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Optimizations
• The code generated by our Oat compiler so far is pretty inefficient. 
– Lots of redundant moves. 
– Lots of unnecessary arithmetic instructions. 

• Consider this OAT program:

int foo(int w) {
  var x = 3 + 5;
  var y = x * w;
  var z = y - 0;
  return z * 4;
}

frontend.ml



???

Optimized code: 

• Code above generated by 
clang –O3  

• Function foo may be inlined by the 
compiler, so it can be implemented 
by just one instruction!

_foo:             
        pushq   %rbp
        movq    %rsp, %rbp
        movq    %rdi, %rax
        shlq    $5, %rax
        popq    %rbp
        retq

.text

.globl _foo
_foo:

pushq %rbp
movq %rsp, %rbp
subq $136, %rsp
movq %rdi, %rax
movq %rax, -8(%rbp)
pushq $0
movq %rsp, -16(%rbp)
pushq $0
movq %rsp, -24(%rbp)
pushq $0
movq %rsp, -32(%rbp)
pushq $0
movq %rsp, -40(%rbp)
movq -8(%rbp), %rcx
movq -16(%rbp), %rax
movq %rcx, (%rax)
movq $3, %rax
movq $5, %rcx
addq %rcx, %rax
movq %rax, -56(%rbp)
movq -56(%rbp), %rcx
movq -24(%rbp), %rax
movq %rcx, (%rax)
movq -24(%rbp), %rax
movq (%rax), %rcx
movq %rcx, -72(%rbp)
movq -16(%rbp), %rax
movq (%rax), %rcx
movq %rcx, -80(%rbp)
movq -72(%rbp), %rax
movq -80(%rbp), %rcx
imulq %rcx, %rax
movq %rax, -88(%rbp)
movq -88(%rbp), %rcx
movq -32(%rbp), %rax
movq %rcx, (%rax)
movq -32(%rbp), %rax
movq (%rax), %rcx
movq %rcx, -104(%rbp)
movq -104(%rbp), %rax
movq $0, %rcx
subq %rcx, %rax
movq %rax, -112(%rbp)
movq -112(%rbp), %rcx
movq -40(%rbp), %rax
movq %rcx, (%rax)
movq -40(%rbp), %rax
movq (%rax), %rcx
movq %rcx, -128(%rbp)
movq -128(%rbp), %rax
movq $4, %rcx
imulq %rcx, %rax
movq %rax, -136(%rbp)
movq -136(%rbp), %rax
movq %rbp, %rsp
popq %rbp
retq

backend.ml

Optimized vs Non-Optimized Output



Why do we need optimizations?
• To help programmers… 
– They write modular, clean, high-level programs 
– Compiler generates efficient, high-performance assembly 

• Programmers don’t write optimal code 

• High-level languages make avoiding redundant computation inconvenient or impossible 
– e.g.   A[i][j] = A[i][j] + 1  

• Architectural independence 
– Optimal code depends on features not expressed to the programmer 
– Modern architectures assume optimization 

• Different kinds of optimizations: 
– Time: improve execution speed 
– Space: reduce amount of memory needed 
– Power: lower power consumption (e.g. to extend battery life)



Some Caveats

• Optimizations are code transformations: 
– They can be applied at any stage of the compiler 
– They must be safe (?) 
– they shouldn’t change the meaning of the program. 

• In general, optimizations require some program analysis: 
– To determine if the transformation really is safe 
– To determine whether the transformation is cost effective 

• This course: most common and valuable performance optimizations 
– See Muchnick (optional text) for ~10 chapters about optimizations



When to apply optimization
• Inlining 
• Function specialization 
• Constant folding 
• Constant propagation 
• Value numbering 
• Dead code elimination 
• Loop-invariant code motion 
• Common sub-expression elimination 
• Strength Reduction 
• Constant folding & propagation 
• Branch prediction / optimization 
• Register allocation 
• Loop unrolling 
• Cache optimization

Assembly

Abstract assembly

Canonical IR

IR

AST

H
ig

h 
le

ve
l

M
id

 le
ve

l
Lo

w
 le

ve
l



Where to Optimize?
• Usual goal:  improve time performance 
• Problem: many optimizations trade space for time 
• Example:  Loop unrolling 
– Idea: rewrite a loop like (why?):   

          for(int i=0; i<100; i=i+1) { 
            s = s + a[i]; 
          } 

– Into a loop like:   
          for(int i=0; i<99; i=i+2){ 
            s = s + a[i];  
            s = s + a[i+1]; 
          } 

• Tradeoffs: 
– Increasing code space slows down whole program a tiny bit  

(extra instructions to manage) but speeds up the loop a lot 
– For frequently executed code with long loops: generally a win 
– Interacts with instruction cache and branch prediction hardware 

• Complex optimizations may never pay off!



Writing Fast Programs In Practice

• Pick the right algorithms and data structures. 
– These have a much bigger impact on performance that compiler optimizations. 
– Reduce # of operations 
– Reduce memory accesses 
– Minimize indirection 

• Then turn on compiler optimizations 

• Profile to determine program hot spots 
• Evaluate whether the algorithm/data structure design works 
• …if so: “tweak” the source code until the optimizer does “the right thing” to the machine code



Safety

• Whether an optimization is safe depends on the programming language semantics. 
– Languages that provide weaker guarantees to the programmer permit more optimizations but 

have more ambiguity in their behaviour. 
– e.g. In C, loading from initialized memory is undefined, so the compiler can do anything. 

