CS4212: Compiler Design

Week 12: Code Optimizations and
Dataflow Analysis

[lya Sergey
ilya@nus.edu.sg

ilyasergey.net/CS4212/

mailto:ilya@nus.edu.sg
http://ilyasergey.net/CS4212/

Optimizations

» The code generated by our Oat compiler so far is pretty inefficient.

— Lots of redundant moves.

— Lots of unnecessary arithmetic instructions.

define 164 @foo(164 % wl) {

» Consider this OAT program: % w2 = alloca 164
% x5 = alloca 164
% y10 = alloca 164
: : %_214 = alloca 164
INt fOO(Int W){ store 164 % wl, 164*% %_w2
var X =3 + 5 %_bop4 = add 164 3, 5
. store 164 % s bop4, 164% % X5
vary =x - w, % X7 = load 164, 164* % x5
varz=V - 0; % w8 = load 164, 164* %_w2
y %_bop9 = mul 164 %_XxX7, %_w8

return z * 4; store 164 %_bop9, 164 % _y10
_vyil2 = load 164, 164* %
_bopl3 = sub 164 %_yl12, 0
store 164 %_bopl3, 164* %_214
~ 216 = load 164, 164* % 714
_bopl7 = mul 164 %_z16, 4
ret 164 %_bopl7

}

o\° o

o of

}

Optimized vs Non-Optimized Output

define 164 @foo(164 % wl) {

}

O

% w2 = alloca 164

x5 = alloca 164

_y10 = alloca 164

214 = alloca 164

store 164 % wl, 164* % w2
%_bop4 = add 164 3, 5

store 164 %_bop4, 164* %_x5
x7 = load 164, 164* % x5
w8 = load 164, 164* % w2
_bop9 = mul 164 %_XxX7, %_
store 164 %_bop9, 164* %_y10
_y12 = load 164, 164* %_yl10
_bopl3 = sub 164 %_yl1l2, 0
store 164 % _bopl3, 164* %_z14
216 = load 164, 164* % _z14
_bopl7 = mul 164 %_z16, 4
ret 164 %_bopl7

o of o°

o of o°

w8

of of o°

of of

of of
X

_foo:

zext
.globl

pushq
mov(q
subq
movq
mov(q
pushq
mov(q
pushq
movq
pushq
mov(q
pushq
mov(q
mov(q
mov(q
mov(q
mov(q
mov(q
addqg
mov(q
mov(q
mov(q
mov(q
mov(q
mov(q
mov(q
mov(q
mov(q
mov(q
mov(q
mov(q
imulq
mov(q
mov(q
mov(q
movq
mov(q
mov(q
mov(q
mov(q
movq
subq
mov(q
mov(q
movq
mov(q
mov(q
mov(q
mov(q
movq
mov(q
imulq
mov(q
mov(q
mov(q
popq
retq

_foo

Y%rbp

%rsp, Y%rbp
$136, %rsp

Y%rdi, Y%rax

Y%rax, -8(%rbp)
$0

%rsp, -16(%rbp)
$0

%rsp, -24(%rbp)
$0

%rsp, -32(%rbp)
$0

%rsp, -40(%rbp)
-8(%rbp), %rcx
-16(%rbp), Y%rax
%rCX, (Yorax)

$3, %rax

$5, %rcx

Y%rcX, Yorax
Y%rax, -56(%rbp)
-56(%rbp), Y%rcx
-24(%rbp), Y%rax
%rCX, (Yorax)
-24(%rbp), Yerax
(%rax), Yrcx
%rcX, -72(%rbp)
-16(%rbp), Yrax
(%rax), Yorcx
%rcXx, -80(%rbp)
-72(%rbp), Yerax
-80(%rbp), Y%rcx
Y%rcX, Yorax
Y%rax, -88(%rbp)
-88(%rbp), Y%rcx
-32(%rbp), Y%rax
%rCX, (Yorax)
-32(%rbp), Y%rax
(%rax), Yrcx
%rcX, -104(%rbp)
-104(%rbp), Y%rax
$0, %rcx

Y%rcX, Yorax
Y%rax, -112(%rbp)
-112(%rbp), %rcx
-40(%rbp), Yerax
%rCX, (Yorax)
-40(%rbp), Yerax
(%rax), Yrcx
%rcX, -128(%rbp)
-128(%rbp), Yorax
$4, %rcx

Y%rcX, Yorax
Y%rax, -136(%rbp)
-136(%rbp), Y%rax
%rbp, %rsp
Y%rbp

Optimized code:

foo:
pushg %rbp
movqg 9rsp, %rbp
movq %rdi, Y%rax
shlg $5, %rax
popg Yerbp
retq

Code above generated by
clang —O3

Function foo may be inlined by the
compiler, so it can be implemented
by just one instruction!

Why do we need optimizations?

