CS4212: Compiler Design

Week 11: Type Safety Typing for Advanced Features

Ilya Sergey

ilya@nus.edu.sg

ilyasergey.net/CS4212/

Type Judgments

- In the judgment: $G \vdash e : t$
 - G is a typing environment or a type context
 - G maps variables to types. It is just a set of bindings of the form:

```
x_1 : t_1, x_2 : t_2, ..., x_n : t_n
```

- A type judgement takes the form $G \vdash e : t$ "Under the type environment G, the expression e has type t"
- For example:

```
x : int, b : bool \vdash if (b) 3 else x : int
```

• What do we need to *check* to decide whether "**if** (**b**) **3 else x**" has type **int** in the environment **x** : **int**, **b** : **bool**?

```
- b must be a bool i.e. x : int, b : bool \vdash b : bool
```

- 3 must be an int i.e. x : int, b : bool - 3 : int

- x must be an int i.e. $x : int, b : bool \vdash x : int$

Simply-typed Lambda Calculus with Integers

• For the language in "stlc.ml" we have five inference rules:

$$X:T\in G \qquad \begin{array}{c} ADD \\ G\vdash e_1: int \qquad G\vdash e_2: int \\ \hline \\ G\vdash e_1: int \qquad G\vdash e_2: int \\ \hline \\ G\vdash e_1: int \qquad G\vdash e_2: int \\ \hline \\ G\vdash e_1: T \rightarrow S \qquad G\vdash e_2: T \\ \hline \\ G\vdash fun (x:T) \rightarrow e: T \rightarrow S \qquad G\vdash e_1: S \\ \hline \end{array}$$

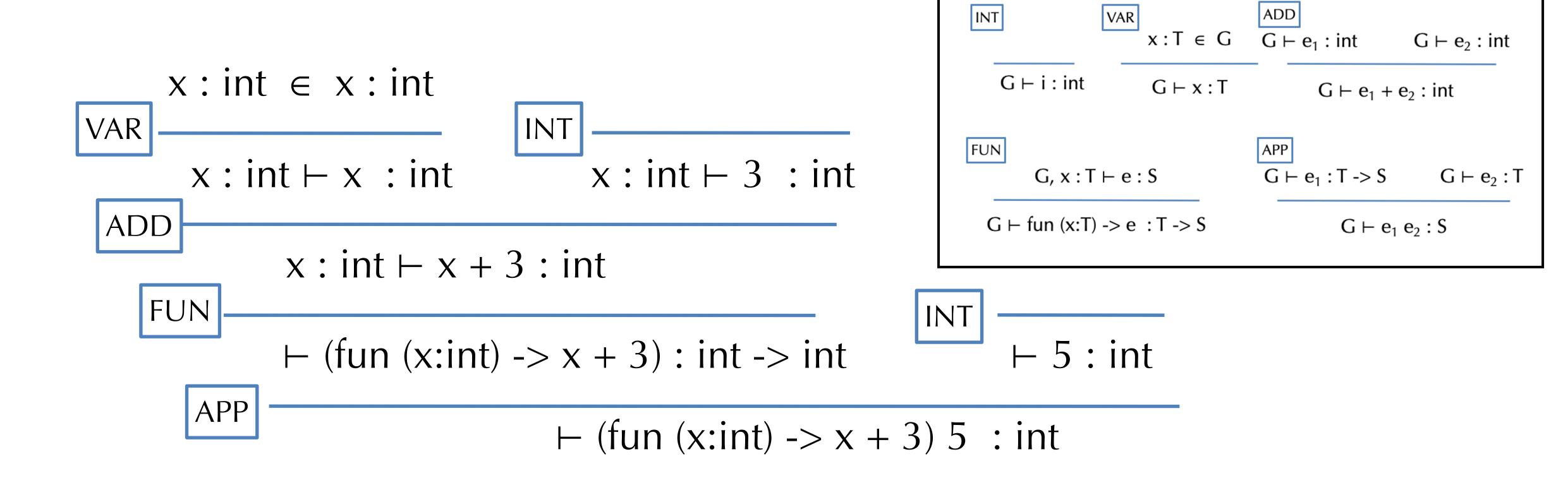
Note how these rules correspond to the OCaml code.

Model for Type Checking

- A *derivation* or *proof tree* has (instances of) judgments as its nodes and edges that connect premises to a conclusion according to an inference rule.
- Leaves of the tree are *axioms* (i.e. rules with no premises)
 - Example: the INT rule is an axiom
- Goal of the type checker: verify that such a tree exists.
- **Example:** Find a tree for the following program using the inference rules on the previous slide:

$$\vdash$$
 (fun (x:int) -> x + 3) 5 : int

Example Derivation Tree

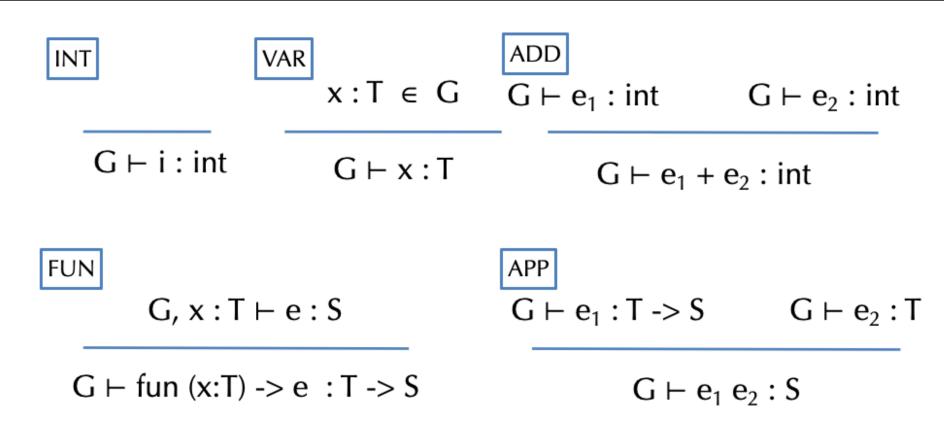


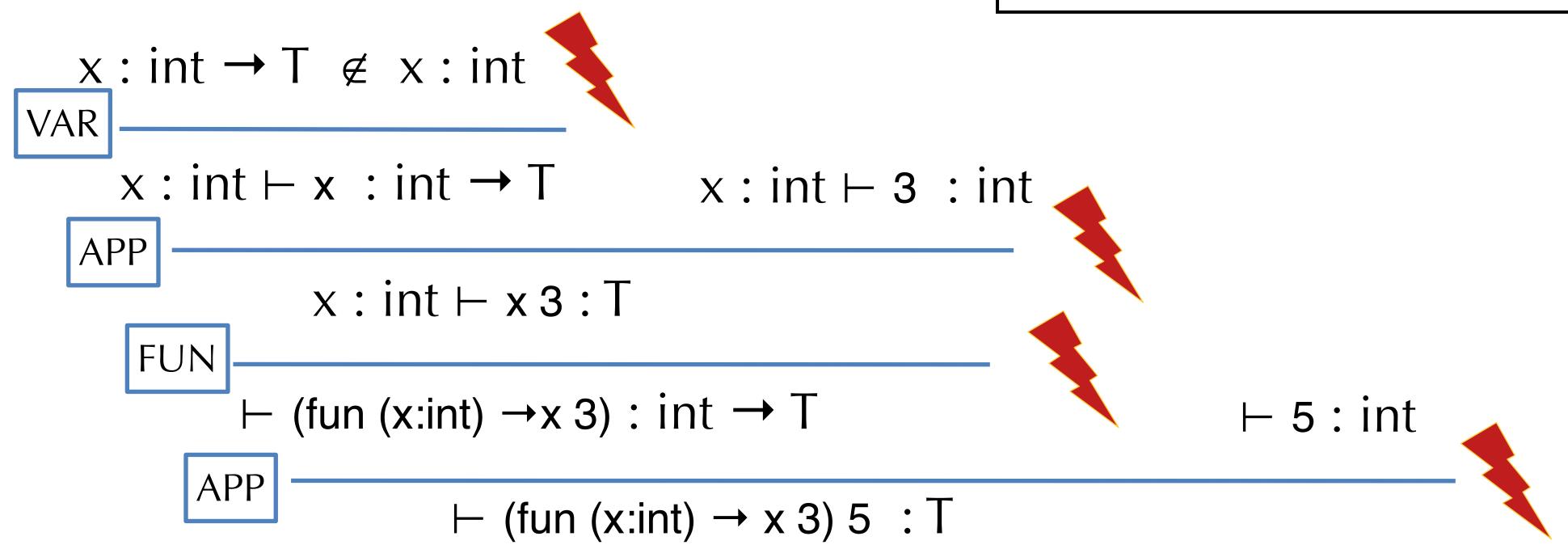
- Note: the OCaml function typecheck verifies the existence of this tree. The structure of the recursive calls when running typecheck is the same shape as this tree!
- Note that $x : int \in E$ is implemented by the function lookup

Ill-typed Programs

• Programs without derivations are ill-typed

Example: There is no type T such that \vdash (fun (x:int) \rightarrow x 3) 5 : T





Implementing a Type Checker for Lambda Calculus

See stlc.ml

Exercise

• Implement the missing parts of the type-checker

Notes about this Type Checker

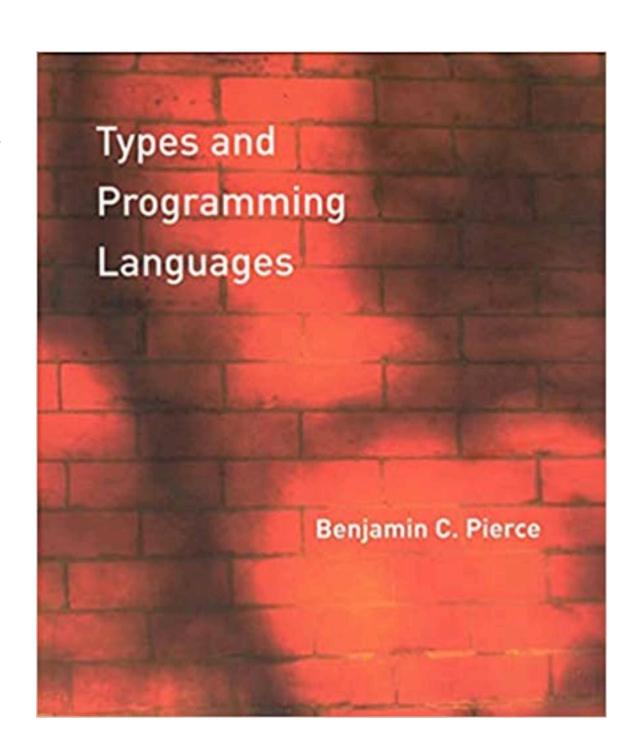
- In the interpreter, we only evaluate the body of a function when it's applied.
- In the type checker, we always check the body of the function (even if it's never applied.)
 - We assume the input has some type (say t_1) and reflect this in the type of the function ($t_1 \rightarrow t_2$).
- Dually, at a call site $(e_1 e_2)$, we don't know what *closure* we're going to get as e_1 .
 - But we can calculate e_1 's type, check that e_2 is an argument of the right type, and also determine what type will (e_1 e_2) have.
- Question: Why is this a valid approximation of the dynamic program behaviour?

