
Week 12: Code Optimizations and
Dataflow Analysis

CS4212: Compiler Design

ilya@nus.edu.sg

ilyasergey.net/CS4212/

Ilya Sergey

mailto:ilya@nus.edu.sg
http://ilyasergey.net/CS4212/

Optimizations
• The code generated by our Oat compiler so far is pretty inefficient.
– Lots of redundant moves.
– Lots of unnecessary arithmetic instructions.

• Consider this OAT program:

int foo(int w) {
 var x = 3 + 5;
 var y = x * w;
 var z = y - 0;
 return z * 4;
}

frontend.ml

???

Optimized code:

• Code above generated by
clang –O3

• Function foo may be inlined by the
compiler, so it can be implemented
by just one instruction!

_foo:
 pushq %rbp
 movq %rsp, %rbp
 movq %rdi, %rax
 shlq $5, %rax
 popq %rbp
 retq

.text

.globl _foo
_foo:

pushq %rbp
movq %rsp, %rbp
subq $136, %rsp
movq %rdi, %rax
movq %rax, -8(%rbp)
pushq $0
movq %rsp, -16(%rbp)
pushq $0
movq %rsp, -24(%rbp)
pushq $0
movq %rsp, -32(%rbp)
pushq $0
movq %rsp, -40(%rbp)
movq -8(%rbp), %rcx
movq -16(%rbp), %rax
movq %rcx, (%rax)
movq $3, %rax
movq $5, %rcx
addq %rcx, %rax
movq %rax, -56(%rbp)
movq -56(%rbp), %rcx
movq -24(%rbp), %rax
movq %rcx, (%rax)
movq -24(%rbp), %rax
movq (%rax), %rcx
movq %rcx, -72(%rbp)
movq -16(%rbp), %rax
movq (%rax), %rcx
movq %rcx, -80(%rbp)
movq -72(%rbp), %rax
movq -80(%rbp), %rcx
imulq %rcx, %rax
movq %rax, -88(%rbp)
movq -88(%rbp), %rcx
movq -32(%rbp), %rax
movq %rcx, (%rax)
movq -32(%rbp), %rax
movq (%rax), %rcx
movq %rcx, -104(%rbp)
movq -104(%rbp), %rax
movq $0, %rcx
subq %rcx, %rax
movq %rax, -112(%rbp)
movq -112(%rbp), %rcx
movq -40(%rbp), %rax
movq %rcx, (%rax)
movq -40(%rbp), %rax
movq (%rax), %rcx
movq %rcx, -128(%rbp)
movq -128(%rbp), %rax
movq $4, %rcx
imulq %rcx, %rax
movq %rax, -136(%rbp)
movq -136(%rbp), %rax
movq %rbp, %rsp
popq %rbp
retq

backend.ml

Optimized vs Non-Optimized Output

Why do we need optimizations?
• To help programmers…
– They write modular, clean, high-level programs
– Compiler generates efficient, high-performance assembly

• Programmers don’t write optimal code

• High-level languages make avoiding redundant computation inconvenient or impossible
– e.g. A[i][j] = A[i][j] + 1  

• Architectural independence
– Optimal code depends on features not expressed to the programmer
– Modern architectures assume optimization

• Different kinds of optimizations:
– Time: improve execution speed
– Space: reduce amount of memory needed
– Power: lower power consumption (e.g. to extend battery life)

Some Caveats

• Optimizations are code transformations:
– They can be applied at any stage of the compiler
– They must be safe (?)
– they shouldn’t change the meaning of the program.

• In general, optimizations require some program analysis:
– To determine if the transformation really is safe
– To determine whether the transformation is cost effective

• This course: most common and valuable performance optimizations
– See Muchnick (optional text) for ~10 chapters about optimizations

When to apply optimization
• Inlining
• Function specialization
• Constant folding
• Constant propagation
• Value numbering
• Dead code elimination
• Loop-invariant code motion
• Common sub-expression elimination
• Strength Reduction
• Constant folding & propagation
• Branch prediction / optimization
• Register allocation
• Loop unrolling
• Cache optimization

Assembly

Abstract assembly

Canonical IR

IR

AST

H
ig

h
le

ve
l

M
id

 le
ve

l
Lo

w
 le

ve
l

Where to Optimize?
• Usual goal: improve time performance
• Problem: many optimizations trade space for time
• Example: Loop unrolling
– Idea: rewrite a loop like (why?):

 for(int i=0; i<100; i=i+1) { 
 s = s + a[i]; 
 }

– Into a loop like:
 for(int i=0; i<99; i=i+2){ 
 s = s + a[i];  
 s = s + a[i+1]; 
 }

• Tradeoffs:
– Increasing code space slows down whole program a tiny bit

(extra instructions to manage) but speeds up the loop a lot
– For frequently executed code with long loops: generally a win
– Interacts with instruction cache and branch prediction hardware

• Complex optimizations may never pay off!

Writing Fast Programs In Practice

• Pick the right algorithms and data structures.
– These have a much bigger impact on performance that compiler optimizations.
– Reduce # of operations
– Reduce memory accesses
– Minimize indirection

• Then turn on compiler optimizations

• Profile to determine program hot spots
• Evaluate whether the algorithm/data structure design works
• …if so: “tweak” the source code until the optimizer does “the right thing” to the machine code

Safety

• Whether an optimization is safe depends on the programming language semantics.
– Languages that provide weaker guarantees to the programmer permit more optimizations but

have more ambiguity in their behaviour.
– e.g. In C, loading from initialized memory is undefined, so the compiler can do anything.

