CS4212: Compiler Design

Week 3: Compiling Function Calls to x86;
Intermediate Representations

[lya Sergey
ilya@nus.edu.sg

ilyasergey.net/CS4212/

mailto:ilya@nus.edu.sg
http://ilyasergey.net/CS4212/

Comparisons and Conditioning

X86lite State: Flags & Condition Codes

X86 instructions set flags as a side effect
X86lite has only 3 flags: _Processor _ _ _ _ _ _ _ _ _ _____________ . Memory

— OF: “overtlow” set when the result is too big/small to fit in 64-bit reg. ! Code & Data

/
[
|
— SF': “sign” set to the sign or the result (O=positive, 1 = negative) : RIP
— ZF: “zero” set when the result is O : , :
| Instruction I
: / Decoder \ \ l
l
From these flags, we can define Condition Codes | | Heap
— You can think of Cond. Codes as of additional registers, : |
whose value changes depending on the current flags | oF '
[
| Control SF '
E.g., cmpg SRCI1, SRC2 computes SRC1 — SRC2 to set the flags | ;‘: |
ags
Now we can check conditional codes: | rax rbx rox rdx ° |
. . | rsi rdi rbp rsp I
— eq equality holds when ZF is set | RS / !
|
— neq inequality holds when (not ZF) N R o B :
I . |
— 1t less than holds when SF <> OF | Registers |
* Equivalently: ((SF && not OF) || (not SF && OF)) s s s s s s s s s s s g

— ge greater or equal holds when (not It) holds, i.e. (SF = OF)
— le than or equal holds when SF <> OF or ZF

— gt greater than holds when (not le) holds,
e j.e. (SF =0F) && not(ZF)

Conditional Instructions

cmpq SRCT, SRC2
setb CC DEST

5CC SRC

Example:

cmpg 3rcxX, 3srax
jeq truelbl

Compute SRC2 — SRCT, set condition flags
DEST’s lower byte « it CC then 1 else O

rip « if CC then SRC else do nothing

Compare rax to ecx
If rax = rcx thenjump to truelbl

Code Blocks & Labels

* X86 assembly code is organized into labeled blocks:

labell:
<instruction>
<instruction>

<instruction>

label?2:
<instruction>
<instruction>

<instruction>

Labels indicate code locations that can be jump targets (either through conditional branch instructions or function calls).
* Labels are translated away by the linker and loader — instructions live in the heap in the “code segment”

* An X86 program begins executing at a designated code label (usually “main”).

Basic Control Flow

Jumps, Calls, and Return

Memory

Code & Data

e Jjmp SRC rip « SRC Jump to location in SRC

RIP

* callqg SRC Push rip; rip « SRC

— (Call a procedure: Push the program counter to the stack (decrementing rsp)
and then jump to the machine instruction at the address given by SRC.

Heap

* retqg Pop into rip

— Return from a procedure: Pop the current top of the stack into rip
(incrementing rsp).

— This instruction effectively jumps to the address at the top of the stack

Su e e I S S S B S e .

Loop-based Factorial in Assembly

.globl program
_pbrograms: S1. srax int program() {
movqg roo i int acc = 1;
movqg $6, %rdi int n = 6;
loop: o while (0 < n) {
cmpq .t$0, srdi acc = acc * n;
je exi n =n- 1;
imulg %rdi, %rax }
@ecq srdi return acc;
Jjmp loop
| }
exit:
retq

Demo: Hand-Coded x86Lite

https://github.com/cs4212/week-02-x86lite

Basic definitions: x86 .ml
Linking with assembly: test.c

Example program, simple output, factorial

https://github.com/cs4212/week-02-x86lite

Compiling, Linking, Running

1.

To use hand-coded X86:

Compile OCaml program mainl.ml to the executable
by running make

2. Run it, redirecting the output to some .s file, e.g.:

./mainl.native >> prog.s

Use clang (or gcc) to compile & link with test.c:
clang -o test test.c prog.s

One M1/M2 (Apple Silicon) Mac, use the following flags:
clang -arch x86 64 -o test prog.s test.c

4. You should be able to run the resulting executable:

./test

10

Implementing Functions &
C Calling Conventions

11

———————————————_____________N

X86 Schematic

Processor Memory

I Code & Data

RIP

Instruction
Decoder

Heap

Registers

Control :

I

rax rbx rcx rdx :
rsi rdi rbp rsp I
r08 r09 rl0 rll I
rl2 rl3 rld rl5 :
I

I

!