Contexts and Inference Rules

- Need to keep track of contextual information.
 - What variables are in scope?
 - What are their types?
 - What information doe we have about each syntactic construct?
- What relationships are there among the syntactic objects?
 - e.g. is one type a subtype of another?
- How do we describe this information?
 - In the compiler there's a mapping from variables to information we know about them the "context".
 - The compiler has a collection of (mutually recursive) functions that follow the structure of the syntax.

Why Inference Rules?

- They are a compact, precise way of specifying language properties.
 - E.g. ~20 pages for full Java vs. 100's of pages of prose Java Language Spec.
 - Check out oat-v1-typing.pdf
- Inference rules correspond closely to the recursive AST traversal that implements them
- Type checking (and *type inference*) is nothing more than attempting to *prove* a judgment ($G \vdash e : t$) by searching backwards through the rules.
- Strong mathematical foundations
 - The "Curry-Howard correspondence":
 - Programming Language ~ Logic,
 - Program ~ Proof,
 - Type ~ Proposition
- Talk to me you're interested in type systems!



Types and Type Safety

Type Safety

Theorem: (type soundness of simply typed lambda calculus with integers)

If \vdash e:t then there exists a value v such that e \Downarrow v.

"Well typed programs do not go wrong."

– Robin Milner, 1978

- Note: this is a *very* strong property.
 - Well-typed programs cannot "go wrong" by trying to execute undefined code (such as $3 + (\text{fun } x \rightarrow 2)$)
 - Simply-typed lambda calculus is guaranteed to terminate!
 (i.e. it *isn't* Turing complete)

Tuples

- ML-style tuples with statically known number of products:
- First: add a new type constructor: $T_1 * ... * T_n$

TUPLE
$$G \vdash e_1 : T_1 \dots G \vdash e_n : T_n$$

$$G \vdash (e_1, \dots, e_n) : T_1 * \dots * T_n$$

PROJ
$$G \vdash e : T_1 * ... * T_n 1 \le i \le n$$

$$G \vdash \#ie : T_i$$

A note on Curry-Howard Correspondence

Arrays

- Array constructs are not hard
- First: add a new type constructor: T[]

NEW

$$G \vdash e_1 : int \quad G \vdash e_2 : T$$

$$G \vdash new T[e_1](e_2) : T[]$$

 e_1 is the size of the newly allocated array. e_2 initialises the elements of the array.

INDEX

$$G \vdash e_1 : T[] \qquad G \vdash e_2 : int$$

$$G \vdash e_1[e_2] : T$$

UPDATE

$$G \vdash e_1 : T[]$$
 $G \vdash e_2 : int$ $G \vdash e_3 : T$

$$G \vdash e_1[e_2] = e_3 \text{ ok}$$

Note: These rules don't ensure that the array index is in bounds – that should be checked *dynamically*.

References

- OCaml-style references (note that in OCaml references are expressions)
- First, add a new type constructor: T ref

REF

$$G \vdash e : T$$

 $G \vdash ref e : T ref$

DEREF

$$G \vdash e : T ref$$

$$G \vdash !e : T$$

ASSIGN

$$G \vdash e_1 : T \text{ ref } E \vdash e_2 : T$$

$$G \vdash e_1 := e_2 : unit$$

Note the similarity with the rules for arrays...

Well-Formed Types

- In languages with type definitions, need additional rules to define well-formed types
- Judgements take the form $H \vdash t$
 - H is set of type names
 - t is atype
 - H ⊢ t
 means
 "Assuming H lists well-formed types, t is a well-formed type"

INT	Bool	ARROW	NAMED
		$H \vdash t_1 \qquad H \vdash t_2$	$\overline{H \vdash s} s \in H$
$\overline{H \vdash int}$	$H \vdash bool$	$H \vdash t_1 \rightarrow t_2$	$\Pi \sqcap S$

Note: also need to modify the typing rules and judgements. E.g.,

FUN
$$H \vdash t_1 \qquad H, \Gamma\{x \mapsto t_1\} \vdash e : t_2$$

$$H, \Gamma \vdash \mathbf{fun} \ (x : t_1) \rightarrow e : t_1 \rightarrow t_2$$

Type-Checking Statements

- In languages with statements, need additional rules to define well-formed statements
- E.g., judgements may take the form $H;G;rt \vdash s$
 - H maps type names to their definitions
 - G is a type environment (variables -> types)
 - rt is a type
 - H;G;rt ⊢ smeans

"with type definitions H, assuming type environment G, s is avalid statement within the context of a function that returns a value of type rt"

ASSIGN $\Gamma \vdash e : \Gamma(x)$ $D; \Gamma; rt \vdash x := e$

RETURN
$$\Gamma \vdash e : rt$$

$$\overline{D; \Gamma; rt \vdash \mathbf{return} \ e}$$

$$\frac{\mathsf{DECL}}{\Gamma \vdash e : t} \quad D; \Gamma\{x \mapsto t\}; rt \vdash s_2$$

$$D; \Gamma; rt \vdash \mathsf{var}\ x = e; s_2$$

Type Safety For General Languages

Theorem: (Type Safety)

```
If \vdash P:t is a well-typed program, then either:
```

- (a) the program terminates in a well-defined way, or
- (b) the program continues computing forever
- Well-defined termination could include:
 - halting with a return value
 - raising an exception
- Type safety rules out undefined behaviours:
 - abusing "unsafe" casts: converting pointers to integers, etc.
 - treating non-code values as code (and vice-versa)
 - breaking the type abstractions of the language (e.g., via Java/Ruby reflection)
- What is "defined" depends on the language semantics...