• Example: loop-invariant code motion

– Idea: hoist invariant code out of a loop

• Is this more efficient?
• Is this safe?

while (b) {
 z = y/x;
 … // y, x not updated
}

z = y/x;
while (b) {
 … // y, x not updated
}

The Zoo of Optimizations

Constant Folding
• Idea: If operands are known at compile time, perform the operation statically.

 int x = (2 + 3) * y ➔ int x = 5 * y
 b & false ➔ false  

• Performed at every stage of optimization… Why?

• Constant expressions can be created by translation or earlier optimizations

Example: A[2] might be compiled to:
MEM[MEM[A] + 2 * 4] ➔ MEM[MEM[A] + 8]

Constant Folding Conditionals

if (true) S ➔ S
if (false) S ➔ ;
if (true) S else S’ ➔ S
if (false) S else S’ ➔ S’
while (false) S ➔ ;
if (2 > 3) S ➔ ;

Algebraic Simplification
• More general form of constant folding
– Take advantage of mathematically sound simplification rules

• Identities:
– a * 1 ➔ a a * 0 ➔ 0
– a + 0 ➔ a a – 0 ➔ a
– b | false ➔ b b & true ➔ b 

• Reassociation & commutativity:
– (a + 1) + 2 ➔ a + (1 + 2) ➔ a + 3
– (2 + a) + 4 ➔ (a + 2) + 4 ➔ a + (2 + 4) ➔ a + 6  

• Strength reduction: (replace expensive op with cheaper op)
– a * 4 ➔ a << 2
– a * 7 ➔ (a << 3) – a
– a / 32767 ➔ (a >> 15) + (a >> 30) 

• Note: must be careful with floating point (due to rounding)
 and integer arithmetic (due to overflow/underflow)

Constant Propagation

• If the value is known to be a constant, replace the use of the variable by the constant

• Value of the variable must be propagated forward from the point of assignment

• This is a substitution operation

• Example:
int x = 5;
int y = x * 2; ➔ int y = 5 * 2; ➔ int y = 10;
int z = a[y]; ➔ int z = a[y]; ➔ int z = a[y]; ➔ int z = a[10]; 

• To be most effective, constant propagation should be interleaved with constant folding

Copy Propagation
• If one variable is assigned to another, replace uses of the assigned variable with

the copied variable.
• Need to know where copies of the variable propagate.
• Interacts with the scoping rules of the language.

• Example:
x = y; x = y;
if (x > 1) { ➔ if (y > 1) {
 x = x * f(x – 1); x = y * f(y – 1);
} } 

• Can make the first assignment to x dead code (that can be eliminated).

Dead Code Elimination

• If a side-effect free statement can never be observed, it is safe to eliminate the statement.

x = y * y // x is dead!
… // x never used ➔ …
x = z * z x = z * z 

• A variable is dead if it is never used after it is defined.
– Computing such definition and use information is an important component of compiler

• Dead variables can be created by other optimizations…

Unreachable/Dead Code

• Basic blocks not reachable by any trace leading from the starting basic block are
unreachable and can be deleted.
– Performed at the IR or assembly level

• Dead code: similar to unreachable blocks.
– A value might be computed but never subsequently used.

• Code for computing the value can be dropped

• But only if it’s pure, i.e. it has no externally visible side effects

– Externally visible effects: raising an exception, modifying a global variable, going into an
infinite loop, printing to standard output, sending a network packet, launching a rocket

– Note: Pure functional languages (e.g. Haskell) make reasoning about the safety of
optimizations (and code transformations in general) easier!

Inlining

• Replace a call with the body of the function itself with arguments rewritten to be local variables:
• Example in Oat code:

 int g(int x) { return x + pow(x); }
 int pow(int a) { int b = 1; int n = 0;  

 while (n < a) {b = 2 * b};  
 return b; }

 ➔
 int g(int x) {  

 int a = x; int b = 1; int n = 0; 
 while (n < a) {b = 2 * b}; tmp = b;  
 return x + tmp;

 }  

• May need to rename variable names to avoid name capture
– Example of what can go wrong?

• Best done at the AST or relatively high-level IR.
• When is it profitable?
– Eliminates the stack manipulation, jump, etc.
– Can increase code size.
– Enables further optimizations

int g(int x) (1 + f(x))
Int f(int a) (a + x)
➔
const int x = 3;
int g(int x) (1 + (int a = x; a + x))

Loop Optimizations

• Most program execution time occurs in loops.
– The 90/10 rule of thumb holds here too. (90% of the execution time is spent in 10% of the code)

• Loop optimizations are very important, effective, and numerous
– Also, concentrating effort to improve loop body code is usually a win

• Another form of redundancy elimination.
• If the result of a statement or expression does not change during the loop and

it’s pure, it can be hoisted outside the loop body.
• Often useful for array element-addressing code
– so-called invariant code

for (i = 0; i < a.length; i++) {
 /* a not modified in the body */
}

t = a.length;
for (i =0; i < t; i++) {
 /* same body as above */
}

Loop Invariant Code Motion (revisited)

Hoisted loop-
invariant

expression

Strength Reduction (revisited)
• Strength reduction can work for loops too
• Idea: replace expensive operations (multiplies, divides) by cheap ones (adds and subtracts)
• For loops, create a dependent induction variable:

• Example:
 for (int i = 0; i<n; i++) { a[i*3] = 1; } // stride by 3

 int j = 0;
 for (int i = 0; i<n; i++) {
 a[j] = 1;
 j = j + 3; // replace multiply by add

 }

Loop Unrolling (revisited)

• Branches can be expensive, unroll loops to avoid them.
 for (int i=0; i < n; i++) { S }

 for (int i=0; i < n-3; i+=4) {S;S;S;S};
 for (; i<n; i++) { S } // left over iterations

• With k unrollings, eliminates (k-1)/k conditional branches
– So for the above program, it eliminates ¾ of the branches

• Space-time tradeoff:
– Not a good idea for large S or small n

Code Specialization
• Idea: create specialized versions of a function that is called from different places

with different arguments.
• Example: specialize function f in:

class A implements I { int m() {…} }
class B implements I { int m() {…} }
int f(I x) { x.m(); } // don’t know which m
A a = new A(); f(a); // know it’s A.m
B b = new B(); f(b); // know it’s B.m

• f_A would have code specialized to dispatch to A.m
• f_B would have code specialized to dispatch to B.m
• You can also inline methods when the run-time type is known statically
– Often just one class implements a method.

Common Subexpression Elimination (CSE)

• In some sense it’s the opposite of inlining: fold redundant computations together
• Example:

 a[i] = a[i] + 1 compiles to:

 [a + i*4] = [a + i*4] + 1  

Common subexpression elimination removes the redundant add and multiply:
 

 t = a + i*4; [t] = [t] + 1

• For safety, you must be sure that the shared expression always has the same value in both places!

unit f(int[] a, int[] b, int[] c) {
int j = …; int i = …; int k = …;

 t = a[i];
b[j] = t + 1;
c[k] = t;
return;

}

unit f(int[] a, int[] b, int[] c) {
int j = …; int i = …; int k = …;
b[j] = a[i] + 1;
c[k] = a[i];
return;

}

Unsafe Common Subexpression Elimination
• Example: consider this OAT function:

• The optimization that shares the expression a[i] is unsafe… why?

26

Time for a short break?

Code Analysis

27

Motivating Code Analyses

• There are lots of things that might influence the safety/applicability of an optimization
– What algorithms and data structures can help?

• How do you know what is a loop?
• How do you know an expression is invariant (constant)?
• How do you know if an expression has no side effects?
• How do you keep track of where a variable is defined?
• How do you know where a variable is used?
• How do you know if two reference values may be aliases of one another?

28

Moving Towards Register Allocation
• The Oat compiler currently generates as many temporary variables as it needs
– These are the %uids you should be very familiar with by now.

• Current compilation strategy:
– Each %uid maps to a stack location.
– This yields programs with many loads/stores to memory.
– Very inefficient.

• Ideally, we’d like to map as many %uid’s as possible into registers.
– Eliminate the use of the alloca instruction?
– Only 16 max registers available on 64-bit X86
– %rsp and %rbp are reserved and some have special semantics, so really only 10 or 12 available
– This means that a register must hold more than one slot

• When is this safe?
29

Liveness

• Observation: %uid1 and %uid2 can be assigned to the same register if their
values will not be needed at the same time.
– What does it mean for an %uid to be “needed”?
– Ans: its contents will be used as a source operand in a later instruction.

• Such a variable is called “live”

• Two variables can share the same register if they are not live at the same time.

30

Scope vs. Liveness
• We can already get some coarse liveness information from variable scoping.
• Consider the following OAT program:

int f(int x) {
 var a = 0;
 if (x > 0) {
 var b = x * x;
 a = b + b;
 }
 var c = a * x;
 return c;

}

• Note that due to Oat’s scoping rules, variables b and c can never be live at the same time.
– c’s scope is disjoint from b’s scope

• So, we could assign b and c to the same alloca’ed slot and potentially to the same register.

31

• Consider this program:

int f(int x) {
 int a = x + 2;
 int b = a * a;
 int c = b + x;
 return c;
} 

• The scopes of a, b, c, x all overlap – they’re all in scope at the end of the block.
• But, a, b, c are never live at the same time.
– So they can share the same stack slot / register

But Scope is too Coarse

32

x is live
a and x are live
b and x are live
c is live

Live Variable Analysis

• A variable v is live at a program point if v is defined before the program point and used after it.

• Liveness is defined in terms of where variables are defined and where variables are used

• Liveness analysis: Compute the live variables between each statement.
– May be conservative (i.e. it may claim a variable is live when it isn’t) so because that’s a safe approximation
– To be useful, it should be more precise than simple scoping rules.

• Liveness analysis is one example of dataflow analysis

– Other examples: Available Expressions, Reaching Definitions, Constant-Propagation Analysis, …

33

Control-flow Graphs Revisited

• For the purposes of dataflow analysis, we use the control-flow graph (CFG) intermediate form.

• Recall that a basic block is a sequence of instructions such that:
– There is a distinguished, labeled entry point (no jumps into the middle of a basic block)
– There is a (possibly empty) sequence of non-control-flow instructions
– The block ends with a single control-flow instruction (jump, conditional branch, return, etc.)

• A control flow graph
– Nodes are blocks
– There is an edge from B1 to B2 if the control-flow instruction of B1 might jump to the entry label of B2
– There are no “dangling” edges – there is a block for every jump target.

