
Week 7: Parsing

CS4212: Compiler Design

ilya@nus.edu.sg

ilyasergey.net/CS4212/

Ilya Sergey

mailto:ilya@nus.edu.sg
http://ilyasergey.net/CS4212/


• Before in the Course: 

• basics of x86

• LLVM 

• Last week:

• Lexical Analysis 

• This week:

• Algorithms for Parsing

• Parser Generation 

• Next week:

• Types and Type Systems

Where we are



Source Code 
(Character stream)

if (b == 0) { a = 1; }

Backend
Assembly Code

l1:
  cmpq %eax, $0  
  jeq l2
  jmp l3
l2:
  …

Abstract Syntax Tree:


Parsing

If

Eq

b 0 a 1

NoneAssn

Token stream:


if ( b == 0 ) { a = 0 ; }

Analysis & 
Transformation

Lexical Analysis

Intermediate code:

l1:
  %cnd = icmp eq i64 %b, 0 
  br i1 %cnd, label %l2, label %l3  
l2:
  store i64* %a, 1
  br label %l3
l3:

Compilation in a Nutshell



Backend
Assembly Code

l1:
  cmpq %eax, $0  
  jeq l2
  jmp l3
l2:
  …

Abstract Syntax Tree:


Parsing

If

Eq

b 0 a 1

NoneAssn

Analysis & 
Transformation

Source Code 


if (b == 0) { a = 1; }

Token stream:


if ( b == 0 ) { a = 0 ; }

Lexical Analysis

Intermediate code:

l1:
  %cnd = icmp eq i64 %b, 0 
  br i1 %cnd, label %l2, label %l3  
l2:
  store i64* %a, 1
  br label %l3
l3:

This week: Parsing



Block

Expr

Call

…

…

Bop

a != 1b == 0

Bop … …

If While

Block

{
  if (b == 0) a = b;
  while (a != 1) {
    print_int(a);
    a = a – 1;
  }
}

Source input

Abstract Syntax tree

Parsing: Finding Syntactic Structure 



Context-Free Grammars



• Here is a specification of the language of balanced parens: 
 
 
 
 

• The definition is recursive – S mentions itself. 

• Idea: “derive” a string in the language by starting with S and rewriting according to the rules:
– Example:   S ⟼  (S)S ⟼ ((S)S)S ⟼ ((ε)S)S ⟼ ((ε)S)ε ⟼ ((ε)ε)ε = (()) 

• You can replace the “nonterminal” S by one of its definitions anywhere

• A context-free grammar accepts a string iff there is a derivation from the start symbol

S ⟼ (S)S


S ⟼ ε

Note: Once again we have to take 
care to distinguish meta-language 
elements (e.g. “S” and “⟼”)  from 
object-language  elements (e.g. “(“ ).*

* And, since we’re writing this description in English, we are careful 
distinguish the meta-meta-language (e.g. words) from the meta-language and 
object-language (e.g. symbols) by using quotes.

Context-Free Grammars



• A Context-free Grammar (CFG) consists of 

– A set of terminals		 (e.g., a lexical token or ε)

– A set of nonterminals	 (e.g., S and other syntactic variables)

– A designated nonterminal called the start symbol

– A set of productions:      LHS ⟼ RHS


• LHS is a nonterminal

• RHS is a string of terminals and nonterminals 

• Example:   The balanced parentheses language: 
 
 
 
 

• How many terminals?  How many nonterminals? Productions? 

CFGs Mathematically

S ⟼ (S)S


S ⟼ ε



LL & LR Parsing

Searching for derivations



Consider finding left-most derivations
• Look at only one input symbol at a time. 

Partly-derived String          Look-ahead                 Parsed/Unparsed Input 
S                                              (                            (1 + 2 + (3 + 4)) + 5 
⟼ E + S                                   (                            (1 + 2 + (3 + 4)) + 5 
⟼ (S) + S                                 1                         (1 + 2 + (3 + 4)) + 5 
⟼ (E + S) + S                           1                         (1 + 2 + (3 + 4)) + 5 
⟼ (1 + S) + S                           2                         (1 + 2 + (3 + 4)) + 5 
⟼ (1 + E + S) + S                     2                         (1 + 2 + (3 + 4)) + 5 
⟼ (1 + 2 + S) + S                     (                            (1 + 2 + (3 + 4)) + 5 
⟼ (1 + 2 + E) + S                     (                            (1 + 2 + (3 + 4)) + 5 
⟼ (1 + 2 + (S)) + S                3                            (1 + 2 + (3 + 4)) + 5 
⟼ (1 + 2 + (E + S)) + S            3                            (1 + 2 + (3 + 4)) + 5 
⟼ …

S ⟼ E + S  |  E

E ⟼ number | ( S )



There is a problem
S ⟼ E + S  |  E

E ⟼ number | ( S )•We want to decide which production to apply based on the  

look-ahead symbol.

