CS5232: Formal Specification
and Design Techniques

Module Overview and Introduction

llya Sergey

Spring 2023

Module Overview

Instructional Staff

A/P llya Sergey, instructor

George Pirlea, TA

Course Info and Material

* All information, including the syllabus, available on website at:
https://ilyasergey.net/CS5232/

 Textbooks:
- Specifying Systems by Leslie Lamport, 2002
- Program Proofs by Rustan Leino, 2020

 Class notes and additional reading material to be posted on the website
* Announcements, submissions and grades on Canvas

* Accompanying code on GitHub (send me your GH handle to get access!):

https://github.com/cs5232

https://ilyasergey.net/CS5232/
https://github.com/cs5232

—

Goals of the Module

. Learn about formal methods (FMs) in system design and software engineering
. Understand how FMs help produce high-quality software

Learn about formal modeling and specification languages

Write and understand formal requirement specifications

Learn about main approaches in formal software verification

Learn about underpinning for state-of-the-art verification tools

Use automated and interactive tools to verify models and code

Course Topics

Software Specification and Validation
* High-level system design
» Foundations of automated reasoning
* Code-level design

Main Software Validation Techniques
Model Checking: often automatic, abstract
Decidable Reasoning: reducing verification to known algorithmic problems
Deductive Verification: typically semi-automatic, precise (source code level)

Course Topics

Software Specification and Validation
* High-level system design
» Foundations of automated reasoning
* Code-level design

Main Software Validation Techniques
Model Checking: often automatic, abstract
Decidable Reasoning: reducing verification to known algorithmic problems
Deductive Verification: typically semi-automatic, precise (source code level)

Part |: High-Level Design

Language: TLA+
* Lightweight modeling language for system design
* Amenable to a fully automatic analysis
» Aimed at expressing complex behavior and properties of a software system
* Intuitive structural modeling tool based on Boolean functions
* Automatic analyzer based on bounded model checking

Part |: High-Level Design

Language: TLA+
* Lightweight modeling language for system design
* Amenable to a fully automatic analysis
» Aimed at expressing complex behavior and properties of a software system
* Intuitive structural modeling tool based on Boolean functions
* Automatic analyzer based on bounded model checking

Learning Outcomes
» Design and model software systems in the TLA+ language
* Check models and their properties with the TLC model checker
* Understand the practical limitations of TLA+

Part II: Logical Foundations

Language: SAT and SMT formulas
+ Basic formalism for encoding systems and their properties
* Foundation of most of existing verification techniques
» Typically, not used explicitly but rather as a compilation target
* Puts strict constraints on expressivity

Part II: Logical Foundations

Language: SAT and SMT formulas
+ Basic formalism for encoding systems and their properties
* Foundation of most of existing verification techniques
» Typically, not used explicitly but rather as a compilation target
* Puts strict constraints on expressivity

Learning Outcomes
* Identify problems that can be encoded as SAT or SMT
* Encode decidable verification and synthesis problems
* Using state of the art solvers, such as Z3 and CVC5

Part lll: Code-level Specification

Language: Dafny
* Programming language with specification constructs
+ Specifications embedded in source code as formal contracts
» Tool support with sophisticated verification engines
» Automated analysis based on theorem proving techniques

Part lll: Code-level Specification

Language: Dafny
* Programming language with specification constructs
+ Specifications embedded in source code as formal contracts
» Tool support with sophisticated verification engines
» Automated analysis based on theorem proving techniques

Learning Outcomes:
» Write formal specifications and contracts in Dafny
+ Verify functional properties of Dafny programs with automated tools
* Understand what can and cannot be expressed in Dafny

Assessment

Homework Assignments: 30%
* Homework 1: TLA+: 10%
* Homework 2: SAT and SMT: 10%
* Homework 3: Dafny: 10%

Theory Quizzes: 30%
* Quiz 1 (Week 7, 1 hour): Properties of Computations and TLA+: 15%
* Quiz 2 (Week 12, 1 hour): SAT, SMT, and Deductive Verification: 15%

Research Project: 40%
* Done in teams of one or two
* Includes implementation, written report, and presentation
+ Part of the score is by means of self- and peer assessment

Introduction

Copyright 2022, Cesare Tinelli, Pierre-Loic Garoche, Reiner Hanle, Steven Miller.
These slides incorporate, with the original authors’ permission, the copyrighted materials used in the class CS5810 from University of lowa.

Today'’s reality

Software has become critical to modern life

+ Communication (internet, voice, video, ...)

» Transportation (air traffic control, avionics, cars, ...)
» Health Care (patient monitoring, device control, ...)
* Finance (automatic trading, banking, ...)