A good place for a break

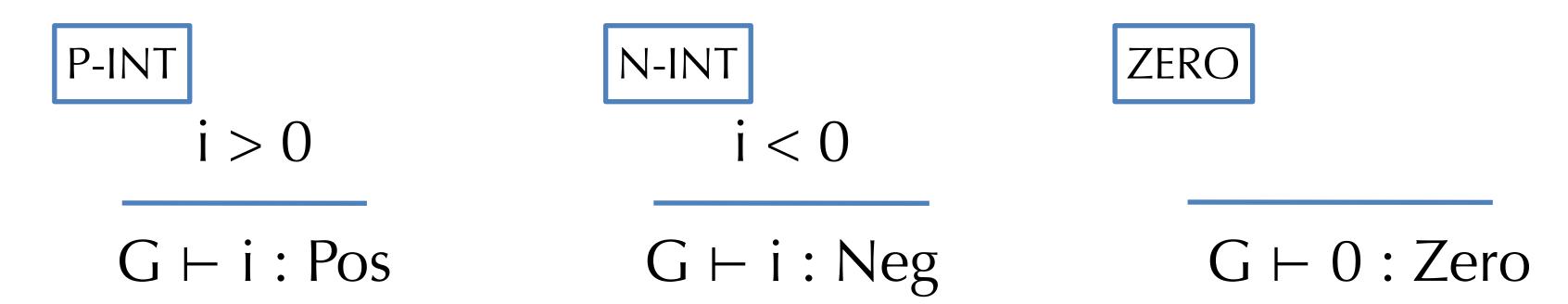
Types as Sets

What are types, anyway?

- A *type* is just a predicate on the set of values in a system.
 - For example, the type "int" can be thought of as a boolean function that returns "true" on integers and "false" otherwise.
 - Equivalently, we can think of a type as just a *subset* of all values.
- For efficiency and tractability, the predicates are usually taken to be very simple.
 - Types are an abstraction mechanism
- We can easily add new types that distinguish different subsets of values:

Modifying the typing rules

- We need to refine the typing rules too...
- Some easy cases:
 - Just split up the integers into their more refined cases:



• Same for booleans:

What about "if"?

• Two cases are easy:

IF-T
$$G \vdash e_1 : True \ G \vdash e_2 : T$$

$$G \vdash if (e_1) \ e_2 \ else \ e_3 : T$$

IF-F
$$G \vdash e_1 : False G \vdash e_3 : T$$

$$G \vdash if (e_1) e_2 else e_3 : T$$

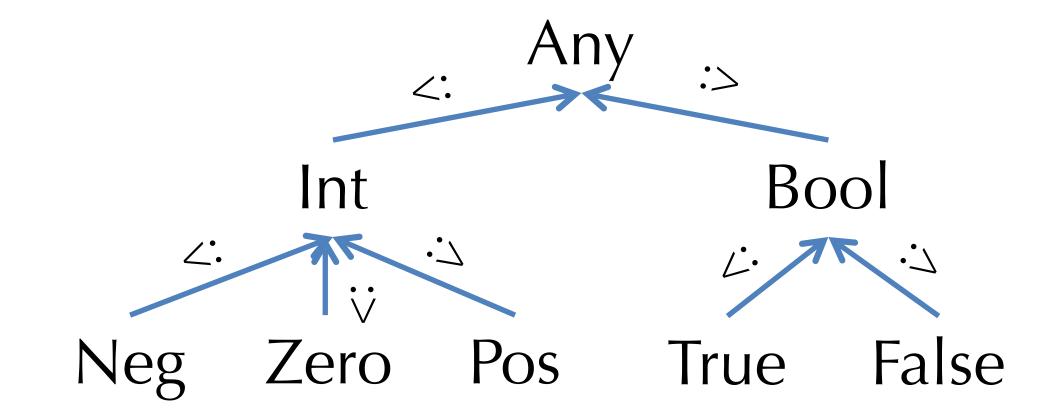
- What happens when we don't know statically which branch will be taken?
- Consider the type checking problem:

$$x:bool \vdash if(x) 3 else -1:?$$

- The true branch has type Pos and the false branch has type Neg.
 - What should be the result type of the whole if?

Subtyping and Upper Bounds

- If we think of types as sets of values, we have a natural inclusion relation: Pos \subseteq Int
- This subset relation gives rise to a *subtype* relation: Pos <: Int (sometimes also typeset as \leq)
- Such inclusions give rise to a *subtyping hierarchy*:



- Given any two types T_1 and T_2 , we can calculate their *least upper bound* (LUB) according to the hierarchy.
 - Example: LUB(True, False) = Bool, LUB(Int, Bool) = Any
 - Note: might want to add types for "NonZero", "NonNegative", and "NonPositive" so that set union on values corresponds to taking LUBs on types.

"If" Typing Rule Revisited

 For statically unknown conditionals, we want the return value to be the LUB of the types of the branches:

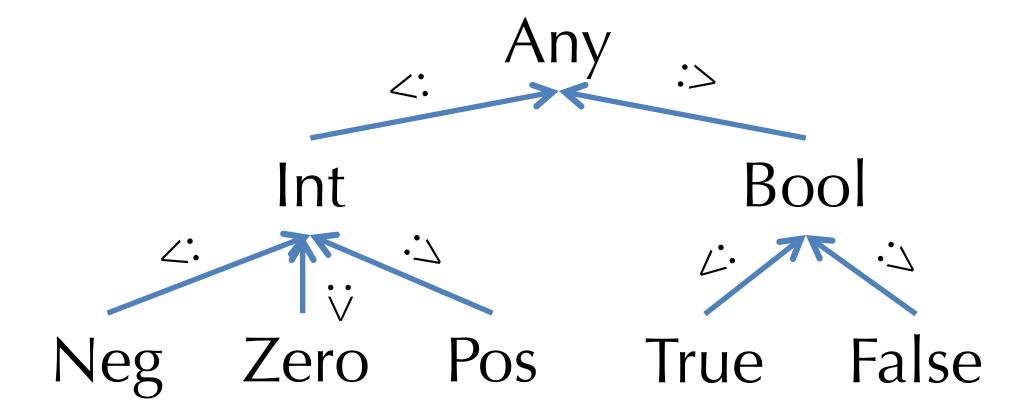
IF-BOOL
$$G \vdash e_1 : bool \quad E \vdash e_2 : T_1 \quad G \vdash e_3 : T_2$$

$$G \vdash if (e_1) e_2 else e_3 : LUB(T_1, T_2)$$

- Note that LUB(T_1 , T_2) is the most precise type (according to the hierarchy) that is able to describe any value that has either type T_1 or type T_2 .
- In math notation, LUB(T1, T2) is sometimes written $T_1 \vee T_2$
- LUB is also called the *join* operation.