Larger Addresses

3 parts of the C memory model

The code & data (or "text") segment

— contains compiled code, constant strings, etc.

The Heap

— Stores dynamically allocated objects
— Allocated via "malloc”
— Deallocated via "free"

— C runtime system

The Stack

— Stores local variables

— Stores the return address of a function

In practice, most languages use this model.

Memory

Code & Data

Heap

13

Larger Addresses

Local/Temporary Variable Storage

* Need space to store:
— Global variables
— Values passed as arguments to procedures

— Local variables (either defined in the source program or introduced by the compiler)

* Processors provide two options

— Registers: fast, small size (64 bits), very limited number (e.g., only 16 in x86Lite)

— Memory: slow, very large amount of space (2GB or more)

e caching important

* In practice on X86:
— Registers are limited (and have restrictions)

— Divide memory into regions including the stack and the heap

14

Calling Conventions

* Specify the locations (e.g. register or stack) of arguments passed to a function and returned by the function

int64 t g(int64 t a, int64 tb) {
return a + b;

f is a caller

int64 t f(int64 tx) {
int64 t ans = g(3,4) + x;
return ans;

}

. . ‘ g is a callee
* Designate registers either:

— Caller Save - e.g., freely usable by the called code

— Callee Save — e.g., must be restored by the called code

* Define the protocol for deallocating stack-allocated arguments

— Caller cleans up

— Callee cleans up (makes variable number arguments harder — the callee doesn’t know how many are those)

15

x64 Calling Conventions: Caller Protocol

f:
... # Set up arguments
f

7or1p
callg g
Lo
Machine state when
executing in function f.
“empty”
%rdi | argl stack
Gorsi | arg2 space
Oordx | arg3
Jorcx | arg4
Jr8 | argh
Jor9 | argb /
Yorsp f’s
%rbp - | frame
registers \‘ old %rbp

(not all of them)

larger memory addresses

16

x64 Calling Conventions: Caller Protocol

f:
/ ¥ ... # set up arguments
Jorip
callg g
Calling conventions: L

args 1...6 1n registers
as shown below.

Jordi | argl

Obrsi | arg2

ordx | arg3

Oorcx | argd

Jr8 | argh
%19 arg/
Yorsp f’s

%rbp \] frame
—

registers old %rbp

(not all of them)

larger memory addresses

17

x64 Calling Conventions: Caller Protocol

f:
... # Set up arguments
7or1p ..
callg g
args > 6 pushed onto L
the stack (from right to left)
Note: %rsp changes
D
0p)
D
O
Oordi | argl g
Jorsi | arg2 S
-
Y%ordx | arg3 v arg7 O
Oorcx arg4d arg8 %
%r8 | argh &
—
Jor9 argb GOJD
’ —
Yorsp f’s i
%orbp \ frame
registers * old %rbp

(not all of them) . 4

13

Call Instruction

f:
... # Set up arguments
%l‘ip \ oo
> callg g
To execute the call: e
1. push the return
address
(here shown as 1..,) §
0p
: Q
Oordi | argl g
Jorsi | arg2 7 Lo S
>
Yordx | arg3 arg7 o
Oorcx arg4d arg8 %
%r8 | argh &
P
%r9 | arg6 qb)D
’ —
Yorsp f’s i
%rbp \ frame
registers * old %rbp
(not all of them) . 4

19

Call Instruction

Yorip

To execute the call:

g: » pushq %rbp
movq %rsp, %rbp
subq $128, %rsp

2. set rip to address g

Jordi |argl

Yorsi | arg2 1N
%rdx | arg3 arg7
Jorcx |argd arg8
%r8 | args

Jr9 argb

Yorsp

o \
registers * old %rbp

(not all of them)

f’s
frame

larger memory addresses

Callee protocol:

Callee Function Prologue

1. store the O]

g: » pushq %rbp
movq %rsp, %rbp
Jorip subq $128, %rsp
d %rbp
g's
frame | &
0p)
D
Q
%rdi | argl old %rbp -
O
Jorsi | arg2 | S
-
Yordx | arg3 arg7 S
Oorcx arg4d arg8 %
%r8 | argh &
—
Jor9 argb qb)D
| , &-4
%rsp f’s <
%orbp \ frame
registers * old %rbp <
(not all of them) . 4

