
Week 5: LLVMlite
Basics of Lexical Analysis

CS4212: Compiler Design

ilya@nus.edu.sg

ilyasergey.net/CS4212/

Ilya Sergey

mailto:ilya@nus.edu.sg
http://ilyasergey.net/CS4212/

This Week

• Working with data types in LLVM

• LLVMLite Specification

• Overview of HW3

• Lexical Analysis (basics)

• HW3: LLVMlite
– Will be available on Canvas and GitHub on Saturday.
– Due: Tuesday, 1 October 2024 at 23:59:59

Announcements

So, LLVM

• Open-Source Compiler Infrastructure
– see llvm.org for full documentation

• Created by Chris Lattner (advised by Vikram Adve) at UIUC
– LLVM: An infrastructure for Multi-stage Optimization, 2002
– LLVM: A Compilation Framework for Lifelong Program Analysis and Transformation, 2004

• 2005: Adopted by Apple for XCode 3.1
• Front ends:

– llvm-gcc (drop-in replacement for gcc)
– Clang: C, objective C, C++ compiler supported by Apple
– various languages: Swift, ADA, Scala, Haskell, …

• Back ends:
– x86 / Arm / Power / etc.

Low-Level Virtual Machine (LLVM)

LLVM Compiler Infrastructure

LLVM

frontends
like

'clang'

llc
backend
code gen

jit

Optimisations/
Transformations

Typed SSA
IR

Analysis

[Lattner et al.]

• LLVM offers a textual representation of its IR
– files ending in .ll

Example LLVM Code

#include <stdio.h>
#include <stdint.h>

int64_t factorial(int64_t n) {
 int64_t acc = 1;
 while (n > 0) {
 acc = acc * n;
 n = n - 1;
 }
 return acc;
}

factorial64.c

define @factorial(%n) {
 %1 = alloca
 %acc = alloca
 store %n, %1
 store 1, %acc
 br label %start

start:
 %3 = load %1
 %4 = icmp sgt %3, 0
 br %4, label %then, label %else

then:
 %6 = load %acc
 %7 = load %1
 %8 = mul %6, %7
 store %8, %acc
 %9 = load %1
 %10 = sub %9, 1
 store %10, %1
 br label %start

else:
 %12 = load %acc
 ret %12
}

factorial-pretty.ll

• Decorates values with type information
 i64  
 i64*  
 i1 (boolean)

• Permits numeric identifiers

• Has alignment annotations
(padding for some specified number of bytes)

• Keeps track of entry edges for each block:
 preds = %5, %0

Real LLVM
; Function Attrs: nounwind ssp
define i64 @factorial(i64 %n) #0 {
 %1 = alloca i64, align 8
 %acc = alloca i64, align 8
 store i64 %n, i64* %1, align 8
 store i64 1, i64* %acc, align 8
 br label %2

; <label>:2 ; preds = %5, %0
 %3 = load i64* %1, align 8
 %4 = icmp sgt i64 %3, 0
 br i1 %4, label %5, label %11

; <label>:5 ; preds = %2
 %6 = load i64* %acc, align 8
 %7 = load i64* %1, align 8
 %8 = mul nsw i64 %6, %7
 store i64 %8, i64* %acc, align 8
 %9 = load i64* %1, align 8
 %10 = sub nsw i64 %9, 1
 store i64 %10, i64* %1, align 8
 br label %2

; <label>:11 ; preds = %2
 %12 = load i64* %acc, align 8
 ret i64 %12
}

factorial.ll

%6 = load %acc
%7 = load %1
%8 = mul %6, %7
store %8, %acc
%9 = load %1
%10 = sub %9, 1
store %10, %1
br label %start

then:

%12 = load %acc
ret %12

else:

Example Control-flow Graph

%3 = load %1
%4 = icmp sgt %3, 0
br %4, label %then, label %else

start:

define @factorial(%n) {

}

define @factorial(%n) {
 %1 = alloca
 %acc = alloca
 store %n, %1
 store 1, %acc
 br label %start

start:
 %3 = load %1
 %4 = icmp sgt %3, 0
 br %4, label %then, label %else

then:
 %6 = load %acc
 %7 = load %1
 %8 = mul %6, %7
 store %8, %acc
 %9 = load %1
 %10 = sub %9, 1
 store %10, %1
 br label %start

else:
 %12 = load %acc
 ret %12
}

%1 = alloca
%acc = alloca
store %n, %1
store 1, %acc
br label %start

entry:

• LLVM enforces (some of) the basic block invariants syntactically.
• Representation in OCaml:

• A control flow graph is represented as a list of labeled basic blocks with these invariants:
– No two blocks have the same label
– All terminators mention only labels that are defined among the set of basic blocks
– There is a distinguished, unlabelled, entry block:

LL Basic Blocks and Control-Flow Graphs

type block = {
insns : (uid * insn) list;
term : (uid * terminator)

}

type cfg = block * (lbl * block) list

• Several kinds of storage:
– Local variables (or temporaries): %uid
– Global declarations (e.g. for string constants): @gid
– Abstract locations: references to (stack-allocated) storage created by the alloca instruction
– Heap-allocated structures created by external calls (e.g. to malloc)

• Local variables:
– Defined by the instructions of the form %uid = …
– Must satisfy the single static assignment (SSA) invariant

• Each %uid appears on the left-hand side of an assignment only once in the entire control flow graph.
– The value of a %uid remains unchanged throughout its lifetime
– Analogous to “let %uid = e in …” in OCaml

• Intended to be an abstract version of machine registers.

• Full “SSA” to allow richer use of local variables by taking the control flow into the account
– phi functions (https://en.wikipedia.org/wiki/Static_single-assignment_form)

LL Storage Model: Locals

https://en.wikipedia.org/wiki/Static_single-assignment_form

• The alloca instruction allocates stack space and returns a reference to it.
– The returned reference is stored in local:
 %ptr = alloca typ
– The amount of space allocated is determined by the type

• The contents of the slot are accessed via the load and store instructions:

 %acc = alloca i64 ; allocate a storage slot
store i64 4212, i64* %acc ; store the integer value 4212
%x = load i64, i64* %acc ; load the value 4212 into %x

• Gives an abstract version of stack slots

LL Storage Model: alloca

Structured Data

• Consider C-style structures like those below.

• How do we represent Point and Rect values?

Compiling Structured Data

struct Point { int x; int y; };  

struct Rect { struct Point ll, lr, ul, ur };  

struct Rect mk_square(struct Point ll, int len) {
 struct Rect square;
 square.ll = square.lr = square.ul = square.ur = ll;
 square.lr.x += len;
 square.ul.y += len;
 square.ur.x += len;
 square.ur.y += len;
 return square;
}

struct Point { int x; int y;}; 

• Store the data using two contiguous words of memory.
• Represent a Point value p as the address of the first word.

struct Rect { struct Point ll, lr, ul, ur };
• Store the data using 8 contiguous words of memory.

• Compiler needs to know the size of the struct at compile time to allocate the needed storage space.
• Compiler needs to know the shape of the struct at compile time to index into the structure.

Representing Structs

x yp

ll.x ll.y lr.x lr.y ul.x ul.y ur.x ur.ysquare

• Consider: ⟦square.ul.y⟧ = (x86.operand, x86.insns)

• Assume that %rcx holds the base address of square  

• Calculate the offset relative to the base pointer of the data:
– ul = sizeof(struct Point) + sizeof(struct Point)

– y = sizeof(int)

• So: ⟦square.ul.y⟧ = (ans, Movq 20(%rcx) ans)

Assembly-level Member Access

ll.x ll.y lr.x lr.y ul.x ul.y ur.x ur.ysquare

struct Point { int32 x; int32 y; }; 

struct Rect { struct Point ll, lr, ul, ur };

• How to lay out non-homogeneous structured data?

Padding & Alignment

struct Example {
 int x;
 char a;
 char b;
 int y;
};

x a b

a y

a yb

32-bit boundaries

Padding

x

x

y

b

Not 32-bit
aligned

When we do an assignment in C as in:

struct Rect mk_square(struct Point ll, int elen) {
 struct Square res;
 res.lr = ll; 

... 

then we copy all of the elements out of the source and put them
in the target. Same as doing word-level operations:

struct Rect mk_square(struct Point ll, int elen) {
 struct Square res;
 res.lr.x = ll.x;
 res.lr.y = ll.x;
 ... 

• For really large copies, the compiler uses something like memcpy
(which is implemented using a loop in assembly).

Copy-in/Copy-out

• Similarly, when we call a procedure, we copy arguments in, and copy results out.
– Caller sets aside extra space in its frame to store results that are bigger than will fit in %rax.
– We do the same with scalar values such as integers or doubles.

• Sometimes, this is termed "call-by-value".
– This is bad terminology.
– Copy-in/copy-out is more accurate.

• Benefit: locality
• Problem: expensive for large records…

• In C: can opt to pass pointers to structs: “call-by-reference”

• Languages like Java and OCaml always pass non-word-sized objects by reference.

C Procedure Calls

Representing Data Types

Working with Arrays

• Space is allocated on the stack for buf.
– Note, without the ability to allocated stack space dynamically (C’s alloca function)

need to know size of buf at compile time…

• buf[i] is really just
(base_of_array) + i * elt_size

Arrays
void foo() { void foo() {
 char buf[27]; char buf[27];

 buf[0] = 'a'; *(buf) = 'a';
 buf[1] = 'b'; *(buf+1) = 'b';

 buf[25] = 'z'; *(buf+25) = 'z';
 buf[26] = 0; *(buf+26) = 0;
} }

• In C, int M[4][3] yields an array with 4 rows and 3 columns.
• Laid out in row-major order:

• In Fortran, arrays are laid out in column major order.

• In ML and Java, there are no multi-dimensional arrays:
– (int array) array is represented as an array of pointers to arrays of ints.

• Why is knowing these memory layout strategies important?

Multi-Dimensional Arrays

M[0][0] M[0][1] M[0][2] M[1][0] M[1][1] M[1][2] M[2][0] …

M[0][0] M[1][0] M[2][0] M[3][0] M[0][1] M[1][1] M[2][1] …

• Safe languages (e.g. Java, C#, ML but not C, C++) check array indices to
ensure that they’re in bounds.

– Compiler generates code to test that the computed offset is legal

• Needs to know the size of the array… where to store it?
– One answer: Store the size before the array contents.

• Other possibilities:
– Pascal: only permit statically known array sizes (very unwieldy in practice)
– What about multi-dimensional arrays?

Array Bounds Checks

Size=7 A[0] A[1] A[2] A[3] A[4] A[5] A[6]
arr

• Example: Assume %rax holds the base pointer (arr) and %rcx holds the array index i.
To read a value from the array arr[i]:

 movq -8(%rax) %rdx // load size into rdx
 cmpq %rdx %rcx // compare index to bound
 j l __ok // jump if 0 <= i < size
 callq __err_oob // test failed, call the error handler
__ok:  

movq (%rax, %rcx, 8) dest // do the load from the array access

• Clearly more expensive: adds move, comparison & jump
– More memory traffic
– Hardware can improve performance: executing instructions in parallel, branch prediction

• These overheads are particularly bad in an inner loop
• Compiler optimisations can help remove the overhead

– e.g. In a for loop, if bound on index is known, only do the test once

Array Bounds Checks (Implementation)

• A string constant "foo" is represented as global data:
 _string42: 102 111 111 0  

• C uses null-terminated strings
• Strings are usually placed in the text segment so they are read only.

– allows all copies of the same string to be shared.

• Rookie mistake (in C): write to a string constant.

Attempting to modify the string literal is undefined behaviour.