• Example: loop-invariant code motion 

– Idea: hoist invariant code out of a loop 

• Is this more efficient? 
• Is this safe?

while (b) {
  z = y/x;
  … // y, x not updated
}

z = y/x;
while (b) {
  … // y, x not updated
}



The Zoo of Optimizations



Constant Folding
• Idea: If operands are known at compile time, perform the operation statically. 

          int x = (2 + 3) * y  ➔  int x = 5 * y
          b  & false   ➔  false  

• Performed at every stage of optimization… Why? 

• Constant expressions can be created by translation or earlier optimizations 
 
Example: A[2] might be compiled to:   
MEM[MEM[A] + 2 * 4]    ➔   MEM[MEM[A] + 8]



Constant Folding Conditionals

if (true) S ➔ S
if (false) S  ➔ ;
if (true) S else S’ ➔ S
if (false) S else S’     ➔ S’
while (false) S ➔ ;
if (2 > 3) S ➔ ;



Algebraic Simplification
• More general form of constant folding 
– Take advantage of mathematically sound simplification rules 

• Identities: 
– a * 1 ➔ a a * 0 ➔ 0
– a + 0 ➔ a a – 0 ➔ a
– b | false ➔ b b & true ➔ b 

• Reassociation & commutativity: 
– (a + 1) + 2 ➔ a + (1 + 2) ➔ a + 3
– (2 + a) + 4 ➔ (a + 2) + 4 ➔ a + (2 + 4) ➔ a + 6  

• Strength reduction:  (replace expensive op with cheaper op) 
– a * 4 ➔ a << 2
– a * 7 ➔ (a << 3) – a
– a / 32767 ➔ (a >> 15) + (a >> 30) 

• Note: must be careful with floating point (due to rounding)  
          and integer arithmetic (due to overflow/underflow)



Constant Propagation

• If the value is known to be a constant, replace the use of the variable by the constant 

• Value of the variable must be propagated forward from the point of assignment 

• This is a substitution operation 

• Example: 
int x = 5;
int y = x * 2;  ➔ int y = 5 * 2; ➔ int y = 10; 
int z = a[y];   ➔  int z = a[y];  ➔ int z = a[y];  ➔ int z = a[10]; 

• To be most effective, constant propagation should be interleaved with constant folding



Copy Propagation
• If one variable is assigned to another, replace uses of the assigned variable with 

the copied variable. 
• Need to know where copies of the variable propagate. 
• Interacts with the scoping rules of the language. 

• Example: 
x = y; x = y;
if (x > 1) { ➔       if (y > 1) {
  x = x * f(x – 1);                x = y * f(y – 1);
}       } 

• Can make the first assignment to x dead code (that can be eliminated).



Dead Code Elimination

• If a side-effect free statement can never be observed, it is safe to eliminate the statement. 

x  = y * y         // x is dead!
…    // x never used  ➔ … 
x = z * z x = z * z 

• A variable is dead if it is never used after it is defined. 
– Computing such definition and use information is an important component of compiler 

• Dead variables can be created by other optimizations…



Unreachable/Dead Code

• Basic blocks not reachable by any trace leading from the starting basic block are 
unreachable and can be deleted. 
– Performed at the IR or assembly level 

• Dead code: similar to unreachable blocks. 
– A value might be computed but never subsequently used. 

• Code for computing the value can be dropped 

• But only if it’s pure, i.e. it has no externally visible side effects 

– Externally visible effects: raising an exception, modifying a global variable, going into an 
infinite loop, printing to standard output, sending a network packet, launching a rocket 

– Note: Pure functional languages (e.g. Haskell) make reasoning about the safety of 
optimizations (and code transformations in general) easier!



Inlining

• Replace a call with the body of the function itself with arguments rewritten to be local variables: 
• Example in Oat code: 

     int g(int x) { return x + pow(x); }
     int pow(int a) { int b = 1; int n = 0;  

                       while (n < a) {b = 2 * b};  
                       return b; }

     ➔ 
     int g(int x) {  

 int a = x; int b = 1; int n = 0; 
 while (n < a) {b = 2 * b}; tmp = b;  
 return x + tmp;

     }  

• May need to rename variable names to avoid name capture  
– Example of what can go wrong?   

• Best done at the AST or relatively high-level IR. 
• When is it profitable? 
– Eliminates the stack manipulation, jump, etc. 
– Can increase code size. 
– Enables further optimizations

int g(int x) ( 1 + f(x) ) 
Int f(int a) (a + x) 
➔ 
const int x = 3; 
int g(int x) ( 1 + (int a = x; a + x) )



Loop Optimizations

• Most program execution time occurs in loops. 
– The 90/10 rule of thumb holds here too. (90% of the execution time is spent in 10% of the code) 

• Loop optimizations are very important, effective, and numerous 
– Also, concentrating effort to improve loop body code is usually a win



• Another form of redundancy elimination. 
• If the result of a statement or expression does not change during the loop and 

it’s pure, it can be hoisted outside the loop body. 
• Often useful for array element-addressing code 
– so-called invariant code 

for (i = 0; i < a.length; i++) { 
   /* a not modified in the body */ 
}

t = a.length;
for (i =0; i < t; i++) { 
  /* same body as above */  
}

Loop Invariant Code Motion (revisited)

Hoisted loop-
invariant 

expression



Strength Reduction (revisited)
• Strength reduction can work for loops too 
• Idea: replace expensive operations (multiplies, divides) by cheap ones (adds and subtracts) 
• For loops, create a dependent induction variable: 

• Example: 
        for (int i = 0; i<n; i++) { a[i*3] = 1; }  // stride by 3

        int j = 0;
         for (int i = 0; i<n; i++) {
             a[j] = 1;
             j = j + 3; // replace multiply by add

         }



Loop Unrolling (revisited)