• But, there is a choice: 
 
(1)          S ⟼ E ⟼ (S) ⟼ (E) ⟼ (1) 
   vs. 
(1) + 2.    S ⟼ E + S ⟼ (S) + S ⟼ (E) + S ⟼ (1) + S ⟼ (1) + E                                          
                    ⟼  (1) + 2 

•Given the only one look-ahead symbol: ‘(‘ it isn’t clear whether to pick  
S ⟼ E      or    S ⟼ E + S   first.



LL(1) Grammars



• Not all grammars can be parsed “top-down” with only a single lookahead symbol.

• Top-down: starting from the start symbol (root of the parse tree) and going down

• LL(1)    means   


– Left-to-right scanning

– Left-most derivation, 

– 1 lookahead symbol 

• This language isn’t “LL(1)” 

• Is it LL(k) for some k? 

• What can we do?

Grammar is the problem

S ⟼ E + S  |  E

E ⟼ number | ( S )



• Problem: We can’t decide which S production to apply until we see the 
symbol after the first expression. 

• Solution: “Left-factor” the grammar.  There is a common S prefix for each 
choice, so add a new non-terminal S’ at the decision point: 
 
 
 
 
 

• Also need to eliminate left-recursion.  Why? 

• Consider:

Making a grammar LL(1)

S ⟼ S + E  |  E

E ⟼ number | ( S )

S ⟼ E + S  |  E

E ⟼ number | ( S )

S  ⟼ ES’

S’ ⟼ ε 

S’ ⟼ + S

E  ⟼ number | ( S )



LL(1) Parse of the input string
• Look at only one input symbol at a time. 

Partly-derived String       Look-ahead         Parsed/Unparsed Input

S                                           (                        (1 + 2 + (3 + 4)) + 

⟼ E S’                                  (                      (1 + 2 + (3 + 4)) + 5

⟼ (S) S’                      1                      (1 + 2 + (3 + 4)) + 5

⟼ (E S’) S’                     1                          (1 + 2 + (3 + 4)) + 5

⟼ (1 S’) S’                     +                      (1 + 2 + (3 + 4)) + 5

⟼ (1 + S) S’                  2                      (1 + 2 + (3 + 4)) + 5

⟼ (1 + E S’) S’                 2                      (1 + 2 + (3 + 4)) + 5

⟼ (1 + 2 S’) S’                 +                        (1 + 2 + (3 + 4)) + 5

⟼ (1 + 2 + S) S’              (                           (1 + 2 + (3 + 4)) + 5

⟼ (1 + 2 + E S’) S’             (                           (1 + 2 + (3 + 4)) + 5

⟼ (1 + 2 + (S)S’) S’             3                          (1 + 2 + (3 + 4)) + 5

S  ⟼ ES’

S’ ⟼ ε 

S’ ⟼ + S

E  ⟼ number | ( S )



• Given an LL(1) grammar:

– For a given nonterminal, the look-ahead symbol uniquely determines the production to apply.

– Top-down parsing = predictive parsing

– Driven by a predictive parsing table:   

   nonterminal * input token → production 
 
 
 
 
 

• Note: it is convenient to add a special end-of-file token $  
and a start symbol T (top-level) that requires $.

Predictive Parsing

number + ( ) $ (EOF)
T ⟼ S$ ⟼ S$
S ⟼ E S’ ⟼ E S’
S’ ⟼ + S ⟼ ε ⟼ ε

E ⟼ num. ⟼ ( S )

S  ⟼ ES’

S’ ⟼ ε 

S’ ⟼ + S

E  ⟼ number | ( S )



How do we construct the parse table?

•  Consider a given production:   A  γ 

•  Construct the set of all input tokens that may appear first in strings  
 that can be derived from γ
–  Add the production  γ to the entry (A, token) for each such token. 

•  If γ can derive ε (the empty string), then we construct the set  
 of all input tokens that may follow the nonterminal A in the grammar.

–  Add the production  ε to the entry (A, token) for each such token. 

•  Note: if there are two different productions for a given entry, the 
grammar is not LL(1)



Example
• First(T) = First(S)


• First(S) = First(E)


• First(S’) = { + }


• First(E) = { number, ‘(‘ } 

• Follow(S’) = Follow(S)


• Follow(S) = { $, ‘)’ } ∪ Follow(S’)

number + ( ) $ (EOF)

T ⟼ S$ ⟼S$

S ⟼ E S’ ⟼E S’

S’ ⟼ + S ⟼ ε ⟼ ε

E ⟼ num. ⟼ ( S )

T  ⟼ S$

S  ⟼ ES’

S’ ⟼ ε 

S’ ⟼ + S

E  ⟼ number | ( S )

Note: we want the least 
solution to this system of 
set equations… a fixpoint 
computation.  More on 
these later in the course.