34

Dataflow over CFGs
• For precision, it is helpful to think of the “fall through” between

sequential instructions as an edge of the control-flow graph too.
– Different implementation tradeoffs in practice…

35

Move

Binop

If

Unop

Jump

Basic block CFG

Move

Binop

If

Unop

Jump

“Exploded” CFG

Fall-through edges

in-edges

out-edges

Instr

Liveness is Associated with Edges

• This is useful so that the same register can be used for different
temporaries in the same statement.

• Example: a = b + 1

• Compiles to:

36

Instr

Live: a, b

Live: b, d, e

Mov a, b

Add a, 1

Live: b

Live: a

Live: a (maybe)

Mov eax, eax

Add eax, 1

Register Allocate:
a eax, b eax

Uses and Definitions
• Every instruction/statement uses some set of variables
– i.e. reads from them

• Every instruction/statement defines some set of variables
– i.e. writes to them

• For a node/statement s define:
– use[s] : set of variables used by s
– def[s] : set of variables defined by s

• Examples:
– a = b + c use[s] = {b,c} def[s] = {a}

– a = a + 1 use[s] = {a} def[s] = {a}

37

Liveness, Formally
• A variable v is live on edge e if:

There is
– a node n in the CFG such that use[n] contains v, and
– a directed path from e to n such that for every statement s’ on the path, def[s’] does not contain v

• The first clause says that v will be used on some path starting from edge e.
• The second clause says that v won’t be redefined on that path before the use.

• Questions:
– How to compute this efficiently?
– How to use this information (e.g., for register allocation)?
– How does the choice of IR affect this?

(e.g. LLVM IR uses SSA, so it doesn’t allow redefinition ⇒ simplify liveness analysis)

38

Simple, inefficient algorithm

• “A variable v is live on an edge e if there is a node n in the CFG using it and
a directed path from e to n passing through no def of v.”

• Backtracking Algorithm:
– For each variable v…
– Try all paths from each use of v, tracing backwards through the control-flow graph

until either v is defined or a previously visited node has been reached.
– Mark the variable v live across each edge traversed.

• Why inefficient?

• Because it explores the same paths many times
(for different uses and different variables)

39

Dataflow Analysis
• Idea: compute liveness information for all variables simultaneously.
– Keep track of sets of information about each node

• Approach: define equations that must be satisfied by any liveness determination.
– Equations based on “obvious” constraints.

• Solve the equations by iteratively converging on a solution.
– Start with a “rough” approximation to the answer
– Refine the answer at each iteration
– Keep going until no more refinement is possible: a fixpoint has been reached

• This is an instance of a general framework for computing program properties:
dataflow analysis

40

Dataflow Value Sets for Liveness
• Nodes are program statements, so:
• use[n] : set of variables used by n
• def[n] : set of variables defined by n
• in[n] : set of variables live on entry to n
• out[n] : set of variables live on exit from n

• Associate in[n] and out[n] with the “collected”
information about incoming/outgoing edges

• For Liveness: what constraints are there among these sets?
• Clearly:

 in[n] ⊇ use[n]

• What other constraints?

41

n

n

in[n]

out[n]

Other Dataflow Constraints
• We have: in[n] ⊇ use[n]
– “A variable must be live on entry to n if it is used by n”

• Also: in[n] ⊇ out[n] - def[n]
– “If a variable is live on exit from n, and n doesn’t

define it, it is live on entry to n”
– Note: here ‘-’ means “set difference”

• And: out[n] ⊇ in[n’] if n’ ∈ succ[n]
– “If a variable is live on entry to a successor

node of n, it must be live on exit from n.”

42

n

in[n]

out[n]

Iterative Dataflow Analysis
• Find a solution to those constraints by starting from a rough guess.
– Start with: in[n] = Ø and out[n] = Ø

• The guesses don’t satisfy the constraints:
– in[n] ⊇ use[n]
– in[n] ⊇ out[n] - def[n]
– out[n] ⊇ in[n’] if n’ ∈ succ[n]

• Idea: iteratively re-compute in[n] and out[n] where forced to by the constraints.
– Each iteration will add variables to the sets in[n] and out[n]

(i.e. the live variable sets will increase monotonically)
• We stop when in[n] and out[n] satisfy these equations:

 (which are derived from the constraints above) What are they?

– in[n] := use[n] ∪ (out[n] - def[n])

– out[n] := ∪n’∈succ[n]in[n’]

43

Complete Liveness Analysis Algorithm

• Finds a fixpoint of the in and out equations.
– The algorithm is guaranteed to terminate… Why?

• Why do we start with Ø?