• Branches can be expensive, unroll loops to avoid them. 
        for (int i=0; i < n; i++) { S }

        for (int i=0; i < n-3; i+=4) {S;S;S;S};
        for (       ; i<n; i++) { S } // left over iterations 

• With k unrollings, eliminates (k-1)/k conditional branches 
– So for the above program, it eliminates ¾ of the branches 

• Space-time tradeoff:  
– Not a good idea for large S or small n



Code Specialization
• Idea: create specialized versions of a function that is called from different places 

with different arguments. 
• Example: specialize function f in: 

class A implements I { int m() {…} }
class B implements I { int m() {…} }
int f(I x) { x.m(); }                  // don’t know which m
A a = new A(); f(a);        // know it’s A.m
B b = new B(); f(b);        // know it’s B.m

• f_A would have code specialized to dispatch to A.m
• f_B would have code specialized to dispatch to B.m
• You can also inline methods when the run-time type is known statically 
– Often just one class implements a method.



Common Subexpression Elimination (CSE)

• In some sense it’s the opposite of inlining: fold redundant computations together 
• Example:  

       a[i] = a[i] + 1  compiles to:    

       [a + i*4] = [a + i*4] + 1  

Common subexpression elimination removes the redundant add and multiply: 
 

   t = a + i*4; [t] = [t] + 1

• For safety, you must be sure that the shared expression always has the same value in both places!



unit f(int[] a, int[] b, int[] c) {
int j = …; int i = …; int k = …;

  t = a[i];
b[j] = t + 1; 
c[k] = t; 
return; 

}

unit f(int[] a, int[] b, int[] c) {
int j = …; int i = …; int k = …;
b[j] = a[i] + 1;
c[k] = a[i]; 
return; 

}

Unsafe Common Subexpression Elimination
• Example: consider this OAT function:

• The optimization that shares the expression a[i] is unsafe… why?
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Time for a short break?



Code Analysis
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Motivating Code Analyses

• There are lots of things that might influence the safety/applicability of an optimization 
– What algorithms and data structures can help? 

• How do you know what is a loop? 
• How do you know an expression is invariant (constant)? 
• How do you know if an expression has no side effects? 
• How do you keep track of where a variable is defined? 
• How do you know where a variable is used? 
• How do you know if two reference values may be aliases of one another?

28



Moving Towards Register Allocation
• The Oat compiler currently generates as many temporary variables as it needs  
– These are the %uids you should be very familiar with by now. 

• Current compilation strategy: 
– Each %uid maps to a stack location. 
– This yields programs with many loads/stores to memory. 
– Very inefficient. 

• Ideally, we’d like to map as many %uid’s as possible into registers. 
– Eliminate the use of the alloca instruction? 
– Only 16 max registers available on 64-bit X86 
– %rsp and %rbp are reserved and some have special semantics, so really only 10 or 12 available 
– This means that a register must hold more than one slot 

• When is this safe?
29



Liveness

• Observation: %uid1 and %uid2 can be assigned to the same register if their 
values will not be needed at the same time. 
– What does it mean for an %uid to be “needed”?   
– Ans: its contents will be used as a source operand in a later instruction. 

• Such a variable is called “live” 

• Two variables can share the same register if they are not live at the same time.

30



Scope vs. Liveness
• We can already get some coarse liveness information from variable scoping. 
• Consider the following OAT program: 

int f(int x) {
      var a = 0; 
      if (x > 0) {
            var b = x * x;
            a = b + b;
      }
      var c = a * x; 
      return c;

}

• Note that due to Oat’s scoping rules, variables b and c can never be live at the same time. 
– c’s scope is disjoint from b’s scope 

• So, we could assign b and c to the same alloca’ed slot and potentially to the same register.

31



• Consider this program: 

int f(int x) {
  int a = x + 2;
  int b = a * a;
  int c = b + x;
  return c;
} 

• The scopes of a, b, c, x all overlap – they’re all in scope at the end of the block. 
• But, a, b, c are never live at the same time. 
– So they can share the same stack slot / register

But Scope is too Coarse 

32

x is live
a and x are live
b and x are live
c is live



Live Variable Analysis

• A variable v is live at a program point if v is defined before the program point and used after it. 

• Liveness is defined in terms of where variables are defined and where variables are used 

• Liveness analysis: Compute the live variables between each statement. 
– May be conservative (i.e. it may claim a variable is live when it isn’t) so because that’s a safe approximation 
– To be useful, it should be more precise than simple scoping rules. 

• Liveness analysis is one example of dataflow analysis 

– Other examples: Available Expressions, Reaching Definitions, Constant-Propagation Analysis, …

33



Control-flow Graphs Revisited

• For the purposes of dataflow analysis, we use the control-flow graph (CFG) intermediate form. 

• Recall that a basic block is a sequence of instructions such that: 
– There is a distinguished, labeled entry point (no jumps into the middle of a basic block) 
– There is a (possibly empty) sequence of non-control-flow instructions 
– The block ends with a single control-flow instruction (jump, conditional branch, return, etc.) 

• A control flow graph  
– Nodes are blocks 
– There is an edge from B1 to B2 if the control-flow instruction of B1 might jump to the entry label of B2 
– There are no “dangling” edges – there is a block for every jump target. 

34



Dataflow over CFGs
• For precision, it is helpful to think of the “fall through” between 

sequential instructions as an edge of the control-flow graph too. 
– Different implementation tradeoffs in practice…
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Liveness is Associated with Edges

• This is useful so that the same register can be used for different 
temporaries in the same statement. 