• Instead, must allocate space on the heap:

C-style Strings

char *p = "foo”;
p[0] = 'b’;

char *p = (char *)malloc(4 * sizeof(char));
strncpy(p, “foo”, 4); /* include the null byte */
p[0] = 'b’;

Tagged Datatypes

• In C:

• In OCaml:

• Associate an integer tag with each case: sun = 0, mon = 1, …
– C lets programmers choose the tags

• OCaml datatypes can also carry data:

• Representation: a foo value is a pointer to a pair: (tag, data)
• Example: tag(Bar) = 0, tag(Baz) = 1
 ⟦let f = Bar(3)⟧ =

 ⟦let g = Baz(4, f)⟧ =

C-style Enumerations / ML-style datatypes

0 3f

enum Day {sun, mon, tue, wed, thu, fri, sat} today;

type day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

type foo = Bar of int | Baz of int * foo

1 4 fg

• Consider the C statement:

switch (e) {
case sun: s1; break;
case mon: s2; break;
…
case sat: s3; break;

}  

• How to compile this?
– What happens if some of the break statements are omitted?

(Control falls through to the next branch.)

Switch Compilation

⟦switch(e) {case tag1: s1; case tag2 s2; …}⟧ =

• Each $tag1…$tagN is just a constant int
tag value.

• Note: ⟦break;⟧
(within the switch branches) is:

 br %merge  

 Cascading ifs and Jumps

%tag = ⟦e⟧;
br label %l1  

l1: %cmp1 = icmp eq %tag, $tag1
br %cmp1 label %b1, label %l2

b1: ⟦s1⟧
br label %l2

l2: %cmp2 = icmp eq %tag, $tag2
br %cmp2 label %b2, label %l3

b2: ⟦s2⟧
br label %l3

…
lN: %cmpN = icmp eq %tag, $tagN

br %cmpN label %bN, label %merge
bN: ⟦sN⟧

br label %merge

merge:

• Nested if-then-else works OK in practice if # of branches is small
– (e.g. < 16 or so).

• For more branches, use better data structures to organise the jumps:
– Create a table of pairs (v1, branch_label) and loop through
– Or, do binary search rather than linear search
– Or, use a hash table rather than binary search

• One common case: the tags are dense in some range
[min…max]

– Let N = max – min
– Create a branch table Branches[N] where Branches[i] = branch_label for tag i.
– Compute tag = ⟦e⟧ and then do an indirect jump: J Branches[tag]

• Common to use heuristics to combine these techniques.

Alternatives for Switch Compilation

• ML-style match statements are like C’s switch statements except:
– Patterns can bind variables
– Patterns can nest

• Compilation strategy:
– “Flatten” nested patterns into matches against

one constructor at a time.
– Compile the match against the tags of the datatype

as for C-style switches.
– Code for each branch additionally must copy data from ⟦e⟧ to the variables bound in the patterns.

• There are many opportunities for optimisations, many papers about “pattern-match compilation”
– Many of these transformations can be done at the AST level

ML-style Pattern Matching

match e with
| Bar(z) -> e1  
| Baz(y, Bar(w)) -> e2
| _ -> e3

match e with
| Bar(z) -> e1  
| Baz(y, tmp) ->
 (match tmp with

| Bar(w) -> e2
| Baz(_, _) -> e3)

Good place for a break

Datatypes in LLVM IR

• LLVM’s IR is uses types to describe the structure of data.

• <#elts> is an integer constant >= 0
• Structure types can be named at the top level:

• Such structure types can be recursive

Structured Data in LLVM

t ::=
void
i1 | i8 | i64 N-bit integers
[<#elts> x t] arrays
fty function types
{t1, t2, … , tn} structures
t* pointers
%Tident named (identified) type

fty ::= Function Types
 t (t1, .., tn) return, argument types

%T1 = type {t1, t2, … , tn}

• A static array of 4212 integers: [4212 x i64]  

• A two-dimensional array of integers: [3 x [4 x i64]]  

• Structure for representing dynamically-allocated arrays with their length:
 { i64 , [0 x i64] }

– There is no array-bounds check; the static type information is only used for calculating pointer offsets.

• C-style linked lists (declared at the top level):
 %Node = type { i64, %Node*}  

• Structs from the C program shown earlier:
 %Rect = type { %Point, %Point, %Point, %Point }  

%Point = type { i64, i64 }

Example LL Types

• LLVM provides the getelementptr instruction to compute pointer values
– Given a pointer and a “path” through the structured data pointed to by that pointer,

getelementptr computes an address
– This is the abstract analog of the X86 LEA (load effective address). It does not access memory.
– It is a “type indexed” operation, since the size computations depend on the type

• Example: access the x component of the first point of a rectangle:

• The first is i32 0 a “step through” the pointer to, e.g., %square, with offset 0.

getelementptr

insn ::= …
| getelementptr t* %val, t1 idx1, t2 idx2 ,…

%tmp1 = getelementptr %Rect* %square, i32 0, i32 0
%tmp2 = getelementptr %Point* %tmp1, i32 0, i32 0

See “Why is the extra 0 index required?”: https://llvm.org/docs/GetElementPtr.html#why-is-the-extra-0-index-required

https://llvm.org/docs/GetElementPtr.html#why-is-the-extra-0-index-required

struct RT {
int A;
int B[10][20];
int C;

}
struct ST {

struct RT X;
int Y;
struct RT Z;

}
int *foo(struct ST *s) {
 return &s[1].Z.B[5][13];
}

GEP Example*

%RT = type { i32, [10 x [20 x i32]], i32 }
%ST = type { %RT, i32, %RT }
define i32* @foo(%ST* %s) {
entry:

%arrayidx = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
ret i32* %arrayidx

}

*adapted from the LLVM documentation: see http://llvm.org/docs/LangRef.html#getelementptr-instruction

1. %s is a pointer to an (array of) %ST structs,
suppose the pointer value is ADDR

2. Compute the index of the 1st element by
adding size_ty(%ST).

3. Compute the index of the Z field by
adding size_ty(%RT) +
size_ty(i32) to skip past X and Y.

4. Compute the index of the B field by
adding size_ty(i32) to skip past A.

5. Index into the 2d array.

Final answer: ADDR + size_ty(%ST) + size_ty(%RT) + size_ty(i32)  
 + size_ty(i32) + 5*20*size_ty(i32) + 13*size_ty(i32)

http://llvm.org/docs/LangRef.html#getelementptr-instruction

• GEP never dereferences the address it’s calculating:
– GEP only produces pointers by doing arithmetic
– It doesn’t actually traverse the links of a data structure

• To index into a deeply nested structure, one has to “follow the pointer” by
loading from the computed pointer

getelementptr

1. Translate high level language types into an LLVM representation type.
– For some languages (e.g. C) this process is straightforward

• The translation simply uses platform-specific alignment and padding
– For other languages, (e.g. OO languages) there might be a fairly complex

elaboration.
• e.g. for OCaml, arrays types might be translated to pointers to length-indexed structs.

⟦int array⟧ = {i32, [0 x i32]}*  

2. Translate accesses of the data into getelementptr operations:
– e.g. for OCaml array size access:

⟦length a⟧ =
%1 = getelementptr {i32, [0 x i32]}* %a, i32 0, i32 0

Compiling Data Structures via LLVM

• What if the LLVM IR’s type system isn’t expressive enough?
– e.g. if the source language has subtyping, perhaps due to inheritance
– e.g. if the source language has polymorphic/generic types

• LLVM IR provides a bitcast instruction
– This is a form of (potentially) unsafe cast. Misuse can cause serious bugs

(segmentation faults, or silent memory corruption)

Type Casting

%rect2 = type { i64, i64 } ; two-field record
%rect3 = type { i64, i64, i64 } ; three-field record

define @foo() {
 %1 = alloca %rect3 ; allocate a three-field record
 %2 = bitcast %rect3* %1 to %rect2* ; safe cast
 %3 = getelementptr %rect2* %2, i32 0, i32 1 ; allowed
 …
}

LLVMlite Specification

https://ilyasergey.net/CS4212/hw03-llvmlite-spec.html

https://ilyasergey.net/CS4212/hw03-llvmlite-spec.html

• A C-like “weak type system” to statically rule out some malformed programs.
• A variety of different kinds of integer values, pointers, function pointers, and

structured data including strings, arrays, and structs.
• Top-level mutually-recursive function definitions and function calls as primitives.
• An infinite number of “locals” (also known as “pseudo-registers”, “SSA variables”, or

“temporaries”) to hold intermediate results of computations.
• An abstract memory model that doesn't constrain the layout of data in memory.
• Dynamically allocated memory associated with a function invocation (in C, the stack).
• Static and dynamically (heap) allocated structured data.
• A control-flow graph representation of function bodies.

LLVMlite features

Syntax

Example

Docs » LLVMlite Specifica�on

LLVMlite Specification

Overview

LLVMlite is a small subset of the LLVM IR that we will be using throughout the course as the
intermediate representa�on in our compiler. Conceptually, it is either an abstract assembly-like
language or an even lower-level C-like language that is convenient to manipulate programa�cally.

LLVMlite's features include:

A C-like "weak type system" to sta�cally rule out some malformed programs. More on this later.
A variety of different kinds of integer values, pointers, func�on pointers, and structured data
including strings, arrays, and structs.
Top-level mutually-recursive func�on defini�ons and func�on calls as primi�ves.
An infinite number of "locals" (also known as "pseudoregisters", "SSA variables", or
"temporaries") to hold intermediate results of computa�ons.
An abstract memory model that doesn't constrain the layout of data in memory.
Dynamically allocated memory associated with a func�on invoca�on (in C, the stack).
Sta�c and dynamically (heap) allocated structured data.heap
A control-flow graph representa�on of func�on bodies.

This document explains the structure of well-formed LLVMlite programs, the seman�cs of LLVMlite
in terms of an abstract machine, and the relevant parts of the code provided with the assignments.
A descrip�on of the full LLVM intermediate representa�on can be found in the LLVM Language
Reference.

LLVMlite Syntax

 define i64 @fac(i64 %n) { ; (1)
 %1 = icmp sle i64 %n, 0 ; (2)
 br i1 %1, label %ret, label %rec ; (3)
 ret: ; (4)
 ret i64 1
 rec: ; (5)
 %2 = sub i64 %n, 1 ; (6)
 %3 = call i64 @fac(i64 %2) ; (7)
 %4 = mul i64 %n, %3
 ret i64 %4 ; (8)
 }

 define i64 @main() { ; (9)
 %1 = call i64 @fac(i64 6)
 ret i64 %1
 }

First, no�ce the func�on defini�on at (1). The i64 annota�ons declare the return type and the
type of the argument n . The argument is prefixed with " % " to indicate that it's an iden�fier local
to the func�on, while fac is prefixed with " @ " to indicate that it is global (i.e. in scope in the
en�re compila�on unit).

Next, at (2) we have the first instruc�on of the body of fac , which performs a signed comparison
of the argument %n and 0 and assigns the result to the temporary %1 . The instruc�on at (3) is a
"terminator", and marks the end of the current block. It will transfer control to either
ret at (4) or rec at (5). The labels at (4) and (5) each indicate the beginning of a new block of

instruc�ons. No�ce that the entry block star�ng at (2) is not labeled: in LLVM it is illegal to jump
back to the entry block of a func�on body. Moving on, (6) performs a subtrac�on and names the
result %2. The i64 annota�on indicates that both operands are 64-bit integers. The func�on fac

is called at (7), and the result named %3. Again, the i64 annota�ons indicate that the single
argument and the returned value are 64-bit integers.

Finally, (8) returns from the func�on with the result named by %4 , and (9) defines the main
func�on of the program, which simply calls fac with a literal i64 argument.

Program Structure

LLVMlite programs consist of three types of global defini�ons: func�on defini�ons, global data
defini�ons, and named type defini�ons, which may be interleaved. These defini�ons are in scope
for the en�re compila�on unit, may be mutually recursive, and need not be declared in order.