» Defense (intelligence, weapons control, .. .)

» Manufacturing (precision milling, assembly, ...)

* Process Control (oil, gas, water, ...)

Embedded Software

Software is now embedded everywhere

Embedded Software

Software is now embedded everywhere Some of it is critical

Embedded Software

Software is now embedded everywhere Some of it is critical

Failing software costs money and life!

Software Systems are Growing Very Large

150M
Lines

of
Code

™M

0
:
Lockheed Boeing 787 Airbus 2015 Ford
F-22 Raptor Dreamliner* A380 F-150

* Avionics and onling support systems only.

1
e T — R — o

Software Systems are Growing Very Large

Facebook

Windows Vista

Large Hadron Collider
Boeing 787

Android

Google Chrome
Linux Kemel 2.6.0
Mars Curiosity Rover
Hubble Space Telescope
F-22 Raptor

Space Shuttle

Software Size (million Lines of Code)

20

30

40

50

60

70

80

90

100

Software Systems are Growing Very Large

Automotive Software

A typical 2022 car model contains >100M lines of code
How do you verify that?

Software Systems are Growing Very Large

Automotive Software

A typical 2022 car model contains >100M lines of code
How do you verify that?

Current cars admit hundreds of onboard functions
How do you cover their combination?

Software Systems are Growing Very Large

Automotive Software

A typical 2022 car model contains >100M lines of code
How do you verify that?

Current cars admit hundreds of onboard functions
How do you cover their combination?

Ex. does braking when changing the radio station and starting the
windscreen wiper, affect air conditioning?

Failing Software Costs Money

Expensive recalls of products with embedded software

Lawsuits for loss of life or property damage
» Car crashes (e.g., Toyota Camry 2005)

Thousands of dollars for each minute of down-time
* (e.g., Denver Airport Luggage Handling System)

Huge losses of monetary and intellectual investment
* Rocket boost failure (e.g., Ariane 5)

Business failures associated with buggy software
* (e.g., Ashton-Tate dBase, Ethereum DAO)

Failing Software Costs Lives

Potential problems are obvious:
» Software used to control nuclear power plants
 Air-traffic control systems
« Spacecraft launch vehicle control

* Embedded software in cars

A well-known and tragic example: Therac-25 X-ray machine failures

https://en.wikipedia.org/wiki/Therac-25

The Peculiarity of Software Systems

Software seems particularly prone to faults

The Peculiarity of Software Systems

Software seems particularly prone to faults

Tiny faults can have catastrophic consequences
* Ariane 5
* Mars Climate Orbiter, Mars Sojourner
» Pentium FDIV bug. ...

The Peculiarity of Software Systems

Software seems particularly prone to faults

Tiny faults can have catastrophic consequences
* Ariane 5
* Mars Climate Orbiter, Mars Sojourner
* Pentium-Bug

Rare bugs can occur
+ avg. lifetime of a passenger plane: 30 years

* avg. lifetime of a car: < 10 years, but > 1.4B cars in 2022

The Peculiarity of Software Systems

Software seems particularly prone to faults

Tiny faults can have catastrophic consequences
* Ariane 5
* Mars Climate Orbiter, Mars Sojourner
* Pentium-Bug

Rare bugs can occur
+ avg. lifetime of a passenger plane: 30 years

* avg. lifetime of a car: < 10 years, but > 1.4B cars in 2022

Logic and implementation errors represent security exploits
* (too many to mention)

Observation

Building software is what most of you will do
after graduation

* You'll be developing systems in the context above

+ Given the increasing importance of software,
* you may be liable for errors
« your job may depend on your ability to produce reliable systems

Observation

Building software is what most of you will do
after graduation

* You'll be developing systems in the context above

+ Given the increasing importance of software,
* you may be liable for errors
« your job may depend on your ability to produce reliable systems

What are the challenges in building
reliable and secure software?

Achieving Reliability in Engineering

Some well-known strategies from civil/mechanical engineering:

Achieving Reliability in Engineering

Some well-known strategies from civil/mechanical engineering:

* Precise calculations/estimations of forces, stress, etc.

Achieving Reliability in Engineering

Some well-known strategies from civil/mechanical engineering:

* Precise calculations/estimations of forces, stress, etc.