• Example:   a = b + 1

• Compiles to:   

36

Instr

Live: a, b

Live:  b, d, e

Mov a, b

Add a, 1

Live: b

Live: a

Live: a (maybe)

Mov eax, eax

Add eax, 1

Register Allocate: 
a  eax, b  eax



Uses and Definitions
• Every instruction/statement uses some set of variables 
– i.e. reads from them 

• Every instruction/statement defines some set of variables 
– i.e. writes to them 

• For a node/statement s define: 
– use[s] : set of variables used by s 
– def[s] : set of variables defined by s 

• Examples: 
– a = b + c  use[s] = {b,c}  def[s] = {a}

– a = a + 1  use[s] = {a}  def[s] = {a}

37



Liveness, Formally
• A variable v is live on edge e if: 

There is 
– a node n in the CFG such that use[n] contains v, and  
– a directed path from e to n such that for every statement s’ on the path, def[s’] does not contain v  

• The first clause says that v will be used on some path starting from edge e. 
• The second clause says that v won’t be redefined on that path before the use. 

• Questions: 
– How to compute this efficiently? 
– How to use this information (e.g., for register allocation)? 
– How does the choice of  IR affect this?   

(e.g. LLVM IR uses SSA, so it doesn’t allow redefinition ⇒ simplify liveness analysis)
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Simple, inefficient algorithm

• “A variable v is live on an edge e  if there is a node n in the CFG using it and 
a directed path from e to n passing through no def of v.” 

• Backtracking Algorithm: 
– For each variable v… 
– Try all paths from each use of v, tracing backwards through the control-flow graph 

until either v is defined or a previously visited node has been reached. 
– Mark the variable v live across each edge traversed. 

• Why inefficient? 

• Because it explores the same paths many times  
(for different uses and different variables)
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Dataflow Analysis
• Idea:  compute liveness information for all variables simultaneously. 
– Keep track of sets of information about each node 

• Approach: define equations that must be satisfied by any liveness determination. 
– Equations based on “obvious” constraints. 

• Solve the equations by iteratively converging on a solution. 
– Start with a “rough” approximation to the answer 
– Refine the answer at each iteration 
– Keep going until no more refinement is possible: a fixpoint has been reached 

• This is an instance of a general framework for computing program properties: 
dataflow analysis
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Dataflow Value Sets for Liveness
• Nodes are program statements, so:  
• use[n] : set of variables used by n 
• def[n] : set of variables defined by n 
• in[n] : set of variables live on entry to n 
• out[n] : set of variables live on exit from n 

• Associate in[n] and out[n] with the “collected” 
information about incoming/outgoing edges  

• For Liveness: what constraints are there among these sets? 
• Clearly: 

	 	 	 	 in[n] ⊇ use[n] 

• What other constraints?
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Other Dataflow Constraints
• We have:  in[n] ⊇ use[n] 
– “A variable must be live on entry to n if it is used by n” 

• Also:  in[n] ⊇ out[n] - def[n] 
– “If a variable is live on exit from n, and n doesn’t 

define it, it is live on entry to n” 
– Note: here ‘-’ means “set difference” 

• And:  out[n] ⊇ in[n’] if n’ ∈ succ[n] 
– “If a variable is live on entry to a successor  

node of n, it must be live on exit from n.”
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Iterative Dataflow Analysis
• Find a solution to those constraints by starting from a rough guess. 
– Start with:  in[n] = Ø  and out[n] = Ø 

• The guesses don’t satisfy the constraints: 
– in[n] ⊇ use[n] 
– in[n] ⊇ out[n] - def[n] 
– out[n] ⊇ in[n’] if n’ ∈ succ[n] 

• Idea: iteratively re-compute in[n] and out[n] where forced to by the constraints. 
– Each iteration will add variables to the sets in[n] and out[n]  

(i.e. the live variable sets will increase monotonically) 
• We stop when in[n] and out[n] satisfy these equations: 

	 (which are derived from the constraints above) What are they? 

– in[n]   := use[n] ∪ (out[n] - def[n]) 

– out[n] := ∪n’∈succ[n]in[n’]
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Complete Liveness Analysis Algorithm

• Finds a fixpoint of the in and out equations. 
– The algorithm is guaranteed to terminate… Why? 

• Why do we start with Ø?

44

for all n, in[n] := Ø, out[n] := Ø 
repeat until no change in ‘in’ and ‘out’ 
	 for all n 
	 	  out[n] := ∪n’∈succ[n]in[n’] 
	 	  in[n] := use[n] ∪ (out[n] - def[n]) 
	 end 
end



Example Liveness Analysis
• Example flow graph: e = 1

if x > 0

ret xz = e * e

y = e * x

if (x & 1)

e = z e = y

1

2

3

5

7

8

def: e 
use: 

e = 1;
while(x>0) {
  z = e * e; 
  y = e * x;
  x = x – 1;
  if (x & 1) {
    e = z;
  } else {
    e = y;
  }
}
return x;

x = x - 1

def:  
use: x
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def:  
use: x

def: z  
use: e

def: y 
use: e,x

def: x  
use: x

def:  
use: x

def: e  
use: z

def: e  
use: y

9

4

in:

in:

in:

in:

in:

in:

in:in:

in:

out:

out:

out:

out:

out:

out: out:

out:



Example Liveness Analysis
e = 1

if x > 0

ret xz = e * e

y = e * x

if (x & 1)

e = z e = y

1

2

3

5

7

8

def: e 
use: 

x = x - 1

def:  
use: x
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def:  
use: x

def: z  
use: e

def: y 
use: e,x

def: x  
use: x

def:  
use: x

def: e  
use: z

def: e  
use: y
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in:

in: x

in: x

in: e,x

in: x

in: x

in: yin: z

in: e

out:

out:

out:

out:

out:

out: out:

out:

• Iteration 1: 
in[2] = x 
in[3] = e 
in[4] = x 
in[5] = e,x 
in[6] = x 
in[7] = x 
in[8] = z 
in[9] = y 

(showing only updates 
that make a change)

Each iteration update: 
out[n] := ∪n’∈succ[n]in[n’] 
in[n] := use[n] ∪ (out[n] - def[n])



Example Liveness Analysis

• Iteration 2: 
out[1]= x 
in[1] = x 
out[2] = e,x 
in[2] = e,x 
out[3] = e,x 
in[3] = e,x 
out[5] = x 
out[6] = x 
out[7] = z,y 
in[7] = x,z,y 
out[8] = x 
in[8] = x,z 
out[9] = x 
in[9] = x,y

e = 1

if x > 0

ret xz = e * e

y = e * x

if (x & 1)

e = z e = y
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2

3

5

7

8

def: e 
use: 

x = x - 1

def:  
use: x
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def:  
use: x

def: z  
use: e

def: y 
use: e,x

def: x  
use: x

def:  
use: x

def: e  
use: z

def: e  
use: y
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in: x

in: e,x

in: x

in: e,x

in: x

in: x,y,z

in: x,yin: x,z

in: e,x

out: x

out: e,x

out: e,x

out: x

out: x

out: x out: x

out: y,z

Each iteration update: 
out[n] := ∪n’∈succ[n]in[n’] 
in[n] := use[n] ∪ (out[n] - def[n])



Example Liveness Analysis

• Iteration 3: 
out[1]= e,x 
out[6]= x,y,z 
in[6]= x,y,z 
out[7]= x,y,z 
out[8]= e,x 
out[9]= e,x

e = 1

if x > 0

ret xz = e * e

y = e * x

if (x & 1)

e = z e = y

1

2

3

5

7

8

def: e 
use: 

x = x - 1

def:  
use: x

6

def:  
use: x

def: z  
use: e

def: y 
use: e,x

def: x  
use: x

def:  
use: x

def: e  
use: z

def: e  
use: y

9

4

in: x

in: e,x

in: x

in: e,x

in: x,y,z

in: x,y,z

in: x,yin: x,z

in: e,x

out: e,x

out: e,x

out: e,x

out: x

out: x,y,z

out: e,x out: e,x

out: x,y,z

Each iteration update: 
out[n] := ∪n’∈succ[n]in[n’] 
in[n] := use[n] ∪ (out[n] - def[n])



Example Liveness Analysis

• Iteration 4: 
out[5]= x,y,z 
in[5]= e,x,z

e = 1

if x > 0

ret xz = e * e

y = e * x

if (x & 1)

e = z e = y

1

2

3

5

7

8

def: e 
use: 

x = x - 1

def:  
use: x

6

def:  
use: x

def: z  
use: e

def: y 
use: e,x

def: x  
use: x

def:  
use: x

def: e  
use: z

def: e  
use: y

9

4

in: x

in: e,x

in: x

in: e,x,z

in: x,y,z

in: x,y,z

in: x,yin: x,z

in: e,x

out: e,x

out: e,x

out: e,x

out: x,y,z

out: x,y,z

out: e,x out: e,x

out: x,y,z

Each iteration update: 
out[n] := ∪n’∈succ[n]in[n’] 
in[n] := use[n] ∪ (out[n] - def[n])



Example Liveness Analysis

• Iteration 5: 
out[3]= e,x,z

e = 1

if x > 0

ret xz = e * e

y = e * x

if (x & 1)

e = z e = y

1

2

3

5

7

8

def: e 
use: 

x = x - 1

def:  
use: x

6

def:  
use: x

def: z  
use: e

def: y 
use: e,x

def: x  
use: x

def:  
use: x

def: e  
use: z

def: e  
use: y

9

4

in: x

in: e,x

in: x

in: e,x,z

in: x,y,z

in: x,y,z

in: x,yin: x,z

in: e,x

out: e,x

out: e,x

out: e,x,z

out: x,y,z

out: x,y,z

out: e,x out: e,x

out: x,y,z

Each iteration update: 
out[n] := ∪n’∈succ[n]in[n’] 
in[n] := use[n] ∪ (out[n] - def[n])

Done!



Improving the Iterative Algorithm

• Can we do better? 

• Observe: the only way information propagates from one node to another is 
using: out[n] := ∪n’∈succ[n]in[n’] 
– This is the only rule that involves more than one node 

• If a node’s successors haven’t changed, then the node itself won’t change. 

• Idea for an improved version of the algorithm: 
– Keep track of which node’s successors have changed
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A Worklist Algorithm
• Use a FIFO queue of nodes that might need to be updated. 

for all n, in[n] := Ø, out[n] := Ø 
w = new queue with all nodes 
repeat until w is empty 
	 let n = w.pop()	 	 	 	 	 // pull a node off the queue 

	 old_in = in[n]	 	 	 	 	 // remember old in[n] 

	 out[n] := ∪n’∈succ[n]in[n’] 
  	 in[n] := use[n] ∪ (out[n] - def[n]) 
	 if (old_in != in[n]),	 	 	 	 // if in[n] has changed  

	     for all m in pred[n], w.push(m)	 // add to worklist 

end 
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How about another break?



Other Dataflow Analyses



Generalising Dataflow Analyses
• The kind of iterative constraint solving used for liveness applies to other kinds of analyses. 
– Reaching Definitions analysis 
– Available Expressions analysis 
– Alias Analysis 
– Constant Propagation 
– These analyses follow the same approach as for liveness (accumulating values until fixpoint is reached). 