• Define n mutually recursive functions

– one for each nonterminal A:  parse_A

– Assuming the stream of tokens is globally available, the type of parse_A is unit -> ast,  

if A is not an auxiliary nonterminal

– Parse functions for auxiliary nonterminals (e.g. S’) take extra ast’s as inputs, one for each 

nonterminal in the “factored” prefix. 

• Each function “peeks” at the lookahead token and then follows the production rule in the 
corresponding entry.


– Consume terminal tokens from the input stream

– Call parse_X to create sub-tree for nonterminal X

– If the rule ends in an auxiliary nonterminal, call it with appropriate ast’s.  

(The auxiliary rule is responsible for creating the ast after looking at more input.)

– Otherwise, this function builds the ast tree itself and returns it.

Converting the table to code



Demo: LL(1) Parsing

• https://github.com/cs4212/week-06-parsing 

• ll1_parser.ml

• Hand-generated LL(1) code for the table below.

number + ( ) $ (EOF)
T ⟼ S$ ⟼S$
S ⟼ E S’ ⟼E S’
S’ ⟼ + S ⟼ ε ⟼ ε

E ⟼ num. ⟼ ( S )

https://github.com/cs4212/week-06-parsing


• Top-down parsing that finds the leftmost derivation.

• Language Grammar ⇒ LL(1) grammar ⇒ prediction table ⇒ recursive-descent parser

• Great for simple hand-written implementation with fine-tuned error control (e.g., for editors) 

• Problems: 

– Grammar must be LL(1)

– Can extend to LL(k)  (it just makes the table bigger)

– Grammar cannot be left recursive (parser functions will loop!)

– There are CF grammars that cannot be transformed to LL(k)  

• Is there a better way?

LL(1) Summary



LR Grammars



• LR(k) parser:  

– Left-to-right scanning

– Rightmost derivation

– k lookahead symbols 

• LR grammars are more expressive than LL

– Can handle left-recursive (and right recursive) grammars; virtually all programming languages

– Easier to express programming language syntax (no left factoring) 

• Technique:  “Shift-Reduce” parsers

– Work bottom up instead of top down

– Construct right-most derivation of a program in the grammar

– Used by many parser generators (e.g. yacc, ocamlyacc, menhir, etc.)

– Better error detection/recovery

Bottom-up Parsing  (LR Parsers)



Note: ‘(‘ has been 
scanned but not 
consumed.  Processing 
it is still pending.


• Consider the left-recursive grammar: 
 
 

• (1 + 2 + (3 + 4)) + 5 

• What part of the tree must we  
know after scanning just “(1 + 2” ?


• In top-down, must be able to guess 
which productions to use…

Top-down vs. Bottom up
S

S   +   E

E 5

S   +   E

1

S   +   E

E 2

(    S    )

E 4

(    S    )

S   +   E

3
Top-down

S

S   +   E

E 5

S   +   E

1

S   +   E

E 2

(    S    )

E 4

(    S    )

S   +   E

3
Bottom-up

S ⟼ S + E  |  E

E ⟼ number | ( S )



Progress of Bottom-up Parsing
Reductions                  Scanned            Input Remaining

(1 + 2 + (3 + 4)) + 5 ⟻                            (1 + 2 + (3 + 4)) + 5

(E + 2 + (3 + 4)) + 5 ⟻     (                      1 + 2 + (3 + 4)) + 5

(S + 2 + (3 + 4)) + 5 ⟻      (1                     + 2 + (3 + 4)) + 5

(S + E + (3 + 4)) + 5 ⟻     (1 + 2                 + (3 + 4)) + 5

(S + (3 + 4)) + 5 ⟻         (1 + 2                 + (3 + 4)) + 5

(S + (E + 4)) + 5 ⟻         (1 + 2 + (3             + 4)) + 5

(S + (S + 4)) + 5 ⟻         (1 + 2 + (3             + 4)) + 5

(S + (S + E)) + 5 ⟻         (1 + 2 + (3 + 4         )) + 5

(S + (S)) + 5 ⟻             (1 + 2 + (3 + 4         )) + 5

(S + E) + 5 ⟻             (1 + 2 + (3 + 4)         ) + 5

(S) + 5 ⟻                 (1 + 2 + (3 + 4)         ) + 5

E + 5 ⟻                  (1 + 2 + (3 + 4))        + 5 

S + 5 ⟻                  (1 + 2 + (3 + 4))        + 5 

S + E ⟻                  (1 + 2 + (3 + 4)) + 5          

S

S ⟼ S + E  |  E

E ⟼ number | ( S )

R
ig

ht
m

os
t d

er
iv

at
io

n



Shift/Reduce Parsing
•  Parser state:

– Stack of terminals and nonterminals.