To help programmers...
— They write modular, clean, high-level programs

— Compiler generates efficient, high-performance assembly

Programmers don’t write optimal code

High-level languages make avoiding redundant computation inconvenient or impossible
— e.g. Allll =Al]D] + 1

Architectural independence
— Optimal code depends on features not expressed to the programmer
— Modern architectures assume optimization

Different kinds of optimizations:
— Time: improve execution speed
— Space: reduce amount of memory needed
— Power: lower power consumption (e.g. to extend battery life)

Some Caveats

» Optimizations are code transformations:
Advanced

— They can be applied at any stage of the compiler COMPILER DESIGN

— They must be safe (?)

 IMPLEMENTATION

— they shouldn’t change the meaning of the program. e
Steven S. Muchnick

» In general, optimizations require some program analysis:

— To determine if the transformation really is safe

— To determine whether the transformation is cost effective

» This course: most common and valuable performance optimizations

— See Muchnick (optional text) for ~10 chapters about optimizations

J
|

s I
':tc..".J‘} bl 1y

T o
J P 1H'm"fi.”" i - LAY o [P f."{'gl S

High level

Mid level

| ow level

When to apply optimization

AST

IR

Canonical IR

Abstract assembly

Assembly

Inlining

Function specialization
Constant folding

Constant propagation

Value numbering

Dead code elimination
Loop-invariant code motion
Common sub-expression elimination
Strength Reduction

Constant folding & propagation
Branch prediction / optimization

Register allocation

Loop unrolling

Cache optimization

Where to Optimize?

» Usual goal: improve time performance
» Problem: many optimizations trade space for time

» Example: [oop unrolling

— Idea: rewrite a loop like (why?):
for(int 1=0; I<100; i=1+1) {
s =s + alil;

}

— Into a loop like:
for(int 1=0; 1<99; I=1+2){
s =s + alil;
S =S+ a[i+1],
}
» Tradeofts:

— Increasing code space slows down whole program a tiny bit
(extra instructions to manage) but speeds up the loop a lot

— For frequently executed code with long loops: generally a win

— Interacts with instruction cache and branch prediction hardware

» Complex optimizations may never pay off!

Writing Fast Programs In Practice

Pick the right algorithms and data structures.

These have a much bigger impact on performance that compiler optimizations.
Reduce # of operations
Reduce memory accesses

Minimize indirection

Then turn on compiler optimizations

Profile to determine program hot spots

Evaluate whether the algorithm/data structure design works

...1f so: “tweak” the source code until the optimizer does “the right thing” to the machine code

Safety

» Whether an optimization is safe depends on the programming language semantics.

— Languages that provide weaker guarantees to the programmer permit more optimizations but
have more ambiguity in their behaviour.

— e.g. In C, loading from initialized memory is undefined, so the compiler can do anything.

» Example: loop-invariant code motion

— Idea: hoist invariant code out of a loop

while (b) { Z = Y/X;

Z = Y/X; while (b) {

//'y, X not updated //'y, X not updated
¥ ¥

 Is this more efficient?

 Is this safe?

The Zoo of Optimizations

Constant Folding

Idea: If operands are known at compile time, perform the operation statically.

iNtx=2+3)"y 2 Intx=5%y
b & false -> false

Performed at every stage of optimization... Why?

Constant expressions can be created by translation or earlier optimizations

Example: A[2] might be compiled to:
MEMIMEM[A]+2 *4] = MEM[MEMIA] + 8]

Constant Folding Conditionals

if (true) S > S
if (false) S >
if (true) Selse S’ =S
if (false) Selse S =28
while (false) S >
if (2>3)S > ;

Algebraic Simplification

More general form of constant folding
— Take advantage of mathematically sound simplification rules

Identities:

— a*1=->a a*0=>0
— a+0=>a a—-0=->a
— blfalse > Db b&true=>Db

Reassociation & commutativity:
— (@a+1)+2=2>a+(1+2)>a+3
- 2+a)+42>@+2)+42a+(2+4)>a+6

Strength reduction: (replace expensive op with cheaper op)
- a*4 -> a<<?2
— a*7 > (a<<3)—a
— a/ 32767 - (a>>15) + (a >> 30)

Note: must be careful with floating point (due to rounding)
and integer arithmetic (due to overflow/undertlow)

Constant Propagation

 If the value is known to be a constant, replace the use of the variable by the constant
» Value of the variable must be propagated forward from the point of assignment

» This is a substitution operation

» Example:

Int X =5;

iNty=x*2; 2inty=5"2;2inty=10;

intz=aly]; = intz=aly]; @ intz=aly]; = intz =a[10];

» To be most effective, constant propagation should be interleaved with constant folding

Copy Propagation

 If one variable is assigned to another, replace uses of the assigned variable with
the copied variable.

* Need to know where copies of the variable propagate.

» Interacts with the scoping rules of the language.

» Example:
X =Y, K=Y
if (x>1){ -> if (y>1){
X =X*f(x—1); Xx=y 1y—1);
} }

» Can make the first assignment to x dead code (that can be eliminated).

Dead Code Elimination

« [If a side-effect free statement can never be observed, it is safe to eliminate the statement.

