
Gradual Ownership Types

Ilya Sergey Dave Clarke

ESOP 2012

class List {
 Link head;
 void add(Data d) {
 head = new Link(head, d);
 }
 Iterator makeIterator() {
 return new Iterator(head);
 }
}
class Link {
 Link next;
 Data data;
 Link(Link next, Data data) {
 this.next = next; this.data = data;
 }
}
class Iterator {
 Link current;
 Iterator(Link first) {
 current = first;
 }
 void next() { current = current.next; }
 Data elem() { return current.data; }
 boolean done() {
 return (current == null);
 }
}

owner
Data Data

List

Link Link

Iterator

Reference

Ownership Types
(a gradual introduction)

owner
Data Data

List

Link Link

Iterator

Reference
Encapsulation Boundary

class List {
 Link head;
 void add(Data d) {
 head = new Link(head, d);
 }
 Iterator makeIterator() {
 return new Iterator(head);
 }
}
class Link {
 Link next;
 Data data;
 Link(Link next, Data data) {
 this.next = next; this.data = data;
 }
}
class Iterator {
 Link current;
 Iterator(Link first) {
 current = first;
 }
 void next() { current = current.next; }
 Data elem() { return current.data; }
 boolean done() {
 return (current == null);
 }
}

Ownership Types

owner
Data Data

List

Link Link

Iterator

Reference
Encapsulation Boundary
Illegal Reference

Ownership Types

class List {
 Link head;
 void add(Data d) {
 head = new Link(head, d);
 }
 Iterator makeIterator() {
 return new Iterator(head);
 }
}
class Link {
 Link next;
 Data data;
 Link(Link next, Data data) {
 this.next = next; this.data = data;
 }
}
class Iterator {
 Link current;
 Iterator(Link first) {
 current = first;
 }
 void next() { current = current.next; }
 Data elem() { return current.data; }
 boolean done() {
 return (current == null);
 }
}

Ownership Types

owner
Data Data

List

Link Link

Iterator

Reference
Encapsulation Boundary
Illegal Reference

data

World

Owner

class List {
 Link head;
 void add(Data d) {
 head = new Link(head, d);
 }
 Iterator makeIterator() {
 return new Iterator(head);
 }
}
class Link {
 Link next;
 Data data;
 Link(Link next, Data data) {
 this.next = next; this.data = data;
 }
}
class Iterator {
 Link current;
 Iterator(Link first) {
 current = first;
 }
 void next() { current = current.next; }
 Data elem() { return current.data; }
 boolean done() {
 return (current == null);
 }
}

Ownership Types

owner
Data Data

List

Link Link

Iterator

data

World

Owners-as-Dominators
(OAD)

class List {
 Link head;
 void add(Data d) {
 head = new Link(head, d);
 }
 Iterator makeIterator() {
 return new Iterator(head);
 }
}
class Link {
 Link next;
 Data data;
 Link(Link next, Data data) {
 this.next = next; this.data = data;
 }
}
class Iterator {
 Link current;
 Iterator(Link first) {
 current = first;
 }
 void next() { current = current.next; }
 Data elem() { return current.data; }
 boolean done() {
 return (current == null);
 }
}

class List<owner, data> {
 Link head<this, data>;
 void add(Data<data> d) {
 head = new Link<this, data>(head, d);
 }
 Iterator<this, data> makeIterator() {
 return new Iterator<this, data>(head);
 }
}
class Link<owner, data> {
 Link<owner, data> next;
 Data<data> data;
 Link(Link<owner, data> next, Data<data> data) {
 this.next = next; this.data = data;
 }
}
class Iterator<owner, data> {
 Link<owner, data> current;
 Iterator(Link<owner, data> first) {
 current = first;
 }
 void next() { current = current.next; }
 Data<data> elem() { return current.data; }
 boolean done() {
 return (current == null);
 }
}

Ownership Types

owner
Data Data

List

Link Link

Iterator

data

World

Owners-as-Dominators
(OAD)

• data-race freedom [Boyapati-Rinard:OOPSLA01]

• disjointness of effects [Clarke-Drossopoulou:OOPSLA02]

• various confinement properties [Vitek-Bokowski:OOPSLA99]