– Unconsumed input is a string of terminals

– Current derivation step is        stack + input


•  Parsing is a sequence of shift and reduce operations:

•  Shift: move look-ahead token to the stack

•  Reduce: Replace symbols γ at top of stack with nonterminal X  

               such that X ⟼ γ is a production.  (pop γ, push X)

Stack               Input               Action

         (1 + 2 + (3 + 4)) + 5    shift (

(          1 + 2 + (3 + 4)) + 5   shift 1

(1          + 2 + (3 + 4)) + 5   reduce: E ⟼ number

(E            + 2 + (3 + 4)) + 5   reduce: S ⟼ E

(S             + 2 + (3 + 4)) + 5   shift +

(S +               2 + (3 + 4)) + 5   shift 2

(S + 2              + (3 + 4)) + 5   reduce: E ⟼ number



LR(0) Grammars

Simple LR parsing with no look-ahead.



• Goal: know what set of reductions are legal at any given point. 

• Idea: Summarise all possible stack prefixes α as a finite parser state.

– Parser state is computed by a DFA that reads the stack σ.

– Accept states of the DFA correspond to unique reductions that apply. 

• Example: LR(0) parsing

– Left-to-right scanning, Right-most derivation, zero look-ahead tokens

– Too weak to handle many language grammars (e.g. the “sum” grammar)

– But, helpful for understanding how the shift-reduce parser works.

LR Parser States



• Example grammar for non-empty tuples and identifiers: 
 
 

• Example strings:

– x   

– (x,y)   

– ((((x))))

– (x, (y, z), w)

– (x, (y, (z, w)))

Example LR(0) Grammar: Tuples

S ⟼ ( L )  |  id

L ⟼ S       |   L , S

Parse tree for:

(x, (y, z), w)


Example LR(0) Grammar: Tuples

• Example grammar for non-empty tuples and identifiers:

• Example strings:

x

(x,y)   

((((x))))

(x, (y, z), w)

(x, (y, (z, w)))

CIS 341: Compilers 24

S ⟼ ( L )  |  id
L ⟼ S   |   L , S

Parse tree for:
(x, (y, z), w)

(    L    )

L    ,    S

L    ,    S

(    L    )

L    ,    Sx

S

y

S z

w

S



• Parser state:

– Stack of terminals and nonterminals.

– Unconsumed input is a string of terminals

– Current derivation step is        stack + input


• Parsing is a sequence of shift and reduce operations:

• Shift: move look-ahead token to the stack: e.g. 



• Reduce: Replace symbols γ at top of stack with nonterminal X such that X ⟼ γ is a 

production.  (pop γ, push X): e.g. 

Shift/Reduce Parsing
• Parser state:

– Stack of terminals and nonterminals.

– Unconsumed input is a string of terminals

– Current derivation step is        stack + input

• Parsing is a sequence of shift and reduce operations:

• Shift: move look-ahead token to the stack: e.g.

Stack Input Action

(x,  (y, z), w) shift (

( x,  (y, z), w) shift x

• Reduce: Replace symbols g at top of stack with nonterminal X such 
that X ⟼ g is a production.  (pop g, push X): e.g.

Stack Input Action

(x ,  (y, z), w) reduce S ⟼ id

(S ,  (y, z), w) reduce L ⟼ S

CIS 341: Compilers 25

S ⟼ ( L )  |  id
L ⟼ S   |   L , S

Shift/Reduce Parsing
• Parser state:

– Stack of terminals and nonterminals.

– Unconsumed input is a string of terminals

– Current derivation step is        stack + input

• Parsing is a sequence of shift and reduce operations:

• Shift: move look-ahead token to the stack: e.g.

Stack Input Action

(x,  (y, z), w) shift (

( x,  (y, z), w) shift x

• Reduce: Replace symbols g at top of stack with nonterminal X such 
that X ⟼ g is a production.  (pop g, push X): e.g.