X =y*y // X 1s dead!
// X never used =>

A variable is dead if it is never used after it is defined.

— Computing such definition and use information is an important component of compiler

* Dead variables can be created by other optimizations...

Unreachable/Dead Code

Basic blocks not reachable by any trace leading from the starting basic block are
unreachable and can be deleted.

— Performed at the IR or assembly level

Dead code: similar to unreachable blocks.

— A value might be computed but never subsequently used.

Code for computing the value can be dropped

But only if it’s pure, 1.e. it has no externally visible side effects

— Externally visible effects: raising an exception, modifying a global variable, going into an
infinite loop, printing to standard output, sending a network packet, launching a rocket

— Note: Pure functional languages (e.g. Haskell) make reasoning about the safety of
optimizations (and code transformations in general) easier!

Inlining

* Replace a call with the body of the function itself with arguments rewritten to be local variables:
» Example in Oat code:

int g(int x) { return x + pow(x); }

int pow(inta){intb=1;intn=0;
while (n < a) {b =2 * b};
return b; }

9

int g(int x) {

iNnta=x;intb=1;intn=0;
while (n<a){b =2 * b}; tmp = b;
return x + tmp;

}
 May need to rename variable names to avoid name capture int g(int x) (1 +1(x))
— Example of what can go wrong? Int f(int a) (a + X)
* Best done at the AST or relatively high-level IR. -2
* When is it profitable? const int x = 3;
— Eliminates the stack manipulation, jump, etc. Intg(intx) (1T + (iInta=x;a+x))

— Can increase code size.
— Enables further optimizations

Loop Optimizations

» Most program execution time occurs in loops.
— The 90/10 rule of thumb holds here too. (90% of the execution time is spent in 10% of the code)

» Loop optimizations are very important, effective, and numerous

— Also, concentrating effort to improve loop body code is usually a win

Loop Invariant Code Motion (revisited)

* Another form of redundancy elimination.

 If the result of a statement or expression does not change during the loop and
it’s pure, it can be hoisted outside the loop body.

» Often useful for array element-addressing code

— so-called invariant code

for (i = 0; 1 < a.length; i++) {
/* a not modified in the body */

}
. A
t = a.length; -
PR Al

/* same body as above */

}

Strength Reduction (revisited)

Strength reduction can work for loops too
Idea: replace expensive operations (multiplies, divides) by cheap ones (adds and subtracts)

For loops, create a dependent induction variable:

Example:
for (inti=0;i<n;i++) {a[i*3] =1; } // stride by 3

D 4
int] =0;
for (int 1 = 0; i<n; 1++) {

afj] =1;

j =]+ 3; // replace multiply by add
}

Loop Unrolling (revisited)

» Branches can be expensive, unroll loops to avoid them.
for (inti=0;i<n;i++){S}

W
for (int i=0; i < n-3; i+=4) {S;S;S;S};
for (- i<n; i++) { S } // left over iterations

» With k unrollings, eliminates (k-1)/k conditional branches

— So for the above program, it eliminates % of the branches

» Space-time tradeoff:

— Not a good idea for large S or small n

Code Specialization

Idea: create specialized versions of a function that is called from different places
with different arguments.

Example: specialize function f in:

class Aimplements | {int m() {...} }
class B implements | { int m() {...} }

int f(1 x) { x.m(); } // don’t know which m
A a =new A(); f(a); // know it's A.m
B b =new B(); f(b); // know it's B.m

f_A would have code specialized to dispatch to A.m

f_B would have code specialized to dispatch to B.m

You can also inline methods when the run-time type is known statically

— Often just one class implements a method.

Common Subexpression Elimination (CSE)

» In some sense it’s the opposite of inlining: fold redundant computations together

» Example:

ali] =a[i] + 1 compiles to:
[a+1"4] =[a +1"4] + 1

Common subexpression elimination removes the redundant add and multiply:
t=a+1"4;[tf] =[t] + 1

» For safety, you must be sure that the shared expression always has the same value in both places!

Unsafe Common Subexpression Elimination

» Example: consider this OAT function:

unit f(int[] a, int[] b, int[] c) {
intj=...;inti=...;intk=...;
bfj] = ali] + 1;
clk] = ali];
return;

» The optimization that shares the expression a[i] is unsafe... why?

unit f(int[] a, int[] b, Int[] c) {
Intj=...;inti=...;iIntk=...;
t = ali;
b[j] =t + 1;
c[k] =1;
return;

Time for a short break?

Code Analysis

Motivating Code Analyses

There are lots of things that might influence the safety/applicability of an optimization

— What algorithms and data structures can help?

How do you know what is a loop?

How do you know an expression is invariant (constant)?
How do you know if an expression has no side effects?
How do you keep track of where a variable is defined?
How do you know where a variable is used?

How do you know if two reference values may be aliases of one another?

23

Moving Towards Register Allocation

The Oat compiler currently generates as many temporary variables as it needs

— These are the %uids you should be very familiar with by now.