Types

Func�ons, global data defini�ons, and instruc�on are explicitly annotated with types. These are
divided into "simple" types that may appear on the stack and as arguments to func�ons and
"aggregate" types that may only appear in global and heap-allocated data. (Unlike heap full LLVM, LLVM
lite does not allow locals to hold structured data.) There is also a "void" type that only appears in
the return type of instruc�ons and func�ons that do not return a value. This is essen�ally the ML

function definition, argument prefixed with %
signed comparison, result assigned to %1
“terminator”, marks the end of the block
label, indicates the beginning of the new block
return the result (1)
another block
subtract 1 from %n, name result %2
call function @fac, assign the result for %3

return result

call @fac with the argument 6

LLVMlite types

unit type, but it has the addi�onal restric�on that it cannot appear as the type of an operand, so it
is actually illegal to give it a name in the LLVM concrete syntax. In the following table we use T to
range over simple and aggregate (non-void, non-func�on) types,
F to range over function types, and S to range over simple types.

Concrete Syntax Kind Descrip�on

void void Indicates the instruc�on does not return a usable value.

i1, i64 simple 1-bit (boolean) and 64-bit integer values.

T* simple Pointer that can be dereferenced if its target is compa�ble with T

i8* simple Pointer to the first character in a null-terminated array of bytes.
Note: i8* is a valid type, but just i8 is not. LLVMlite programs
do not operate over byte-sized integer values.

F* simple Func�on pointer

S(S1, ..., SN) func�on A func�on from S1, ..., SN to S

void(S1, ..., SN) func�on A func�on from S1, ..., SN to void

{ T1, ..., TN } aggregate Tuple of values of types T1, ..., TN

[N x T] aggregate Exactly N values of type T

%NAME * Abbrevia�on defined by a top-level named type defini�on

Named Types

Named type defini�ons

%IDENT = type T

define abbrevia�ons for types in the scope of the en�re compila�on unit. The following
specifica�on assumes that these are replaced with their defini�ons whenever they are
encountered. Note that recursive types, in which T mentions %IDENT are allowed, but for the type
to be well formed, each such recursive occurrence must appear under a * . More generally, any
collec�on of named types may be mutually recursive (i.e. the names may appear in the the
defini�ons), but each cycle of such references must be broken by a * .

Global Definitions

The next kind of top-level defini�on is global data

@IDENT = global T G

where G ranges over global ini�alizers, described in the following table, and T is the associated
type. The global iden�fier @IDENT, when used in the program, has type T* . For example, the
following program fragment has valid annota�ons:

 @foo = global i64 42
 @bar = global i64* @foo
 @baz = global i64** @bar

Concrete Syntax Type Descrip�on

null T* The null pointer constant.

[0-9]+ i64 64-bit integer literal.

@IDENT T* Global iden�fier. The type is always a pointer of the
type associated with the global defini�on.

c"[A-z]*\00" [N x i8] String literal. The size of the array N should be the
length of the string in bytes, including the null
terminator \00 .

[T G1, ..., T GN] [N x T] Array literal.

{ T1 G1, ..., TN GN } {T1,...,TN} Struct literal.

bitcast (T1* G1 to T2*) T2* Bitcast.

Operands

We now turn to the parts of a func�on declara�on. Each instruc�on in a func�on has zero or more
operands which for the purposes of determining the well-formedness of programs, are restricted to
the following types.

Concrete Syntax Type Descrip�on

null T* The null pointer constant

[0-9]+ i64 64-bit integer literal

@IDENT T* Global iden�fier. The type can always be determined from the
global defini�ons and is always a pointer

%IDENT S Local iden�fier: can only name values of simple type. The type
determined by an local defini�on of %IDENT in scope

Instructions and Terminators

The following table describes the restric�ons on the types that may appear as parameters of well-
formed instruc�ons, and the constraints on the operands and result of the instruc�on for the
purposes of type-checking. We assume that named types have been replace by their defini�ons.

For example, in the call instruc�on, each type parameter S1, ..., SN must be a simple type.
When we type check a program containing this instruc�on, we must make sure that the operand
OP1 has exactly the function pointer type S1(S2, ..., SN)* , and that the remaining operands

• Simple types appear on stack and as arguments to functions
• Aggregate types that may only appear in global and heap-allocated data
• One can define abbreviations for types:

%IDENT = type T

Global Definitions

unit type, but it has the addi�onal restric�on that it cannot appear as the type of an operand, so it
is actually illegal to give it a name in the LLVM concrete syntax. In the following table we use T to
range over simple and aggregate (non-void, non-func�on) types,
F to range over function types, and S to range over simple types.

Concrete Syntax Kind Descrip�on

void void Indicates the instruc�on does not return a usable value.

i1, i64 simple 1-bit (boolean) and 64-bit integer values.

T* simple Pointer that can be dereferenced if its target is compa�ble with T

i8* simple Pointer to the first character in a null-terminated array of bytes.
Note: i8* is a valid type, but just i8 is not. LLVMlite programs
do not operate over byte-sized integer values.

F* simple Func�on pointer

S(S1, ..., SN) func�on A func�on from S1, ..., SN to S

void(S1, ..., SN) func�on A func�on from S1, ..., SN to void

{ T1, ..., TN } aggregate Tuple of values of types T1, ..., TN

[N x T] aggregate Exactly N values of type T

%NAME * Abbrevia�on defined by a top-level named type defini�on

Named Types

Named type defini�ons

%IDENT = type T

define abbrevia�ons for types in the scope of the en�re compila�on unit. The following
specifica�on assumes that these are replaced with their defini�ons whenever they are
encountered. Note that recursive types, in which T mentions %IDENT are allowed, but for the type
to be well formed, each such recursive occurrence must appear under a * . More generally, any
collec�on of named types may be mutually recursive (i.e. the names may appear in the the
defini�ons), but each cycle of such references must be broken by a * .

Global Definitions

The next kind of top-level defini�on is global data

@IDENT = global T G

where G ranges over global ini�alizers, described in the following table, and T is the associated
type. The global iden�fier @IDENT, when used in the program, has type T* . For example, the
following program fragment has valid annota�ons:

 @foo = global i64 42
 @bar = global i64* @foo
 @baz = global i64** @bar

Concrete Syntax Type Descrip�on

null T* The null pointer constant.

[0-9]+ i64 64-bit integer literal.

@IDENT T* Global iden�fier. The type is always a pointer of the
type associated with the global defini�on.

c"[A-z]*\00" [N x i8] String literal. The size of the array N should be the
length of the string in bytes, including the null
terminator \00 .

[T G1, ..., T GN] [N x T] Array literal.

{ T1 G1, ..., TN GN } {T1,...,TN} Struct literal.

bitcast (T1* G1 to T2*) T2* Bitcast.

Operands

We now turn to the parts of a func�on declara�on. Each instruc�on in a func�on has zero or more
operands which for the purposes of determining the well-formedness of programs, are restricted to
the following types.

Concrete Syntax Type Descrip�on

null T* The null pointer constant

[0-9]+ i64 64-bit integer literal

@IDENT T* Global iden�fier. The type can always be determined from the
global defini�ons and is always a pointer

%IDENT S Local iden�fier: can only name values of simple type. The type
determined by an local defini�on of %IDENT in scope

Instructions and Terminators

The following table describes the restric�ons on the types that may appear as parameters of well-
formed instruc�ons, and the constraints on the operands and result of the instruc�on for the
purposes of type-checking. We assume that named types have been replace by their defini�ons.

For example, in the call instruc�on, each type parameter S1, ..., SN must be a simple type.
When we type check a program containing this instruc�on, we must make sure that the operand
OP1 has exactly the function pointer type S1(S2, ..., SN)* , and that the remaining operands

unit type, but it has the addi�onal restric�on that it cannot appear as the type of an operand, so it
is actually illegal to give it a name in the LLVM concrete syntax. In the following table we use T to
range over simple and aggregate (non-void, non-func�on) types,
F to range over function types, and S to range over simple types.

Concrete Syntax Kind Descrip�on

void void Indicates the instruc�on does not return a usable value.

i1, i64 simple 1-bit (boolean) and 64-bit integer values.

T* simple Pointer that can be dereferenced if its target is compa�ble with T

i8* simple Pointer to the first character in a null-terminated array of bytes.
Note: i8* is a valid type, but just i8 is not. LLVMlite programs
do not operate over byte-sized integer values.

F* simple Func�on pointer

S(S1, ..., SN) func�on A func�on from S1, ..., SN to S

void(S1, ..., SN) func�on A func�on from S1, ..., SN to void

{ T1, ..., TN } aggregate Tuple of values of types T1, ..., TN

[N x T] aggregate Exactly N values of type T

%NAME * Abbrevia�on defined by a top-level named type defini�on

Named Types

Named type defini�ons

%IDENT = type T

define abbrevia�ons for types in the scope of the en�re compila�on unit. The following
specifica�on assumes that these are replaced with their defini�ons whenever they are
encountered. Note that recursive types, in which T mentions %IDENT are allowed, but for the type
to be well formed, each such recursive occurrence must appear under a * . More generally, any
collec�on of named types may be mutually recursive (i.e. the names may appear in the the
defini�ons), but each cycle of such references must be broken by a * .

Global Definitions

The next kind of top-level defini�on is global data

@IDENT = global T G

where G ranges over global ini�alizers, described in the following table, and T is the associated
type. The global iden�fier @IDENT, when used in the program, has type T* . For example, the
following program fragment has valid annota�ons:

 @foo = global i64 42
 @bar = global i64* @foo
 @baz = global i64** @bar

Concrete Syntax Type Descrip�on

null T* The null pointer constant.

[0-9]+ i64 64-bit integer literal.

@IDENT T* Global iden�fier. The type is always a pointer of the
type associated with the global defini�on.

c"[A-z]*\00" [N x i8] String literal. The size of the array N should be the
length of the string in bytes, including the null
terminator \00 .

[T G1, ..., T GN] [N x T] Array literal.

{ T1 G1, ..., TN GN } {T1,...,TN} Struct literal.

bitcast (T1* G1 to T2*) T2* Bitcast.

Operands

We now turn to the parts of a func�on declara�on. Each instruc�on in a func�on has zero or more
operands which for the purposes of determining the well-formedness of programs, are restricted to
the following types.

Concrete Syntax Type Descrip�on

null T* The null pointer constant

[0-9]+ i64 64-bit integer literal

@IDENT T* Global iden�fier. The type can always be determined from the
global defini�ons and is always a pointer

%IDENT S Local iden�fier: can only name values of simple type. The type
determined by an local defini�on of %IDENT in scope

Instructions and Terminators

The following table describes the restric�ons on the types that may appear as parameters of well-
formed instruc�ons, and the constraints on the operands and result of the instruc�on for the
purposes of type-checking. We assume that named types have been replace by their defini�ons.

For example, in the call instruc�on, each type parameter S1, ..., SN must be a simple type.
When we type check a program containing this instruc�on, we must make sure that the operand
OP1 has exactly the function pointer type S1(S2, ..., SN)* , and that the remaining operands

unit type, but it has the addi�onal restric�on that it cannot appear as the type of an operand, so it
is actually illegal to give it a name in the LLVM concrete syntax. In the following table we use T to
range over simple and aggregate (non-void, non-func�on) types,
F to range over function types, and S to range over simple types.

Concrete Syntax Kind Descrip�on

void void Indicates the instruc�on does not return a usable value.

i1, i64 simple 1-bit (boolean) and 64-bit integer values.

T* simple Pointer that can be dereferenced if its target is compa�ble with T

i8* simple Pointer to the first character in a null-terminated array of bytes.
Note: i8* is a valid type, but just i8 is not. LLVMlite programs
do not operate over byte-sized integer values.

