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• An interpreter for simple imperative language 

• A translator to OCaml 

• Basics of x86 assembly

Plan for today



• How to represent programs as data structures. 

• How to write programs that process programs.

Interpreters



• Consider this implementation of factorial in a hypothetical programming 
language that we’ll call “SIMPLE” 
    (Simple IMperative Programming LanguagE): 
 
 
 
 
 
 

• We need to describe the constructs of this SIMPLE 
– Syntax: which sequences of characters count as a legal “program”?  
– Semantics: what is the meaning (behavior) of a legal “program”?

Everyone’s Favorite Function

 X = 6; 
 ANS = 1; 
 whileNZ (X) { 
    ANS = ANS * X; 
    X = X + -1; 
 } 



Today’s example:  
 SIMPLE       interpreter written in OCaml 

Course project: 
 OAT ⇒ LLVM ⇒ x86asm   compiler written in OCaml 
 
Clang compiler: 
 C/C++ ⇒ LLVM ⇒ x86asm  compiler written in C++ 

Metacircular interpreter: 
 lisp        interpreter written in lisp

”Object” vs. “Meta” language

Object language:   
the language (syntax / semantics) 
being described or manipulated

Metalanguage:   
the language (syntax / semantics) used 
to describe some object language



Grammar for a Simple Language

<exp> ::=  
     |    <X> 
     |    <exp> + <exp> 
     |    <exp> * <exp> 
     |    <exp> < <exp> 
     |    <integer constant> 
     |    (<exp>) 

<cmd> ::= 
     |    skip 
     |    <X> = <exp> 
     |    ifNZ <exp> { <cmd> } else { <cmd> } 
     |    whileNZ <exp> { <cmd> } 
     |    <cmd>; <cmd>

BNF grammars are 
themselves domain-specific  
metalanguages for describing  
the syntax of other languages…

• Concrete syntax (grammar) for the Simple language: 
– Written in “Backus-Naur form” 
– <exp> and <cmd> are nonterminals 
– ‘::=‘  , ‘|’ , and <…>  symbols are part of the metalanguage 
– keywords, like ‘skip’ and ‘ifNZ’ and symbols, like ‘{‘ and ‘+’ 

are part of the object language 

• Need to represent the abstract syntax  
(i.e. hide the irrelevant of the concrete syntax) 

• Implement the operational semantics  
(i.e. define the behavior, or meaning, of the program)



Demo: Interpreters in OCaml

• https://github.com/cs4212/week-01-simple-2024   

• Interpreting expressions  

• Translating Simple programs to OCaml programs

https://github.com/cs4212/week-01-simple-2024


(the target architecture for this module)

Week 2: x86Lite
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• 1978: Intel introduces 8086 
• 1982: 80186, 80286 
• 1985: 80386 
• 1989: 80486   (100MHz, 1µm) 
• 1993: Pentium 
• 1995: Pentium Pro 
• 1997: Pentium II/III 
• 2000: Pentium 4 
• 2003: Pentium M, Intel Core 
• 2006: Intel Core 2 
• 2008: Intel Core i3/i5/i7 
• 2011: SandyBridge / IvyBridge 
• 2013: Haswell 
• 2014: Broadwell 
• 2015: Skylake (core i3/i5/i7/i9) (2.4GHz, 14nm)  
• 2016: Xeon Phi 

Intel’s X86 Architecture

Intel Core 2 Duo
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• X86 assembly is very complicated: 
– 8-, 16-, 32-, 64-bit values + floating points, etc. 
– Intel 64 and IA 32 architectures have a huge number of functions 
– “CISC” complex instructions 
– Machine code: instructions range in size from 1 byte to 17 bytes 
– Lots of hold-over design decisions for backwards compatibility  
– Hard to understand, there is a large book about optimizations at just the 

instruction-selection level 

• X86lite is a very simple subset of X86: 
– Only 64 bit signed integers   (no floating point, no 16bit, no …) 
– Only about 20 instructions 
– Sufficient as a target language for general-purpose computing

X86 vs. X86lite
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X86 Schematic
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• Register File:  16 64-bit registers 
– rax  general purpose accumulator

– rbx  base register, pointer to data

– rcx  counter register for strings & loops

– rdx  data register for I/O

– rsi  pointer register, string source register

– rdi  pointer register, string destination register

– rbp  base pointer, points to the stack frame

– rsp  stack pointer, points to the top of the stack

– r08-r15 general purpose registers

• rip  a “virtual” register, points to the current instruction
– rip is manipulated only indirectly via jumps and return. 