Current compilation strategy:
— Each %uid maps to a stack location.
— This yields programs with many loads/stores to memory.

— Very inefficient.

Ideally, we’d like to map as many %uid’s as possible into registers.
— Eliminate the use of the alloca instruction?
— Only 16 max registers available on 64-bit X86

— %rsp and %rbp are reserved and some have special semantics, so really only 10 or 12 available

— This means that a register must hold more than one slot

When is this safe?

29

Liveness

» Observation: %uid1 and %uid2 can be assigned to the same register if their
values will not be needed at the same time.

— What does it mean for an %uid to be “needed”?

— Ans: its contents will be used as a source operand in a later instruction.

 Such a variable is called “/ive”

» Two variables can share the same register if they are not live at the same time.

30

Scope vs. Liveness

* We can already get some coarse liveness information from variable scoping.
» Consider the following OAT program:

int f(int x) {
var a =0;
if (x>0){
varb =X * X;
a=b+Db;
Y

varc =a * X;
return c;

}

» Note that due to Oat’s scoping rules, variables b and ¢ can never be live at the same time.
— C’s scope is disjoint from b’s scope

» So, we could assign b and ¢ to the same alloca’ed slot and potentially to the same register.

31

But Scope 1s too Coarse

» Consider this program:

int f(int x) {
inta=x+2;, «— x is live
ntb=a"a; «— 3 and x are live
intc=b+X; «—— b and x are live
return c; «— cis live

» The scopes of a, b, ¢, x all overlap — they’re all in scope at the end of the block.

 But, a, b, c are never live at the same time.

— So they can share the same stack slot / register

32

Live Variable Analysis

A variable v is /ive at a program point if v is defined before the program point and used after it.

[Liveness 1s defined in terms of where variables are defined and where variables are used

Liveness analysis: Compute the live variables between each statement.
— May be conservative (i.e. it may claim a variable is live when it isn’t) so because that’s a safe approximation

— To be usetul, it should be more precise than simple scoping rules.

Liveness analysis is one example of dataflow analysis

— Other examples: Available Expressions, Reaching Definitions, Constant-Propagation Analysis, ...

33

Control-flow Graphs Revisited

» For the purposes of dataflow analysis, we use the control-flow graph (CFG) intermediate form.

» Recall that a basic block is a sequence of instructions such that:
— There is a distinguished, labeled entry point (no jumps into the middle of a basic block)

— There is a (possibly empty) sequence of non-control-flow instructions

— The block ends with a single control-flow instruction (jump, conditional branch, return, etc.)

* A control flow graph

— Nodes are blocks
— There is an edge from B1 to B2 if the control-flow instruction of B1 might jump to the entry label of B2

— There are no “dangling” edges — there is a block for every jump target.

34

Dataflow over CFGs

» For precision, it is helpful to think of the “fall through” between
sequential instructions as an edge of the control-flow graph too.

— Different implementation tradeoffs in practice...

Fall-through edges

Move
Move
Sinop Binop in-edges
If l
! i N
Unop l Instr
Jump / i \
Unop
Basic block CFG l, out-edges
Jump

“Exploded” CFG 35

Liveness is Associated with Edges

\ l / Live: a, b

Instr

/ l N\, Live: b d,e

This is useful so that the same register can be used for different
temporaries in the same statement.

Example: a=Db+ 1

l Live: b
Register Allocate:

Compiles to: Mov a, b a =2 eax, b 2 eax

l Live: a ﬁ

Add a, T Add eax, T

l Live: a (maybe) l

Uses and Definitions

Every instruction/statement uses some set of variables

— 1.e. reads from them

Every instruction/statement defines some set of variables

— 1.e. writes to them

For a node/statement s define:
— use[s] : set of variables used by s

— def][s] : set of variables defined by s

Examples:

1a}
1a}

— a=b+c use[s] = {b,c} def][s

— a=a+ 1 usels] = {a} def[s

Liveness, Formally

A variable v is live on edge e if:
There is

— anode n in the CFG such that use[n]| contains v, and

— adirected path from e to n such that for every statement s’ on the path, def[s’] does not contain v

The first clause says that v will be used on some path starting from edge e.
The second clause says that v won’t be redefined on that path before the use.

Questions:
— How to compute this efficiently?
— How to use this information (e.g., for register allocation)?

— How does the choice of IR affect this?
(e.g. LLVM IR uses SSA, so it doesn’t allow redefinition = simplify liveness analysis)

38

Simple, inefficient algorithm

“A variable v is live on an edge e if there is a node n in the CFG using it and
a directed path from e to n passing through no def of v.”

Backtracking Algorithm:

— For each variable v...

— Try all paths from each use of v, tracing backwards through the control-flow graph
until either v is defined or a previously visited node has been reached.

— Mark the variable v live across each edge traversed.

Why inefficient?

Because it explores the same paths many times
(for different uses and different variables)

39

Dataflow Analysis

Idea: compute liveness information for all variables simultaneously.

