
Week 2: SIMPLE interpreter
and x86Lite

ilya@nus.edu.sg

ilyasergey.net/CS4212/

Ilya Sergey

CS4212: Compiler Design

mailto:ilya@nus.edu.sg
http://ilyasergey.net/CS4212/

• An interpreter for simple imperative language

• A translator to OCaml

• Basics of x86 assembly

Plan for today

• How to represent programs as data structures.

• How to write programs that process programs.

Interpreters

• Consider this implementation of factorial in a hypothetical programming
language that we’ll call “SIMPLE”
 (Simple IMperative Programming LanguagE):

• We need to describe the constructs of this SIMPLE
– Syntax: which sequences of characters count as a legal “program”?
– Semantics: what is the meaning (behavior) of a legal “program”?

Everyone’s Favorite Function

 X = 6;
 ANS = 1;
 whileNZ (X) {
 ANS = ANS * X;
 X = X + -1;
 }

Today’s example:
 SIMPLE interpreter written in OCaml

Course project:
 OAT ⇒ LLVM ⇒ x86asm compiler written in OCaml

Clang compiler:
 C/C++ ⇒ LLVM ⇒ x86asm compiler written in C++

Metacircular interpreter:
 lisp interpreter written in lisp

”Object” vs. “Meta” language

Object language:
the language (syntax / semantics)
being described or manipulated

Metalanguage:
the language (syntax / semantics) used
to describe some object language

Grammar for a Simple Language

<exp> ::=
 | <X>
 | <exp> + <exp>
 | <exp> * <exp>
 | <exp> < <exp>
 | <integer constant>
 | (<exp>)

<cmd> ::=
 | skip
 | <X> = <exp>
 | ifNZ <exp> { <cmd> } else { <cmd> }
 | whileNZ <exp> { <cmd> }
 | <cmd>; <cmd>

BNF grammars are
themselves domain-specific
metalanguages for describing
the syntax of other languages…

• Concrete syntax (grammar) for the Simple language:
– Written in “Backus-Naur form”
– <exp> and <cmd> are nonterminals
– ‘::=‘ , ‘|’ , and <…> symbols are part of the metalanguage
– keywords, like ‘skip’ and ‘ifNZ’ and symbols, like ‘{‘ and ‘+’

are part of the object language

• Need to represent the abstract syntax
(i.e. hide the irrelevant of the concrete syntax)

• Implement the operational semantics
(i.e. define the behavior, or meaning, of the program)

Demo: Interpreters in OCaml

• https://github.com/cs4212/week-01-simple-2024

• Interpreting expressions

• Translating Simple programs to OCaml programs

https://github.com/cs4212/week-01-simple-2024

(the target architecture for this module)

Week 2: x86Lite

8

• 1978: Intel introduces 8086
• 1982: 80186, 80286
• 1985: 80386
• 1989: 80486 (100MHz, 1µm)
• 1993: Pentium
• 1995: Pentium Pro
• 1997: Pentium II/III
• 2000: Pentium 4
• 2003: Pentium M, Intel Core
• 2006: Intel Core 2
• 2008: Intel Core i3/i5/i7
• 2011: SandyBridge / IvyBridge
• 2013: Haswell
• 2014: Broadwell
• 2015: Skylake (core i3/i5/i7/i9) (2.4GHz, 14nm)
• 2016: Xeon Phi

Intel’s X86 Architecture

Intel Core 2 Duo

9

Tr
an

si
st

or
 C

ou
nt

 (l
og

 s
ca

le
)

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

10,000,000,000

19
78

19
79

19
82

19
82

19
85

19
89

19
93

19
95

19
97

19
99

20
00

20
02

20
03

20
04

20
06

20
06

20
08

20
08

20
08

20
10

20
10

20
10

20
11

20
11

20
11

20
12

20
12

20
12

Intel Processor Transistor Count

Intel Processor Transistor Count

10

• X86 assembly is very complicated:
– 8-, 16-, 32-, 64-bit values + floating points, etc.
– Intel 64 and IA 32 architectures have a huge number of functions
– “CISC” complex instructions
– Machine code: instructions range in size from 1 byte to 17 bytes
– Lots of hold-over design decisions for backwards compatibility
– Hard to understand, there is a large book about optimizations at just the

instruction-selection level

• X86lite is a very simple subset of X86:
– Only 64 bit signed integers (no floating point, no 16bit, no …)
– Only about 20 instructions
– Sufficient as a target language for general-purpose computing