44

for all n, in[n] := Ø, out[n] := Ø
repeat until no change in ‘in’ and ‘out’
 for all n
 out[n] := ∪n’∈succ[n]in[n’]
 in[n] := use[n] ∪ (out[n] - def[n])
 end
end

Example Liveness Analysis
• Example flow graph: e = 1

if x > 0

ret xz = e * e

y = e * x

if (x & 1)

e = z e = y

1

2

3

5

7

8

def: e
use:

e = 1;
while(x>0) {
 z = e * e; 
 y = e * x;
 x = x – 1;
 if (x & 1) {
 e = z;
 } else {
 e = y;
 }
}
return x;

x = x - 1

def:
use: x

6

def:
use: x

def: z
use: e

def: y
use: e,x

def: x
use: x

def:
use: x

def: e
use: z

def: e
use: y

9

4

in:

in:

in:

in:

in:

in:

in:in:

in:

out:

out:

out:

out:

out:

out: out:

out:

Example Liveness Analysis
e = 1

if x > 0

ret xz = e * e

y = e * x

if (x & 1)

e = z e = y

1

2

3

5

7

8

def: e
use:

x = x - 1

def:
use: x

6

def:
use: x

def: z
use: e

def: y
use: e,x

def: x
use: x

def:
use: x

def: e
use: z

def: e
use: y

9

4

in:

in: x

in: x

in: e,x

in: x

in: x

in: yin: z

in: e

out:

out:

out:

out:

out:

out: out:

out:

• Iteration 1:
in[2] = x
in[3] = e
in[4] = x
in[5] = e,x
in[6] = x
in[7] = x
in[8] = z
in[9] = y

(showing only updates
that make a change)

Each iteration update:
out[n] := ∪n’∈succ[n]in[n’]
in[n] := use[n] ∪ (out[n] - def[n])

Example Liveness Analysis

• Iteration 2:
out[1]= x
in[1] = x
out[2] = e,x
in[2] = e,x
out[3] = e,x
in[3] = e,x
out[5] = x
out[6] = x
out[7] = z,y
in[7] = x,z,y
out[8] = x
in[8] = x,z
out[9] = x
in[9] = x,y

e = 1

if x > 0

ret xz = e * e

y = e * x

if (x & 1)

e = z e = y

1

2

3

5

7

8

def: e
use:

x = x - 1

def:
use: x

6

def:
use: x

def: z
use: e

def: y
use: e,x

def: x
use: x

def:
use: x

def: e
use: z

def: e
use: y

9

4

in: x

in: e,x

in: x

in: e,x

in: x

in: x,y,z

in: x,yin: x,z

in: e,x

out: x

out: e,x

out: e,x

out: x

out: x

out: x out: x

out: y,z

Each iteration update:
out[n] := ∪n’∈succ[n]in[n’]
in[n] := use[n] ∪ (out[n] - def[n])

Example Liveness Analysis

• Iteration 3:
out[1]= e,x
out[6]= x,y,z
in[6]= x,y,z
out[7]= x,y,z
out[8]= e,x
out[9]= e,x

e = 1

if x > 0

ret xz = e * e

y = e * x

if (x & 1)

e = z e = y

1

2

3

5

7

8

def: e
use:

x = x - 1

def:
use: x

6

def:
use: x

def: z
use: e

def: y
use: e,x

def: x
use: x

def:
use: x

def: e
use: z

def: e
use: y

9

4

in: x

in: e,x

in: x

in: e,x

in: x,y,z

in: x,y,z

in: x,yin: x,z

in: e,x

out: e,x

out: e,x

out: e,x

out: x

out: x,y,z

out: e,x out: e,x

out: x,y,z

Each iteration update:
out[n] := ∪n’∈succ[n]in[n’]
in[n] := use[n] ∪ (out[n] - def[n])

Example Liveness Analysis

• Iteration 4:
out[5]= x,y,z
in[5]= e,x,z

e = 1

if x > 0

ret xz = e * e

y = e * x

if (x & 1)

e = z e = y

1

2

3

5

7

8

def: e
use:

x = x - 1

def:
use: x

6

def:
use: x

def: z
use: e

def: y
use: e,x

def: x
use: x

def:
use: x

def: e
use: z

def: e
use: y

9

4

in: x

in: e,x

in: x

in: e,x,z

in: x,y,z

in: x,y,z

in: x,yin: x,z

in: e,x

out: e,x

out: e,x

out: e,x

out: x,y,z

out: x,y,z

out: e,x out: e,x

out: x,y,z

Each iteration update:
out[n] := ∪n’∈succ[n]in[n’]
in[n] := use[n] ∪ (out[n] - def[n])

Example Liveness Analysis

• Iteration 5:
out[3]= e,x,z

e = 1

if x > 0

ret xz = e * e

y = e * x

if (x & 1)

e = z e = y

1

2

3

5

7

8

def: e
use:

x = x - 1

def:
use: x

6

def:
use: x

def: z
use: e

def: y
use: e,x

def: x
use: x

def:
use: x

def: e
use: z

def: e
use: y

9

4

in: x

in: e,x

in: x

in: e,x,z

in: x,y,z

in: x,y,z

in: x,yin: x,z

in: e,x

out: e,x

out: e,x

out: e,x,z

out: x,y,z

out: x,y,z

out: e,x out: e,x

out: x,y,z

Each iteration update:
out[n] := ∪n’∈succ[n]in[n’]
in[n] := use[n] ∪ (out[n] - def[n])

Done!

Improving the Iterative Algorithm

• Can we do better?

• Observe: the only way information propagates from one node to another is
using: out[n] := ∪n’∈succ[n]in[n’]
– This is the only rule that involves more than one node

• If a node’s successors haven’t changed, then the node itself won’t change.

• Idea for an improved version of the algorithm:
– Keep track of which node’s successors have changed

51

A Worklist Algorithm
• Use a FIFO queue of nodes that might need to be updated.

for all n, in[n] := Ø, out[n] := Ø
w = new queue with all nodes
repeat until w is empty
 let n = w.pop() // pull a node off the queue

 old_in = in[n] // remember old in[n]

 out[n] := ∪n’∈succ[n]in[n’]
 in[n] := use[n] ∪ (out[n] - def[n])
 if (old_in != in[n]), // if in[n] has changed

 for all m in pred[n], w.push(m) // add to worklist

end

52

53

How about another break?