F* simple Func�on pointer

S(S1, ..., SN) func�on A func�on from S1, ..., SN to S

void(S1, ..., SN) func�on A func�on from S1, ..., SN to void

{ T1, ..., TN } aggregate Tuple of values of types T1, ..., TN

[N x T] aggregate Exactly N values of type T

%NAME * Abbrevia�on defined by a top-level named type defini�on

Named Types

Named type defini�ons

%IDENT = type T

define abbrevia�ons for types in the scope of the en�re compila�on unit. The following
specifica�on assumes that these are replaced with their defini�ons whenever they are
encountered. Note that recursive types, in which T mentions %IDENT are allowed, but for the type
to be well formed, each such recursive occurrence must appear under a * . More generally, any
collec�on of named types may be mutually recursive (i.e. the names may appear in the the
defini�ons), but each cycle of such references must be broken by a * .

Global Definitions

The next kind of top-level defini�on is global data

@IDENT = global T G

where G ranges over global ini�alizers, described in the following table, and T is the associated
type. The global iden�fier @IDENT, when used in the program, has type T* . For example, the
following program fragment has valid annota�ons:

 @foo = global i64 42
 @bar = global i64* @foo
 @baz = global i64** @bar

Concrete Syntax Type Descrip�on

null T* The null pointer constant.

[0-9]+ i64 64-bit integer literal.

@IDENT T* Global iden�fier. The type is always a pointer of the
type associated with the global defini�on.

c"[A-z]*\00" [N x i8] String literal. The size of the array N should be the
length of the string in bytes, including the null
terminator \00 .

[T G1, ..., T GN] [N x T] Array literal.

{ T1 G1, ..., TN GN } {T1,...,TN} Struct literal.

bitcast (T1* G1 to T2*) T2* Bitcast.

Operands

We now turn to the parts of a func�on declara�on. Each instruc�on in a func�on has zero or more
operands which for the purposes of determining the well-formedness of programs, are restricted to
the following types.

Concrete Syntax Type Descrip�on

null T* The null pointer constant

[0-9]+ i64 64-bit integer literal

@IDENT T* Global iden�fier. The type can always be determined from the
global defini�ons and is always a pointer

%IDENT S Local iden�fier: can only name values of simple type. The type
determined by an local defini�on of %IDENT in scope

Instructions and Terminators

The following table describes the restric�ons on the types that may appear as parameters of well-
formed instruc�ons, and the constraints on the operands and result of the instruc�on for the
purposes of type-checking. We assume that named types have been replace by their defini�ons.

For example, in the call instruc�on, each type parameter S1, ..., SN must be a simple type.
When we type check a program containing this instruc�on, we must make sure that the operand
OP1 has exactly the function pointer type S1(S2, ..., SN)* , and that the remaining operands

Operands of functions

unit type, but it has the addi�onal restric�on that it cannot appear as the type of an operand, so it
is actually illegal to give it a name in the LLVM concrete syntax. In the following table we use T to
range over simple and aggregate (non-void, non-func�on) types,
F to range over function types, and S to range over simple types.

Concrete Syntax Kind Descrip�on

void void Indicates the instruc�on does not return a usable value.

i1, i64 simple 1-bit (boolean) and 64-bit integer values.

T* simple Pointer that can be dereferenced if its target is compa�ble with T

i8* simple Pointer to the first character in a null-terminated array of bytes.
Note: i8* is a valid type, but just i8 is not. LLVMlite programs
do not operate over byte-sized integer values.

F* simple Func�on pointer

S(S1, ..., SN) func�on A func�on from S1, ..., SN to S

void(S1, ..., SN) func�on A func�on from S1, ..., SN to void

{ T1, ..., TN } aggregate Tuple of values of types T1, ..., TN

[N x T] aggregate Exactly N values of type T

%NAME * Abbrevia�on defined by a top-level named type defini�on

Named Types

Named type defini�ons

%IDENT = type T

define abbrevia�ons for types in the scope of the en�re compila�on unit. The following
specifica�on assumes that these are replaced with their defini�ons whenever they are
encountered. Note that recursive types, in which T mentions %IDENT are allowed, but for the type
to be well formed, each such recursive occurrence must appear under a * . More generally, any
collec�on of named types may be mutually recursive (i.e. the names may appear in the the
defini�ons), but each cycle of such references must be broken by a * .

Global Definitions

The next kind of top-level defini�on is global data

@IDENT = global T G

where G ranges over global ini�alizers, described in the following table, and T is the associated
type. The global iden�fier @IDENT, when used in the program, has type T* . For example, the
following program fragment has valid annota�ons:

 @foo = global i64 42
 @bar = global i64* @foo
 @baz = global i64** @bar

Concrete Syntax Type Descrip�on

null T* The null pointer constant.

[0-9]+ i64 64-bit integer literal.

@IDENT T* Global iden�fier. The type is always a pointer of the
type associated with the global defini�on.

c"[A-z]*\00" [N x i8] String literal. The size of the array N should be the
length of the string in bytes, including the null
terminator \00 .

[T G1, ..., T GN] [N x T] Array literal.

{ T1 G1, ..., TN GN } {T1,...,TN} Struct literal.

bitcast (T1* G1 to T2*) T2* Bitcast.

Operands

We now turn to the parts of a func�on declara�on. Each instruc�on in a func�on has zero or more
operands which for the purposes of determining the well-formedness of programs, are restricted to
the following types.

Concrete Syntax Type Descrip�on

null T* The null pointer constant

[0-9]+ i64 64-bit integer literal

@IDENT T* Global iden�fier. The type can always be determined from the
global defini�ons and is always a pointer

%IDENT S Local iden�fier: can only name values of simple type. The type
determined by an local defini�on of %IDENT in scope

Instructions and Terminators

The following table describes the restric�ons on the types that may appear as parameters of well-
formed instruc�ons, and the constraints on the operands and result of the instruc�on for the
purposes of type-checking. We assume that named types have been replace by their defini�ons.

For example, in the call instruc�on, each type parameter S1, ..., SN must be a simple type.
When we type check a program containing this instruc�on, we must make sure that the operand
OP1 has exactly the function pointer type S1(S2, ..., SN)* , and that the remaining operands

• Let’s discuss the meaning of these types
• The getelementptr instruction has some additional well-formedness requirements

(see the specification)

Types of instructionsOP2, ..., OPN have types S2, ..., SN .

Concrete Syntax Operand → Result Types

%L = BOP i64 OP1, OP2 i64 x i64 → i64

%L = alloca S - → S*

%L = load S* OP S* → S

store S OP1, S* OP2 S x S* → void

%L = icmp CND S OP1, OP2 S x S → i1

%L = call S1 OP1(S2 OP2, ..., SN OPN) S1(S2, ..., SN)* x S2 x ... x SN → S1

call void OP1(S2 OP2, ... ,SN OPN) void(S2, ..., SN)* x S2 x ... x SN → void

%L = getelementptr T1* OP1, i32 OP2, ..., i32 OPN T1* x i64 x ... x i64 -> GEPTY(T1, OP1, ..., OPN)*

%L = bitcast T1* OP to T2* T1* → T2*

Getelementptr Well-Formedness and Result Type

The getelementptr instruc�on has some addi�onal well-formedness requirements. Operands a�er
the first must all be constants, unless they are used to index into an array. LLVM actually requires
the operands used to index into structs to be 32-bit integers. Rather than introducing 32-bit
integers into our language, we will use our 64-bit constants and operands and assume the
arguments of getelementptr always fall in the range [0, Int32.max_int].

In the table above, the result type of a getelementptr instruc�on described using the GEPTY
func�on, which is defined in pseudocode as follows:

GEPTY : T -> operand list -> T
GEPTY : T operand::path' = GEPTY' T path'

GEPTY' : T -> operand list -> T
GEPTY' T [] = T
GEPTY' { T1, ..., TN } (Const m)::path' = GEPTY' TM path' when m <= N
GEPTY' [_ x T] operand::path' = GEPTY' T path'

No�ce that GEPTY is a par�al func�on. When GEPTY is not defined, the corresponding instruc�on
is malformed. This happens when, for example:

The list of index operands provided is empty
An operand used to index a struct is not a constant
The type is not an aggregate and the list of indices is not empty

Also no�ce that a GEP instruc�on that indexes beyond the size of an array is well-formed. The
length informa�on on array tags is only present to help the compiler lay out data in memory and is
not verified sta�cally.

Blocks, CFGs, and Function Definitions

A block (or "basic" block) is just a sequence of instruc�ons followed by a terminator:

Concrete Syntax Operand → Result Types

ret void - → -

ret S OP S → -

br label %LAB - → -

br i1 OP, label %LAB1, label %LAB2 i1 → -

The body of a func�on is represented by a control flow graph (CFG). A CFG consists of a
dis�nguished entry block and a sequence blocks of prefixed with a label LAB: . A func�on
defini�on has a return type, the func�on name, a list of formal parameters and their types, and the
body of the func�on. The full syntax of a func�on defini�on is then:

define [S|void] @IDENT(S1 OP, ... , SN OP) { BLOCK (LAB: BLOCK)...}

Like global data defini�ons, the type of the defined global iden�fier @IDENT is S(S1, ... , SN)* or
void(S1, ... , SN)* , a func�on pointer.

There are some addi�onal global well-formedness requirements for func�on defini�ons. Each label
and local defini�on must be unique. In this way, a local iden�fier both names the result of an
instruc�on and serves to iden�fy the instruc�on within a func�on body. For the locals in a CFG to
be well scoped, there must never be a path to a use of a local that does not pass through its
defini�on. We will not go into the details here.

LLVMlite Semantics

Abstract Machine

Like for X86lite, we define the seman�cs of LLVMlite by describing the execu�on of an abstract
machine. One major difference between the LLVMlite machine and our x86 simulator is that we
specify an explicit stack, heap, code, and global memory. While these structures were present inheap
X86lite as conven�ons on how areas of memory and registers were used during program execu�on,
legal programs were free to, for example, write over the return address on the stack and jump to
arbitrary loca�ons in memory. The defini�on of LLVMlite, on the other hand, enforces some of the
abstrac�ons present in C-like languages.

GEP Type

• GEPTY is a partial function.
• When GEPTY is not defined, the corresponding instruction is malformed.
• This happens when, for example:

• The list of index operands provided is empty
• An operand used to index a struct is not a constant
• The type is not an aggregate and the list of indices is not empty

OP2, ..., OPN have types S2, ..., SN .

Concrete Syntax Operand → Result Types

%L = BOP i64 OP1, OP2 i64 x i64 → i64

%L = alloca S - → S*

%L = load S* OP S* → S

store S OP1, S* OP2 S x S* → void

%L = icmp CND S OP1, OP2 S x S → i1

%L = call S1 OP1(S2 OP2, ..., SN OPN) S1(S2, ..., SN)* x S2 x ... x SN → S1

call void OP1(S2 OP2, ... ,SN OPN) void(S2, ..., SN)* x S2 x ... x SN → void

%L = getelementptr T1* OP1, i32 OP2, ..., i32 OPN T1* x i64 x ... x i64 -> GEPTY(T1, OP1, ..., OPN)*

%L = bitcast T1* OP to T2* T1* → T2*

Getelementptr Well-Formedness and Result Type

The getelementptr instruc�on has some addi�onal well-formedness requirements. Operands a�er
the first must all be constants, unless they are used to index into an array. LLVM actually requires
the operands used to index into structs to be 32-bit integers. Rather than introducing 32-bit
integers into our language, we will use our 64-bit constants and operands and assume the
arguments of getelementptr always fall in the range [0, Int32.max_int].

In the table above, the result type of a getelementptr instruc�on described using the GEPTY
func�on, which is defined in pseudocode as follows:

GEPTY : T -> operand list -> T
GEPTY T operand::path' = GEPTY' T path'

GEPTY' : T -> operand list -> T
GEPTY' T [] = T
GEPTY' { T1, ..., TN } (Const m)::path' = GEPTY' Tm path' when m <= N
GEPTY' [_ x T] operand::path' = GEPTY' T path'

No�ce that GEPTY is a par�al func�on. When GEPTY is not defined, the corresponding instruc�on
is malformed. This happens when, for example:

The list of index operands provided is empty
An operand used to index a struct is not a constant
The type is not an aggregate and the list of indices is not empty

Also no�ce that a GEP instruc�on that indexes beyond the size of an array is well-formed. The
length informa�on on array tags is only present to help the compiler lay out data in memory and is
not verified sta�cally.