X86 vs. X86lite

11

X86 Schematic

Code & Data

Heap

Stack

Memory

La
rg

er
 A

dd
re

ss
es

rax rbx rcx rdx

rsi rdi rbp rsp

r08 r09 r10 r11

r12 r13 r14 r15

Control ALU
OF

SF

ZF

RIP

Registers

Flags

Processor

Instruction
Decoder

ALU

• Register File: 16 64-bit registers
– rax general purpose accumulator

– rbx base register, pointer to data

– rcx counter register for strings & loops

– rdx data register for I/O

– rsi pointer register, string source register

– rdi pointer register, string destination register

– rbp base pointer, points to the stack frame

– rsp stack pointer, points to the top of the stack

– r08-r15 general purpose registers

• rip a “virtual” register, points to the current instruction
– rip is manipulated only indirectly via jumps and return.

X86lite Machine State: Registers

13

• movq SRC, DEST copy SRC into DEST

• Here, DEST and SRC are operands

• DEST is treated as a location

– A location can be a register or a memory address
• SRC is treated as a value

– A value is the contents of a register or memory address
– A value can also be an immediate (constant) or a label

• movq $4, %rax // move the 64-bit immediate value 4 into rax
• movq %rbx, %rax // move the contents of rbx into rax

Simplest instruction: mov

14

• X86 presented in two common syntax formats

• AT&T notation: source before destination
– Prevalent in the Unix/Mac ecosystems
– Immediate values prefixed with ‘$’
– Registers prefixed with ‘%’
– Mnemonic suffixes: movq vs. mov

• q = quadword (4 words)
• l = long (2 words)
• w = word
• b = byte

• Intel notation: destination before source
– Used in the Intel specification / manuals
– Prevalent in the Windows ecosystem
– Instruction variant determined by register name

A Note About Instruction Syntax

movq $5, %rax

movl $5, %eax

src dest

mov rax, 5

mov eax, 5

dest src

Note: X86lite uses the AT&T notation
and the 64-bit only version of the
instructions and registers.

15

• negq DEST two’s complement negation
• addq SRC, DEST DEST ← DEST + SRC
• subq SRC, DEST DEST ← DEST – SRC
• imulq SRC, Reg Reg ← Reg * SRC (truncated 128-bit mult.)

Examples as written in:

addq %rbx, %rax // rax ← rax + rbx
subq $4, rsp // rsp ← rsp - 4

• Note: Reg (in imulq) must be a register, not a memory address

X86lite Arithmetic instructions

16

• notq DEST logical negation
• andq SRC, DEST DEST ← DEST && SRC
• orq SRC, DEST DEST ← DEST || SRC
• xorq SRC, DEST DEST ← DEST xor SRC

• sarq Amt, DEST DEST ← DEST >> amt (arithmetic shift right)
• shlq Amt, DEST DEST ← DEST << amt (arithmetic shift left)
• shrq Amt, DEST DEST ← DEST >>> amt (bitwise shift right)

The difference between arithmetic and bitwise shift is that the former
preserves the sign.

X86lite Logic/Bit manipulation Operations

17

• Imm 64-bit literal signed integer “immediate”
 42, 0x3de7

• Lbl a “label” representing a machine address, to be resolved by
 the assembler/linker/loader
 _factorial, .L2

• Reg One of the 16 registers, the value of a register is of its contents
 %rax, %r04

• Ind [base:Reg][index:Reg,scale:int32][disp]
 “Indirect” machine address (see next slide)
 (%rax), -8(%rbp)

X86 Operands

18

Operands are the values operated on by the assembly instructions

• In general, there are three components of an indirect address
– Base: a machine address stored in a register
– Index * scale: a variable offset from the base
– Disp: a constant offset (displacement) from the base

• addr(ind) = Base + [Index * scale] + Disp
– When used as a location, ind denotes the address addr(ind)
– When used as a value, ind denotes Mem[addr(ind)], the contents of the memory address

• Example: -4(%rsp) denotes address: rsp – 4
• Example: (%rax, %rcx, 4) denotes address: rax + 4*rcx
• Example: 12(%rax, %rcx, 4) denotes address: rax + 4*rcx +12

• Note: Index cannot be rsp

X86 Addressing

Note: X86lite does not need this full
generality. It does not use index * scale.