Other Dataflow Analyses

Generalising Dataflow Analyses
• The kind of iterative constraint solving used for liveness applies to other kinds of analyses.
– Reaching Definitions analysis
– Available Expressions analysis
– Alias Analysis
– Constant Propagation
– These analyses follow the same approach as for liveness (accumulating values until fixpoint is reached).

• To see these as an instance of the same kind of algorithm, the next few examples to work over a
canonical intermediate instruction representation called quadruples (op, arg1, arg2, and result)

– Allows easy definition of def[n] and use[n]
– A slightly “looser” variant of LLVM’s IR that doesn’t require the “static single assignment”
– i.e. it has mutable local variables

– We will use LLVM-IR-like syntax

55

Reaching Definitions

56

Reaching Definition Analysis

• Question: what uses in a program does a given variable definition reach?

• Unlike liveness, we are interested in different definitions of the same variable.

• This analysis is used for constant propagation & copy propagation
– If only one definition reaches a particular use, can replace use by the definition (for constant propagation).
– Copy propagation additionally requires that the copied value still has its same value – computed using an

available expressions analysis (next)

• Input: Quadruple CFG
• Output: in[n] (resp. out[n]) is the set of nodes defining some variable such that the definition

may reach the beginning (resp. end) of node n

57

Example of Reaching Definitions
• Results of computing reaching definitions on this simple CFG:

58

b = a + 2

c = b * b

b = c + 1

1

2

3

return b * c
4

out[1]: {1}

out[2]: {1,2}

out[3]: {2,3}

in[2]: {1}

in[3]: {1,2}

in[4]: {2,3}

Reaching Definitions Step 1
• Define the sets of interest for the analysis
• Let defs[a] be the set of nodes (statements) that define the variable a

• Define gen[n] and kill[n] as follows:
• Quadruple forms n: gen[n] kill[n]

a = b op c {n} defs[a] - {n}
a = load b {n} defs[a] - {n}
store b, a Ø Ø
a = f(b1,…,bn) {n} defs[a] - {n}
f(b1,…,bn) Ø Ø
br L Ø Ø
br a L1 L2 Ø Ø
return a Ø Ø

• gen[n] are node’s definitions; kill[n] are the nodes, whose definitions are “shadowed” by n

Reaching Definitions Step 2
• Define the constraints that a reaching definitions solution must satisfy.

• out[n] ⊇ gen[n]
• “The definitions that reach the end of a node at least include the definitions generated by the node”

• in[n] ⊇ out[n’] if n’ is in pred[n]
• “The definitions that reach the beginning of a node include those that reach the exit

of its any predecessor”

• out[n] ∪ kill[n] ⊇ in[n]
• “The definitions that come in to a node either reach the end of the node or are killed by it.”
• Equivalently: out[n] ⊇ in[n] - kill[n]

Reaching Definitions Step 3
• Convert constraints to iterated update equations:
• in[n] := ∪n’∈pred[n]out[n’]
• out[n] := gen[n] ∪ (in[n] - kill[n])

• Algorithm: initialise in[n] and out[n] to Ø
– Iterate the update equations until a fixed point is reached
– Why does it terminate?

• The algorithm terminates because in[n] and out[n] increase only monotonically
– At most to a maximum set that includes all variable definitions in the program

• The algorithm is precise because it finds the smallest sets that satisfy the constraints.

61

Available Expressions

62

Available Expressions
• Idea: want to perform common subexpression elimination:

– a = x + 1 a = x + 1
… …
b = x + 1 b = a

– When is it safe?

• This transformation is safe if x+1 means computes the same value at both places
(i.e., x hasn’t been assigned).
– “x+1” is an available expression

• Dataflow values:
– in[n] = set of nodes whose values are available on entry to n
– out[n] = set of nodes whose values are available on exit of n

63

Available Expressions Step 1
• Define the sets of values
• Let uses[a] be the set of nodes that use the variable a in their expressions

• Define gen[n] and kill[n] as follows:
• Quadruple forms n: gen[n] kill[n]

a = b op c {n} - kill[n] uses[a]
a = load b {n} - kill[n] uses[a]
store b, a Ø uses[[x]]
 (for all x that may equal a)
br L Ø Ø
br a L1 L2 Ø Ø
a = f(b1,…,bn) Ø uses[a] ∪ uses[[x]]
 (for all x)
f(b1,…,bn) Ø uses[[x]] (for all x)
return a Ø Ø

• gen[n] — node itself represents new available expression
• kill[n] — nodes whose expressions no longer available after n

64

Note the need for  
“may alias” information…

Note that functions are
assumed to be impure…

Available Expressions Step 2

• Define the constraints that an available expressions solution must satisfy.

• out[n] ⊇ gen[n]
• “The expressions made available by n that reach the end of the node”

• in[n] ⊆ out[n’] if n’ is in pred[n]
• “The expressions available at the beginning of a node include those that reach the exit of

every predecessor”

• out[n] ∪ kill[n] ⊇ in[n]
• “The expressions available on entry either reach the end of the node or are killed by it.”
• Equivalently: out[n] ⊇ in[n] - kill[n]

65

Note similarities and
differences with constraints
for “reaching definitions”.