* Hardware redundancy (“make it a bit stronger than necessary”)

Achieving Reliability in Engineering

Some well-known strategies from civil/mechanical engineering:

* Precise calculations/estimations of forces, stress, etc.
* Hardware redundancy (“make it a bit stronger than necessary”)

* Robust design (single fault not catastrophic)

Achieving Reliability in Engineering

Some well-known strategies from civil/mechanical engineering:

* Precise calculations/estimations of forces, stress, etc.
* Hardware redundancy (“make it a bit stronger than necessary”)
* Robust design (single fault not catastrophic)

* Clear separation of subsystems (any airplane flies with dozens of known and
minor defects)

Achieving Reliability in Engineering

Some well-known strategies from civil/mechanical engineering:

* Precise calculations/estimations of forces, stress, etc.
* Hardware redundancy (“make it a bit stronger than necessary”)
* Robust design (single fault not catastrophic)

* Clear separation of subsystems (any airplane flies with dozens of known and
minor defects)

» Design follows patterns that are proven to work

Why This Does Not Work For Software

+ Software systems compute non-continuous functions
Single bit-flip may change behaviour completely

Why This Does Not Work For Software

+ Software systems compute non-continuous functions
Single bit-flip may change behaviour completely

* Redundancy as replication doesn’t help against logical errors
Redundant SW development only viable in extreme cases

Why This Does Not Work For Software

+ Software systems compute non-continuous functions
Single bit-flip may change behaviour completely

* Redundancy as replication doesn’t help against logical errors
Redundant SW development only viable in extreme cases

* No physical or modal separation of subsystems
Local failures often affect whole system

Why This Does Not Work For Software

+ Software systems compute non-continuous functions
Single bit-flip may change behaviour completely

* Redundancy as replication doesn’t help against logical errors
Redundant SW development only viable in extreme cases

* No physical or modal separation of subsystems
Local failures often affect whole system

» Software designs have very high logic complexity

Why This Does Not Work For Software

+ Software systems compute non-continuous functions
Single bit-flip may change behaviour completely

* Redundancy as replication doesn’t help against logical errors
Redundant SW development only viable in extreme cases

* No physical or modal separation of subsystems
Local failures often affect whole system

» Software designs have very high logic complexity

* Most SW engineers are untrained in correctness

Why This Does Not Work For Software

+ Software systems compute non-continuous functions
Single bit-flip may change behaviour completely

* Redundancy as replication doesn’t help against logical errors
Redundant SW development only viable in extreme cases

* No physical or modal separation of subsystems
Local failures often affect whole system

» Software designs have very high logic complexity
* Most SW engineers are untrained in correctness

» Cost efficiency more important than reliability

Why This Does Not Work For Software

+ Software systems compute non-continuous functions
Single bit-flip may change behaviour completely

* Redundancy as replication doesn’t help against logical errors
Redundant SW development only viable in extreme cases

* No physical or modal separation of subsystems
Local failures often affect whole system

» Software designs have very high logic complexity
* Most SW engineers are untrained in correctness
» Cost efficiency more important than reliability

+ Design practice for reliable software is not yet mature

How to Ensure Software Correctness?

A Central Strategy: Testing
(others: SW processes, reviews, libraries, ...)

Testing against inherent SW errors (“bugs”)

1. Design test configurations that hopefully are representative
2. Check that the system behaves as intended on them

How to Ensure Software Correctness?

A Central Strategy: Testing
(others: SW processes, reviews, libraries, ...)

Testing against inherent SW errors (“bugs”)

1. Design test configurations that hopefully are representative
2. Check that the system behaves as intended on them

Testing against external faults

1. Inject faults (memory, communication) by simulation or radiation
2. Check that the system’s performance degrades gracefully

Limitations of Testing

Limitations of Testing

Testing can show the presence of errors, but not their absence

Exhaustive testing viable only for trivial systems

Limitations of Testing

Testing can show the presence of errors, but not their absence

Exhaustive testing viable only for trivial systems

Representativeness of test cases/injected faults is subjective

How to test for the unexpected? Rare cases?

Limitations of Testing

Testing can show the presence of errors, but not their absence

Exhaustive testing viable only for trivial systems

Representativeness of test cases/injected faults is subjective

How to test for the unexpected? Rare cases?

Testing is labor intensive, hence expensive

Complementing Testing: Formal Verification

A Sorting Program:

intx sort (intx a) {

}

Complementing Testing: Formal Verification

A Sorting Program:
intx sort (intx a) {

}

Testing sort:

* sort({17})== {17}

Complementing Testing: Formal Verification

A Sorting Program:

intx sort (intx a) {

}

Testing sort: Typically missed test cases
s sort({3,2,5}) == {2,3,5} * sort({2,1,2})=={1,2,2} R
e sort({})== {} * sort(null) == exception K
e sort({17})== {17}

* isPermutation(sort(a),a) K

Formal Verification as Theorem Proving

Theorem (Correctness of sort)
For any given non-null int array a, calling the program sort(a) returns an
int array that is sorted wrt < and is a permutation of =.