Blocks, CFGs, and Function Definitions

A block (or "basic" block) is just a sequence of instruc�ons followed by a terminator:

Concrete Syntax Operand → Result Types

ret void - → -

ret S OP S → -

br label %LAB - → -

br i1 OP, label %LAB1, label %LAB2 i1 → -

The body of a func�on is represented by a control flow graph (CFG). A CFG consists of a
dis�nguished entry block and a sequence blocks of prefixed with a label LAB: . A func�on
defini�on has a return type, the func�on name, a list of formal parameters and their types, and the
body of the func�on. The full syntax of a func�on defini�on is then:

define [S|void] @IDENT(S1 OP, ... , SN OP) { BLOCK (LAB: BLOCK)...}

Like global data defini�ons, the type of the defined global iden�fier @IDENT is S(S1, ... , SN)* or
void(S1, ... , SN)* , a func�on pointer.

There are some addi�onal global well-formedness requirements for func�on defini�ons. Each label
and local defini�on must be unique. In this way, a local iden�fier both names the result of an
instruc�on and serves to iden�fy the instruc�on within a func�on body. For the locals in a CFG to
be well scoped, there must never be a path to a use of a local that does not pass through its
defini�on. We will not go into the details here.

LLVMlite Semantics

Abstract Machine

Like for X86lite, we define the seman�cs of LLVMlite by describing the execu�on of an abstract
machine. One major difference between the LLVMlite machine and our x86 simulator is that we
specify an explicit stack, heap, code, and global memory. While these structures were present in
X86lite as conven�ons on how areas of memory and registers were used during program execu�on,
legal programs were free to, for example, write over the return address on the stack and jump to
arbitrary loca�ons in memory. The defini�on of LLVMlite, on the other hand, enforces some of the
abstrac�ons present in C-like languages.

• Real LLVM requires that constants appearing in getelementptr be declared with type i32:

• LLVMlite ignores the i32 annotation and treats these as i64 values
– we keep the i32 annotation in the syntax to retain compatibility with the clang compiler
– we assume the arguments of getelementptr always fall in the range [0, Int32.max_int].

Notes on GEP

%struct = type { i64, [5 x i64], i64}

@gbl = global %struct {i64 1,  
 [5 x i64] [i64 2, i64 3, i64 4, i64 5, i64 6], i64 7}

define void @foo() {
 %1 = getelementptr %struct* @gbl, i32 0, i32 0
 …
}

Blocks, CFGs, and Function Definitions

• A block is just a sequence of instructions followed by a terminator

OP2, ..., OPN have types S2, ..., SN .

Concrete Syntax Operand → Result Types

%L = BOP i64 OP1, OP2 i64 x i64 → i64

%L = alloca S - → S*

%L = load S* OP S* → S

store S OP1, S* OP2 S x S* → void

%L = icmp CND S OP1, OP2 S x S → i1

%L = call S1 OP1(S2 OP2, ..., SN OPN) S1(S2, ..., SN)* x S2 x ... x SN → S1

call void OP1(S2 OP2, ... ,SN OPN) void(S2, ..., SN)* x S2 x ... x SN → void

%L = getelementptr T1* OP1, i32 OP2, ..., i32 OPN T1* x i64 x ... x i64 -> GEPTY(T1, OP1, ..., OPN)*

%L = bitcast T1* OP to T2* T1* → T2*

Getelementptr Well-Formedness and Result Type

The getelementptr instruc�on has some addi�onal well-formedness requirements. Operands a�er
the first must all be constants, unless they are used to index into an array. LLVM actually requires
the operands used to index into structs to be 32-bit integers. Rather than introducing 32-bit
integers into our language, we will use our 64-bit constants and operands and assume the
arguments of getelementptr always fall in the range [0, Int32.max_int].

In the table above, the result type of a getelementptr instruc�on described using the GEPTY
func�on, which is defined in pseudocode as follows:

GEPTY : T -> operand list -> T
GEPTY T operand::path' = GEPTY' T path'

GEPTY' : T -> operand list -> T
GEPTY' T [] = T
GEPTY' { T1, ..., TN } (Const m)::path' = GEPTY' Tm path' when m <= N
GEPTY' [_ x T] operand::path' = GEPTY' T path'

No�ce that GEPTY is a par�al func�on. When GEPTY is not defined, the corresponding instruc�on
is malformed. This happens when, for example:

The list of index operands provided is empty
An operand used to index a struct is not a constant
The type is not an aggregate and the list of indices is not empty

Also no�ce that a GEP instruc�on that indexes beyond the size of an array is well-formed. The
length informa�on on array tags is only present to help the compiler lay out data in memory and is
not verified sta�cally.

Blocks, CFGs, and Function Definitions

A block (or "basic" block) is just a sequence of instruc�ons followed by a terminator:

Concrete Syntax Operand → Result Types

ret void - → -

ret S OP S → -

br label %LAB - → -

br i1 OP, label %LAB1, label %LAB2 i1 → -

The body of a func�on is represented by a control flow graph (CFG). A CFG consists of a
dis�nguished entry block and a sequence blocks of prefixed with a label LAB: . A func�on
defini�on has a return type, the func�on name, a list of formal parameters and their types, and the
body of the func�on. The full syntax of a func�on defini�on is then:

define [S|void] @IDENT(S1 OP, ... , SN OP) { BLOCK (LAB: BLOCK)...}

Like global data defini�ons, the type of the defined global iden�fier @IDENT is S(S1, ... , SN)* or
void(S1, ... , SN)* , a func�on pointer.

There are some addi�onal global well-formedness requirements for func�on defini�ons. Each label
and local defini�on must be unique. In this way, a local iden�fier both names the result of an
instruc�on and serves to iden�fy the instruc�on within a func�on body. For the locals in a CFG to
be well scoped, there must never be a path to a use of a local that does not pass through its
defini�on. We will not go into the details here.

LLVMlite Semantics

Abstract Machine

Like for X86lite, we define the seman�cs of LLVMlite by describing the execu�on of an abstract
machine. One major difference between the LLVMlite machine and our x86 simulator is that we
specify an explicit stack, heap, code, and global memory. While these structures were present in
X86lite as conven�ons on how areas of memory and registers were used during program execu�on,
legal programs were free to, for example, write over the return address on the stack and jump to
arbitrary loca�ons in memory. The defini�on of LLVMlite, on the other hand, enforces some of the
abstrac�ons present in C-like languages.

• The body of a function is represented by a control flow graph (CFG).
• A CFG consists of a distinguished entry block and a sequence blocks of prefixed with a label.
• The full syntax of a function definition:

OP2, ..., OPN have types S2, ..., SN .

Concrete Syntax Operand → Result Types

%L = BOP i64 OP1, OP2 i64 x i64 → i64

%L = alloca S - → S*

%L = load S* OP S* → S

store S OP1, S* OP2 S x S* → void

%L = icmp CND S OP1, OP2 S x S → i1

%L = call S1 OP1(S2 OP2, ..., SN OPN) S1(S2, ..., SN)* x S2 x ... x SN → S1

call void OP1(S2 OP2, ... ,SN OPN) void(S2, ..., SN)* x S2 x ... x SN → void

%L = getelementptr T1* OP1, i32 OP2, ..., i32 OPN T1* x i64 x ... x i64 -> GEPTY(T1, OP1, ..., OPN)*

%L = bitcast T1* OP to T2* T1* → T2*

Getelementptr Well-Formedness and Result Type

The getelementptr instruc�on has some addi�onal well-formedness requirements. Operands a�er
the first must all be constants, unless they are used to index into an array. LLVM actually requires
the operands used to index into structs to be 32-bit integers. Rather than introducing 32-bit
integers into our language, we will use our 64-bit constants and operands and assume the
arguments of getelementptr always fall in the range [0, Int32.max_int].

In the table above, the result type of a getelementptr instruc�on described using the GEPTY
func�on, which is defined in pseudocode as follows:

GEPTY : T -> operand list -> T
GEPTY T operand::path' = GEPTY' T path'

GEPTY' : T -> operand list -> T
GEPTY' T [] = T
GEPTY' { T1, ..., TN } (Const m)::path' = GEPTY' Tm path' when m <= N
GEPTY' [_ x T] operand::path' = GEPTY' T path'

No�ce that GEPTY is a par�al func�on. When GEPTY is not defined, the corresponding instruc�on
is malformed. This happens when, for example:

The list of index operands provided is empty
An operand used to index a struct is not a constant
The type is not an aggregate and the list of indices is not empty

Also no�ce that a GEP instruc�on that indexes beyond the size of an array is well-formed. The
length informa�on on array tags is only present to help the compiler lay out data in memory and is
not verified sta�cally.

Blocks, CFGs, and Function Definitions

A block (or "basic" block) is just a sequence of instruc�ons followed by a terminator:

Concrete Syntax Operand → Result Types

ret void - → -

ret S OP S → -

br label %LAB - → -

br i1 OP, label %LAB1, label %LAB2 i1 → -

The body of a func�on is represented by a control flow graph (CFG). A CFG consists of a
dis�nguished entry block and a sequence blocks of prefixed with a label LAB: . A func�on
defini�on has a return type, the func�on name, a list of formal parameters and their types, and the
body of the func�on. The full syntax of a func�on defini�on is then:

define [S|void] @IDENT(S1 OP, ... , SN OP) { BLOCK (LAB: BLOCK)...}

Like global data defini�ons, the type of the defined global iden�fier @IDENT is S(S1, ... , SN)* or
void(S1, ... , SN)* , a func�on pointer.

There are some addi�onal global well-formedness requirements for func�on defini�ons. Each label
and local defini�on must be unique. In this way, a local iden�fier both names the result of an
instruc�on and serves to iden�fy the instruc�on within a func�on body. For the locals in a CFG to
be well scoped, there must never be a path to a use of a local that does not pass through its
defini�on. We will not go into the details here.

LLVMlite Semantics

Abstract Machine

Like for X86lite, we define the seman�cs of LLVMlite by describing the execu�on of an abstract
machine. One major difference between the LLVMlite machine and our x86 simulator is that we
specify an explicit stack, heap, code, and global memory. While these structures were present in
X86lite as conven�ons on how areas of memory and registers were used during program execu�on,
legal programs were free to, for example, write over the return address on the stack and jump to
arbitrary loca�ons in memory. The defini�on of LLVMlite, on the other hand, enforces some of the
abstrac�ons present in C-like languages.

Semantics

• Like for X86lite, we define the semantics of LLVMlite by describing the
execution of an abstract machine.

• LLVMlite machine explicitly differentiates between stack, heap, code, and
global memory (X86 was treating all of those uniformly).

• A definitional (reference) interpreter for LLVMlite is provided in HW3:
check llinterp.ml

• If you have a question about a detail of the semantics, you can simply run a
program through the interpreter!

LLVMlite Semantics

• The memory state of the LLVMlite machine is represented by a mapping between block
identifiers and memory values.
We will refer to a top-level memory value that is not a subtree of another as a memory block.

Memory Model

In general, a guiding principle behind LLVMlite and C-like languages is that the specifica�on
op�mizes first for the ease of transla�on to assembly, as long as this does not constrain the
underlying machine. This o�en leads to a more complicated seman�cs. We will provide the details
here, but it is not necessary to understand them completely. For X86lite we gave an informal
natural language specifica�on and asked you to implement it. For LLVMlite, we will provide an
interpreter that (assuming it is en�rely free of bugs!) can serve as a formal defini�on of the
language. This means that if you have some technical ques�on about a detail of the seman�cs, you
can simply run a program through the interpreter.

We will start with a high-level overview of the abstract machine, which should provide enough
intui�on for the assignments in the course. The details are presented in a later sec�on.