— Keep track of sets of information about each node

Approach: define equations that must be satisfied by any liveness determination.

— Equations based on “obvious” constraints.

Solve the equations by iteratively converging on a solution.
— Start with a “rough” approximation to the answer
— Refine the answer at each iteration

— Keep going until no more refinement is possible: a fixpoint has been reached

This is an instance of a general framework for computing program properties:

dataflow analysis

40

Dataflow Value Sets for Liveness

Nodes are program statements, SoO:

use[n] : set of variables used by n \\ ‘l' /

def[n] : set of variables defined by n

n
in[n] : set of variables live on entry to n / l \

out|[n] : set of variables live on exit from n

D 4
Associate in[n] and out[n] with the “collected”
information about incoming/outgoing edges
For Liveness: what constraints are there among these sets? nin]
Clearly: n
in[n] 2 use[n] out[n]

What other constraints?

41

Other Dataflow Constraints

We have: in[n]| 2 use[n]

— “A variable must be live on entry to n if it is used by n”

Also: in[n]| 2 out|n] - def[n]

— “If a variable is live on exit from n, and n doesn’t

define it, it is live on entry to n” n

— Note: here ‘-’ means “set difference”

And: out[n] 2 in[n’] if n” € succ[n]

— “If a variable is live on entry to a successor
node of n, it must be live on exit from n.”

42

[terative Dataflow Analysis

Find a solution to those constraints by starting from a rough guess.
— Start with: in[n] = @ and out[n] = @

The guesses don’t satisty the constraints:

-

— In[n] 2 use[n_

-

— In|[n] 2 out|n] - def[n]

— out[n] 2 in[n’] if n” € succ[n]
Idea: iteratively re-compute in[n]| and out[n] where forced to by the constraints.

— Each iteration will add variables to the sets in[n] and out|n]
(i.e. the live variable sets will increase monotonically)

We stop when in[n] and out[n] satisfy these equations:
(which are derived from the constraints above) What are they?

— in[n] := use[n] U (out[n] - def[n])

— out[n] := Un’Esucc[n]in[n’]

43

Complete Liveness Analysis Algorithm

for all n, in[n] := @, out[n] := @
repeat until no change in ‘in’ and ‘out’

for all n

out[n] := UH,ESUCC[n]in[n’]

in[n] := use[n] U (out[n] - def[n])
end

end

» Finds a fixpoint of the in and out equations.

— The algorithm is guaranteed to terminate... Why?

* Why do we start with &?

44

Example Liveness Analysis

» Example flow graph:

e=1;
while(x>0) {

*

Z=¢e"e;
y=e"X;
X=X-—1;
if (x & 1) {
e =2
} else{
=Y,
Y

}

return X;

out:

o

out:

def: e

use:

def:

def:

use: X

out:

Example Liveness Analysis

Each iteration update:
OUt[n] - Un’Esucc[n]in[n,]

in[n] := use[n] U (out[n] - def[n])

e Jteration 1:

in[2] = x
in[3] = e
in[4] = x
in[5] = e,x
in[6] = x
in[7] = x
in[8] =z
in[9] =y

(showing only updates
that make a change)

out:

o

out:

def: e

use:

def:

use: X

def: e
use:y out:

Example Liveness Analysis

. . In: x
Each iteration update: ﬁ .
e = def: e

OUt[n] - Un’Esucc[n]in[n,]
in[n] := use[n] U (out[n] - def[n]) _

use:

out: x

,1n: e,x

* Iteration 2: qif X > (0 | def:
Out[l]: « use: X
in[1] =x
out[2] = e,x
in[2] = e,x
out[3] = e,x
in[3] = e,x

.
:
1

def:

use: X

out[6] = x
out|7] = zy
in|7] = x,z,y
out[8] = x
in[8] = x,z
out[9] = x
in[9] = x,y

Example Liveness Analy51s

Each iteration update: ﬁ T i c
out[n] := U equcepnyin[n’] use:
in[n] := use[n] U (out[n] - def[n]) out e
,In: e,x
qif X > (| def:
use: X
. out: e, x
* Iteration 3: .
out[1l]= e,x : ot x| def
. use: X
out[6]= x,y,z
in[6]= x,y,z
out|7]= x,y,z
out[8]= e,x
out[9]= e,x
3
def: e
out: e, x use:y out: ex

Example Liveness Analysis

Each iteration update:
OUt[n] - Un’Esucc[n]in[n,]

in[n] := use[n] U (out[n] - def[n])

e Jteration 4:

out|5]= x,y,z
in[5]=e,x,z

l,in: X
e =1 def: e
use:

out: e, X

,n: e,x
qif X > () | def:
use: X
In: X
ret X def:
use: X
def: e

use:y out: e,x

Example Liveness Analysis

Each iteration update: ﬁ {' 1° o o
OUt[n] — Un’Esucc[n]in[n,] €=
in[n] := use[n] U (out[n] - def[n])

use:

out: e, X

, N e,Xx
qif X > () | def
use: X

. In: X

* Iteration 5: dof-
ret x uje.')
out[3]=e,x,z |
Done!
def: e

use:y out: e,x

Improving the Iterative Algorithm

Can we do better?