• effective memory management [Boyapati-et-al:PLDI03]

• modular reasoning about aliasing [Müller:VSTTE05]

Ownership Types
Good things about

Verbose
and

Restrictive

Ownership Types
Bad things about

class List<owner, data> {
 Link head<this, data>;
 void add(Data<data> d) {
 head = new Link<this, data>(head, d);
 }
 Iterator<this, data> makeIterator() {
 return new Iterator<this, data>(head);
 }
}
class Link<owner, data> {
 Link<owner, data> next;
 Data<data> data;
 Link(Link<owner, data> next, Data<data> data) {
 this.next = next; this.data = data;
 }
}
class Iterator<owner, data> {
 Link<owner, data> current;
 Iterator(Link<owner, data> first) {
 current = first;
 }
 void next() { current = current.next; }
 Data<data> elem() { return current.data; }
 boolean done() {
 return (current == null);
 }
}

class List {
 Link head;
 void add(Data d) {
 head = new Link(head, d);
 }
 Iterator makeIterator() {
 return new Iterator(head);
 }
}
class Link {
 Link next;
 Data data;
 Link(Link next, Data data) {
 this.next = next; this.data = data;
 }
}
class Iterator {
 Link current;
 Iterator(Link first) {
 current = first;
 }
 void next() { current = current.next; }
 Data elem() { return current.data; }
 boolean done() {
 return (current == null);
 }
}

Ownership Types
Bad things about

15 annotations

The intention
class List<owner, data> {
 Link head<this, data>;
 void add(Data<data> d) {
 head = new Link<this, data>(head, d);
 }
 Iterator<this, data> makeIterator() {
 return new Iterator<this, data>(head);
 }
}
class Link<owner, data> {
 Link<owner, data> next;
 Data<data> data;
 Link(Link<owner, data> next, Data<data> data) {
 this.next = next; this.data = data;
 }
}
class Iterator<owner, data> {
 Link<owner, data> current;
 Iterator(Link<owner, data> first) {
 current = first;
 }
 void next() { current = current.next; }
 Data<data> elem() { return current.data; }
 boolean done() {
 return (current == null);
 }
}

owner
Data Data

List

Link Link

Iterator

Reference
Encapsulation Boundary
Illegal Reference

data

World

Owner

The intention
class List<owner, data> {
 Link head<this, data>;
 void add(Data<data> d) {
 head = new Link<this, data>(head, d);
 }
 Iterator<this, data> makeIterator() {
 return new Iterator<this, data>(head);
 }
}
class Link<owner, data> {
 Link<owner, data> next;
 Data<data> data;
 Link(Link<owner, data> next, Data<data> data) {
 this.next = next; this.data = data;
 }
}
class Iterator<owner, data> {
 Link<owner, data> current;
 Iterator(Link<owner, data> first) {
 current = first;
 }
 void next() { current = current.next; }
 Data<data> elem() { return current.data; }
 boolean done() {
 return (current == null);
 }
}

owner
Data Data

List

Link Link

Iterator

Reference
Encapsulation Boundary
Illegal Reference

data

World

Owner

Can we implement
the same intention with a

fewer amount of annotations?

A few analogies

• properties of data ~ types

• OAD invariant ~ more precise types

Untyped
program

Typed
program

Even more
typed

program

Type Inference

• SmallTalk [Palsberg-Schwartzbach:OOPSLA91]

• Ruby [Fur-An-Foster-Hicks:SAC09, An-Chaudhuri-Foster-Hicks:POPL11]

• JavaScript [Jensen-Møller-Thiemann:SAS10, Guha-al:ESOP11]

From untyped to typed - I

Ownership (Type) Inference

• Profiling-based approaches

• Wren:MS03, Dietl-Müller:IWACO’07...

• Static CFA-based approaches

• Ownership Types: Moelius-Souter:MASPLAS04, Huang-
Milanova:IWACO11, Milanova-Vitek:TOOLS10, Milanova-Liu:TR10, Dietl-
Ernst-Muller:ECOOP11 ...

• Ownership properties: Geilman-Poetzsch-Heffer:IWACO11, Ma-
Foster:OOPSLA07, Greenfieldboyce:Foster:OOPSLA07, Aldrich-
Kostadinov-Chambers:OOPSLA02 ...