Formal Verification as Theorem Proving

Theorem (Correctness of sort)
For any given non-null int array a, calling the program sort(a) returns an
int array that is sorted wrt < and is a permutation of =.

However, methodology differs from mathematics:
1. Formalize the expected property in a logical language
2. Prove the property with the help of an (semi-)automated tool

Contrasting Testing with Formal Verification

Testing Checks Only the Values We Select

=

Even Small Systems Have Trillions
(of Trillions) of Possible Tests!

Formal Verification Checks Every Possible Value!

|

Finds every exception to the
property being checked!

Formal Methods

Rigorous techniques and tools for the development and analysis of
computational (hardware/software) systems

Formal Methods

Rigorous techniques and tools for the development and analysis of
computational (hardware/software) systems

» Applied at various stages of the development cycle

Formal Methods

Rigorous techniques and tools for the development and analysis of
computational (hardware/software) systems

» Applied at various stages of the development cycle

* Also used in reverse engineering to model and analyze existing systems

Formal Methods

Rigorous techniques and tools for the development and analysis of
computational (hardware/software) systems

» Applied at various stages of the development cycle
* Also used in reverse engineering to model and analyze existing systems

» Based on mathematics and symbolic logic (formal)

Main Artifacts in Formal Methods

1. System requirements
2. System implementation

Main Artifacts in Formal Methods

1. System requirements
2. System implementation

Formal methods rely on
a. some formal specification of (1)
b. some formal execution model of (2)

Main Artifacts in Formal Methods

1. System requirements
2. System implementation

Formal methods rely on
a. some formal specification of (1)
b. some formal execution model of (2)

They use tools to verify mechanically that
implementation satisfies (a)
according to (b)

Why Use Formal Methods

1. Contribute to the overall quality of the final product thanks to
mathematical modeling and formal analysis

2. Increase confidence in the correctness/robustness/security of a system

3. Find more flaws and earlier (i.e., during specification and design vs.
testing and maintenance)

Formal Methods: The Vision

* Complement other analysis and design methods

Help find bugs in code and specification
* Reduce development, and testing, cost

» Ensure certain properties of the formal system model

Should be highly automated

Formal Methods and Testing

* Run the system at chosen inputs and observe its behavior

* Randomly chosen
« Intelligently chosen (by hand: expensivel)
» Automatically chosen (need formalized spec)

» What about other inputs? (test coverage)

* What about the observation? (test oracle)

Challenges can be addressed by/require formal methods

A Warning

* The notion of “formality” is often misunderstood (formal vs. rigorous)
* The effectiveness of FMs is still debated

* There are persistent myths about their practicality and cost

* FMs are not yet as widespread in industry as they could be

* They are mostly used in the development of safety-, business-, or
mission-critical software, where the cost of faults is high

The Main Point of Formal Methods is Not

* To show “correctness” of entire systems
* What is correctness? Go for specific properties!

» Toreplace testing entirely
* FMs typically do not go below byte code level
» Some properties are not (easily) formalizable

* Toreplace good design practices

There is no silver bullet!
No correct system w/o clear requirements & good design

Overall Benefits of Using Formal Methods

1. Forces developers to think systematically about issues

Overall Benefits of Using Formal Methods

1. Forces developers to think systematically about issues

2. Improves the quality of specifications, even without formal verification

Overall Benefits of Using Formal Methods

1. Forces developers to think systematically about issues
2. Improves the quality of specifications, even without formal verification

3. Leads to better design

Overall Benefits of Using Formal Methods

—_

. Forces developers to think systematically about issues

2. Improves the quality of specifications, even without formal verification
3. Leads to better design
4

. Provides a precise reference to check requirements against

Overall Benefits of Using Formal Methods

—_

. Forces developers to think systematically about issues
Improves the quality of specifications, even without formal verification
Leads to better design

Provides a precise reference to check requirements against

o > N

Provides rigorous documentation within a team of developers

Overall Benefits of Using Formal Methods

o o B~ w N

Forces developers to think systematically about issues

Improves the quality of specifications, even without formal verification
Leads to better design

Provides a precise reference to check requirements against

Provides rigorous documentation within a team of developers

Gives direction to later development phases

Overall Benefits of Using Formal Methods

N o ok~ w N

Forces developers to think systematically about issues

Improves the quality of specifications, even without formal verification
Leads to better design

Provides a precise reference to check requirements against

Provides rigorous documentation within a team of developers

Gives direction to later development phases

Provides a basis for reuse via specification matching

Overall Benefits of Using Formal Methods

® N o o A w N

Forces developers to think systematically about issues

Improves the quality of specifications, even without formal verification
Leads to better design