Subtyping Hierarchy

A subtyping hierarchy:



- The subtyping relation is a partial order:
 - Reflexive: T <: T for any type T
 - Transitive: $T_1 <: T_2$ and $T_2 <: T_3$ then $T_1 <: T_3$
 - Antisymmetric: It $T_1 <: T_2$ and $T_2 <: T_1$ then $T_1 = T_2$

Soundness of Subtyping Relations

- We don't have to treat *every* subset of the integers as a type.
 - e.g., we left out the type NonNeg
- A subtyping relation $T_1 <: T_2$ is *sound* if it approximates the underlying semantic subset relation.
- Formally: write [T] for the subset of (closed) values of type T
 - i.e. $[T] = \{v \mid \vdash v : T\}$
 - e.g. $[Zero] = \{0\}, [Pos] = \{1, 2, 3, ...\}$
- If $T_1 <: T_2$ implies $[T_1] \subseteq [T_2]$, then $T_1 <: T_2$ is sound.
 - e.g. Pos <: Int is sound, since $\{1,2,3,...\}\subseteq \{...,-3,-2,-1,0,1,2,3,...\}$
 - e.g. Int <: Pos is not sound, since it is *not* the case that $\{...,-3,-2,-1,0,1,2,3,...\}$ ⊆ $\{1,2,3,...\}$

Subsumption Rule

• When we add subtyping judgments of the form T <: S we can uniformly integrate it into the type system generically:

SUBSUMPTION
$$G \vdash e : T : S$$

$$G \vdash e : S$$

- Subsumption allows any value of type T to be treated as an S whenever T <: S.
- Adding this rule makes the search for typing derivations more difficult this rule can be applied anywhere, since T <: T.
 - But careful engineering of the typing system can incorporate the subsumption rule into a deterministic algorithm. (See, e.g., the Oat type system)

Subtyping in the Wild

Extending Subtyping to Other Types

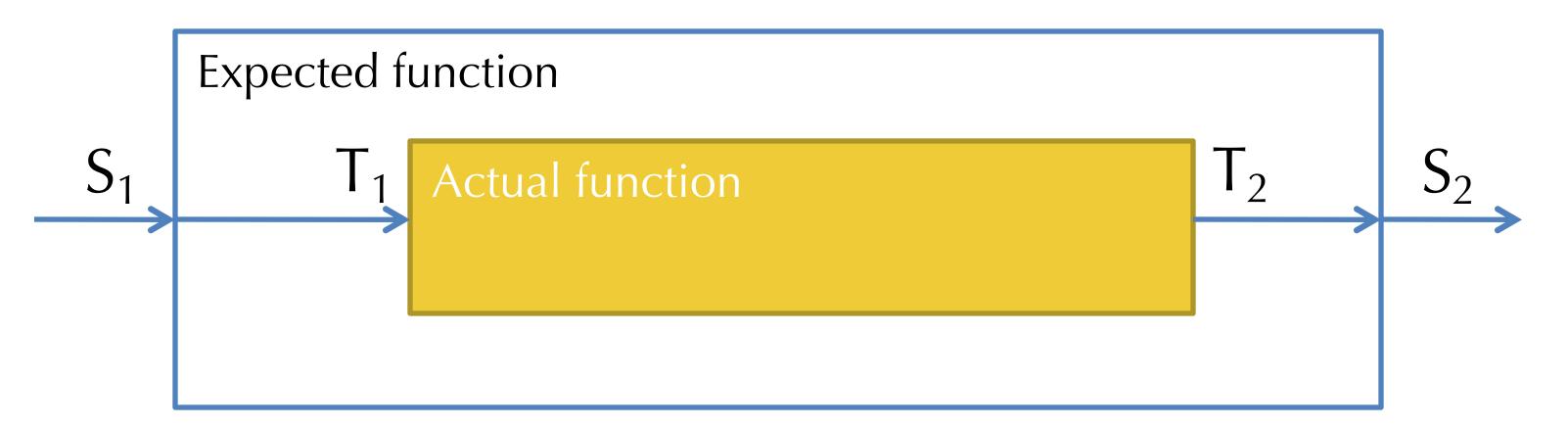
- What about subtyping for tuples?
 - Intuition: whenever a program expects something of type $S_1 * S_2$, it is sound to give it a $T_1 * T_2$.
 - Example: (Pos * Neg) <: (Int * Int)</p>
 - What about functions?
- When is $T_1 \rightarrow T_2 <: S_1 \rightarrow S_2$?

$$T_1 <: S_1 T_2 <: S_2$$

$$(T_1 * T_2) <: (S_1 * S_2)$$

Subtyping for Function Types

One way to see it:



• Need to convert an S1 to a T1 and T2 to S2, so the argument type is *contravariant* and the output type is *covariant*.

$$S_1 <: T_1 \quad T_2 <: S_2$$

$$(T_1 \rightarrow T_2) <: (S_1 \rightarrow S_2)$$

Immutable Records

- Record type: $\{lab_1:T_1; lab_2:T_2; ...; lab_n:T_n\}$
 - Each lab_i is a label drawn from a set of identifiers.