X86lite Machine State: Registers
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• movq SRC, DEST    copy SRC into DEST 

• Here, DEST and SRC are operands 

• DEST is treated as a location 

– A location can be a register or a memory address 
• SRC is treated as a value 

– A value is the contents of a register or memory address 
– A value can also be an immediate (constant) or a label 

• movq $4, %rax  // move the 64-bit immediate value 4 into rax
• movq %rbx, %rax   // move the contents of rbx into rax

Simplest instruction: mov
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• X86 presented in two common syntax formats 

• AT&T notation:  source before destination 
– Prevalent in the Unix/Mac ecosystems 
– Immediate values prefixed with ‘$’ 
– Registers prefixed with ‘%’ 
– Mnemonic suffixes: movq vs. mov 

• q = quadword (4 words)
• l = long (2 words)
• w = word
• b = byte 

• Intel notation: destination before source 
– Used in the Intel specification / manuals 
– Prevalent in the Windows ecosystem 
– Instruction variant determined by register name

A Note About Instruction Syntax

movq $5, %rax

movl $5, %eax

src dest

mov rax, 5

mov eax, 5

dest src

Note: X86lite uses the AT&T notation  
and the 64-bit only version of the 
instructions and registers. 
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• negq DEST   two’s complement negation
• addq SRC, DEST   DEST ← DEST + SRC
• subq SRC, DEST    DEST ← DEST – SRC
• imulq SRC, Reg   Reg ← Reg * SRC    (truncated 128-bit mult.)

Examples as written in: 

addq %rbx, %rax // rax ← rax + rbx
subq $4, rsp  // rsp  ← rsp - 4

• Note: Reg (in imulq) must be a register, not a memory address

X86lite Arithmetic instructions
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• notq DEST   logical negation
• andq SRC, DEST   DEST ← DEST && SRC
• orq SRC, DEST  DEST ← DEST || SRC
• xorq SRC, DEST  DEST ← DEST xor SRC

• sarq Amt, DEST   DEST ← DEST >> amt   (arithmetic shift right)
• shlq Amt, DEST   DEST ← DEST << amt   (arithmetic shift left)
• shrq Amt, DEST  DEST ← DEST >>> amt   (bitwise shift right) 

 
The difference between arithmetic and bitwise shift is that the former 
preserves the sign.

X86lite Logic/Bit manipulation Operations
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• Imm   64-bit literal signed integer  “immediate” 
                     42, 0x3de7  

• Lbl   a “label” representing a machine address, to be resolved by 
    the assembler/linker/loader 
                     _factorial, .L2  

• Reg   One of the 16 registers, the value of a register is of its contents 
                     %rax, %r04  

• Ind   [base:Reg][index:Reg,scale:int32][disp] 
    “Indirect” machine address (see next slide) 
                     (%rax), -8(%rbp)

X86 Operands
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Operands are the values operated on by the assembly instructions



• In general, there are three components of an indirect address  
– Base:     a machine address stored in a register 
– Index * scale: a variable offset from the base 
– Disp:    a constant offset (displacement) from the base 

• addr(ind)  =  Base + [Index * scale] + Disp 
– When used as a location, ind denotes the address addr(ind) 
– When used as a value, ind denotes Mem[addr(ind)], the contents of the memory address 

• Example:   -4(%rsp)   denotes address:   rsp – 4 
• Example:   (%rax, %rcx, 4)    denotes address:   rax + 4*rcx 
• Example: 12(%rax, %rcx, 4) denotes address:   rax + 4*rcx +12 

• Note: Index cannot be rsp

X86 Addressing

Note: X86lite does not need this full 
generality.  It does not use index * scale.
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• The X86lite memory consists of 264 bytes. 
• X86lite treats the memory as consisting of 64-bit (8-byte) quadwords. 
• Therefore: legal X86lite memory addresses consist of 64-bit,  

quadword-aligned pointers. 
– All memory addresses are evenly divisible by 8 

• leaq Ind, DEST   DEST ← addr(Ind)    loads a pointer into DEST

• By convention, there is a stack that grows from high addresses  
to low addresses 