Provides a precise reference to check requirements against

Provides rigorous documentation within a team of developers

Gives direction to later development phases

Provides a basis for reuse via specification matching

Can replace (infinitely) many test cases

Overall Benefits of Using Formal Methods

—_

© © N o g A w0 D

Forces developers to think systematically about issues

Improves the quality of specifications, even without formal verification
Leads to better design

Provides a precise reference to check requirements against

Provides rigorous documentation within a team of developers

Gives direction to later development phases

Provides a basis for reuse via specification matching

Can replace (infinitely) many test cases

Facilitates automatic test case generation

Specifications: What the system should do

* Individual properties
« Safety properties: something bad will never happen
« Liveness properties: something good will happen eventually
* Non-functional properties: runtime, memory, usability, ...

» “Complete” behaviour specification
» Equivalence check
* Refinement
+ Data consistency

Formal Specification

The expression in some formal language and at some
level of abstraction of a collection of properties that some
system should satisfy [van Lamsweerde]

Formal Specification

The expression in some formal language and at some level of abstraction of
a collection of properties that some system should satisfy [van Lamsweerde]

Formal Specification

The expression in some formal language and at some level of abstraction of
a collection of properties that some system should satisfy [van Lamsweerde]

formal language:
» syntax can be mechanically processed and checked
+ semantics is defined unambiguously by mathematical means

Formal Specification

The expression in some formal language and at some level of abstraction of
a collection of properties that some system should satisfy [van Lamsweerde]

formal language:
» syntax can be mechanically processed and checked
+ semantics is defined unambiguously by mathematical means

abstraction:
» above the level of source code
» several levels possible

Formal Specification

The expression in some formal language and at some level of abstraction of
a collection of properties that some system should satisfy [van Lamsweerde]

formal language:
» syntax can be mechanically processed and checked
+ semantics is defined unambiguously by mathematical means

abstraction:
» above the level of source code
» several levels possible

properties:
+ expressed in some formal logic
* have a well-defined semantics

Formal Specification

The expression in some formal language and at some level of abstraction of
a collection of properties that some system should satisfy [van Lamsweerde]

formal language:
» syntax can be mechanically processed and checked
+ semantics is defined unambiguously by mathematical means

abstraction:
» above the level of source code
» several levels possible

properties:
+ expressed in some formal logic
* have a well-defined semantics

satisfaction:
« ideally (but not always) decided mechanically
» based on automated deduction and/or model checking techniques

Formalization Helps to Find Bugs in Specs

* Well-formedness and consistency of formal specs are machine-checkable
+ Fixed signature (set of symbols) helps spot incomplete specs

+ Failed verification of implementation against specs provides feedback on errors

* in the implementation or
« in the (formalization of the) spec

A Fundamental Fact

Formalizing system requirements is hard

Difficulties in Creating Formal Models

Formal
Execution Model

Abstraction

Formal
Requirements
Specification

Difficulties in Creating Formal Models

wrong assumption

.

e.g., zerodelay Formal
Execution Model

Formal
Requirements
Specification

Difficulties in Creating Formal Models

wrong assumption

e.g., zerodelay Formal
Execution Model

missing requirement

e.g., stack overflow

Formal
Requirements
Specification

Difficulties in Creating Formal Models

wrong assumption

4

e.g., zerodelay Formal
Execution Model

missing requirement

L 4

e.g., stack overflow

Formal
Requirements
Specification

misunderstood problem

e.g., wrong integer model

Level of System Description

High level (modeling/programming language level)

» Complex datatypes and control structures, general
programs

* Easier to program
» Automatic proofs (in general) impossible!

Low level (machine level)
* Finitely many states
» Tedious to program, worse to maintain
» Automatic proofs are (in principle) possible

Expressiveness of Specification

High
* General properties
» High precision, tight modeling
» Automatic proofs (in general) impossible!

Low
* Finitely many cases
» Approximation, low precision
» Automatic proofs are (in principle) possible

Another Fundamental Fact

Proving properties of systems can be hard

Formal Methods to the Extreme:
Formal Verification

Correctness-critical software

» Implementations of textbook algorithms

» Operating Systems A

* Distributed systems and their applications

Compilers
ey

» Compilers

Compilers
ey

- Compilers

Specitying Compilers

Program in x86 Assembly

Program in C

include <stdio.h>

#define IN 1 /# inside a word =/
#define OUT 0 /% outside a word #/

* count lines, words, and characters in input =

main()

it
int ¢, nl, nw, nc, state;

state = OUT;
nl = nw = nc = 0;
while ((c = getchar()) = EOF) {
++nc;
if (¢ == "\n’)
++nl;
if (¢ == " ‘Il ¢ == "\n’ i}l ¢ == "\t’)
state = OUT;
else if (state == OUT) {
state = IN;
+40wW;