Why not
ownership inference?

• Correctness of inference with respect to
the type system is hard to prove

• Inferred results might be imprecise and
difficult to analyze

From untyped to typed - II
(Partially) relying on dynamic checks

• Gradual Typing [Siek-Taha:ECOOP07, Herman-Tomb-Flanagan:TFP07]

• Hybrid Types [Flanagan:POPL06]

• Contracts [Findler-Felleisen:ICFP02, Gray-Findler-Flatt:OOPSLA05]

• Like types [Wrigstad-ZappaNardelli-Lebresne-Östlund-Vitek:POPL10]

* Detailed comparison: Greenberg-Pierce-Weirich:POPL10

• Dynamic ownership [Gordon-Noble:DLS07]

• No relation to the type system()

}*

• Programmers may omit type annotations and
run the program immediately

• Run-time checks are inserted to ensure type safety

• Programmers may add type annotations to
increase static checking

• When all sites are annotated, all type errors are caught at
compile-time

Gradual Types

A syntactic type parametrized with owners:

C<owner, outer>

Gradual Ownership Types

Some owners might be unknown:

C<?, outer>

Or even all of them:

CC ≡ C<?, ?>

Type equality: types T1 and T2 are equal:

C<owner, outer> = C<owner, outer>

Type equality: types T1 and T2 are consistent

C<owner, ?> ~ C<?, outer>

I.e., T1 and T2 might correspond to the same

runtime values

Subtyping: T1 is a subtype of T2

C<owner, outer> ≤ D<owner>

class D<MyOwner> {...}

class C<Owner1, Owner2> extends D<Owner1> {...}

E;B � p ⇤ p⇧

(CON-REFL)

E;B � p
E;B � p ⇤ p

(CON-RIGHT)

E;B � p
E;B � ? ⇤ p

(CON-LEFT)

E;B � p
E;B � p ⇤?

(CON-DEPENDENT1)

E;B � p E;B � xc.i

E;B � p ⇤ xc.i

(CON-DEPENDENT2)

E;B � p E;B � xc.i

E;B � xc.i ⇤ p

E;B � t � t ⇧

(SUB-REFL)

E;B � t
E;B � t � t

(SUB-TRANS)

E;B � t � t ⇧ E;B � t ⇧ � t ⇧⇧

E;B � t � t ⇧⇧

(SUB-CLASS)

E;B � c ⇥⌦
class c �i⌃1..n⌦ extends c⇧ ri⌃1..n⇧ ⌦{. . .}

E;B � c ⇥⌦ � c⇧ ⇥(ri)i⌃1..n⇧ ⌦

E;B � t ⇤ t ⇧ E;B � t � t ⇧ E;B � t

(CON-TYPE)

E;B � c pi⌃1..n⌦ E;B � c qi⌃1..n⌦
pi ⇤ qi⌥i ⌃ 1..n

E;B � c pi⌃1..n⌦ ⇤ c qi⌃1..n⌦

(GRAD-SUB)

E;B � c ⇥⌦ � c⇧ ⇥⇧⌦
E;B � c⇧ ⇥⇧⌦ ⇤ c⇧ ⇥⇧⇧⌦
E;B � c ⇥⌦ � c⇧ ⇥⇧⇧⌦

(G-TYPE)

arity(c) = n
E;B � p1 ⇥ pi ⌥i ⌃ 1..n

E;B � c pi⌃1..n⌦

Figure 5: Type consistency and subtyping

Definition 3.1 (Well-formed typing environment). A typing environment E is well-formed if ⌅ is a partial
order on {r | r ⌃ dom(E)}.

3.3 Type consistency and subtyping
Types can be constructed from any class using any owner in scope (including an unknown owner “?”),
as long as the correct number of arguments are supplied and the owner (the first parameter), if present, is
provably consistently-inside all other parameters. The corresponding relation E;B � t is defined in Figure 5.
This is a relaxed requirement to ensure that the OAD property is maintained.