Available Expressions Step 3
• Convert constraints to iterated update equations:

• in[n] := ∩n’∈pred[n]out[n’]
• out[n] := gen[n] ∪ (in[n] - kill[n])

• Unlike previous algorithms, this one is “shrinking” the set of desired facts

• Algorithm: initialise in[n] and out[n] to {set of all nodes}
– Iterate the update equations until a fixed point is reached
– Why does the algorithm terminate?

• The algorithm terminates because in[n] and out[n] decrease only monotonically
– At most to a minimum of the empty set

• The algorithm is precise because it finds the largest sets that satisfy the constraints.

66

General Dataflow Analysis Framework

67

Comparing Dataflow Analyses
• Look at the update equations in the inner loop of the analyses

• Liveness:
– Let gen[n] = use[n] and kill[n] = def[n]

– out[n] := ∪n’∈succ[n]in[n’]
– in[n] := gen[n] ∪ (out[n] - kill[n])

• Reaching Definitions:
– in[n] := ∪n’∈pred[n]out[n’]
– out[n] := gen[n] ∪ (in[n] - kill[n])

• Available Expressions:
– in[n] := ∩n’∈pred[n]out[n’]
– out[n] := gen[n] ∪ (in[n] - kill[n])

68

(backward)

(forward)

(forward)

Common Features
• All of these analyses have a domain over which they solve constraints.
– Liveness, the domain is sets of variables
– Reaching defns., Available exprs. the domain is sets of nodes

• Each analysis has a notion of gen[n] and kill[n]
– Used to explain how information propagates across a node: what is added, what is removed.

• Each analysis is propagates information either forward or backward
– Forward: in[n] defined in terms of predecessor nodes’ out[]
– Backward: out[n] defined in terms of successor nodes’ in[]

• Each analysis has a way of aggregating (combining) information from in/out flow
– Liveness & reaching definitions take union (∪)
– Available expressions uses intersection (∩)
– Union expresses a property that holds for some path (existential)
– Intersection expresses a property that holds for all paths (universal)

69

(Forward) Dataflow Analysis Framework

A forward dataflow analysis can be characterized by:

1. A domain of dataflow values L

– e.g. L = the powerset of all variables

– Think of ℓ ∈ L as a property, then “z ∈ ℓ” means “z has the property”

2. For each node n, a flow function Fn : L → L
– So far we’ve seen Fn(ℓ) = gen[n] ∪ (ℓ - kill[n])
– So: out[n] = Fn(in[n])
– “If ℓ is a property that holds before the node n, then Fn(ℓ) holds after n”

3. A combining operator ⨅
– “If we know either ℓ1 or ℓ2 holds on entry

 to node n, we know at most ℓ1 ⨅ ℓ2”

– in[n] := ⨅n’∈pred[n]out[n’]

70

n

ℓ

Fn(ℓ)

n

ℓ1 ℓ2

ℓ1 ⨅ ℓ2

Generic Iterative (Forward) Analysis

• Here, ⟙ ∈ L (“top”) represents having the “maximum” amount of information.

– Having “more” information enables more optimizations
– “Maximum” amount could be inconsistent with the constraints, so we can’t keep it. :-(
– Iteration refines the answer, eliminating inconsistencies

71

for all n, in[n] := ⟙, out[n] := ⟙
repeat until no change
 for all n

 in[n] := ⨅n’∈pred[n]out[n’]

 out[n] := Fn(in[n])
 end
end

Structure of L
• The domain has structure that reflects the “amount” of information for each dataflow value.

• Some dataflow values are more informative than others:
– Write ℓ1 ⊑ ℓ2 whenever ℓ2 provides at least as much information as ℓ1.
– The dataflow value ℓ2 is “better” for enabling optimizations.

• Example 1: for available expressions analysis, larger sets of nodes are more informative.
– Having a larger set of nodes (equivalently, expressions) available means that there is more opportunity for

common subexpression elimination.
– So: ℓ1 ⊑ ℓ2 if and only if ℓ1 ⊆ ℓ2

• Example 2: for liveness analysis, smaller sets of variables are more informative.
– Having smaller sets of variables live across an edge means that there are fewer conflicts

for register allocation assignments.
– So: ℓ1 ⊑ ℓ2 if and only if ℓ1 ⊇ ℓ2

72

L as a Partial Order
• L is a partial order defined by the ordering relation ⊑.

• A partial order is an ordered set.

• Some of the elements might be incomparable.
– That is, there might be ℓ1, ℓ2 ∈ L such that neither ℓ1 ⊑ ℓ2 nor ℓ2 ⊑ ℓ1

• Properties of a partial order:
– Reflexivity: ℓ ⊑ ℓ

– Transitivity: ℓ1 ⊑ ℓ2 and ℓ2 ⊑ ℓ3 implies ℓ1 ⊑ ℓ2

– Anti-symmetry: ℓ1 ⊑ ℓ2 and ℓ2 ⊑ ℓ1 implies ℓ1 = ℓ2

• Examples:
– Integers ordered by ≤
– Types ordered by <:
– Sets ordered by ⊆ or ⊇

73

Subsets of {a,b,c} ordered by ⊆

74

{a,b,c}

{a,c}

{c}

{b,c}

{a,b}

 {a}

 { }

 {b}

ℓ1 ⊑ ℓ2
ℓ1

ℓ2

= ⟙

= ⟘

order ⊑ is ⊆ meet ⨅ is ∩ join ⨆ is ∪

Partial orders are often presented as a Hasse diagram.