}

}
printf("%d %¥d %¥d\n", nl, nw, nc);

compile

792415C0
792415C1
792415C3
792415C6
792415C8
792415CB
792415CD
792415CF
79241502
79241504
79241507
792415DA
792415DC

55

89E5
8845
DB28
884D
DB29
DEC1
8B55
DB3A
DB68
DB69
DEC1
DB7A

push ebp

mov ebp, esp

mov eax, [ebp+0x08]
f1d tword [eax]

mov ecx, [ebp+0x0C]
f1d tword [ecx]
faddp

mov edx, [ebp+0x10]
fstp tword [edx]

f1d tword [eax+0x0A]
f1d tword [ecx+0x0A]
faddp

fstp tword [edx+0x0A]
pop ebp

ret 0x000C

Program P in C

I

[#detine 00T 0 /4 outaide a word o/

Ratn()

e

efine I8 1 /e inside a vord +/

 count lines, words, and characters in input »

int o, 1, m, ne, state;

)
Printe("sa ¥ xa\n", nl, w, ne);

interpret-as-C

compile

Program compile(P) in x86 Assembly

792415C0 55 push ebp
792415c1 89€5 mov ebp, esp
792415c3 8845 08 mov eax, [ebp+0x08]
792415¢6 0828 f1d tword [eax]
792415c8 884D OC mov ecx, [ebp+0x0c]
792415¢8 0829 f1d tword [ecx]
792415c0 DECL faddp

792415cF 8855 10 mov edx, [ebp+0x10]
79241502 DE3A Fstp tword [edx]
79241504 868 OA £1d tword [eax+0x0A]
79241507 869 0A 1d tword [ecx+0x0A]
79241508 DeC1 faddp

7924150 DB7A OA fstp tword [edx+O0x0A]
179241508 50 pop ebp

792415€0 c2 0coo ret 0x000

interpret-as-x86

(Result(P, input) = Re | = (Rxae - Resulticompile(P), inputD

Compiler Specification:

For any program P, and any input,
the result of interpreting P with input in C is the same as
the result of executing compilation of P with input in x86 Assembly.

or, equivalently

Correctness Theorem:
v B, input, interpretc(P, input) = executexss(compile(P, input))

Correctness Theorem:

v P, input, interpretc(P, input) = executexss(compile(P, input))

Proof: 777

Assumptions: -

Meaningful definition of interpretcis given and fixed

Meaningful definition of executexss is given and fixed must be trusted
(i.e., better be “sane”)

Specific implementation of compile is given and fixed

Considered programs P is are valid and written in C

»

Correctness Theorem:

once proven,
does not have

Proof: 277 to be trusted

v P in, interpretc(P, in) = executexss(compile(P, in))

Formal Verification

Proving correctness of algorithms or software artefacts
with respect to a given rigorous specification

using mathematical reasoning.

Formal Verification

Proving correctness of algorithms or software artefacts
with respect to a given rigorous specification

using mathematical reasoning.

What is a Proof?

A proof is sufficient evidence
or an argument for the truth of a proposition.

> N
YOU WANT PROOF?
I'LL GIVE YOU PROOF!

Better Definition

A proof is a sequence of logical statements,

each of which is either validly derived from those preceding it
or is an assumption,

and the final member of which,
the conclusion, is the statement
of which the truth is thereby established.

Deriving Valid Proofs

The proposition A is true, and, moreovet,
A being true implies that B is true; then we
can derive that B is true.

FA +FHA=B

- B

HFA FA=2B

reasonable assumptions B

/\

Socrates is a man iS a man = is mortal

Socrates is mortal

Overall, this is a valid proof, hence the conclusion it true

Proofs don’t have to be trusted!

Assumptions (System definition)

Theorem Statement (Specification)

Proof Derivation (Script)

Theorem Prover

(in fact it's more of a Validator)

Modern Theorem Provers
are Awesome

VI

THEOREM PROVER

QO X 4> Y Mo e S

State Context Goal Retract Undo Next Use Goto Qod Home Find Info Command Prooftree |

Ltac no_change can_bc can_bt can_n w F F' HExt ¢S5 :=

case=><- <- /=; exists can_bc, can_bt, can_n; rewrite (upd_nothing F); spl

it=>//;

by move=>n st'; rewrite/localState; simplw w=>->
rewrite/blocksFor/inFlightMsgs; simplw w=>_

F';

5
rewrite -catls filter_cat /=; case: ifP; rewrite map_cat /=;

do? rewrite -(btExtend_withDup_noEffect (find_some (c5 _ _ F')));
move: (HExt _ _ F').