The type consistency relation answers the question: which pairs of static types could possibly cor-
respond to comparable run-time types? It allows the type checker to compare types with dependent and
unknown owners. Since two types sharing the same class name can differ in the owner substitutions, we de-
fine the type consistency relation ⇤ on types parametrized with partially known and dependent owners via
the rules in Figure 5 (the relation E;B � t ⇤ t ⇧). The definition of the subtyping is standard for parametrized
object-oriented type systems (Figure 5, E;B � t � t ⇧).

In order to eliminate non-determinacy from the type-checking algorithms we need to construct a rela-
tion that combines two kinds of subsumption of types: type consistency and subtyping. This relation is
used then in type rules whenever an implicit upcast is necessary Pierce (2002). Siek and Taha suggest a
way to design such consistent-subtyping relation for the calculus Ob<: of Abadi and Cardelli Abadi and
Cardelli (1996). However, the proposed approach handles structural rather than nominal subtyping. The
latter one is typical for Java-like languages and is the norm in mainstream object-oriented programming
languages.

If two types t = c ⇥⌦ and t ⇧ = c⇧ ⇥⇧⇧⌦ are related via the consistent-subtyping relation, i.e., t � t ⇧, they
can differ along both directions: the type consistency relation ⇤ and the subtyping relation �. This is

8

Reflexive Transitive Nominal

Traditional Subtyping

class D<MyOwner> {...}

class C<Owner1, Owner2> extends D<Owner1> {...}

Gradual Subtyping

C<?, outer> D<owner>.

D<owner>

C<?, outer>

D<?>

.

⇠

Static semantics
E;B � p ⇤ p⇧

(CON-REFL)

E;B � p
E;B � p ⇤ p

(CON-RIGHT)

E;B � p
E;B � ? ⇤ p

(CON-LEFT)

E;B � p
E;B � p ⇤?

(CON-DEPENDENT1)

E;B � p E;B � xc.i

E;B � p ⇤ xc.i

(CON-DEPENDENT2)

E;B � p E;B � xc.i

E;B � xc.i ⇤ p

E;B � t � t ⇧

(SUB-REFL)

E;B � t
E;B � t � t

(SUB-TRANS)

E;B � t � t ⇧ E;B � t ⇧ � t ⇧⇧

E;B � t � t ⇧⇧

(SUB-CLASS)

E;B � c ⇥⌦
class c �i⌃1..n⌦ extends c⇧ ri⌃1..n⇧ ⌦{. . .}

E;B � c ⇥⌦ � c⇧ ⇥(ri)i⌃1..n⇧ ⌦

E;B � t ⇤ t ⇧ E;B � t � t ⇧ E;B � t

(CON-TYPE)

E;B � c pi⌃1..n⌦ E;B � c qi⌃1..n⌦
pi ⇤ qi⌥i ⌃ 1..n

E;B � c pi⌃1..n⌦ ⇤ c qi⌃1..n⌦

(GRAD-SUB)

E;B � c ⇥⌦ � c⇧ ⇥⇧⌦
E;B � c⇧ ⇥⇧⌦ ⇤ c⇧ ⇥⇧⇧⌦
E;B � c ⇥⌦ � c⇧ ⇥⇧⇧⌦

(G-TYPE)

arity(c) = n
E;B � p1 ⇥ pi ⌥i ⌃ 1..n

E;B � c pi⌃1..n⌦

Figure 5: Type consistency and subtyping

Definition 3.1 (Well-formed typing environment). A typing environment E is well-formed if ⌅ is a partial
order on {r | r ⌃ dom(E)}.

3.3 Type consistency and subtyping
Types can be constructed from any class using any owner in scope (including an unknown owner “?”),
as long as the correct number of arguments are supplied and the owner (the first parameter), if present, is
provably consistently-inside all other parameters. The corresponding relation E;B � t is defined in Figure 5.
This is a relaxed requirement to ensure that the OAD property is maintained.

The type consistency relation answers the question: which pairs of static types could possibly cor-
respond to comparable run-time types? It allows the type checker to compare types with dependent and
unknown owners. Since two types sharing the same class name can differ in the owner substitutions, we de-
fine the type consistency relation ⇤ on types parametrized with partially known and dependent owners via
the rules in Figure 5 (the relation E;B � t ⇤ t ⇧). The definition of the subtyping is standard for parametrized
object-oriented type systems (Figure 5, E;B � t � t ⇧).