Stack Input Action

(x ,  (y, z), w) reduce S ⟼ id

(S ,  (y, z), w) reduce L ⟼ S

CIS 341: Compilers 25

S ⟼ ( L )  |  id
L ⟼ S   |   L , S

Shift/Reduce Parsing
S ⟼ ( L )  |  id

L ⟼ S   |   L , S



Stack	 	 Input	 	 	 Action

	 	 	 (x,  (y, z), w)	 	 shift (

(	 	          x,  (y, z), w) 	 	 shift x

(x	 	          ,  (y, z), w) 	 	 reduce S ⟼ id

(S	 	          ,  (y, z), w)		 	 reduce L ⟼ S

(L	 	          , (y, z), w)		 	 shift ,

(L, 		          (y, z), w)	 	 	 shift (

(L, ( 	 	 y, z), w)	 	 	 shift y

(L, (y	 	 , z), w)	 	 	 reduce S ⟼ id

(L, (S	 	 , z), w)	 	 	 reduce L ⟼ S

(L, (L	 	 , z), w)	 	 	 shift ,

(L, (L, 	          z), w)	 	 	 shift z

(L, (L, z	          ), w)		 	 	 reduce S ⟼ id

(L, (L, S	          ), w)		 	 	 reduce L ⟼ L, S

(L, (L	 	 ), w)		 	 	 shift )

(L, (L)	          , w)	 	 	 	 reduce S ⟼ ( L )

(L, S	 	 , w)	 	 	 	 reduce L ⟼ L, S

(L	 	          , w)	 	 	 	 shift ,

(L,	 	          w)	 	 	 	 shift w

(L, w	 	 )	 	 	 	 reduce S ⟼ id

(L, S	 	 )	 	 	 	 reduce L ⟼ L, S

(L	 	          )	 	 	 	 shift )

(L)	 	 	 	 	 	          reduce S ⟼ ( L )

S

Example Run

S ⟼ ( L )  |  id

L ⟼ S   |   L , S



• Given a stack σ and a look-ahead symbol b, should the parser:

– Shift b onto the stack (new stack is σb)

– Reduce a production X ⟼ γ, assuming that σ = αγ  (new stack is αX)? 

• Sometimes the parser can reduce but shouldn’t

– For example, X ⟼ ε can always be reduced

– Sometimes the stack can be reduced in different ways (reduce/reduce conflict) 

• Main idea:  decide what to do based on a prefix α of the stack plus the look-ahead symbol.

– The prefix α is different for different possible reductions  

since in productions X ⟼ γ and Y ⟼ β, γ and β might have different lengths. 

• Main goal: know what set of reductions are legal at any point.

– How do we keep track?

Action Selection Problem



LR(0) States

S ⟼ ( L )  |  id

L ⟼ S   |   L , S

LR(0) States
• An LR(0) state is a set of items keeping track of progress on possible 

upcoming reductions.

• An LR(0) item is a production from the language with an extra 
separator “.” somewhere in the right-hand-side

• Example items:     S ⟼ .( L )     or   S ⟼ (. L)    or    L ⟼ S.

• Intuition:

– Stuff before the ‘.’ is already on the stack
(beginnings of possible g’s to be reduced)

– Stuff after the ‘.’ is what might be seen next

– The prefixes a are represented by the state itself

CIS 341: Compilers 28

S ⟼ ( L )  |  id
L ⟼ S   |   L , S



Constructing the DFA: Start state & Closure
Constructing the DFA: Start state & Closure

• First step:  Add a new production   
S’ ⟼ S$  to the grammar

• Start state of the DFA =  empty stack, 
so it contains the item:

S’ ⟼ .S$
• Closure of a state:

– Adds items for all productions whose LHS nonterminal occurs in an item 
in the state just after the ‘.’

– The added items have the ‘.’ located at the beginning (no symbols for 
those items have been added to the stack yet)

– Note that newly added items may cause yet more items to be added to the 
state… keep iterating until a fixed point is reached.

• Example:  CLOSURE({S’ ⟼ .S$})  =  {S’ ⟼ .S$, S ⟼ .(L), S⟼.id}

• Resulting “closed state” contains the set of all possible productions 
that might be reduced next.

CIS 341: Compilers 29

S’ ⟼ S$
S ⟼ ( L )  |  id
L ⟼ S   |   L , S

• Idea of the Closure: productions that can be applicable with the already observed stack



Example: Constructing the DFA

• First, we construct a state with the initial item S’ ⟼ .S$

CIS 341: Compilers 13

S’ ⟼ S$
S ⟼ ( L )  |  id
L ⟼ S   |   L , S

S’ ⟼ .S$

Example: Constructing the DFA



Example: Constructing the DFA

• Next, we take the closure of that state:
CLOSURE({S’ ⟼ .S$}) = {S’ ⟼ .S$, S ⟼ .( L ), S ⟼ .id}

• In the set of items, the nonterminal S appears after the ‘.’
• So we add items for each S production in the grammar

CIS 341: Compilers 14

S’ ⟼ S$
S ⟼ ( L )  |  id
L ⟼ S   |   L , S

S’ ⟼ .S$
S ⟼ .( L ) 
S ⟼ .id

Example: Constructing the DFA



Example: Constructing the DFA

• Next we add the transitions:

• First, we see what terminals and 
nonterminals can appear after the 
‘.’ in the source state.