Observe: the only way information propagates from one node to another is

using: out|n| := UD,ESHCC[H]in[n’]

— This is the only rule that involves more than one node

If a node’s successors haven’t changed, then the node itself won’t change.

Idea for an improved version of the algorithm:

— Keep track of which node’s successors have changed

51

A Worklist Algorithm

» Use a FIFO queue of nodes that might need to be updated.

for all n, in[n] := @, out[n] := O

w = new queue with all nodes

repeat until w is empty
let n = w.pop()
old in = in[n]

OUt[n] . — UH’ESUCC[n]in[n’:

in[n] := use[n] U (out[n
if (old in !=in[n]),

// pull a node off the queue

// remember old in[n]

- def[n])
// it in[n] has changed

for all m in pred[n], w.push(m) //add to worklist

end

52

How about another break?

Other Dataflow Analyses

Generalising Dataflow Analyses

» The kind of iterative constraint solving used for liveness applies to other kinds of analyses.
— Reaching Definitions analysis
— Available Expressions analysis
— Alias Analysis
— Constant Propagation

— These analyses follow the same approach as for liveness (accumulating values until fixpoint is reached).

» To see these as an instance of the same kind of algorithm, the next few examples to work over a
canonical intermediate instruction representation called quadruples (op, arg1, arg2, and result)

— Allows easy definition of def[n] and use[n]

— A slightly “looser” variant of LLVM’s IR that doesn’t require the “static single assignment”

— 1.e. it has mutable local variables
— We will use LLVM-IR-like syntax

55

Reaching Definitions

56

Reaching Definition Analysis

Question: what uses in a program does a given variable definition reach?
Unlike liveness, we are interested in different definitions of the same variable.

This analysis is used for constant propagation & copy propagation
— If only one definition reaches a particular use, can replace use by the definition (for constant propagation).

— Copy propagation additionally requires that the copied value still has its same value — computed using an
available expressions analysis (next)

Input: Quadruple CFG

Output: in[n]| (resp. out[n]) is the set of nodes defining some variable such that the definition
may reach the beginning (resp. end) of node n

57

Example of Reaching Definitions

» Results of computing reaching definitions on this simple CFG:

ll
Q
4+
No

out[T]: {1}
in[2]: {1}

out[2]: {1,2}
in[3]: {1,2}

? b=c+ 1
out[3]: {2,3}

in[4]: 1{2,3}

return b &

Reaching Definitions Step 1

» Define the sets of interest for the analysis
 Let defs[a] be the set of nodes (statements) that define the variable a

» Define gen[n] and kill[n] as follows:

* Quadruple forms n: gen[n] kill[n]

a=Dbopc {n} defs[a] - {n}
a =load b {n} defs[a] - {n}
store b, a D D
a = f(by,...,b,) {n} defs[a] - {n}
f(by,...,b,) D D
br L % 9,
braLl L2 % 9,
return a %, 9,

» gen|n] are node’s definitions; kill[n] are the nodes, whose definitions are “shadowed” by n

Reaching Definitions Step 2

Define the constraints that a reaching definitions solution must satisty.

out[n] 2 gen|[n]

* “The definitions that reach the end of a node at least include the definitions generated by the node”

in[n] 2 out[n’] ifn’isin pred|n]

» “The definitions that reach the beginning of a node include those that reach the exit
of its any predecessor”

out[n] U kill[n] 2 in[n]
- “The definitions that come in to a node either reach the end of the node or are killed by it.”

» Equivalently: out[n] 2 in[n] - kill[n]

Reaching Definitions Step 3

Convert constraints to iterated update equations:
° in[n] .= Un’Epred[n]Out[n,:

* out[n] := gen[n] U (in[n] - kill[n])

Algorithm: initialise in[n] and out[n] to @
— Iterate the update equations until a fixed point is reached

— Why does it terminate?

The algorithm terminates because in[n]| and out|n] increase only monotonically

— At most to a maximum set that includes all variable definitions in the program

The algorithm is precise because it finds the smallest sets that satisty the constraints.

61

Available Expressions

62

Available Expressions

» Idea: want to perform common subexpression elimination:
—a=x+1 a=x+1

b=x+1 b=a
— When is it safe?

» This transformation is safe if x+1 means computes the same value at both places
(i.e., x hasn’t been assigned).