• To see these as an instance of the same kind of algorithm, the next few examples to work over a 
canonical intermediate instruction representation called quadruples (op, arg1, arg2, and result) 

– Allows easy definition of def[n] and use[n] 
– A slightly “looser” variant of LLVM’s IR that doesn’t require the “static single assignment”  
– i.e. it has mutable local variables 

– We will use LLVM-IR-like syntax
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Reaching Definitions
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Reaching Definition Analysis

• Question: what uses in a program does a given variable definition reach? 

• Unlike liveness, we are interested in different definitions of the same variable. 

• This analysis is used for constant propagation & copy propagation 
– If only one definition reaches a particular use, can replace use by the definition (for constant propagation). 
– Copy propagation additionally requires that the copied value still has its same value – computed using an 

available expressions analysis (next) 

• Input: Quadruple CFG 
• Output: in[n] (resp. out[n]) is the set of nodes defining some variable such that the definition 

may reach the beginning (resp. end) of node n
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Example of Reaching Definitions
• Results of computing reaching definitions on this simple CFG:

58

b = a + 2

c = b * b

b = c + 1

1

2

3

return b * c
4

out[1]:  {1}

out[2]:  {1,2}

out[3]:  {2,3}

in[2]:    {1}

in[3]:    {1,2}

in[4]:    {2,3}



Reaching Definitions Step 1
• Define the sets of interest for the analysis 
• Let defs[a] be the set of nodes (statements) that define the variable a 

• Define gen[n] and kill[n] as follows: 
• Quadruple forms n:	 gen[n]	 	 kill[n]	 	  

a = b op c	 	 	       {n}	 	 	 defs[a] - {n}	 	  
a = load b		 	       {n}	 	 	 defs[a] - {n} 
store b, a	 	 	       Ø	 	 	 Ø	 	 	  
a = f(b1,…,bn)		       {n}	 	 	 defs[a] - {n}	  
f(b1,…,bn)		 	       Ø	 	 	 Ø 
br L	 	 	 	       Ø	 	 	 Ø	 	  
br a L1  L2		 	       Ø	 	 	 Ø	 	 	 	 	  
return a	 	 	       Ø	 	 	 Ø	 	 	  

• gen[n] are node’s definitions; kill[n] are the nodes, whose definitions are “shadowed” by n



Reaching Definitions Step 2
• Define the constraints that a reaching definitions solution must satisfy. 

• out[n] ⊇ gen[n] 
• “The definitions that reach the end of a node at least include the definitions generated by the node” 

• in[n] ⊇ out[n’]    if n’ is in pred[n] 
• “The definitions that reach the beginning of a node include those that reach the exit  

of its any predecessor” 

• out[n] ∪ kill[n] ⊇ in[n] 
• “The definitions that come in to a node either reach the end of the node or are killed by it.” 
• Equivalently:   out[n] ⊇ in[n] - kill[n]



Reaching Definitions Step 3
• Convert constraints to iterated update equations: 
• in[n] := ∪n’∈pred[n]out[n’] 
• out[n] := gen[n] ∪ (in[n] - kill[n]) 

• Algorithm: initialise in[n] and out[n] to Ø  
– Iterate the update equations until a fixed point is reached 
– Why does it terminate? 

• The algorithm terminates because in[n] and out[n] increase only monotonically  
– At most to a maximum set that includes all variable definitions in the program 

• The algorithm is precise because it finds the smallest sets that satisfy the constraints.
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Available Expressions
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Available Expressions
• Idea: want to perform common subexpression elimination: 

– a = x + 1	 	 a = x + 1 
…	 	 	 … 
b = x + 1		 b = a 

– When is it safe? 

• This transformation is safe if x+1 means computes the same value at both places 
(i.e., x hasn’t been assigned). 
– “x+1” is an available expression 

• Dataflow values: 
– in[n] = set of nodes whose values are available on entry to n 
– out[n] = set of nodes whose values are available on exit of n
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Available Expressions Step 1
• Define the sets of values 
• Let uses[a] be the set of nodes that use the variable a in their expressions  

• Define gen[n] and kill[n] as follows: 
• Quadruple forms n:	 	 gen[n]	 	 	 kill[n]	 	  

a = b op c	 	 	 	 {n} - kill[n]	 	 uses[a]	 	  
a = load b	 	 	 	 {n} - kill[n]	 	 uses[a] 
store b, a	 	 	 	  Ø	 	 	 	 uses[ [x] ] 
	 	 	 	 	 	 	                      	(for all x that may equal a) 
br L	 	 	 	 	 Ø	 	 	 	 Ø	 	  
br a L1  L2	 	 	 	 Ø	 	 	 	 Ø	 	 	 	  
a = f(b1,…,bn)	 	 	 Ø	 	 	 	 uses[a] ∪ uses[ [x] ] 
	 	 	 	 	 	 	 	 	 	 	 (for all x) 
f(b1,…,bn)	 	 	 	 Ø	 	 	 	 uses[ [x] ]	   (for all x)	  
return a		 	 	        Ø	 	 	 	 Ø	 	  

• gen[n] — node itself represents new available expression  
• kill[n] — nodes whose expressions no longer available after n	
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Note the need for  
“may alias” information…

Note that functions are 
assumed to be impure…



Available Expressions Step 2

• Define the constraints that an available expressions solution must satisfy. 

• out[n] ⊇ gen[n] 
• “The expressions made available by n that reach the end of the node” 

• in[n] ⊆ out[n’]    if n’ is in pred[n] 
• “The expressions available at the beginning of a node include those that reach the exit of 

every predecessor” 

• out[n] ∪ kill[n] ⊇ in[n] 
• “The expressions available on entry either reach the end of the node or are killed by it.” 
• Equivalently:   out[n] ⊇ in[n] - kill[n]
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Note similarities and 
differences with constraints 
for “reaching definitions”.