Simple and Memory Values

The LLVMlite machine operates on dynamic values that, like the operand tags described in the
previous sec�on, include a subset of simple values. During program execu�on, operands can
evaluate only to simple values and all other memory values must be manipulated indirectly through
pointers. While this dis�nc�on makes the specifica�on of LLVMlite more complicated, it results in a
very straigh�orward compila�on strategy: the simple values are those that can appear in X86lite
registers.

Memory values will be represented as tree structures where the leaves are simple values (or strings)
and finitely-branching nodes represent arrays and structs. The memory state of the LLVMlite
machine is represented by a mapping between block iden�fiers and memory values. We will refer
to a top-level memory value that is not a subtree of another as a memory block.

At this point, an illustra�on might be helpful:

 { bid0 -> node bid1 -> node bid2 -> node }
 / | \ | |
 L L L node L
 / \
 L node
 / | | \
 L L L* L

The above diagram shows three memory values mapped to the block iden�fiers bid0, bid1 , and
bid2 . One thing to no�ce is that every memory value contains at least one node. Even simple

values, such as a single global i64 will be represented using a node with one leaf. The iden�fier
bid2 is an example of how non-aggregate data will be represented in memory, while bid1 might

be a structure having two fields. There's no deep reason for this, it's just a convenient invariant to
represent the par�cular way LLVM computes pointers into structs.

In order to manipulate the simple values at the leaves of our memory blocks, we need specify a
path to a leaf. For example, to uniquely iden�fy the leaf marked * we might provide the indices
0,1,2 along with the block iden�fier bid1 . This means that we're selec�ng the 2nd child of the

1st child of the 0th child of the root node.

This approach might seem a more complicated than our memory representa�on in X86lite, but it
has some advantages as a specifica�on. If instead, like in X86lite, we represented memory as an
array of bytes, we would be forced us to make decisions about how large each value in the
language is and the rela�ve posi�on of values in memory. Using an unordered set of trees for the
language specifica�on lets us define how opera�ons on structured data work while leaving such
details up to the compiler.

The simple values include:

1-bit (boolean) and 64-bit 2's complement signed integers
Pointers to a subtree of a par�cular memory block containing a block iden�fier and path
A special undef value that represents an unusable value

So, a real piece of LLVMlite memory might look like:

 { bid0 -> node bid1 -> node bid2 -> node }
 | \ |
 node node undef
 / | \ / | \
 "foo" "bar" "baz" (Ptr Null) 4 (Ptr bid0, 0, 1)

Here, the pointer in memory at (bid1, 0, 2) refers to the string "foo" in memory block bid0 . In
addi�on to the restric�on that each memory block has a node, we require that every pointer have
at least one index. In other words, it is not possible to refer directly to the top-level node of each
memory block.

Machine Configurations

References to memory blocks will be split between three different address spaces: the heap, stack,
and globals. Though all three are simply collec�ons of memory values, they have different
ini�aliza�on and run�me behavior, as explained in the next sec�on. We can think of machine
configura�ons as having three separate memory components, mapping disjoint sets of iden�fiers to
memory values.

• Even simple values, such as a single global i64 will be represented using a node with one leaf.
• To identify the leaf marked * we provide the indices 0, 1, 2 along with the identifier bid1.
• This means that we're selecting the 2nd child of the 1st child of the 0th child of the root node.

Memory Model

In general, a guiding principle behind LLVMlite and C-like languages is that the specifica�on
op�mizes first for the ease of transla�on to assembly, as long as this does not constrain the
underlying machine. This o�en leads to a more complicated seman�cs. We will provide the details
here, but it is not necessary to understand them completely. For X86lite we gave an informal
natural language specifica�on and asked you to implement it. For LLVMlite, we will provide an
interpreter that (assuming it is en�rely free of bugs!) can serve as a formal defini�on of the
language. This means that if you have some technical ques�on about a detail of the seman�cs, you
can simply run a program through the interpreter.

We will start with a high-level overview of the abstract machine, which should provide enough
intui�on for the assignments in the course. The details are presented in a later sec�on.

Simple and Memory Values

The LLVMlite machine operates on dynamic values that, like the operand tags described in the
previous sec�on, include a subset of simple values. During program execu�on, operands can
evaluate only to simple values and all other memory values must be manipulated indirectly through
pointers. While this dis�nc�on makes the specifica�on of LLVMlite more complicated, it results in a
very straigh�orward compila�on strategy: the simple values are those that can appear in X86lite
registers.

Memory values will be represented as tree structures where the leaves are simple values (or strings)
and finitely-branching nodes represent arrays and structs. The memory state of the LLVMlite
machine is represented by a mapping between block iden�fiers and memory values. We will refer
to a top-level memory value that is not a subtree of another as a memory block.

At this point, an illustra�on might be helpful:

 { bid0 -> node bid1 -> node bid2 -> node }
 / | \ | |
 L L L node L
 / \
 L node
 / | | \
 L L L* L

The above diagram shows three memory values mapped to the block iden�fiers bid0, bid1 , and
bid2 . One thing to no�ce is that every memory value contains at least one node. Even simple

values, such as a single global i64 will be represented using a node with one leaf. The iden�fier
bid2 is an example of how non-aggregate data will be represented in memory, while bid1 might

be a structure having two fields. There's no deep reason for this, it's just a convenient invariant to
represent the par�cular way LLVM computes pointers into structs.

In order to manipulate the simple values at the leaves of our memory blocks, we need specify a
path to a leaf. For example, to uniquely iden�fy the leaf marked * we might provide the indices
0,1,2 along with the block iden�fier bid1 . This means that we're selec�ng the 2nd child of the

1st child of the 0th child of the root node.

This approach might seem a more complicated than our memory representa�on in X86lite, but it
has some advantages as a specifica�on. If instead, like in X86lite, we represented memory as an
array of bytes, we would be forced us to make decisions about how large each value in the
language is and the rela�ve posi�on of values in memory. Using an unordered set of trees for the
language specifica�on lets us define how opera�ons on structured data work while leaving such
details up to the compiler.

The simple values include:

1-bit (boolean) and 64-bit 2's complement signed integers
Pointers to a subtree of a par�cular memory block containing a block iden�fier and path
A special undef value that represents an unusable value

So, a real piece of LLVMlite memory might look like:

 { bid0 -> node bid1 -> node bid2 -> node }
 | \ |
 node node undef
 / | \ / | \
 "foo" "bar" "baz" (Ptr Null) 4 (Ptr bid0, 0, 1)

Here, the pointer in memory at (bid1, 0, 2) refers to the string "foo" in memory block bid0 . In
addi�on to the restric�on that each memory block has a node, we require that every pointer have
at least one index. In other words, it is not possible to refer directly to the top-level node of each
memory block.

Machine Configurations

References to memory blocks will be split between three different address spaces: the heap, stack,
and globals. Though all three are simply collec�ons of memory values, they have different
ini�aliza�on and run�me behavior, as explained in the next sec�on. We can think of machine
configura�ons as having three separate memory components, mapping disjoint sets of iden�fiers to
memory values.

• The simple values include:
• 1-bit (boolean) and 64-bit 2's complement signed integers
• Pointers to a subtree of a particular memory block containing a block identifier and path
• A special undef value that represents an unusable value

In general, a guiding principle behind LLVMlite and C-like languages is that the specifica�on
op�mizes first for the ease of transla�on to assembly, as long as this does not constrain the
underlying machine. This o�en leads to a more complicated seman�cs. We will provide the details
here, but it is not necessary to understand them completely. For X86lite we gave an informal
natural language specifica�on and asked you to implement it. For LLVMlite, we will provide an
interpreter that (assuming it is en�rely free of bugs!) can serve as a formal defini�on of the
language. This means that if you have some technical ques�on about a detail of the seman�cs, you
can simply run a program through the interpreter.

We will start with a high-level overview of the abstract machine, which should provide enough
intui�on for the assignments in the course. The details are presented in a later sec�on.

Simple and Memory Values

The LLVMlite machine operates on dynamic values that, like the operand tags described in the
previous sec�on, include a subset of simple values. During program execu�on, operands can
evaluate only to simple values and all other memory values must be manipulated indirectly through
pointers. While this dis�nc�on makes the specifica�on of LLVMlite more complicated, it results in a
very straigh�orward compila�on strategy: the simple values are those that can appear in X86lite
registers.

Memory values will be represented as tree structures where the leaves are simple values (or strings)
and finitely-branching nodes represent arrays and structs. The memory state of the LLVMlite
machine is represented by a mapping between block iden�fiers and memory values. We will refer
to a top-level memory value that is not a subtree of another as a memory block.

At this point, an illustra�on might be helpful:

 { bid0 -> node bid1 -> node bid2 -> node }
 / | \ | |
 L L L node L
 / \
 L node
 / | | \
 L L L* L

The above diagram shows three memory values mapped to the block iden�fiers bid0, bid1 , and
bid2 . One thing to no�ce is that every memory value contains at least one node. Even simple

values, such as a single global i64 will be represented using a node with one leaf. The iden�fier
bid2 is an example of how non-aggregate data will be represented in memory, while bid1 might

be a structure having two fields. There's no deep reason for this, it's just a convenient invariant to
represent the par�cular way LLVM computes pointers into structs.

In order to manipulate the simple values at the leaves of our memory blocks, we need specify a
path to a leaf. For example, to uniquely iden�fy the leaf marked * we might provide the indices
0,1,2 along with the block iden�fier bid1 . This means that we're selec�ng the 2nd child of the

1st child of the 0th child of the root node.

This approach might seem a more complicated than our memory representa�on in X86lite, but it
has some advantages as a specifica�on. If instead, like in X86lite, we represented memory as an
array of bytes, we would be forced us to make decisions about how large each value in the
language is and the rela�ve posi�on of values in memory. Using an unordered set of trees for the
language specifica�on lets us define how opera�ons on structured data work while leaving such
details up to the compiler.

The simple values include:

1-bit (boolean) and 64-bit 2's complement signed integers
Pointers to a subtree of a par�cular memory block containing a block iden�fier and path
A special undef value that represents an unusable value

So, a real piece of LLVMlite memory might look like:

 { bid0 -> node bid1 -> node bid2 -> node }
 | \ |
 node node undef
 / | \ / | \
 "foo" "bar" "baz" (Ptr Null) 4 (Ptr bid0, 0, 1)

Here, the pointer in memory at (bid1, 0, 2) refers to the string "foo" in memory block bid0 . In
addi�on to the restric�on that each memory block has a node, we require that every pointer have
at least one index. In other words, it is not possible to refer directly to the top-level node of each
memory block.

Machine Configurations

References to memory blocks will be split between three different address spaces: the heap, stack,
and globals. Though all three are simply collec�ons of memory values, they have different
ini�aliza�on and run�me behavior, as explained in the next sec�on. We can think of machine
configura�ons as having three separate memory components, mapping disjoint sets of iden�fiers to
memory values.

• interp_call takes
• the global identifier of a function in an LLVMlite program,
• a list of (simple) values to serve as arguments, and
• an initial memory state; and
• returns the memory state after the function call has completed and the return value.

• interp_cfg does most of the work. It takes
• a control-flow graph,
• an initial locals map, and
• a memory state; and
• evaluates the cfg, returning the new memory state and the return value of the function body.

Interpreter

Some Instructions

In addi�on to memory, machine configura�ons need to keep track of the values assigned to
temporaries by instruc�ons. We will call this mapping of uids to simple values the locals of the
machine state. Finally, the machine needs to keep track of the progress of execu�on of a func�on
body. This is the code component of the state, and will consist of a currently execu�ng block and
the mapping from labels to blocks.