— “x+17 is an available expression

« Dataflow values:
— in[n] = set of nodes whose values are available on entry to n

— out[n] = set of nodes whose values are available on exit of n

63

Available Expressions Step 1

* Define the sets of values
» Let uses|[a] be the set of nodes that use the variable a in their expressions

* Define gen[n] and kill[n] as follows:

* Quadruple forms n: gen|n] kill[n]
a=Dbopc {n} - kill[n uses|a
a = load b {n} - kill[n uses|a’ Note the need for
store b, a 0 uses: FX] “may alias” information...
(for all x that may equal a)
br L % D
bralLl L2 0, 0,
a = f(by,...,b,) 0, uses[a] U uses[[x]]
(for all x)
.5 0 usesl [x]] (forall) N encirs e
return a %) D

« gen|n] — node itself represents new available expression

 kill[n] — nodes whose expressions no longer available after n

64

Available Expressions Step 2

Define the constraints that an available expressions solution must satisty.

out|n| 2 gen|n]|

» “The expressions made available by n that reach the end of the node”

in[n] C out[n’] ifn’isin pred[n]

» “The expressions available at the beginning of a node include those that reach the exit of
every predecessor”

out[n] U kill[n] 2 in[n]
» “The expressions available on entry either reach the end of the node or are killed by it.”

: EqUivalently: OUt[n] . In [Il] - kill [n] Note similarities and

differences with constraints
for “reaching definitions”.

65

Available Expressions Step 3

Convert constraints to iterated update equations:
* In [Il] - = rwn’Epred[n]Out [Il’]

» out[n] := gen[n] U (in[n] - kill[n])
Unlike previous algorithms, this one is “shrinking” the set of desired facts

Algorithm: initialise in[n] and out[n] to {set of all nodes}
— Iterate the update equations until a fixed point is reached

— Why does the algorithm terminate?

The algorithm terminates because in[n] and out[n] decrease only monotonically

— At most to a minimum of the empty set

The algorithm is precise because it finds the /argest sets that satisfy the constraints.

66

General Dataflow Analysis Framework

6/

Comparing Dataflow Analyses

Look at the update equations in the inner loop of the analyses

[Liveness:

— Let gen[n] = use[n] and kill[n] = def[n]

— OUt[n] .= Un’Esucc[n]in[n,:

— in[n] := gen[n] U (out[n

Reaching Definitions:

- in[n] - Un’Epred[n]OUt[n’:

— out[n] := gen[n] U (in[n_

Available Expressions:

— in[n] — rjn’Epred[n]Out[n,:

— out[n] := gen[n] U (in[n_

- kill[n])

- kill[n])

_ kill[n])

(backward)

(forward)

(forward)

63

Common Features

All of these analyses have a domain over which they solve constraints.
— Liveness, the domain is sets of variables

— Reaching defns., Available exprs. the domain is sets of nodes

Each analysis has a notion of gen[n] and kill[n]

— Used to explain how information propagates across a node: what is added, what is removed.

Each analysis is propagates information either forward or backward

— Forward: in|[n]| defined in terms of predecessor nodes’ out]| |

— Backward: out[n] defined in terms of successor nodes’ in|

Each analysis has a way of aggregating (combining) information from in/out flow

— Liveness & reaching definitions take union (U)
— Available expressions uses intersection (M)
— Union expresses a property that holds for some path (existential)

— Intersection expresses a property that holds for all paths (universal)

69

(Forward) Dataflow Analysis Framework

A forward dataflow analysis can be characterized by:

1. A domain of dataflow values S

— e.g. L =the powerset of all variables

— Think of ¢ € L as a property, then “z € ¢” means “z has the property” l 0

2. For each node n, a flow function F,, : L — L -
— So far we’ve seen F,(f) = gen|[n] U (¢ - kill[n]) l F (0)
— So: out[n] = F,(in[n])

— “If £ is a property that holds before the node n, then F,(¢) holds after n”

3. A combining operator N

e, 0
— “If we know either €, or £, holds on entry \ / :
to node n, we know at most ¢; n ¢,”
- in[n] - I_ln’Eplred[n]OUt[n’] l’g1 ; gz

N

/70

Generic Iterative (Forward) Analysis

for all n, in[n] := T, out[n] :=T

repeat until no change
for all n
in[n] := ﬂn,epred[n]out[n’]
out[n] := F, (in[n])
end

end

* Here, T € L (“top”) represents having the “maximum” amount of information.

— Having “more” information enables more optimizations
— “Maximum” amount could be inconsistent with the constraints, so we can’t keep it. :-(

— Iteration refines the answer, eliminating inconsistencies

/1

Structure of L

The domain has structure that reflects the “amount” of information for each dataflow value.

Some dataflow values are more informative than others:
— Write ¢; C ¢, whenever ¢, provides at least as much information as ¢;.

— The dataflow value ¢, is “better” for enabling optimizations.

Example 1: for available expressions analysis, larger sets of nodes are more informative.

— Having a larger set of nodes (equivalently, expressions) available means that there is more opportunity for
common subexpression elimination.

— So: ¢;C{¢,ifand only if ¢; C ¢,

Example 2: for liveness analysis, smaller sets of variables are more informative.

— Having smaller sets of variables live across an edge means that there are fewer conflicts
for register allocation assignments.

— So: ¢;Cc{ifandonlyif ¢, 2 ¢,

L as a Partial Order

L is a partial order defined by the ordering relation C.

A partial order is an ordered set.