RECORD
$$G \vdash e_1 : T_1$$
 $G \vdash e_2 : T_2$... $G \vdash e_n : T_n$

$$G \vdash \{lab_1 = e_1; lab_2 = e_2; ...; lab_n = e_n\} : \{lab_1:T_1; lab_2:T_2; ...; lab_n:T_n\}$$

PROJECTION
$$G \vdash e : \{lab_1: Tab_1: Tab_2: T$$

$$G \vdash e : \{lab_1:T_1; lab_2:T_2; ...; lab_n:T_n\}$$

$$G \vdash e.lab_i : T_i$$

Immutable Record Subtyping

- Depth subtyping:
 - Corresponding fields may be subtypes

```
DEPTH T₁ <: U
```

$$T_1 <: U_1 \quad T_2 <: U_2 \quad ... \quad T_n <: U_n$$

```
{lab_1:T_1; lab_2:T_2; ...; lab_n:T_n} <: {lab_1:U_1; lab_2:U_2; ...; lab_n:U_n}
```

- Width subtyping:
 - Subtype record may have *more* fields:

```
WIDTH
```

$$m \le n$$

$${lab_1:T_1; lab_2:T_2; ...; lab_n:T_n} <: {lab_1:T_1; lab_2:T_2; ...; lab_m:T_m}$$

Mutability and Subtyping

NULL

What is the type of null?

Consider:

```
int[] a = null;  // OK?
int x = null;  // OK? (nope)
string s = null;  // OK?
```

NULL

 $G \vdash null : r$

- Null has any reference type
 - Null is generic
- What about type safety?
 - Requires defined behavior when dereferencing null
 e.g. Java's NullPointerException
 - Requires a safety check for every dereference operation

Subtyping and References

- What is the proper subtyping relationship for references and arrays?
- Suppose we have NonZero as a type and the division operation has type:
 Int → NonZero → Int
 - Recall that NonZero <: Int
- Should (NonZero ref) <: (Int ref) ?
- Consider this program:

Mutable Structures are Invariant

- Covariant reference types are unsound (well-typed programs do go wrong)
 - As demonstrated in the previous example
- Contravariant reference types are also unsound
 - i.e. If $T_1 <: T_2$ then ref $T_2 <: ref T_1$ is also unsound
 - Exercise: construct a program that breaks contravariant references.
- Moral: Mutable structures are invariant:

$$T_1 \text{ ref} <: T_2 \text{ ref} \quad \text{implies} \quad T_1 = T_2$$

- Same holds for arrays, OCaml-style mutable records, object fields, etc.
 - Note: Java and C# get this wrong. They allows covariant array subtyping, but then compensate by adding a dynamic check on *every* array update!

```
 \text{Let } \Gamma = [x \mapsto \text{nat array}] \\ \frac{\text{Sub}}{\frac{\text{Var}}{\Gamma \vdash x : \text{nat array}}} \frac{\text{Var}}{\frac{\Gamma \vdash x : \text{nat array}}{\text{nat array}}} \frac{\text{NatInt }}{\frac{\text{nat} < : \text{int}}{\text{nat array}}}}{\frac{\text{Nat array}}{\text{nat array}}} \\ \frac{\text{Nat}}{\Gamma \vdash x : \text{int array}}}{\Gamma \vdash x : \text{int array}} \frac{\text{Nat}}{\Gamma \vdash 0 : \text{nat}}} \frac{\text{Int }}{\Gamma \vdash -1 : \text{int}}
```

Reminder: Subtyping for Function Types

• One way to see it:



• Need to convert an S1 to a T1 and T2 to S2, so the argument type is *contravariant* and the output type is *covariant*.

$$S_1 <: T_1 \quad T_2 <: S_2$$

$$(T_1 \rightarrow T_2) <: (S_1 \rightarrow S_2)$$

Another Way to See It

• We can think of a reference cell as an immutable record (object) with two functions (methods) and some hidden state:

```
Tref \simeq {get: unit \rightarrow T; set: T \rightarrow unit}
```

- get returns the value hidden in the state.
- set updates the value hidden in the state.
- When is T ref <: S ref?
- Records are like tuples: subtyping extends pointwise over each component.
- $\{get: unit \rightarrow T; set: T \rightarrow unit\} <: \{get: unit \rightarrow S; set: S \rightarrow unit\}$
 - get components are subtypes: $unit \rightarrow T <: unit \rightarrow S$ set components are subtypes: $T \rightarrow unit <: S \rightarrow unit$
- From get, we must have T <: S (covariant return)
- From set, we must have S <: T (contravariant arg.)
- From T <: S and S <: T we conclude T = S.

Demo: Arrays in Java

- Check out https://github.com/cs4212/week-10-java-arrays
- The code shows the run-time issue with covariant array subtyping

Structural vs. Nominal Subtyping

Structural vs. Nominal Typing

- Is type equality / subsumption defined by the *structure* of the data or the *name* of the data?
- Example: type abbreviations (OCaml) vs. "newtypes" (a la Haskell)

```
(* OCaml: *)
type cents = int (* cents = int in this scope *)
type age = int

let foo (x:cents) (y:age) = x + y
```

```
(* Haskell: *)
newtype Cents = Cents Integer (* Integer and Cents are isomorphic, not identical. *)
newtype Age = Age Integer

foo :: Cents -> Age -> Int
foo x y = x + y (* Ill typed! *)
```

• Type abbreviations are treated "structurally" Newtypes are treated "by name".