21

Callee Function Prologue

larger memory addresses

g: pushq %rbp
: g movq %rsp, %rbp
Jorip subqg $128, %rsp
Callee protocol:
2. adjust the %rbp to
point to the new “base” g’s
(%rbp is the “base pointer”) frame
%rdi | argl old %rbp
Yorsi | arg2 Let
%rdx | arg3 arg?
Jorcx | argd arg8
Jr8 | argh
Jr9 argb
Yorsp ‘ f’s
%rbp frame
registers old %rbp <

(not all of them) . 4

Callee Function Prologue

Yorip

Callee protocol:

3. allocate 128 bytes of
“scratch” stack space

Jordi |argl
Jorsi | arg2
Qordx | arg3
Jorcx |arg4
Jr8 | argh
Jr9 argb
Yorsp
Y%rbp
registers

(not all of them)

pushq %rbp
movq %rsp, %rbp
subq $128, %rsp

old %rbp

Lyt
arg’/
argd

old %rbp <

g’s
frame

f’s
frame

larger memory addresses

Callee Invariants: Function Arguments

g: pushq %rbp
movq %rsp, %rbp
Yorip '\ subqg $128, %rsp
| 3
Now g’s body can run...
* its arguments are accessible 4
either in registers or as ,
S
offsets from %rbp 5 "
frame Q
0p)
N
: — O
Jordi | argl old %rbp i
O
Jorsi | arg2 / L s
>
J%rdx |arg3 16 (%rbp) arg7 8
Jorcx |argd 24 (%rbp) argS %
%r8 | argh S
%r9 |arg6 qb)D
’ —
Yorsp f’s i
%rbp frame
registers old %rbp <
(not all of them) . 4

24

Callee Invariants: Callee Same Registers

g: pushq %rbp
movq %rsp, %rbp
Yorip -~ subq $128, %rsp

b

4

/ | g,S

A 0]

Callee save registers: o B
%rdi | argl %I‘qu, %rbx, Y%rl12-%rl5 .-g
Obrsi | arg2 Their values must be the same =
Jordx | arg3 when g returns as when g was g
Torcx | args called. (If g uses these registers, %
%r8 arg5 it should save their values on the S
%r9 | arg6 stack and then restore them.) Sh
Yorsp | I’s E
%rbp frame
registers old %rbp <
(not all of them) . 4

25

Callee Epilogue (Return Protocol)

—» movq ANS, %rax
Torip .,17 addq $128, %rsp
popq %rbp
retq
Step 1: Move the result
(if any) into %rax. A
g's

%rax |ANS — frame O
&
, O
%rdi | argl old %rbp -
Yorsi | arg2 | E
o
Yordx |arg3 arg7 S
Jorcx |arg4 args %
%r8 | argh &
—
Jor9 argb qb)D
’ —
Yorsp f S ©

%rbp frame

registers old %rbp <

(not all of them) . 4

Callee Epilogue (Return Protocol)

movqg ANS, %rax
Torip » addq $128, %rsp
popq %rbp
Step 2: deallocate the retq
scratch space :
g's
%rax ANS frame | o
7
. D)
%rdi | argl old %rbp ..‘6
Jorsi | arg2 o '8
-
%rdx | arg3 arg7 O
Jorcx | argd arg8 %
%r8 | argh &
—
%r9 | argb ‘ 32)0
Yorsp f’s i
%rbp frame
registers old %rbp <

(not all of them) . 4

Callee Epilogue (Return Protocol)

movq ANS, %rax
orip — addq $128, %rsp
> popq %rbp
Step 3: restore the caller’s retq
Y%rbp
g's

J%rax | ANS frame = o
&
Q

Jordi |argl =
O

Y%rsi | arg2 a1 >
-

%rdx | arg3 arg7 z

Yorcx | arg4 arg8 %

Jor8 | argh =
—

Jor9 argb qb)D

) P

Yorsp f’s k=

%rbp \ frame

registers * old %rbp

(not all of them) .