Available Expressions Step 3
• Convert constraints to iterated update equations: 

• in[n] := ∩n’∈pred[n]out[n’] 
• out[n] := gen[n] ∪ (in[n] - kill[n]) 

• Unlike previous algorithms, this one is “shrinking” the set of desired facts 

• Algorithm: initialise in[n] and out[n] to {set of all nodes}  
– Iterate the update equations until a fixed point is reached 
– Why does the algorithm terminate? 

• The algorithm terminates because in[n] and out[n] decrease only monotonically  
– At most to a minimum of the empty set 

• The algorithm is precise because it finds the largest sets that satisfy the constraints.
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General Dataflow Analysis Framework
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Comparing Dataflow Analyses
• Look at the update equations in the inner loop of the analyses 

• Liveness:		 	 	 	 	 	 	 	  
– Let gen[n] = use[n] and kill[n] = def[n] 

– out[n] := ∪n’∈succ[n]in[n’] 
– in[n] := gen[n] ∪ (out[n] - kill[n]) 

• Reaching Definitions:		 	 	 	 	  
– in[n] := ∪n’∈pred[n]out[n’] 
– out[n] := gen[n] ∪ (in[n] - kill[n]) 

• Available Expressions:	 	 	 	 	        
– in[n] := ∩n’∈pred[n]out[n’] 
– out[n] := gen[n] ∪ (in[n] - kill[n])

68

(backward)

(forward)

(forward)



Common Features
• All of these analyses have a domain over which they solve constraints. 
– Liveness, the domain is sets of variables 
– Reaching defns.,  Available exprs. the domain is sets of nodes 

• Each analysis has a notion of gen[n] and kill[n] 
– Used to explain how information propagates across a node: what is added, what is removed. 

• Each analysis is propagates information either forward or backward 
– Forward: in[n] defined in terms of predecessor nodes’ out[] 
– Backward: out[n] defined in terms of successor nodes’ in[] 

• Each analysis has a way of aggregating (combining) information from in/out flow 
– Liveness & reaching definitions take union (∪) 
– Available expressions uses intersection (∩) 
– Union expresses a property that holds for some path (existential) 
– Intersection expresses a property that holds for all paths (universal)
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(Forward) Dataflow Analysis Framework

A forward dataflow analysis can be characterized by: 

1. A domain of dataflow values L   

– e.g. L = the powerset of all variables 

– Think of  ℓ ∈ L  as a property, then “z ∈ ℓ” means “z has the property” 

2. For each node n, a flow function Fn : L → L 
– So far we’ve seen Fn(ℓ) = gen[n] ∪ (ℓ - kill[n]) 
– So:  out[n] = Fn(in[n]) 
– “If ℓ is a property that holds before the node n,  then Fn(ℓ) holds after n” 

3. A combining operator ⨅ 
– “If we know either ℓ1 or ℓ2 holds on entry 

 to node n, we know at most ℓ1 ⨅ ℓ2” 

– in[n] := ⨅n’∈pred[n]out[n’]
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n

ℓ

Fn(ℓ)

n

ℓ1 ℓ2

ℓ1 ⨅ ℓ2



Generic Iterative (Forward) Analysis

• Here, ⟙ ∈ L (“top”) represents having the “maximum” amount of information. 

– Having “more” information enables more optimizations 
– “Maximum” amount could be inconsistent with the constraints, so we can’t keep it. :-( 
– Iteration refines the answer, eliminating inconsistencies
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for all n, in[n] := ⟙, out[n] := ⟙ 
repeat until no change 
	 for all n 

	 	   in[n] := ⨅n’∈pred[n]out[n’] 

	 	   out[n] := Fn(in[n]) 
	 end 
end



Structure of L 
• The domain has structure that reflects the “amount” of information  for each dataflow value. 

• Some dataflow values are more informative than others: 
– Write ℓ1 ⊑ ℓ2 whenever ℓ2 provides at least as much information as ℓ1. 
– The dataflow value ℓ2 is “better” for enabling optimizations. 

• Example 1: for available expressions analysis, larger sets of nodes are more informative. 
– Having a larger set of nodes (equivalently, expressions) available means that there is more opportunity for 

common subexpression elimination. 
– So: ℓ1 ⊑ ℓ2 if and only if ℓ1 ⊆ ℓ2  

• Example 2: for liveness analysis, smaller sets of variables are more informative. 
– Having smaller sets of variables live across an edge means that there are fewer conflicts  

for register allocation assignments. 
– So:   ℓ1 ⊑ ℓ2 if and only if ℓ1 ⊇ ℓ2 
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L as a Partial Order
• L is a partial order defined by the ordering relation ⊑. 

• A partial order is an ordered set. 

• Some of the elements might be incomparable. 
– That is, there might be ℓ1, ℓ2 ∈ L such that neither ℓ1 ⊑ ℓ2 nor ℓ2 ⊑ ℓ1 

• Properties of a partial order: 
– Reflexivity:   ℓ ⊑ ℓ 

– Transitivity:  ℓ1 ⊑ ℓ2 and ℓ2 ⊑ ℓ3 implies ℓ1 ⊑ ℓ2 

– Anti-symmetry: ℓ1 ⊑ ℓ2 and ℓ2 ⊑ ℓ1 implies ℓ1 = ℓ2 

• Examples: 
– Integers ordered by ≤ 
– Types ordered by <: 
– Sets ordered by ⊆ or ⊇
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Subsets of {a,b,c} ordered by ⊆ 
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{a,b,c}

{a,c}

{c}

{b,c}

{a,b}      

   {a}

 {  }   

  {b}

ℓ1 ⊑ ℓ2 
ℓ1

ℓ2

= ⟙ 

= ⟘ 

order  ⊑  is ⊆ meet ⨅  is ∩ join ⨆ is ∪ 

Partial orders are often presented as a Hasse diagram.