Nominal Subtyping in Java

• In Java, Classes and Interfaces must be named and their relationships explicitly declared:

```
(* Java: *)
interface Foo {
  int foo();
}

class C {     /* Does not implement the Foo interface */
  int foo() {return 2;}
}

class D implements Foo {
  int foo() {return 4230;}
}
```

- Similarly for inheritance: the subclass relation must be declared via the "extends" keyword.
 - Typechecker still checks that the classes are structurally compatible

Oat's Type System

Oat's Treatment of Types

- Primitive (non-reference) types:
 - int, bool
- Definitely non-null reference types: R
 - (named) mutable structs with (right-oriented) width subtyping
 - string
 - arrays (including length information, per HW4)
- Possibly-null reference types: R?
 - Subtyping: R <: R?</p>
 - Checked downcast syntax if?:

```
int sum(int[]? arr) {
    var z = 0;
    if? (int[] a = arr) {
        for(var i = 0; i<length(a); i = i + 1;) {
          z = z + a[i];
        }
    }
    return z;
}</pre>
```

Full Oat Features

- Named structure types with mutable fields
 - but using structural, width subtyping
- Typed function pointers
- Polymorphic operations: length and == / !=
 - need special case handling in the typechecker
- Type-annotated null values: t null always has type t?
- Definitely-not-null values means we need an "atomic" array initialization syntax
 - for example, null is not allowed as a value of type int[], so to construct a record containing a field of type int[], we need to initialize it
 - subtlety: int[][] cannot be initialized by default, but int[] can be

Oat "Returns" Analysis

- Type-safe, statement-oriented imperative languages like Oat (or Java) must ensure that a function (always) **returns** a value of the appropriate type.
 - Does the returned expression's type match the one declared by the function?
 - Do all paths through the code return appropriately?
- Oat's statement checking judgment
 - takes the expected return type as input: what type should the statement return (or void if none)
 - produces a boolean flag as output: does the statement definitely return?

$$H;G;L_1;rt \vdash stmt \Rightarrow L_2;returns$$

$$\frac{H;G;L\vdash exp:t'\quad H\vdash t'\leq t}{H;G;L;t\vdash \mathbf{return}\ exp;\ \Rightarrow L;\top} \quad \text{TYP_RETT} \qquad \frac{H;G;L\vdash exp:block_1;r_1}{H;G;L;rt\vdash block_2;r_2} \\ \hline H;G;L;rt\vdash \mathbf{if}\ (exp)\ block_1\ \mathbf{else}\ block_2\ \Rightarrow \ L;r_1\land r_2} \quad \text{TYP_IF}$$

$$\begin{array}{c} H; G; L \vdash exp : bool \\ H; G; L; rt \vdash block; r \\ \hline H; G; L; rt \vdash while (exp) \ block \Rightarrow L; \bot \end{array} \quad \text{TYP_WHILE} \qquad \begin{array}{c} H; G; L \vdash exp : (t_1, ..., t_n) \rightarrow \text{void} \\ H; G; L \vdash exp_1 : t_1' \ ... \ H; G; L \vdash exp_n : t_n' \\ \hline H \vdash t_1' \leq t_1 \ ... \ H \vdash t_n' \leq t_n \\ \hline H; G; L; rt \vdash exp(exp_1, ..., exp_n); \Rightarrow L; \bot \end{array} \quad \text{TYP_SCALL}$$

Example: Typing in Oat

Checking Derivations

- A *derivation* or *proof tree* has (instances of) judgments as its nodes and edges that connect premises to a conclusion according to an inference rule.
- Leaves of the tree are *axioms* (i.e. rules with no premises)
 - Example: the INT rule is an axiom
- Goal of the type checker: verify that such a tree exists.
- Example 1: Find a tree for the following program using the inference rules in Oat specification

```
var x1 = 0;
var x2 = x1 + x1;
x1 = x1 - x2;
return(x1);
```

Example 2: There is no tree for this ill-typed program:

```
int f() {
  var x = int[] null;
  x = new int[] {3,4};
  return x[0];
}
```

```
var x1 = 0; D_1 D_2 D_2 D_3 D_4 D_4 D_4
```

```
H;G;L_{0};rt \vdash_{ss} stmt_{1} ... stmt_{n} \Rightarrow L_{n}; returns
H;G;L_{0};rt \vdash stmt_{1} \Rightarrow L_{1}; \bot
...
H;G;L_{n-2};rt \vdash stmt_{n-1} \Rightarrow L_{n-1}; \bot
H;G;L_{n-1};rt \vdash stmt_{n} \Rightarrow L_{n};r
H;G;L_{0};rt \vdash_{ss} stmt_{1} ... stmt_{n-1} stmt_{n} \Rightarrow L_{n};r
TYP\_STMTS
```

```
\frac{\mathcal{D}_1 \quad \mathcal{D}_2 \quad \mathcal{D}_3 \quad \mathcal{D}_4}{H;G;\cdot;\mathsf{int}\vdash_{ss}\mathsf{var}\ x_1=0;\,\mathsf{var}\ x_2=x_1+x_2;\,x_1=x_1-x_2;\,\mathsf{return}\ x_1;\,\Rightarrow x_1\!:\!\mathsf{int},x_2\!:\!\mathsf{int},\cdot;\top} \quad \mathsf{TYP\_STMTS}
```

```
\frac{H;G;L_1 \vdash vdecl \Rightarrow L_2}{H;G;L_1;rt \vdash vdecl; \Rightarrow L_2;\bot} TYP_STMTDECL
```

```
\frac{H;G;L \vdash exp : t \quad x \notin L}{H;G;L \vdash var \quad x = exp \Rightarrow L,x:t} TYP_DECL
```

```
var x1 = 0;
var x2 = x1 + x1;
x1 = x1 - x2;
return(x1);
```