H
ei

gh
t i

s
3

Meets and Joins
• The combining operator ⨅ is called the “meet” operation.
• It constructs the greatest lower bound:
– ℓ1 ⨅ ℓ2 ⊑ ℓ1 and ℓ1 ⨅ ℓ2 ⊑ ℓ2

 “the meet is a lower bound”
– If ℓ ⊑ ℓ1 and ℓ ⊑ ℓ2 then ℓ ⊑ ℓ1 ⨅ ℓ2

 “there is no greater lower bound”

• Dually, the ⨆ operator is called the “join” operation.
• It constructs the least upper bound:
– ℓ1 ⊑ ℓ1 ⨆ ℓ2 and ℓ2 ⊑ ℓ1 ⨆ ℓ2

 “the join is an upper bound”
– If ℓ1 ⊑ ℓ and ℓ2 ⊑ ℓ then ℓ1 ⨆ ℓ2 ⊑ ℓ

 “there is no smaller upper bound”

• A partial order that has all meets and joins is called a lattice.
– If it has just meets, it’s called a meet semi-lattice.

75

Another Way to Describe the (Forward) Algorithm
• Algorithm repeatedly computes (for each node n):
• out[n] := Fn(in[n])

• Equivalently: out[n] := Fn(⨅n’∈pred[n]out[n’])
– By definition of in[n]

• We can write this as a simultaneous update of the vector of out[n] values:
– Let xn = out[n]

– Let X = (x1, x2, … , xn) it’s a vector of points in L corresponding to CFG nodes

– F(X) = (F1(⨅j∈pred[1]out[j]), F2(⨅j∈pred[2]out[j]), …, Fn(⨅j∈pred[n]out[j]))

• Any solution to the constraints is a fixpoint X of F
– i.e. F(X) = X

76

Iteration Computes Fixpoints

• Let X0 = (⟙,⟙, …, ⟙)
• Each loop through the algorithm apply F to the old vector:

X1 = F(X0)
X2 = F(X1)
…

• Fk+1(X) = F(Fk(X))

• A fixpoint is reached when Fk(X) = Fk+1(X)
– That’s when the algorithm stops.

• Wanted: a maximal fixpoint
– Because that one is more informative/useful for performing optimizations

77

Monotonicity & Termination
• Each flow function Fn maps lattice elements to lattice elements; to be sensible is should be monotonic:

• F : L → L is monotonic iff:
ℓ1 ⊑ ℓ2 implies that F(ℓ1) ⊑ F(ℓ2)
– Intuitively: “If you have more information entering a node, then you have more information leaving the node.”

• Monotonicity lifts point-wise to the function: F : Ln → Ln
– vector (x1, x2, … , xn) ⊑ (y1, y2, … , yn) iff xi ⊑ yi for each i

• Note that F is consistent: F(X0) ⊑ X0

– So each iteration moves at least one step down the lattice (for some component of the vector)
– … ⊑ F(F(X0)) ⊑ F(X0) ⊑ X0

• Therefore, # steps needed to reach a fixpoint is at most the height H of L times the number of nodes:
O(Hn) — height of the lattice

78

• Information about individual nodes or variables can be lifted pointwise:

– If L is a lattice, then so is { f : X → L } where f ⊑ g if and only if
f(x) ⊑ g(x) for all x ∊ X.

• Like types, the dataflow lattices are static approximations to the dynamic behavior:
– Could pick a lattice based on subtyping:

– Or other information:

• Points in the lattice are sometimes called dataflow “facts”

Building Lattices?

79

Any

Int

Neg Zero Pos

Bool

True False

<:

<:
<:

:>

:> :>

:>

Aliased

Unaliased

More on Fixpoint Solutions

80

• Remember constructing LL(1) parse tables

number + () $ (EOF)

T ⟼ S$ ⟼S$

S ⟼ E S’ ⟼E S’

S’ ⟼ + S ⟼ ε ⟼ ε

E ⟼ num. ⟼ (S)

T ⟼ S$
S ⟼ ES’
S’ ⟼ ε
S’ ⟼ + S
E ⟼ number | (S)

Then: we want the least
solution to this system of
set equations… a fixpoint
computation. More on
these later in the course.

• First(T) = First(S)

• First(S) = First(E)

• First(S’) = { + }

• First(E) = { number, ‘(‘ }

• Follow(S’) = Follow(S)

• Follow(S) = { $, ‘)’ } ∪ Follow(S’) Now: This solution is
obtained by starting from
taking all First/Follow as ∅
and then iterating the
equations until fixpoint is
reached.

Dataflow Analysis: Summary

• Many dataflow analyses fit into a common framework.

• Key idea: iterative solution of a system of equations over a lattice of facts (constraints).
– Iteration terminates if flow functions are monotonic.
– Solution is obtained as the greatest fixpoint is reached via the meet operation (⨅).

• In the literature, sometimes the definition of the analysis lattice is reversed:
– The most useful/precise information is represented by the bottom element (⊥)
– Solution is obtained as the least fixpoint via iterative application of join operator (⨆)
– The two definitions are equivalent modulo the (semi-)lattice direction.

81

Next Lecture (Finally!)

• Register Allocation

• Modern research directions in PL and Compilers

• Wrap-Up

82