Machine Execution

We can describe how the machine executes a program by using two mutually-recursive func�ons,
interp_call and interp_cfg that execute, respec�vely, an en�re func�on call and the body of a
func�on. This is a different approach than the one used in the X86lite machine, where we
described a func�on that executes a single step of the machine, and then iterated the func�on un�l
we reached a termina�ng state. The evalua�on func�on approach used here will allow us to use
proper�es of func�ons in the meta-language to avoid describing some details of the machine.

interp_call takes the global iden�fier of a func�on in an LLVMlite program, a list of (simple)
values to serve as arguments, and an ini�al memory state and returns the memory state a�er
the func�on call has completed and the return value of the func�on.
First, the machine looks up the func�on declara�on associated with the global iden�fier. Then,
it creates new locals that maps the formal parameters of the func�on declara�on to the
arguments supplied. It allocates a new frame by adding an empty memory block with a fresh
frame iden�fier to the stack in the ini�al memory state. Finally, the machine evaluates the
func�on body using interp_cfg and the cfg associated with the func�on iden�fier in the
program text, and returns the result.
interp_cfg does most of the work involved in evalua�ng an LLVMlite program. It takes a cfg, an
ini�al locals map, and a memory state and evaluates the cfg, returning the resul�ng memory
state and the return value of the func�on body.
The LLVMlite machine examines the next instruc�on in the currently execu�ng block, executes
it, upda�ng the locals, memory state, and currently execu�ng block as necessary, and then calls
itself again with the resul�ng configura�on or returns. To interpret the call instruc�on, it uses
the interp_call func�on above. A summary of the locals, cfg, and memory state passed to the
next invoca�on is provided in the next sec�on.

Instructions

Constant operands evaluate to the corresponding integer value, while global iden�fiers evaluate to
a global pointer, and the Null constant evaluates to a pointer with the special null block iden�fier.
Local ids are looked up in the locals map. In well-formed programs, execu�on will always pass
through the defini�on of a local id before it is used as an operand.

Instruc�ons are executed as follows:

Instruc�on/Terminator Behavior

%L = BOP i64 OP1, OP2 Update locals(%L) with the result of the computa�on.

%L = alloca S Allocate a slot in the current stack frame and return a
pointer to it. This involves adding a subtree of undef to
the root node of the memory block represen�ng the
frame at the next available index.

%L = load S* OP OP must be a pointer or undef. Find the value
referenced by the pointer in the current memory state.
Update locals(%L) with the result. If OP is not a valid
pointer, either because it evaluates to undef, no
memory value is associated with its block iden�fier or
its path does not iden�fy a valid subtree, then the
opera�on raises an error and the machine crashes. If
the pointer is valid, but the value in memory is not a
simple value of type S, the opera�on raises an error and
the machine crashes.

store S OP1, S* OP2 Update the memory state by se�ng the target of OP2
to the value of OP1. If OP2 is not a valid pointer, or if
the target of OP2 is not a simple value in memory of
type S, the opera�on raises an error and the machine
crashes.

%L = icmp CND S OP1, OP2 Update locals(%L) to 1 if the condi�on holds and 0
otherwise.

%L = call S1 OP1(S2 OP2, ... ,SN OPN) Evaluate all of the operands and use them to recursively
invoke the interpreter through interp_call with the
current memory state. If OP1 does not evaluate to a
func�on pointer that iden�fies a func�on with return
type S1 and argument types S2, ... , SN, then the
opera�on raises an error and the machine crashes.
Update the local (%L) to the result of interp_call and
con�nue with the return memory state.

call void OP1(S2 OP2, ... ,SN OPN) The same as a non-void call, but no locals are updated
with the returned value.

%L = getelementptr T1* OP1,
 i64 OP2, ... , i64 OPN

Create a new pointer by adding the first index operand
OP2 to the last index of the pointer value of OP1 and
then concatena�ng the remaining indices onto the path.
If the target of the resul�ng pointer is not a valid
memory value compa�ble with the type %L, then update
locals(%L) with the undef value. Otherwise, update
locals(%L) with the new pointer. See the following
sec�on for a more detailed explana�on.

%L = bitcast T1* OP to T2* Update locals(%L) with the value of OP .

(see implementation)

Some Instructions (c’d)

In addi�on to memory, machine configura�ons need to keep track of the values assigned to
temporaries by instruc�ons. We will call this mapping of uids to simple values the locals of the
machine state. Finally, the machine needs to keep track of the progress of execu�on of a func�on
body. This is the code component of the state, and will consist of a currently execu�ng block and
the mapping from labels to blocks.

Machine Execution

We can describe how the machine executes a program by using two mutually-recursive func�ons,
interp_call and interp_cfg that execute, respec�vely, an en�re func�on call and the body of a
func�on. This is a different approach than the one used in the X86lite machine, where we
described a func�on that executes a single step of the machine, and then iterated the func�on un�l
we reached a termina�ng state. The evalua�on func�on approach used here will allow us to use
proper�es of func�ons in the meta-language to avoid describing some details of the machine.

interp_call takes the global iden�fier of a func�on in an LLVMlite program, a list of (simple)
values to serve as arguments, and an ini�al memory state and returns the memory state a�er
the func�on call has completed and the return value of the func�on.
First, the machine looks up the func�on declara�on associated with the global iden�fier. Then,
it creates new locals that maps the formal parameters of the func�on declara�on to the
arguments supplied. It allocates a new frame by adding an empty memory block with a fresh
frame iden�fier to the stack in the ini�al memory state. Finally, the machine evaluates the
func�on body using interp_cfg and the cfg associated with the func�on iden�fier in the
program text, and returns the result.
interp_cfg does most of the work involved in evalua�ng an LLVMlite program. It takes a cfg, an
ini�al locals map, and a memory state and evaluates the cfg, returning the resul�ng memory
state and the return value of the func�on body.
The LLVMlite machine examines the next instruc�on in the currently execu�ng block, executes
it, upda�ng the locals, memory state, and currently execu�ng block as necessary, and then calls
itself again with the resul�ng configura�on or returns. To interpret the call instruc�on, it uses
the interp_call func�on above. A summary of the locals, cfg, and memory state passed to the
next invoca�on is provided in the next sec�on.

Instructions

Constant operands evaluate to the corresponding integer value, while global iden�fiers evaluate to
a global pointer, and the Null constant evaluates to a pointer with the special null block iden�fier.
Local ids are looked up in the locals map. In well-formed programs, execu�on will always pass
through the defini�on of a local id before it is used as an operand.

Instruc�ons are executed as follows:

Instruc�on/Terminator Behavior

%L = BOP i64 OP1, OP2 Update locals(%L) with the result of the computa�on.

%L = alloca S Allocate a slot in the current stack frame and return a
pointer to it. This involves adding a subtree of undef to
the root node of the memory block represen�ng the
frame at the next available index.

%L = load S* OP OP must be a pointer or undef. Find the value
referenced by the pointer in the current memory state.
Update locals(%L) with the result. If OP is not a valid
pointer, either because it evaluates to undef, no
memory value is associated with its block iden�fier or
its path does not iden�fy a valid subtree, then the
opera�on raises an error and the machine crashes. If
the pointer is valid, but the value in memory is not a
simple value of type S, the opera�on raises an error and
the machine crashes.

store S OP1, S* OP2 Update the memory state by se�ng the target of OP2
to the value of OP1. If OP2 is not a valid pointer, or if
the target of OP2 is not a simple value in memory of
type S, the opera�on raises an error and the machine
crashes.

%L = icmp CND S OP1, OP2 Update locals(%L) to 1 if the condi�on holds and 0
otherwise.

%L = call S1 OP1(S2 OP2, ... ,SN OPN) Evaluate all of the operands and use them to recursively
invoke the interpreter through interp_call with the
current memory state. If OP1 does not evaluate to a
func�on pointer that iden�fies a func�on with return
type S1 and argument types S2, ... , SN, then the
opera�on raises an error and the machine crashes.
Update the local (%L) to the result of interp_call and
con�nue with the return memory state.

call void OP1(S2 OP2, ... ,SN OPN) The same as a non-void call, but no locals are updated
with the returned value.

%L = getelementptr T1* OP1,
 i64 OP2, ... , i64 OPN

Create a new pointer by adding the first index operand
OP2 to the last index of the pointer value of OP1 and
then concatena�ng the remaining indices onto the path.
If the target of the resul�ng pointer is not a valid
memory value compa�ble with the type %L, then update
locals(%L) with the undef value. Otherwise, update
locals(%L) with the new pointer. See the following
sec�on for a more detailed explana�on.

%L = bitcast T1* OP to T2* Update locals(%L) with the value of OP .

(see implementation)

Some Instructions (c’d)
(see implementation)

In addi�on to memory, machine configura�ons need to keep track of the values assigned to
temporaries by instruc�ons. We will call this mapping of uids to simple values the locals of the
machine state. Finally, the machine needs to keep track of the progress of execu�on of a func�on
body. This is the code component of the state, and will consist of a currently execu�ng block and
the mapping from labels to blocks.

Machine Execution

We can describe how the machine executes a program by using two mutually-recursive func�ons,
interp_call and interp_cfg that execute, respec�vely, an en�re func�on call and the body of a
func�on. This is a different approach than the one used in the X86lite machine, where we
described a func�on that executes a single step of the machine, and then iterated the func�on un�l
we reached a termina�ng state. The evalua�on func�on approach used here will allow us to use
proper�es of func�ons in the meta-language to avoid describing some details of the machine.

interp_call takes the global iden�fier of a func�on in an LLVMlite program, a list of (simple)
values to serve as arguments, and an ini�al memory state and returns the memory state a�er
the func�on call has completed and the return value of the func�on.
First, the machine looks up the func�on declara�on associated with the global iden�fier. Then,
it creates new locals that maps the formal parameters of the func�on declara�on to the
arguments supplied. It allocates a new frame by adding an empty memory block with a fresh
frame iden�fier to the stack in the ini�al memory state. Finally, the machine evaluates the
func�on body using interp_cfg and the cfg associated with the func�on iden�fier in the
program text, and returns the result.
interp_cfg does most of the work involved in evalua�ng an LLVMlite program. It takes a cfg, an
ini�al locals map, and a memory state and evaluates the cfg, returning the resul�ng memory
state and the return value of the func�on body.
The LLVMlite machine examines the next instruc�on in the currently execu�ng block, executes
it, upda�ng the locals, memory state, and currently execu�ng block as necessary, and then calls
itself again with the resul�ng configura�on or returns. To interpret the call instruc�on, it uses
the interp_call func�on above. A summary of the locals, cfg, and memory state passed to the
next invoca�on is provided in the next sec�on.

Instructions

Constant operands evaluate to the corresponding integer value, while global iden�fiers evaluate to
a global pointer, and the Null constant evaluates to a pointer with the special null block iden�fier.
Local ids are looked up in the locals map. In well-formed programs, execu�on will always pass
through the defini�on of a local id before it is used as an operand.

Instruc�ons are executed as follows:

Instruc�on/Terminator Behavior

%L = BOP i64 OP1, OP2 Update locals(%L) with the result of the computa�on.

%L = alloca S Allocate a slot in the current stack frame and return a
pointer to it. This involves adding a subtree of undef to
the root node of the memory block represen�ng the
frame at the next available index.

%L = load S* OP OP must be a pointer or undef. Find the value
referenced by the pointer in the current memory state.
Update locals(%L) with the result. If OP is not a valid
pointer, either because it evaluates to undef, no
memory value is associated with its block iden�fier or
its path does not iden�fy a valid subtree, then the
opera�on raises an error and the machine crashes. If
the pointer is valid, but the value in memory is not a
simple value of type S, the opera�on raises an error and
the machine crashes.

store S OP1, S* OP2 Update the memory state by se�ng the target of OP2
to the value of OP1. If OP2 is not a valid pointer, or if
the target of OP2 is not a simple value in memory of
type S, the opera�on raises an error and the machine
crashes.

%L = icmp CND S OP1, OP2 Update locals(%L) to 1 if the condi�on holds and 0
otherwise.

