : c�ri�1..n✏

(T-LKP)

E;B � z : c�⇥✏
Fc( f ) = t

E;B � z. f : ⇥z(t)

(T-LET)

E;B � b : t
E,x : fill(x, t);B � e : s

E;B � let x = b in e : s

(T-UPD)

E;B � z : c�⇥✏ Fc( f ) = t
E;B � y : s

E;B � s � ⇥z(t)
E;B � z. f = y : ⇥z(t)

(T-CALL)

E;B � y : s M T c(m) = (y⌥, t ⌃ t ⌥)
E;B � z : c�⇥✏ E;B � s � ⇥z(t)

⇥⌥ ⇥ ⇥�{y⌥  ⌃ y}
E;B � z.m(y) : ⇥⌥z(t ⌥)

(VAL-w)

E;B � � w : s � E
E;B � w : s

(VAL-NULL)

E;B � t
E;B � null : t

E � t ⌥ m(t y) {e} � P; e

(METHOD)

E,y : fill(y, t) � e : s E � s � t ⌥

E � t ⌥ m(t y) {e}

(PROGRAM)

� class j ⌦class j � P
E � e : t
E � P; e

E � c

(CLASS-OBJECT)

� class Object��1✏ { }

(CLASS)

E ⇥ �1 ⇧ world,(�1 ⇧ �i)i � 2..n,this : c��i�1..n✏
E � c⌥�⇥✏ owner(c��i�1..n✏) = owner(c⌥�⇥✏)

{ fi�1..m}↵dom(Fc⌥) = /0 E � t j�1..m E � methk�1..p

⌦ m � names(methk�1..p)
↵ dom(M T c⌥)

�
⇤

⇥

M T c(m)⇥ t ⌃ t ⌥
M T c⌥(m)⇥ t ⌥⌥ ⌃ t ⌥⌥⌥
t ⇥ ⇥(t ⌥⌥) t ⌥ ⇥ ⇥(t ⌥⌥⌥)

� class c��i�1..n✏ extends c⌥�⇥✏ {t j f j�1..m; methk�1..p}

Figure 6: Typing rules of JO?. Grayed parts mark explicit consistent-subtyping checks that may lead to the
insertion of dynamic checks.

illustrated by the diagram on the left:

C�owner✏

C�?,outer✏

�
⇤⇤⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥

D�?✏ ⌅ �� D�owner,outer✏

C�?,outer✏
�

⇥⇥������������
⇤

⌅⌅

The “upper-left mediator” (the right part of the diagram) is a connecting link between two types. This
intuition is formalized via the rule (GRAD-SUB) in Figure 5.

The diagram on the right shows one possible way to define the � relation through the intermediate type
c⌥�⇥⌥⌥✏ such that the whole diagram commutes. According the definition of the type-consistent relation it
is easy to see that the class type of this mediator should be equal to c⌥. In fact, if c⌥ is a superclass of
class c, the necessary substitution can be computed in a straightforward way by just ascending the chain
of superclasses. The correspondence between “bottom-right” and “upper left” mediators is stated by the
following lemma:
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Type-directed compilation
Two-staged program translation

• Insert dynamic casts to coerce types 

• Type consistency ⇒  Type equality

• Insert boundary checks when the invariant 
can be violated

• Check    for unknown owners�



Minimal amount of annotations
class List<owner, data> { 
  Link head<this, data>; 
  void add(Data<data> d) {
    head = new Link<this, data>(head, d);
  } 
  Iterator<this, data> makeIterator() { 
    return new Iterator<this, data>(head);
  }
}
class Link<owner, data> { 
  Link<owner, data> next; 
  Data<data> data; 
  Link(Link<owner, data> next, Data<data> data) { 
    this.next = next; this.data = data;
  }
}
class Iterator<owner, data> { 
  Link<owner, data> current; 
  Iterator(Link<owner, data> first) { 
    current = first; 
  } 
  void next() { current = current.next; } 
  Data<data> elem() { return current.data; } 
  boolean done() { 
    return (current == null); 
  }
}

5 annotations are needed 
to indicate the intention:

10 annotations are
optional

3 annotations to indicate
the parametrization

2 annotations 
for instance owners



Gradual Typing and Compilation
(informally)

Theorem 1:
No unknown owners ⇒ no dynamic casts

Corollary :
No unknown owners ⇒ static invariant guaranty   

(And also, no runtime overhead and failed casts)

Theorem 2:
A (gradually) well-typed program is compiled 
into a (statically) well-typed program.

* Formal treatment + proofs at http://people.cs.kuleuven.be/~ilya.sergey/gradual

*

http://people.cs.kuleuven.be/~ilya.sergey/gradual
http://people.cs.kuleuven.be/~ilya.sergey/gradual


Theorem 3:
A (statically) well-typed program does not violate 
the OAD invariant but might fail on a dynamic check.

Corollary:
A gradually well-typed program, being compiled, 
does not violate the OAD invariant.

“Well-typed programs don’t go wrong”
Milner, 1978

Type safety result
(informally)



• Static safety is traded for dynamic checks

• Memory overhead

• References to owners are stored in objects

• Runtime overhead 

• dynamic boundary checks and type casts

Pitfalls of the approach



Implementation

• Implemented in JastAddJ [Ekman-Hedin:OOPSLA07]

• Extended JastAddJ compiler for Java 1.4

• 2,600 LOC (not including tests and comments)

• Check insertion ⇒ compilation warning

• Source-to-source translation

* Available from http://github.com/ilyasergey/Gradual-Ownership

*

https://github.com/ilyasergey/Gradual-Ownership
https://github.com/ilyasergey/Gradual-Ownership


Experience

• Java Collection Framework (JDK 1.4.2)

• 46 source files, ~8,200 LOC

• Securing inner Entries of collections

• Questions addressed:

• How many annotations are needed minimally?

• What is the execution cost?

• How many annotations for full static checking?



Experience
• Minimal amount of annotations

• LinkedList - 17

• LinkedMap - 15

• Performance overhead

•  ~1.5-2 times (for extensive updates)

• Full migration

• LinkedList - yes, 34 annotations

• LinkedMap - no, because of static

• (best - 28 annotations)



• An alternative to ownership inference

• Combines static and dynamic ownership 
checks, but allows full static safety

• Type-directed compilation

• Minimal annotations are unavoidable

• A tradeoff between verbosity and safety

Thanks

Summary
Gradual Ownership Types