19

Code & Data

Heap

Stack

Memory

• The X86lite memory consists of 264 bytes.
• X86lite treats the memory as consisting of 64-bit (8-byte) quadwords.
• Therefore: legal X86lite memory addresses consist of 64-bit,

quadword-aligned pointers.
– All memory addresses are evenly divisible by 8

• leaq Ind, DEST DEST ← addr(Ind) loads a pointer into DEST

• By convention, there is a stack that grows from high addresses
to low addresses

• The register rsp points to the top of the stack
– pushq SRC rsp ← rsp - 8; Mem[rsp] ← SRC

– popq DEST DEST ← Mem[rsp]; rsp ← rsp + 8

X86lite Memory Model

20

Code & Data

Heap

Stack

Memory

rsp

Comparisons and Conditioning

21

• X86 instructions set flags as a side effect
• X86lite has only 3 flags:

– OF: “overflow” set when the result is too big/small to fit in 64-bit reg.

– SF: “sign” set to the sign or the result (0=positive, 1 = negative)

– ZF: “zero” set when the result is 0

• From these flags, we can define Condition Codes
– You can think of Cond. Codes as of additional registers,

whose value changes depending on the current flags

• E.g., cmpq SRC1, SRC2 computes SRC1 – SRC2 to set the flags
• Now we can check conditional codes:

– eq equality holds when ZF is set

– neq inequality holds when (not ZF)

– lt less than holds when SF <> OF
• Equivalently: ((SF && not OF) || (not SF && OF))

– ge greater or equal holds when (not lt) holds, i.e. (SF = OF)

– le than or equal holds when SF <> OF or ZF

– gt greater than holds when (not le) holds,
• i.e. (SF = OF) && not(ZF)

X86lite State: Flags & Condition Codes

22

• cmpq SRC1, SRC2 Compute SRC2 – SRC1, set condition flags

• setb CC DEST DEST’s lower byte ← if CC then 1 else 0

• jCC SRC rip ← if CC then SRC else do nothing

• Example:

 cmpq %rcx, %rax Compare rax to ecx  
 jeq __truelbl If rax = rcx then jump to __truelbl  

Conditional Instructions

23

• X86 assembly code is organized into labeled blocks:

Labels indicate code locations that can be jump targets (either through conditional branch instructions or function calls).

• Labels are translated away by the linker and loader – instructions live in the heap in the “code segment”

• An X86 program begins executing at a designated code label (usually “main”).

Code Blocks & Labels

label1:
<instruction>
<instruction>
…
<instruction>

label2:
<instruction>
<instruction>
…
<instruction>

24

Basic Control Flow

25

• jmp SRC rip ← SRC Jump to location in SRC

• callq SRC Push rip; rip ← SRC
– Call a procedure: Push the program counter to the stack (decrementing rsp)

and then jump to the machine instruction at the address given by SRC.

• retq Pop into rip
– Return from a procedure: Pop the current top of the stack into rip

(incrementing rsp).
– This instruction effectively jumps to the address at the top of the stack

Jumps, Calls, and Return

26

Loop-based Factorial in Assembly

27

.globl _program
_program:

movq $1, %rax
movq $6, %rdi

loop:
cmpq $0, %rdi
je exit
imulq %rdi, %rax
decq %rdi
jmp loop

exit:
retq

int program() {
 int acc = 1;
 int n = 6;
 while (0 < n) {
 acc = acc * n;
 n = n - 1;
 }
 return acc;
}

• https://github.com/cs4212/week-02-x86lite

• Basic definitions: x86.ml  

• Linking with assembly: test.c  

• Example program, simple output, factorial

Demo: Hand-Coded x86Lite

28

https://github.com/cs4212/week-02-x86lite

• To use hand-coded X86:
1. Compile OCaml program main1.ml to the executable

by running make

2. Run it, redirecting the output to some .s file, e.g.:
./main1.native >> prog.s  

3. Use clang (or gcc) to compile & link with test.c:  
clang -o test test.c prog.s  
 
One M1/M2 mac, use the following flags:
clang -arch x86_64 -o test prog.s test.c  

4. You should be able to run the resulting executable:
./test

Compiling, Linking, Running

29

• Compiling simple programs to X86lite

• Intermediate Representations

Next lecture