– Outgoing edges have those label.

• The target state (initially) includes 
all items from the source state that 
have the edge-label symbol after 
the ‘.’, but we advance the ‘.’  (to 
simulate shifting the item onto the 
stack)

CIS 341: Compilers 15

S’ ⟼ S$
S ⟼ ( L )  |  id
L ⟼ S   |   L , S

S’ ⟼ .S$
S ⟼ .( L ) 
S ⟼ .id

S ⟼ (. L )

S ⟼ id.

S’ ⟼ S.$

id

S

(

Example: Constructing the DFA



Example: Constructing the DFA

• Finally, for each new state, we take the closure.
• Note that we have to perform two iterations to compute 

CLOSURE({S ⟼ ( . L )})
– First iteration adds L ⟼ .S and L ⟼ .L, S

– Second iteration adds S ⟼ .(L) and S ⟼ .id

CIS 341: Compilers 16

S’ ⟼ S$
S ⟼ ( L )  |  id
L ⟼ S   |   L , S

S’ ⟼ .S$
S ⟼ .( L ) 
S ⟼ .id

S ⟼ (. L )
L ⟼ .S 
L ⟼ .L, S
S ⟼ .(L)
S ⟼ .id

S ⟼ id.

S’ ⟼ S.$

id

S

(

Example: Constructing the DFA



Full DFA for the Example

CIS 341: Compilers 17

S’ ⟼ .S$
S ⟼ .( L ) 
S ⟼ .id

S ⟼ (. L )
L ⟼ .S 
L ⟼ .L, S
S ⟼ .(L)
S ⟼ .id

S ⟼ id. L ⟼ L, . S
S ⟼ .( L )
S ⟼ .id

L ⟼ L, S.

S ⟼ ( L .)
L ⟼ L . , S

S ⟼ ( L ).L ⟼ S.S’ ⟼ S.$

Done!

id id S

S

$

(

(

S
)

(

L

id

,

Reduce state: ‘.’ at the 
end of the production

• Current state: run the
DFA on the stack.

• If a reduce state is 
reached, reduce

• Otherwise, if the next
token matches an 
outgoing edge, shift.

• If no such transition,
it is a parse error. 

1 2

3

4

5

67

8 9

Example: Constructing the DFA



• Run the parser stack through the DFA.

• The resulting state tells us which productions might be reduced next.


– If not in a reduce state, then shift the next symbol and transition according to DFA.

– If in a reduce state, X ⟼ γ with stack αγ, pop γ and push X.


• Optimisation: No need to re-run the DFA from beginning every step

– Store the state with each symbol on the stack:  e.g. 1(3(3L5)6

– On a reduction X ⟼ γ, pop stack to reveal the state too: 

e.g.  From stack 1(3(3L5)6  reduce S ⟼ ( L ) to reach stack 1(3

– Next, push the reduction symbol: e.g. to reach stack 1(3S

– Then take just one step in the DFA to find next state: 1(3S7 

Using the DFA



• Represent the parser automaton as a table of shape:  
                      state * (terminals + nonterminals)


• Entries for the “action table” specify two kinds of actions:

– Shift and goto state n

– Reduce using reduction X ⟼ γ


• First pop γ off the stack to reveal the state

• Look up X in the “goto table” and goto that state

Implementing the Parsing Table

Action

table


Goto

tableSt

at
e

Terminal Symbols Nonterminal Symbols



Example Parse Table
( ) id , $ S L

1 s3 s2 g4

2 S⟼id S⟼id S⟼id S⟼id S⟼id

3 s3 s2 g7 g5

4 DONE

5 s6 s8

6 S ⟼ (L) S ⟼ (L) S ⟼ (L) S ⟼ (L) S ⟼ (L)

7 L ⟼ S L ⟼ S L ⟼ S L ⟼ S L ⟼ S

8 s3 s2 g9

9 L ⟼ L,S L ⟼ L,S L ⟼ L,S L ⟼ L,S L ⟼ L,S

sx  = shift and goto state x

gx  = goto state x



• Parse the token stream:  (x, (y, z), w)$ 
 
Stack	 	 Stream	 	 	 Action (according to table)

ε1		 	       (x, (y, z), w)$ 	 s3

ε1(3	 	 	 x, (y, z), w)$		 s2

ε1(3x2	 	        , (y, z), w)$	 	 Reduce: S⟼id

ε1(3S	 	 	 , (y, z), w)$	 	 g7   (from state 3 follow S) 

ε1(3S7	 	        , (y, z), w)$	 	 Reduce: L⟼S

ε1(3L	 	 	 , (y, z), w)$	 	 g5   (from state 3 follow L)

ε1(3L5	 	        , (y, z), w)$	 	 s8

ε1(3L5,8	 	 (y, z), w)$	 	 s3

ε1(3L5,8(3	        y, z), w)$	 	 s2

Example



• An LR(0) machine only works if states with reduce actions have a single reduce action.