Lemma foldl_expand cbt bt bs :
valid bt ->
cbt = foldl btExtend bt bs -> exists g, cbt = bt \+ q.

move=>V.

elim: bs cbt=>//=[Ib bs Hilcbt E; first by by exists Unit; rewrite unitR.
rewrite -foldl_btExtend_last//= -catsl foldl_cat/= in E.

case: (Hi (foldl btExtend bt bs) (erefl _))=>q E'.

rewrite E' in E; subst cbt; rewrite /btExtend.

case:ifP=>X; first by exists g.

by exists (# b \\-> b \+ q); rewrite joinCA.

IQed.

C)
(xexsxsxexenes Tnvariant inductivity proof **sxsxsxsxsxsxessssssssss)

C)

Lenmma clique_inv_step w w' q :|
clique_inv w -> system_step w w' g -> clique_inv w'.
Proof .
move=>Iw S; rewrite/clique_inv; split; first by apply (Coh_step S).
case: S; first by elim; move=>_ <-; apply Iw.
(* Deliver *)
move=> p st Cw. assert (Cw' := Cw). case (w'=>[cl c2 3 ¢4 ¢5 c6] Al iF F.
case: Iw=>_ GSyncW.
case: GSyncl=>can_bc [can_bt] [can_n] []
HHold HGt [C] [HBc] HGood HCliq HExt.

move=>P; assert (P' := P).

U:**- InvCliqueTopology.v 30% (228,30) Git-master (Coq Script(1-) Holes company Spc Fill)

eo0e Aquamacs

S et

terrupt Restart Help

1 subgoal (ID 278)

, W't World
Qualifier

clique_inv w -> system_step w w' q -> clique_inv w'

Programming and proving
are the same things!

U:%- *goals® Al (6,0) (Coq Goals company Spc Fill)

| U:%%- *response* All(1,0) (Coq Response company Trunc Spc Fill)

[Zoom: 120%

Formal Verification

Proving correctness of algorithms or software artefacts
with respect to a given rigorous specification

using mathematical reasoning.

Mechanised Formal Verification

Proving correctness of algorithms or software artefacts
with respect to a given rigorous specification
using mathematical reasoning,
whose validity is machine-checked.

(assuming that you trust the checker)

Checkpoint

For a fully specified system, correctness is a mathematical theorem
It can be proven using rules of mathematical logic

Typically, the proofs rest on some unprovable assumptions,
which must be frusted

Mechanised proof checking ensures validity of the proof,
but requires to frust the checker implementation.

State of the Art
in Formally Verified Systems

CompCert (2006-now)

a mechanically verified C compiler

Formal Certification of a Compiler Back-end

or: Programming a Compiler with a Proof Assistant

Xavier Leroy

INRIA Rocquencourt
Xavier.Leroy@inria.fr

» Specification: source and target programs are equivalent
» Assumptions: underlying hardware semantics, unverified parser

* Proof effort: 146 kLOC of specifications and proofs

Verdi (2015)

a formally verified Raft consensus implementation

Verdi: A Framework for Implementing and
Formally Verifying Distributed Systems

James R. Wilcox ~ Doug Woos Pavel Panchekha
Zachary Tatlock ~ Xi Wang ~ Michael D. Ernst ~ Thomas Anderson
University of Washington, USA
{jrw12, dwoos, pavpan, ztatlock, xi, mernst, tom}@cs.washington.edu

» Specification: Raft provides transparent replication
* Assumptions: unlimited memory, TCP works atomically, ...

» Proof effort: 50 kLOC of specifications and proofs

FSCQ (2015)

a crash-tolerant file system

Using Crash Hoare Logic for Certifying the FSCQ File System

Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans Kaashoek, and Nickolai Zeldovich
MIT CSAIL

» Specification: asynchronous disk writes are not affected by crashes
» Assumptions about semantics of extraction and linking with other drivers

» Proof effort: 81 kLOC of specifications and proofs

Does it really work?

Finding and Understanding Bugs in C Compilers

Xuejun Yang Yang Chen Eric Eide John Regehr

University of Utah, School of Computing)
{jxyang, chenyang, eeide, regehr }@cs.utah.edu (in PLDI 2011)

The striking thing about our CompCert results is that

, the middle-end bugs we found in all other compilers

Compilers should be correct. are absent.

To improve the quality of C compilers, we

created Csmith, a randomized test-case

generation tool, and spent three years using it
to find compiler bugs.