%L = call S1 OP1(S2 OP2, ... ,SN OPN) Evaluate all of the operands and use them to recursively
invoke the interpreter through interp_call with the
current memory state. If OP1 does not evaluate to a
func�on pointer that iden�fies a func�on with return
type S1 and argument types S2, ... , SN, then the
opera�on raises an error and the machine crashes.
Update the local (%L) to the result of interp_call and
con�nue with the return memory state.

call void OP1(S2 OP2, ... ,SN OPN) The same as a non-void call, but no locals are updated
with the returned value.

%L = getelementptr T1* OP1,
 i64 OP2, ... , i64 OPN

Create a new pointer by adding the first index operand
OP2 to the last index of the pointer value of OP1 and
then concatena�ng the remaining indices onto the path.
If the target of the resul�ng pointer is not a valid
memory value compa�ble with the type %L, then update
locals(%L) with the undef value. Otherwise, update
locals(%L) with the new pointer. See the following
sec�on for a more detailed explana�on.

%L = bitcast T1* OP to T2* Update locals(%L) with the value of OP .

GEP Indexing

ret void Pop the most recently allocated frame off the stack and
return from interp_cfg with the undef value and the
resul�ng memory state.

ret S OP Pop the most recently allocated frame off the stack and
return from interp_cfg with the value of OP and the
resul�ng memory state.

br label %LAB Look up the block associated with %LAB in the CFG set
is as the current execu�ng block.

br i1 OP,
label %LAB1, label %LAB2

If OP is 1, set the current block to %LAB1 , otherwise,
set it to %LAB2 .

Initial Configurations

Crea�ng the ini�al machine state requires a few steps. First, global data declara�ons must be
converted to a global memory state. This process is en�rely straigh�orward and is implemented in
the provided interpreter. Next, memory values for each string passed to the main func�on are
added to an empty heap. Execu�on is started by invoking interp_call with the global iden�fier of
the "main" func�on, passing in the number of arguments supplied and pointers to each string on
the heap.

GEP Indexing

The seman�cs of GEP and exactly when the resul�ng pointer is valid is the most complicated part
of LLVMlite. Here we walk though a slightly more complex example.

 %t1 = type { A, B, C }
 %t2 = type [2 x %t1]

 @pn1 = global %t2 [{a0, b0, c0}, {a1, b1, c1}]

 ; Memory:
 ; { ... bid0 -> root ... }
 ; |
 ; n1
 ; / \
 ; n2 n3
 ; / | \ / | \
 ; a0 b0 c0 a1 b1 c1

 ...
 %pn2 = getelementptr %t2* pn1, i32 0, i32 0 ; %t1* -> n2
 %pb1 = getelementptr %t1* pn2, i32 1, i32 1 ; B* -> b1

Suppose we start with the pointer pn1 = (bid0, 0) poin�ng to n1. The first GEP instruc�on above
will compute the pointer (bid0, 0, 0), by first adding 0 to the last index of pn1 and then
concatena�ng the rest of the indices to the end of the path. The next GEP instruc�on will compute
the pointer (bid0, 0, 1, 1), which points to b1.

In LLVMlite, indexing into a sibling (rather than a child) of a node using GEP with a non-zero first
index is only legal if sibling nodes are allocated as part of an array. In our example, n1 was allocated
as [2 x %t1] , so this is the case. In addi�on to the restricted use of the first, the resul�ng path
must target a subtree. If, instead, we tried to create a pointer off the end of the array, the resul�ng
pointer would be undef. Similarly, if B is not an aggregate type and we computed a path into it, the
result of the gep would be undef.

Lastly, since we do not preserve any metadata about the "shape" of memory values during
compila�on, we must check that there is enough informa�on in the sta�c annota�on of the GEP
instruc�on to actually compute the right index into memory. Since we can bitcast between any
pointer values, there is no guarantee that the sta�c annota�on on a GEP instruc�on will match the
target of the pointer value its operand will evaluate to at run�me.

For this, we have to define a no�on of compa�ble LLVMlite types, which is defined in terms of a
fla�ened version of our type annota�ons.

 FLATTEN : ty -> list ty
 FLATTEN i1 = [i1]
 FLATTEN i8 = [i8]
 FLATTEN i64 = [i64]
 FLATTEN Ptr t = [Ptr I8]
 FLATTEN Array (n, t) = [Array (n, t)]
 FLATTEN Struct ts = concat (map FLATTEN ts)

 PTRTOI8 : ty -> ty
 PTRTOI8 Ptr t = Ptr I8
 PTRTOI8 Array (n, t) = Array (n, PTRTOI8 t)
 PTRTOI8 Struct ts = Struct (map PTRTOI8 ts)

PTRTOI8 simply converts all pointers that appear in the type to Ptr I8. This is arbitrary, we just
want all pointers to compare equal in the fla�ened type. FLATTEN then unnests all of the struct
types that don't occur under an array constructor. A type t1 is compa�ble with t2 if FLATTEN
(PTRTOI8 t1) is a list prefix of FLATTEN (PTRTOI8 t2). If, during execu�on, the annota�on of a GEP
instruc�on is not compa�ble with the actual type of the memory value that its operand was
allocated with, the resul�ng pointer is undef.

• Start with the pointer pn1 = (bid0, 0) pointing to n1.
• The first GEP instruction above will compute the

pointer (bid0, 0, 0), by first adding 0 to the last index
of pn1 and then concatenating the rest of the indices to
the end of the path.

• The next GEP instruction will compute the pointer
(bid0, 0, 1, 1), which points to b1.

• Why?
• Indexing into a sibling (rather than a child) of a node

using GEP with a non-zero first index is only legal if
sibling nodes are allocated as part of an array.

• In our example, n1 was allocated as [2 x %t1], so this
is the case.

• Check out effective_tag in the interpreter code.
• Some examples in llprograms: gep3.ll, gep5.ll, gep6.ll

Compiling LLVMlite to X86

• ⟦i1⟧, ⟦i64⟧, ⟦t*⟧ = quad word (8 bytes, 8-byte aligned)

• raw i8 values are not allowed (they must be manipulated via i8*)

• array and struct types are laid out sequentially in memory

• getelementptr computations must be relative to the LLVMlite size definitions
– i.e. ⟦i1⟧ = quad (quite wasteful!)

Compiling LLVMlite Types to X86

• How do we manage storage for each %uid defined by an LLVM instruction?

• Option 1:
– Map each %uid to a x86 register
– Efficient!
– Difficult to do effectively: many %uid values, only 16 registers
– We will see how to do this later in the semester

• Option 2:
– Map each %uid to a stack-allocated space
– Less efficient!
– Simple to implement

• For HW3 we will follow Option 2

Compiling LLVM locals

• Globals
– must use %rip relative addressing

• Calls
– Follow x64 AMD ABI calling conventions
– Should interoperate with C programs

• getelementptr
– trickiest part

Other LLVMlite Features

• See HW3 description and README.md

• Main definitions: ll.ml  

• Compiler in the pipeline: driver.ml and process_ll_file. 

• Using main.native

• Compiling with clang

Tour of HW3

Lexing

Lexical analysis, tokens, regular expressions, automata

Source Code
(Character stream)
if (b == 0) { a = 1; }

Backend
Assembly Code
l1:
 cmpq %eax, $0  
 jeq l2
 jmp l3
l2:
 …

Abstract Syntax Tree:

Parsing

If

Eq

b 0 a 1

NoneAssn

Token stream:

if (b == 0) { a = 0 ; }

Analysis &
Transformation

Lexical Analysis

Intermediate code:
l1:
 %cnd = icmp eq i64 %b, 0
 br i1 %cnd, label %l2, label %l3  
l2:
 store i64* %a, 1
 br label %l3
l3:

Compilation in a Nutshell

Source Code
(Character stream)
if (b == 0) { a = 1; }

Backend
Assembly Code
l1:
 cmpq %eax, $0  
 jeq l2
 jmp l3
l2:
 …

Abstract Syntax Tree:

Parsing

If

Eq

b 0 a 1

NoneAssn

Token stream:

if (b == 0) { a = 0 ; }

Analysis &
Transformation

Lexical Analysis

Intermediate code:
l1:
 %cnd = icmp eq i64 %b, 0
 br i1 %cnd, label %l2, label %l3  
l2:
 store i64* %a, 1
 br label %l3
l3:

Today: Lexing

• Change the character stream “if (b == 0) a = 0;” into tokens:

IF; LPAREN; Ident(“b”); EQEQ; Int(0); RPAREN; LBRACE; Ident(“a”);
EQ; Int(0); SEMI; RBRACE  

• Token: data type that represents indivisible “chunks” of text:
– Identifiers: a y11 elsex _100
– Keywords: if else while
– Integers: 2 200 -500 5L
– Floating point: 2.0 .02 1e5
– Symbols: + * ` { } () ++ << >> >>>
– Strings: “x” “He said, \”Are you?\””
– Comments: (* CS4212: Project 1 … *) /* foo */  

• Often delimited by whitespace (‘ ‘, \t, etc.)
– In some languages (e.g. Python or Haskell) whitespace is significant

First Step: Lexical Analysis

if (b == 0) { a = 0 ; }

Demo: Handlex

How hard can it be?

See handlex.ml

https://github.com/cs4212/week-05-lexing

https://github.com/cs4212/week-05-lexing

Lexing By Hand

• How hard can it be?
– Tedious and painful!

• Problems:
– Precisely define tokens
– Matching tokens simultaneously
– Reading too much input (need look ahead)
– Error handling
– Hard to compose/interleave tokeniser code
– Hard to maintain

A Principled Solution to Lexing

• Regular expressions precisely describe sets of strings.

• A regular expression R has one of the following forms:
– ε Epsilon stands for the empty string

– ‘a’ An ordinary character stands for itself

– R1 | R2 Alternatives, stands for choice of R1 or R2
– R1R2 Concatenation, stands for R1 followed by R2
– R* Kleene star, stands for zero or more repetitions of R  

• Useful extensions:
– “foo” Strings, equivalent to 'f''o''o'

– R+ One or more repetitions of R, equivalent to RR*

– R? Zero or one occurrences of R, equivalent to (ε|R)

– ['a'-'z'] One of a or b or c or … z, equivalent to (a|b|…|z)

– [^'0'-'9'] Any character except 0 through 9

– R as x Name the string matched by R as x

Regular Expressions

• Recognise the keyword “if”: ”if”
• Recognise a digit: ['0'-'9']
• Recognise an integer literal: '-'?['0'-'9']+
• Recognise an identifier:

 (['a'-'z']|['A'-'Z'])(['0'-'9']|'_'|['a'-'z']|['A'-'Z'])*  

• In practice, it’s useful to be able to name regular expressions:

let lowercase = ['a'-'z']
let uppercase = ['A'-'Z']
let character = uppercase | lowercase

Example Regular Expressions

• Consider the input string: ifx = 0
– Could lex as: or as:

• Regular expressions alone are ambiguous, need a rule to choose between the options above
• Most languages choose “longest match”

– So the 2nd option above will be picked
– Note that only the first option is “correct” for parsing purposes

• Conflicts: arise due to two tokens whose regular expressions have a shared prefix
– Ties broken by giving some matches higher priority
– Example: keywords have priority over identifiers
– Usually specified by order the rules appear in the lex input file

How to Match?

if x = 0 ifx = 0

• Reads a list of regular expressions: R1,…,Rn , one per token.
• Each token has an attached “action” Ai

(just a piece of code to run when the regular expression is matched)

• Generates scanning code that:
1. Decides whether the input is of the form (R1|…|Rn)*
2. Whenever the scanner matches a (longest) token, it runs the associated action

rule token = parse
| '-'?digit+ { Int (Int32.of_string (lexeme lexbuf)) }
| '+' { PLUS }
| 'if' { IF }
| character (digit|character|'_')* { Ident (lexeme lexbuf) }
| whitespace+ { token lexbuf }

Lexer Generators

token
regular expressions actions

Demo: Ocamllex

lexlex.mll