$$\overline{H;G;L\vdash integer: int}$$
 TYP_INT

$$\mathcal{D}_{1} = \frac{\overline{H;G;\cdot\vdash 0: \text{int}} \quad \text{TYP_INT} \quad x_{1} \notin \cdot}{H;G;\cdot\vdash \text{var } x_{1} = 0 \Rightarrow \cdot, x_{1}: \text{int}} \quad \text{TYP_DECL}$$

$$H;G;\cdot; \text{int} \vdash \text{var } x_{1} = 0; \Rightarrow \cdot, x_{1}: \text{int}; \bot$$

$$TYP_\text{STMTDECL}$$

```
\frac{H;G;L_1 \vdash vdecl \Rightarrow L_2}{H;G;L_1;rt \vdash vdecl; \Rightarrow L_2;\bot} TYP_STMTDECL
```

```
\frac{H;G;L \vdash exp : t \quad x \notin L}{H;G;L \vdash var \quad x = exp \Rightarrow L,x:t} TYP_DECL
```

```
var x1 = 0;
var x2 = x1 + x1;
x1 = x1 - x2;
return(x1);
```

```
\overline{H;G;L\vdash integer: int} TYP_INT
```

$$\frac{id: t \in L}{H; G; L \vdash id: t}$$
 TYP_LOCAL

```
\mathcal{D}_2 =
                                     TYP_INTOPS
⊢ +:(int,int) -> int
      x_1:int \in \cdot, x_1:int
                                                                         x_1:int \in \cdot, x_1:int
                                           TYP_LOCAL
                                                                                                               TYP_LOCAL
H;G;\cdot,x_1:\mathsf{int}\vdash x_1:\mathsf{int}
                                                                   H;G;\cdot,x_1:\mathsf{int}\vdash x_1:\mathsf{int}
                                                                                                                                                        x_2 \notin \cdot, x_1 : \text{int}
                                                                                                                                     TYP_BOP
                                        H; G; \cdot, x_1 : \text{int} \vdash x_1 + x_1 : \text{int}
                                                                                                                                                                                  TYP_DECL
                                                   H;G; \cdot \vdash \text{var } x_2 = x_1 + x_1 \Rightarrow \cdot, x_1: \text{int}, x_2: \text{int}
                                                                                                                                                                                                       TYP_STMTDECL
                                            H;G;\cdot,x_1:int;int \vdash var x_2 = x_1 + x_1; \Rightarrow \cdot,x_1:int,x_2:int;\bot
```

```
\frac{H;G;L_1 \vdash vdecl \Rightarrow L_2}{H;G;L_1;rt \vdash vdecl; \Rightarrow L_2;\bot} TYP_STMTDECL
```

```
\frac{H;G;L\vdash exp:t\quad x\notin L}{H;G;L\vdash var\ x=exp\Rightarrow L,x:t} TYP_DECL
```

```
var x1 = 0;
var x2 = x1 + x1;
x1 = x1 - x2;
return(x1);
```

```
\overline{H;G;L\vdash integer: int} TYP_INT
```

$$\frac{id: t \in L}{H; G; L \vdash id: t}$$
 TYP_LOCAL

```
\mathcal{D}_5 =
                                                               TYP_INTOPS
                         ├ -: (int, int) -> int
                               x_1:int \in \cdot, x_1:int, x_2:int
                                                                                                                x_2:int \in \cdot, x_1:int, x_2:int
                                                                                                                                                                   TYP_LOCAL
                                                                                  TYP_LOCAL
                         H;G;\cdot,x_1:int,x_2:int\vdash x_1:int
                                                                                                          H;G;\cdot,x_1:int,x_2:int \vdash x_2:int
                                                                                                                                                                                          TYP_BOP
                                                                         H; G; \cdot, x_1: \text{int}, x_2: \text{int} \vdash x_1 - x_1 : \text{int}
                            \mathcal{D}_3 =
                                                 x_1:int \in \cdot, x_1:int, x_2:int
G \vdash x_1 not a global function id
                                                                                                                                                SUB_SUB_INT \mathcal{D}_5
                                                                                               TYP_LOCAL
                                            \overline{H;G;\cdot,x_1:\text{int},x_2:\text{int}\vdash x_1:\text{int}}
                                                                                                                     \overline{H \vdash \mathtt{int} \leq \mathtt{int}}
                                                                                                                                                                              TYP_ASSN
                                   H;G;\cdot,x_1:\text{int},x_2:\text{int};\text{int}\vdash x_1=x_1-x_2; \Rightarrow \cdot,x_1:\text{int},x_2:\text{int};\bot
```

```
\frac{H;G;L\vdash exp:t'\quad H\vdash t'\leq t}{H;G;L;t\vdash \mathbf{return}\ exp;\ \Rightarrow L;\top} TYP_RETT
```

```
\overline{H \vdash \mathtt{int} \leq \mathtt{int}} SUB_SUB_INT
```

```
var x1 = 0;
var x2 = x1 + x1;
x1 = x1 - x2;
return(x1);
```

$$\frac{id: t \in L}{H; G; L \vdash id: t}$$
 TYP_LOCAL

```
\mathcal{D}_{4} = \frac{x_{1} : \text{int} \in \cdot, x_{1} : \text{int}, x_{2} : \text{int}}{H; G; \cdot, x_{1} : \text{int}, x_{2} : \text{int}} \quad \text{TYP\_LOCAL} \quad \frac{H \vdash \text{int} \leq \text{int}}{H \vdash \text{int} \leq \text{int}} \quad \text{SUB\_SUB\_INT}}{H; G; \cdot, x_{1} : \text{int}, x_{2} : \text{int}; \text{int}} \quad \text{TYP\_RETT}
```

Example: Ill-Typed Oat Program

```
int f() {
  var x = int[] null;
  x = new int[] {3,4};
  return x[0];
}
```

Next in this Module

• Making our programs faster