Some of the elements might be incomparable.
— That is, there might be ¢, ¢, € L such that neither ¢; C ¢, nor ¢, C ¢,

Properties of a partial order:
— Reflexivity: € C £
— Transitivity: £, C £, and £, C £5 implies 2, C £,
— Anti-symmetry: £, € £, and £, C £, implies £, = 0,

Examples:
— Integers ordered by <
— Types ordered by <:
— Sets ordered by C or 2

/3

Subsets of {a,b,c} ordered by C

Partial orders are often presented as a Hasse diagram.

A
{a,c} {b,c} .
S~ ©
1C} £
\
1a} {b}

order C is C meet M is n join U is u

/4

Meets and Joins

The combining operator 1 is called the “meet” operation.

[t constructs the greatest lower bound:
— ¢;n¢, € ¢ and ¢, N, C ¢,

“the meet is a lower bound”
— If¢ Cc ¢, and¢ C ¢, then¢ C ¢, n¢,

“there is no greater lower bound”

Dually, the L operator is called the “join” operation.

[t constructs the least upper bound:
— ¢, C ¢,ut¢, and ¢, C ¢, U4,
“the join is an upper bound”
— If¢, c ¢ and¢, C ¢ then{¢,u¢, C ¢

“there is no smaller upper bound”

A partial order that has all meets and joins is called a /attice.

— If it has just meets, it’s called a meet semi-lattice.

/5

Another Way to Describe the (Forward) Algorithm

» Algorithm repeatedly computes (for each node n):
« out[n] := F,(in[n])

* Equivalently: out[n] := Fn(ﬂn,epred[n]out[n’])

— By definition of in[n]

» We can write this as a simultaneous update of the vector of out|n] values:
— Let x,, = out|n]
— LetX = (x4, X, ..., X,) it’s avector of points in L corresponding to CFG nodes

o F(X) — (F1(ﬂjepred[1]OUt[j])/ F2(|—|jepred[2]OUt[j])/ KRy Fn<|_|jepred[n]OUt[j]))

* Any solution to the constraints is a fixpoint X of F
— i.e. F(X) =X

/0

Iteration Computes Fixpoints

Let X, = (T,T, ..., T)

Each loop through the algorithm apply F to the old vector:
X; = F(Xp)
X, = F(X;)

Fk+1(X) = F(F(X))
A fixpoint is reached when Fx(X) = Fk+1(X)

— That’s when the algorithm stops.

Wanted: a maximal fixpoint

— Because that one is more informative/useful for performing optimizations

/7

Monotonicity & Termination

Each flow function F, maps lattice elements to lattice elements; to be sensible is should be monotonic:

F: S — J is monotonic iff:
¢, C ¢, implies that F(¢;) C F(¢,)

— Intuitively: “If you have more information entering a node, then you have more information leaving the node.”

Monotonicity lifts point-wise to the function: F: L — L"

— vector (X, Xy, ..., X,) & (Vy, Vo, .-, V) iff x; C v, for each i

Note that F is consistent: F(X;) C X,

— So each iteration moves at least one step down the lattice (for some component of the vector)
— ...CF(F(Xp)) EF(Xp) T X,

Therefore, # steps needed to reach a fixpoint is at most the height H of L times the number of nodes:
O(Hn) — height of the lattice

/8

Building Lattices?

» Information about individual nodes or variables can be lifted pointwise:

— If L is a lattice, then sois {f: X — L } where fC g if and only if
f(x) C g(x) for all x e

» Like types, the dataflow lattices are static approximations to the dynamic behavior:

— Could pick a lattice based on subtyping:

Any
Aliased /\
. . Bool
— Or other information: T
Unaliased /"\ /\
Zero True False

» Points in the lattice are sometimes called dataflow “facts”

79

T — S$
S — EY
S"— €

S"— + S

E — number | (S

More on Fixpoint Solutions

Remember constructing LL(1) parse tables

o First(T) = First(S)
o First(S) = First(E)
(S)={+1

(

® [irst

o First(E) = { number, ‘(‘ }

e Follow(S’) = Follow(S)
e Follow(S) =1{ §,

Y 1 u Follow(S)

Then: we want the least
solution to this system of
set equations... a fixpoint
computation. More on
these later in the course.

Now: This solution is
obtained by starting from
taking all First/Follow as &
and then iterating the
equations until fixpoint is
reached.

80

Dataflow Analysis: Summary

* Many dataflow analyses fit into a common framework.

» Key idea: iterative solution of a system of equations over a lattice of facts (constraints).
— Iteration terminates if flow functions are monotonic.

— Solution is obtained as the greatest fixpoint is reached via the meet operation ().

» In the literature, sometimes the definition of the analysis lattice is reversed:
— The most useful/precise information is represented by the bottom element ()

— Solution is obtained as the least fixpoint via iterative application of join operator (L)

— The two definitions are equivalent modulo the (semi-)lattice direction.

31

Next Lecture (Finally!)

Register Allocation

Modern research directions in PL and Compilers

Wrap-Up

32