Callee Epilogue (Return Protocol)

movq ANS, %rax
Torip addq $128, %rsp
popq %rbp
Step 4: the return instruction > retq
pops the stack into %rip
g’s

%rax ANS frame O
7
D)

Jordi |argl =
g

Jorsi | arg2 7 Lo S
o

%rdx | arg3 arg7 S

Jorcx | argd arg8 %

%r8 | argh &
—

Jor9 argb GOJD

’ —

Yorsp f’s <

%orbp \ frame

registers * old %rbp

(not all of them) . 4

Callee Epilogue (Return Protocol)

... # set up arguments

Jorip .4‘ T— callg g

Step 4: the return instruction Lrer
pops the stack into %rip

%rax |ANS

Jordi |argl

Obrsi | arg2

Oordx |arg3 v arg7

Jorcx |arg4 args
Jr8 | argh
Jr9 argb
Yorsp f’s

%rbp \ frame

registers * old %rbp
(not all of them) . 4

larger memory addresses

®
Back in f
f:
... # set up arguments

Jorip 3 callg g

lret:

At this point, f has the result of
g in %rax. It should clean up its

stack as needed.

(not all of them)

Jorax R

Jordi |argl

Oorsi | arg2

Y%rdx | arg3 v arg?

Jorcx | argd arg8

‘ %r8 | argh

‘ %r9 | argb

Yorsp £’s
G%rbp | e frame
regisj\‘ old %rbp

larger memory addresses

31

X86-64 SYSTEM v AMD 64 ABI

More modern variant of C calling conventions
— used on Linux, Solaris, BSD, OS X

Callee save: %rbp, %rbx, %r12-%r15
Caller save: all others

Parameters 1 .. 6 go in: %rdi, %rsi, %rdx, %rcx, %18, %r9

Parameters 7+ go on the stack (in right-to-left order)
— so: for n > 6, the nth argument is located at (((n-7)+2)*8) (%rbp)
— e.g.: argument 7 is at 16(%rbp) and argument 8 is at 24 (%rbp)

Return value: in %rax

128 byte "red zone" — scratch pad for the callee's data
— typical of C compilers, not required
— can be optimised away

32

Announcements

e HW2: X86lite
* Due: Sunday, September 11 at 23:59

* Pair Programming:
* Use GitHub Classroom link to create a new team for the project or join an existing one
* Choose a funny group name!

e Submission by any group member done on Canvas counts for the group

Demo: Directly Compiling Expressions to X86lite

* https://github.com/cs4212/week-02-x86lite

* Definition of compilation: compile.ml
 Example programs: main2.ml

* Linking with assembly: calculator.c

34

Directly Translating AST to Assembly

* For simple languages, no need for intermediate representation.

— e.g. the arithmetic expression language from

e Main Idea: Maintain invariants

— e.g. Code emitted for a given expression always computes the answer into %rax

* Key Challenges:
— storing intermediate values needed to compute complex expressions

— some instructions use specific registers (e.g. shift)

One Simple Strategy

Compilation is the process of “emitting” instructions into an instruction stream.

To compile an expression, we recursively compile sub expressions and then process the results.

Invariants:

— Compilation of an expression yields its result in %rax
— Argument (Xi) is stored in a dedicated operand register
— Intermediate values are pushed onto the stack

— Stack slot is popped after use (so the space is reclaimed)

Resulting code is wrapped (e.g., with retq) to comply with cdecl calling conventions

Alternative strategy: see the compile2 in compile.ml

Intermediate Representations

Why do something else?

* We have seen a simple syntax-directed translation
— Input syntax uniquely determines the output, no complex analysis or code transformation is done.
— It works fine for simple languages.

But...
* The resulting code quality is poor.

* Richer source language features are hard to encode
— Structured data types, objects, first-class functions, etc.
* It’s hard to optimize the resulting assembly code.
— The representation is too concrete — e.g. it has committed to using certain registers and the stack

— Only a fixed number of registers
— Some instructions have restrictions on where the operands are located

* Control-flow is not structured:
— Arbitrary jumps from one code block to another

— Implicit fall-through makes sequences of code non-modular
(i.e. you can’t rearrange sequences of code easily)

* Retargeting the compiler to a new architecture is hard.
— Target assembly code is hard-wired into the translation

Intermediate Representations (IR’s)

* Abstract machine code: hides details of the target architecture

* Allows machine independent code generation and optimization.