In order to eliminate non-determinacy from the type-checking algorithms we need to construct a rela-
tion that combines two kinds of subsumption of types: type consistency and subtyping. This relation is
used then in type rules whenever an implicit upcast is necessary Pierce (2002). Siek and Taha suggest a
way to design such consistent-subtyping relation for the calculus Ob<: of Abadi and Cardelli Abadi and
Cardelli (1996). However, the proposed approach handles structural rather than nominal subtyping. The
latter one is typical for Java-like languages and is the norm in mainstream object-oriented programming
languages.

If two types t = c ⇥⌦ and t ⇧ = c⇧ ⇥⇧⇧⌦ are related via the consistent-subtyping relation, i.e., t � t ⇧, they
can differ along both directions: the type consistency relation ⇤ and the subtyping relation �. This is

8

Consistent owners

Traditional subtyping

Consistent types “Gradual Subtyping”

“Good type”

() ()

Example I

List list; // = List<?,?>
list = new List<p, world>();
list = new List<this, world>();
List<p, world> newList = list;

Dangerous assignment!

Example I

List list; // = List<?,?>
list = new List<p, world>();
list = new List<this, world>();
List<p, world> newList =
 (List<p, world>)list;

Dynamic type cast inserted

Example II
class D<owner> {
 D myD; // = D<?>
}
...
D<q> otherD = ...;
D<p> d = new D<p>();
d.myD = otherD;

Possible OAD violation

p

otherD: D<q>

 d: D<p>

q

myD

Example II
class D<owner> {
 D myD; // = D<?>
}
...
D<q> otherD = ...;
D<p> d = new D<p>();
d.myD =
 bcheck(d, otherD);

p

otherD: D<q>

 d: D<p>

q

myD

Boundary check inserted
d owner(otherD)�⇤

Type-directed compilation
Dynamic casts and boundary checks are inserted

basing on type information.

E;B � b : s

(T-NEW)

E;B � c�ri�1..n✏
E;B � new c�ri�1..n✏ : c�ri�1..n✏

(T-LKP)

E;B � z : c�⇥✏
Fc(f) = t

E;B � z. f : ⇥z(t)

(T-LET)

E;B � b : t
E,x : fill(x, t);B � e : s

E;B � let x = b in e : s

(T-UPD)

E;B � z : c�⇥✏ Fc(f) = t
E;B � y : s

E;B � s � ⇥z(t)
E;B � z. f = y : ⇥z(t)

(T-CALL)

E;B � y : s M T c(m) = (y⌥, t ⌃ t ⌥)
E;B � z : c�⇥✏ E;B � s � ⇥z(t)

⇥⌥ ⇥ ⇥�{y⌥ ⌃ y}
E;B � z.m(y) : ⇥⌥z(t ⌥)

(VAL-w)

E;B � � w : s � E
E;B � w : s

(VAL-NULL)

E;B � t
E;B � null : t

E � t ⌥ m(t y) {e} � P; e

(METHOD)

E,y : fill(y, t) � e : s E � s � t ⌥

E � t ⌥ m(t y) {e}

(PROGRAM)

� class j ⌦class j � P
E � e : t
E � P; e

E � c

(CLASS-OBJECT)

� class Object��1✏ { }

(CLASS)

E ⇥ �1 ⇧ world,(�1 ⇧ �i)i � 2..n,this : c��i�1..n✏
E � c⌥�⇥✏ owner(c��i�1..n✏) = owner(c⌥�⇥✏)

{ fi�1..m}↵dom(Fc⌥) = /0 E � t j�1..m E � methk�1..p

⌦ m � names(methk�1..p)
↵ dom(M T c⌥)

�
⇤

⇥

M T c(m)⇥ t ⌃ t ⌥
M T c⌥(m)⇥ t ⌥⌥ ⌃ t ⌥⌥⌥
t ⇥ ⇥(t ⌥⌥) t ⌥ ⇥ ⇥(t ⌥⌥⌥)

� class c��i�1..n✏ extends c⌥�⇥✏ {t j f j�1..m; methk�1..p}

Figure 6: Typing rules of JO?. Grayed parts mark explicit consistent-subtyping checks that may lead to the
insertion of dynamic checks.

illustrated by the diagram on the left:

C�owner✏

C�?,outer✏

�
⇤⇤⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥⇥

D�?✏ ⌅ �� D�owner,outer✏

C�?,outer✏
�

⇥⇥������������
⇤

⌅⌅

The “upper-left mediator” (the right part of the diagram) is a connecting link between two types. This
intuition is formalized via the rule (GRAD-SUB) in Figure 5.