– In such states, the machine always reduces (ignoring lookahead) 

• With more complex grammars, the DFA construction will yield states with shift/reduce 
and reduce/reduce conflicts: 
 
               OK		 	             shift/reduce	     	            reduce/reduce


• Such conflicts can often be resolved by using a look-ahead symbol:  LR(1)

LR(0) Limitations

S ⟼ ( L ).
  S ⟼ ( L ).

  L ⟼ .L , S

S ⟼ L ,S.

S ⟼ ,S.



• Consider the left associative and right associative “sum” grammars:	 	 	 	
	  
	 	 	 	 left		 	 	 	 	 	 right


• One is LR(0) the other isn’t…  which is which and why?

• What kind of conflict do you get?  Shift/reduce or Reduce/reduce?


• Ambiguities in associativity/precedence usually lead to shift/reduce conflicts. 

Examples

S ⟼ S + E  |  E

E ⟼ number | ( S )

S ⟼ E + S  |  E

E ⟼ number | ( S )



Classification of Grammars

LR(0)

SLR

LALR(1)

LR(1)

LL(1)



Parsing in OCaml via Menhir



Practical Issues

• https://github.com/cs4212/week-07-more-parsing 
 


• Dealing with source file location information

– In the lexer and parser

– In the abstract syntax  


– See range.ml, ast.ml

– Check the parse tree (printing via driver.ml)


• Lexing comments / strings

https://github.com/cs4212/week-07-more-parsing


• You can get verbose parser debugging information by doing:

– menhir --explain …

– or, if using ocamlbuild: 
ocamlbuild –use-menhir -yaccflag -–explain …


• The result is a <parsername>.conflicts file that contains a description of the error

–  The parser items of each state use the ‘.’ just as described above


• The flag --dump generates a full description of the automaton


• Example: see start_parser.mly

Menhir output



• Conflict 1:

• Operator precedence (State 13) 

 
 

• Conflict 2:

• Parsing if-then-else statements

Shift/Reduce conflicts



• Conflict 1:

• Operator precedence (State 13)

• Resolving by changing the grammar (see good_parser.ml) 

 

• Conflict 2:

• Parsing if-then-else statements

Shift/Reduce conflicts



From Menhir Manual http://gallium.inria.fr/~fpottier/menhir/manual.pdf

5.3 Inlining
It is well-known that the following grammar of arithmetic expressions does not work as expected: that is, in
spite of the priority declarations, it has shift/reduce conflicts.

%token < int > INT
%token PLUS TIMES
%left PLUS
%left TIMES

%%

expression:
| i = INT { i }
| e = expression; o = op; f = expression { o e f }

op:
| PLUS { ( + ) }
| TIMES { ( * ) }

The trouble is, the precedence level of the production expression ! expression op expression is undefined, and
there is no sensible way of defining it via a %prec declaration, since the desired level really depends upon the
symbol that was recognized by op: was it PLUS or TIMES?

The standard workaround is to abandon the definition of op as a separate nonterminal symbol, and to inline
its definition into the definition of expression, like this:

expression:
| i = INT { i }
| e = expression; PLUS; f = expression { e + f }
| e = expression; TIMES; f = expression { e * f }

This avoids the shift/reduce conflict, but gives up some of the original specification’s structure, which,
in realistic situations, can be damageable. Fortunately, Menhir offers a way of avoiding the conflict without
manually transforming the grammar, by declaring that the nonterminal symbol op should be inlined:

expression:
| i = INT { i }
| e = expression; o = op; f = expression { o e f }

%inline op:
| PLUS { ( + ) }
| TIMES { ( * ) }

The %inline keyword causes all references to op to be replaced with its definition. In this example, the definition
of op involves two productions, one that develops to PLUS and one that expands to TIMES, so every production
that refers to op is effectively turned into two productions, one that refers to PLUS and one that refers to TIMES.
After inlining, op disappears and expression has three productions: that is, the result of inlining is exactly the
manual workaround shown above.

In some situations, inlining can also help recover a slight efficiency margin. For instance, the definition:

%inline plist(X):
| xs = loption(delimited(LPAREN, separated_nonempty_list(COMMA, X), RPAREN)) { xs }

effectively makes plist(X) an alias for the right-hand side loption(. . .). Without the %inline keyword, the
language recognized by the grammar would be the same, but the LR automaton would probably have one
more state and would perform one more reduction at run time.

16 20200624



From Menhir Manual http://gallium.inria.fr/~fpottier/menhir/manual.pdf

5.3 Inlining
It is well-known that the following grammar of arithmetic expressions does not work as expected: that is, in
spite of the priority declarations, it has shift/reduce conflicts.