X386

Java
Byte-
code

IR

\/

Optimization

Multiple IR’s

Goal: get program closer to machine code without losing the
information needed to do analysis and optimizations

In practice, multiple intermediate representations
might be used (for different purposes)

@

Optimization Optimization Arm

Optimizations

What makes a good IR?

Easy translation target (from the level above)
Easy to translate (to the level below)

Narrow interface

— Fewer constructs means simpler phases/optimizations

Example: Source language might have “while”, “for”, and “foreach” loops
(and maybe more variants)

— IR might have only “while” loops and sequencing

— Translation eliminates “for” and “foreach”

[for(pre; cond; post) {body}]

[pre; while(cond) {body;post}]

— Here the notation [cmd] denotes the “translation” or “compilation” of the command cmd.

IR’s at the extreme

* High-level IR’s
— Abstract syntax + new node types not generated by the parser
* e.g. Type checking information or disambiguated syntax nodes

— Typically preserves the high-level language constructs
e Structured control flow, variable names, methods, functions, etc.
* May do some simplification (e.g. convert for to while)

— Allows high-level optimizations based on program structure
e e.g. inlining “small” functions, reuse of constants, etc.

— Useful for semantic analyses like type checking

e Low-level IR’s

— Machine dependent assembly code + extra pseudo-instructions

* e.g. a pseudo instruction for interfacing with garbage collector or memory allocator (parts of the language runtime
system)

* e.g. (on x86) a imulqg instruction that doesn’t restrict register usage

— Source structure of the program is lost:
e Translation to assembly code is straightforward

— Allows low-level optimizations based on target architecture
* e.g. register allocation, instruction selection, memory layout, etc.

e What’s in between?

Mid-level IR’s: Many Varieties

Intermediate between AST (abstract syntax) and assembly
May have unstructured jumps, abstract registers, or memory locations

Convenient for translation to high-quality machine code

— Example: all intermediate values are named to facilitate optimizations that attempt to minimize stack/register usage

Many examples:

— Triples: OPab

» Useful for instruction selection on X86 via “graph tiling” (a way to better utilise registers)

— Quadruples: a=bOPc (RISC-like “three address form”)

— SSA: variant of quadruples where each variable is assigned exactly once

* Easy dataflow analysis for optimization
* e.g. LLVM: industrial-strength IR, based on SSA

— Stack-based:

* Easy to generate
* e.g. Java Bytecode, UCODE

Growing an IR

Develop an IR in detail... starting from the very basic.

Start: a (very) simple intermediate representation for the arithmetic language
— Very high level

— No control flow

Goal: A simple subset of the LLVM IR
— LLVM = “Lowe-level Virtual Machine”
— Used in HW3+

Add features needed to compile rich source languages

Simple let-based IR

Eliminating Nested Expressions

 Fundamental problem:

— Compiling complex & nested expression forms to simple operations.

Source ((1 + X4) + (3 + (X1 * 5)))

AST

IR

* Idea: name intermediate values, make order of evaluation explicit.

— No nested operations.

Translation to SLL

e @Given this:

e Translate to this desired SLL form:
let tmpO add 1L varX4 1in
let tmpl = mul varXl 5L in
let tmp2 = add 3L tmpl in
let tmp3 = add tmpO0 tmp2 in
tmp3

* Translation makes the order of evaluation explicit.
 Names intermediate values
* Note: introduced temporaries are never modified

Demo

e https://github.com/cs4212/week-03-ir-2024

e Using IRs: ir by hand.ml

e Definitions: ir<X>.ml

https://github.com/cs4212/week-03-ir-2024

Intermediate Representations

IR1: Expressions
— simple arithmetic expressions, immutable global variables

IR2: Commands
— global mutable variables

— commands for update and sequencing

IR3: Local control tlow

— conditional commands & while loops
— basic blocks

IR4: Procedures (top-level functions)
— local state
— call stack

IR5: ”almost” LLVM IR

IR3: Basic Blocks

* A sequence of instructions that is always executed starting at the first
instruction and always exits at the last instruction.

— Starts with a label that names the entry point of the basic block.
— Ends with a control-flow instruction (e.g. branch or return) the “link”

— Contains no other control-flow instructions

— Contains no interior label used as a jump target

* Basic blocks can be arranged into a control-flow graph

— Nodes are basic blocks

— There is a directed edge from node A to node B if the control flow instruction at the
end of basic block A might jump to the label of basic block B.

Next Lecture

c LILVM