The diagram on the right shows one possible way to define the � relation through the intermediate type
c⌥�⇥⌥⌥✏ such that the whole diagram commutes. According the definition of the type-consistent relation it
is easy to see that the class type of this mediator should be equal to c⌥. In fact, if c⌥ is a superclass of
class c, the necessary substitution can be computed in a straightforward way by just ascending the chain
of superclasses. The correspondence between “bottom-right” and “upper left” mediators is stated by the
following lemma:

9

Gradual subtyping
might cause

check insertion

Field update Method call

Method return

Type-directed compilation
Two-staged program translation

• Insert dynamic casts to coerce types

• Type consistency ⇒ Type equality

• Insert boundary checks when the invariant
can be violated

• Check for unknown owners�

Minimal amount of annotations
class List<owner, data> {
 Link head<this, data>;
 void add(Data<data> d) {
 head = new Link<this, data>(head, d);
 }
 Iterator<this, data> makeIterator() {
 return new Iterator<this, data>(head);
 }
}
class Link<owner, data> {
 Link<owner, data> next;
 Data<data> data;
 Link(Link<owner, data> next, Data<data> data) {
 this.next = next; this.data = data;
 }
}
class Iterator<owner, data> {
 Link<owner, data> current;
 Iterator(Link<owner, data> first) {
 current = first;
 }
 void next() { current = current.next; }
 Data<data> elem() { return current.data; }
 boolean done() {
 return (current == null);
 }
}

5 annotations are needed
to indicate the intention:

10 annotations are
optional

3 annotations to indicate
the parametrization

2 annotations
for instance owners

Gradual Typing and Compilation
(informally)

Theorem 1:
No unknown owners ⇒ no dynamic casts

Corollary :
No unknown owners ⇒ static invariant guaranty

(And also, no runtime overhead and failed casts)

Theorem 2:
A (gradually) well-typed program is compiled
into a (statically) well-typed program.

* Formal treatment + proofs at http://people.cs.kuleuven.be/~ilya.sergey/gradual

*

http://people.cs.kuleuven.be/~ilya.sergey/gradual
http://people.cs.kuleuven.be/~ilya.sergey/gradual

Theorem 3:
A (statically) well-typed program does not violate
the OAD invariant but might fail on a dynamic check.

Corollary:
A gradually well-typed program, being compiled,
does not violate the OAD invariant.

“Well-typed programs don’t go wrong”
Milner, 1978

Type safety result
(informally)

• Static safety is traded for dynamic checks

• Memory overhead

• References to owners are stored in objects

• Runtime overhead

• dynamic boundary checks and type casts

Pitfalls of the approach

Implementation

• Implemented in JastAddJ [Ekman-Hedin:OOPSLA07]

• Extended JastAddJ compiler for Java 1.4

• 2,600 LOC (not including tests and comments)

• Check insertion ⇒ compilation warning

• Source-to-source translation

* Available from http://github.com/ilyasergey/Gradual-Ownership

*

https://github.com/ilyasergey/Gradual-Ownership
https://github.com/ilyasergey/Gradual-Ownership

Experience

• Java Collection Framework (JDK 1.4.2)

• 46 source files, ~8,200 LOC

• Securing inner Entries of collections

• Questions addressed:

• How many annotations are needed minimally?

• What is the execution cost?

• How many annotations for full static checking?

Experience
• Minimal amount of annotations

• LinkedList - 17

• LinkedMap - 15

• Performance overhead

• ~1.5-2 times (for extensive updates)

• Full migration

• LinkedList - yes, 34 annotations

• LinkedMap - no, because of static

• (best - 28 annotations)

• An alternative to ownership inference

• Combines static and dynamic ownership
checks, but allows full static safety

• Type-directed compilation

• Minimal annotations are unavoidable

• A tradeoff between verbosity and safety

Thanks

Summary
Gradual Ownership Types