%token < int > INT
%token PLUS TIMES
%left PLUS
%left TIMES

%%

expression:
| i = INT { i }
| e = expression; o = op; f = expression { o e f }

op:
| PLUS { ( + ) }
| TIMES { ( * ) }

The trouble is, the precedence level of the production expression ! expression op expression is undefined, and
there is no sensible way of defining it via a %prec declaration, since the desired level really depends upon the
symbol that was recognized by op: was it PLUS or TIMES?

The standard workaround is to abandon the definition of op as a separate nonterminal symbol, and to inline
its definition into the definition of expression, like this:

expression:
| i = INT { i }
| e = expression; PLUS; f = expression { e + f }
| e = expression; TIMES; f = expression { e * f }

This avoids the shift/reduce conflict, but gives up some of the original specification’s structure, which,
in realistic situations, can be damageable. Fortunately, Menhir offers a way of avoiding the conflict without
manually transforming the grammar, by declaring that the nonterminal symbol op should be inlined:

expression:
| i = INT { i }
| e = expression; o = op; f = expression { o e f }

%inline op:
| PLUS { ( + ) }
| TIMES { ( * ) }

The %inline keyword causes all references to op to be replaced with its definition. In this example, the definition
of op involves two productions, one that develops to PLUS and one that expands to TIMES, so every production
that refers to op is effectively turned into two productions, one that refers to PLUS and one that refers to TIMES.
After inlining, op disappears and expression has three productions: that is, the result of inlining is exactly the
manual workaround shown above.

In some situations, inlining can also help recover a slight efficiency margin. For instance, the definition:

%inline plist(X):
| xs = loption(delimited(LPAREN, separated_nonempty_list(COMMA, X), RPAREN)) { xs }

effectively makes plist(X) an alias for the right-hand side loption(. . .). Without the %inline keyword, the
language recognized by the grammar would be the same, but the LR automaton would probably have one
more state and would perform one more reduction at run time.

16 20200624



• Parser generators, like menhir often support precedence and associativity declarations.

– Hints to the parser about how to resolve conflicts.

– See: good-parser.mly


• Pros:

– Avoids having to manually resolve those ambiguities by manually introducing extra nonterminals  

(see parser.mly)

– Easier to maintain the grammar


• Cons:

– Can’t as easily re-use the same terminal (if associativity differs)

– Introduces another level of debugging


• Limits:

– Not always easy to disambiguate the grammar based on just precedence and associativity.

Precedence and Associativity Declarations



• Consider this grammar: 
 
S ⟼ if (E) S 
S ⟼ if (E) S else S 
S ⟼ X = E 
E ⟼ …


• Is this grammar OK?

• Consider how to parse:

 

   if (E1) if (E2) S1 else S2 

• This is known as the “dangling else” problem. 

• What should the “right” answer be? 

• How do we change the grammar?

Conflict 2: Ambiguity in Real Languages



• Want to rule out:     
 
                                             if (E1)  if (E2) S1  else S2

• Observation: An un-matched ‘if’ should not appear as the ‘then’ clause of a containing ‘if’. 
 
S  ⟼  M  |  U	 	 	 	         // M = “matched”,  U = “unmatched” 
U ⟼ if (E) S	 	 	 	 // Unmatched ‘if ’ 
U ⟼ if (E) M else U	        // Nested if is matched 
M ⟼ if (E) M else  M 	 // Matched ‘if ’ 
M ⟼ X = E	 	 	 	 	 // Other statements


• See: else-resolved-parser.mly

How to Disambiguate if-then-else



• Ambiguity arises because the ‘then’ branch is not well bracketed: 
 
if (E1) { if (E2) { S1 } } else S2   // unambiguous 
if (E1) { if (E2) { S1 } else S2 }  // unambiguous 

• So: could just require brackets

– But requiring them for the else clause too leads to ugly code for chained if-statements: 

 
                                           How about a compromise?  Allow unbracketed else 
	 	 	 	 	 	      block only if the body is ‘if ’:

Alternative: Use { }

if (c1) { 
  … 
} else {
  if (c2) {

  } else {
    if (c3) {

    } else {

    }
  }
}

if (c1) {

} else if (c2) {

} else if (c3) {

} else {

}

Benefits:

• Less ambiguous

• Easy to parse

• Enforces good style



HW4: Oat v.1



• 	 Simple C-like Imperative Language  
	 –  supports 64-bit integers, arrays, strings  
	 –  top-level, mutually recursive procedures  
	 –  scoped local, imperative variables  

• 	 See examples in hw4programs folder 

• 	 How to design/specify such a language?

Oat