• The register rsp points to the top of the stack 
– pushq SRC  rsp ← rsp - 8; Mem[rsp] ← SRC

– popq DEST  DEST ← Mem[rsp]; rsp ← rsp + 8

X86lite Memory Model
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Comparisons and Conditioning
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• X86 instructions set flags as a side effect 
• X86lite has only 3 flags: 

– OF: “overflow”  set when the result is too big/small to fit in 64-bit reg.

– SF: “sign” set to the sign or the result (0=positive, 1 = negative)

– ZF: “zero” set when the result is 0

• From these flags, we can define Condition Codes 
– You can think of Cond. Codes as of additional registers,  

whose value changes depending on the current flags 

• E.g., cmpq SRC1, SRC2 computes SRC1 – SRC2 to set the flags 
• Now we can check conditional codes: 

– eq  equality  holds when ZF is set

– neq inequality          holds when (not ZF)

– lt less than  holds when SF <> OF
• Equivalently: ((SF && not OF) || (not SF && OF))  

– ge  greater or equal holds when (not lt) holds, i.e. (SF = OF)

– le  than or equal holds when SF <> OF or ZF 

– gt  greater than holds when (not le) holds, 
• i.e. (SF = OF) && not(ZF)

X86lite State: Flags & Condition Codes
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• cmpq SRC1, SRC2  Compute SRC2 – SRC1, set condition flags

• setb CC DEST    DEST’s lower byte ← if CC then 1 else 0

• jCC SRC           rip ← if CC then SRC else do nothing

• Example: 
 

  cmpq %rcx, %rax  Compare rax to ecx  
  jeq __truelbl  If rax = rcx then jump to __truelbl  

Conditional Instructions
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• X86 assembly code is organized into labeled blocks: 
 
 
 
 
 
 
 
 
 
 
 
 
 
Labels indicate code locations that can be jump targets (either through conditional branch instructions or function calls). 

• Labels are translated away by the linker and loader – instructions live in the heap in the “code segment” 

• An X86 program begins executing at a designated code label (usually “main”).

Code Blocks & Labels

label1:
<instruction>
<instruction>
…
<instruction>

label2:
<instruction>
<instruction>
…
<instruction>
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Basic Control Flow
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• jmp SRC         rip ← SRC  Jump to location in SRC 

• callq SRC  Push rip;  rip ← SRC
– Call a procedure: Push the program counter to the stack (decrementing rsp) 

and then jump to the machine instruction at the address given by SRC. 

• retq   Pop into rip
– Return from a procedure: Pop the current top of the stack into rip 

(incrementing rsp).   
– This instruction effectively jumps to the address at the top of the stack

Jumps, Calls, and Return
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Loop-based Factorial in Assembly
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.globl _program
_program:

movq $1, %rax
movq $6, %rdi

loop:
cmpq $0, %rdi
je exit
imulq %rdi, %rax
decq %rdi
jmp loop

exit:
retq

int program() {
  int acc = 1;
  int n   = 6;
  while (0 < n) {
    acc = acc * n;
    n = n - 1;
  }
  return acc;
}



• https://github.com/cs4212/week-02-x86lite  

• Basic definitions: x86.ml  

• Linking with assembly: test.c  

• Example program, simple output, factorial

Demo: Hand-Coded x86Lite
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https://github.com/cs4212/week-02-x86lite


• To use hand-coded X86: 
1. Compile OCaml program main1.ml to the executable 

by running make 

2. Run it, redirecting the output to some .s file, e.g.: 
./main1.native >> prog.s  

3. Use clang (or gcc) to compile & link with test.c:  
clang -o test test.c prog.s  
 
One M1/M2 mac, use the following flags: 
clang -arch x86_64 -o test prog.s test.c  

4. You should be able to run the resulting executable: 
./test

Compiling, Linking, Running

29



• Compiling simple programs to X86lite 

• Intermediate Representations

Next lecture