H
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Meets and Joins
• The combining operator ⨅ is called the “meet” operation. 
• It constructs the greatest lower bound: 
– ℓ1 ⨅ ℓ2   ⊑  ℓ1   and   ℓ1 ⨅ ℓ2   ⊑  ℓ2       

 “the meet is a lower bound” 
– If ℓ   ⊑  ℓ1   and ℓ   ⊑  ℓ2  then ℓ   ⊑   ℓ1 ⨅ ℓ2          

 “there is no greater lower bound”  

• Dually, the ⨆ operator is called the “join” operation. 
• It constructs the least upper bound: 
– ℓ1  ⊑  ℓ1 ⨆ ℓ2     and   ℓ2  ⊑  ℓ1 ⨆ ℓ2      

 “the join is an upper bound” 
– If ℓ1   ⊑  ℓ   and ℓ2   ⊑  ℓ  then ℓ1 ⨆ ℓ2   ⊑  ℓ          

 “there is no smaller upper bound”  

• A partial order that has all meets and joins is called a lattice. 
– If it has just meets, it’s called a meet semi-lattice.
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Another Way to Describe the (Forward) Algorithm
• Algorithm repeatedly computes (for each node n): 
• out[n] := Fn(in[n])  

• Equivalently:   out[n] := Fn(⨅n’∈pred[n]out[n’]) 
– By definition of in[n] 

• We can write this as a simultaneous update of the vector of out[n] values: 
– Let xn = out[n] 

– Let X = (x1, x2, … , xn)      it’s a vector of points in L corresponding to CFG nodes 

– F(X) = (F1(⨅j∈pred[1]out[j]), F2(⨅j∈pred[2]out[j]), …, Fn(⨅j∈pred[n]out[j])) 

• Any solution to the constraints is a fixpoint X of F 
– i.e. F(X) = X
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Iteration Computes Fixpoints

• Let X0 = (⟙,⟙, …, ⟙) 
• Each loop through the algorithm apply F to the old vector: 

X1 = F(X0) 
X2 = F(X1) 
… 

• Fk+1(X) = F(Fk(X)) 

• A fixpoint is reached when Fk(X) = Fk+1(X) 
– That’s when the algorithm stops. 

• Wanted: a maximal fixpoint 
– Because that one is more informative/useful for performing optimizations
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Monotonicity & Termination
• Each flow function Fn maps lattice elements to lattice elements; to be sensible is should be monotonic: 

• F : L → L is monotonic iff: 
ℓ1 ⊑ ℓ2 implies that F(ℓ1) ⊑ F(ℓ2)  
– Intuitively:  “If you have more information entering a node, then you have more information leaving the node.” 

• Monotonicity lifts point-wise to the function: F : Ln → Ln  
– vector (x1, x2, … , xn) ⊑  (y1, y2, … , yn)  iff xi ⊑ yi for each i 

• Note that F is consistent: F(X0) ⊑ X0 

– So each iteration moves at least one step down the lattice (for some component of the vector) 
– … ⊑ F(F(X0)) ⊑ F(X0)  ⊑  X0  

• Therefore, # steps needed to reach a fixpoint is at most the height H of L times the number of nodes:  
O(Hn) — height of the lattice
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• Information about individual nodes or variables can be lifted pointwise:   

– If L is a lattice, then so is  { f : X → L } where f ⊑ g if and only if 
f(x) ⊑ g(x) for all x ∊ X. 
 

• Like types, the dataflow lattices are static approximations to the dynamic behavior: 
– Could pick a lattice based on subtyping:   

– Or other information:    

• Points in the lattice are sometimes called dataflow “facts”  

Building Lattices?

79

Any

Int

Neg Zero Pos

Bool

True False

<:

<:
<:

:>

:> :>

:>

Aliased

Unaliased



More on Fixpoint Solutions
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• Remember constructing LL(1) parse tables

number + ( ) $ (EOF)

T ⟼ S$ ⟼S$

S ⟼ E S’ ⟼E S’

S’ ⟼ + S ⟼ ε ⟼ ε

E ⟼ num. ⟼ ( S )

T  ⟼ S$ 
S  ⟼ ES’ 
S’ ⟼ ε  
S’ ⟼ + S 
E  ⟼ number | ( S )

Then: we want the least 
solution to this system of 
set equations… a fixpoint 
computation.  More on 
these later in the course.

• First(T) = First(S) 

• First(S) = First(E) 

• First(S’) = { + } 

• First(E) = { number, ‘(‘ } 

• Follow(S’) = Follow(S) 

• Follow(S) = { $, ‘)’ } ∪ Follow(S’) Now: This solution is 
obtained by starting from 
taking all First/Follow as ∅ 
and then iterating the 
equations until fixpoint is 
reached.



Dataflow Analysis: Summary

• Many dataflow analyses fit into a common framework. 

• Key idea: iterative solution of a system of equations over a lattice of facts (constraints). 
– Iteration terminates if flow functions are monotonic. 
– Solution is obtained as the greatest fixpoint is reached via the meet operation (⨅). 

• In the literature, sometimes the definition of the analysis lattice is reversed: 
– The most useful/precise information is represented by the bottom element (⊥) 
– Solution is obtained as the least fixpoint via iterative application of join operator (⨆) 
– The two definitions are equivalent modulo the (semi-)lattice direction.
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Next Lecture (Finally!)

• Register Allocation 

• Modern research directions in PL and Compilers 

• Wrap-Up
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