As of early 2011, the under-development version of
CompCert is the only compiler we have tested for
which Csmith cannot find wrong-code errors. This is
not for lack of trying: we have devoted about six CPU-
years to the task.

During this period we reported more than 325
previously unknown bugs to compiler

The apparent unbreakability of CompCert supports a
developers.

strong argument that developing compiler
optimizations within a proof framework, where safety
checks are explicit and machine-checked, has tangible
benefits for compiler users.

S0, bye-bye testing?

Formal Veritication is Expensive

* CompCert
146 kLOC

* Verdi
50 kKLOC

* FSCQ
81 kLOC

Formal Veritication is Expensive

* CompCert
146 kLOC, 10+ person-years

* Verdi
50 KLOC, 3+ person-years

* FSCQ
81 kLOC, 5+ person-years

Formal Veritication is Expensive

* CompCert
146 KLOC, 10+ person-years

* Verdi
50 kKLOC, 3+ person-years

* FSCQ
81 KLOC, 5+ person-years

Assumptions Matter

Story 1: CompCert

Finding and Understanding Bugs in C Compilers

Xuejun Yang Yang Chen Eric Eide John Regehr

University of Utah, School of Computing
{jxyang, chenyang, eeide, regehr }@cs.utah.edu

The second CompCert problem we found was illustrated by two
bugs that resulted in generation of code like this:

stwu r1, -44432(r1) Wrong assumption
Here, a large PowerPC stack frame is being allocated. The problem about Comp”ed
is that the 16-bit displacement field is overflowed. CompCert’s ,
PPC semantics failed to specify a constraint on the width of this assem bly execution!

immediate value, on the assumption that the assembler would catch
out-of-range values. In fact, this is what happened. We also found a

Story 2: Verdi

An Empirical Study on the Correctness of
Formally Verified Distributed Systems

Pedro Fonseca ~ Kaiyuan Zhang Xi Wang Arvind Krishnamurthy

University of Washington

Overall, 7 bugs are found

4.3 Resource Limits

This section describes three bugs that involve exceeding
resource limits.

BugV6: Large packets cause server crashes. WrO n g assum pt 1on
The server code that handled incoming packets had a bug about the CraSh mOdel '

that could cause the server to crash under certain conditions.
The bug, due to an insufficiently small buffer in the OCaml
code, caused incoming packets to truncate large packets and
subsequently prevented the server from correctly unmarshal-
ing the message.

Story 3: FSCQ

We found a bug in a verified file system!
We ran Crashmonkey's suite of tests on
MIT's FSCQ and found that it does not
persist data on fdatasync properly. We
emailed the authors, they have acked
and fixed the bug.

Come see our paper at #osdi18!

Details: github.com/utsaslab/crash...

Vijay Chidambaram @v|_chidambaram

Excited to share our #0sdi18 paper on finding crash-consistency bugs in
Linux file systems! | will explain the intuition behind our system in this
thread....

Show this thread

Story 3: FSCQ

We found a bug in a verified file system!
We ran Crashmonkey's suite of tests on
MIT's FSCQ and found that it does not
persist data on fdatasync properly. We
emailed the authors, they have acked
and fixed the bug.

Come see our paper at #0sdi18! John Regehr @johnregehr - Oct 3

Details: github.com/utsaslab/crash Replying to @vj_chidambaram

Viiay Chidambaram €v]_chicarbaram what was the root cause of their failure to find this bug during verification?
Excited to share our #0sdi18 paper on finding crash-consistency b

Linux file systems! | will explain the intuition behind our system in t

Q 1 () O s 5

Vijay Chidambaram @v|_chidambaram - Oct 3
Even verified file systems have unverified parts :) it was due to a buggy
optimization in the Haskell-c bindings.

O 1 s Q 4 &

Observartions

Costs of formal verification are high,
but so are the provided correctness guarantees

Realistic systems are always verified in the presence of
non-trivial assumptions about their usage

These assumptions might be broken in the real world,
thus invalidating the claims of theorems

Testing helps to validate the assumptions.

Current and Future Trends

Slowly but surely formal methods are finding increased used in industry.

Designing for formal verification

Combining semi-automatic methods with
SAT/SMT solvers, theorem provers

Combining static analysis of programs
with automatic methods and with theorem provers

Combining testing and formal verification

Integration of formal methods into development process

D01:10.1145/2699417

Engineers use TLA+ to prevent serious but
subtle bugs from reaching production.

BY CHRIS NEWCOMBE, TIM RATH, FAN ZHANG, BOGDAN MUNTEANU,
MARC BROOKER, AND MICHAEL DEARDEUFF

How Amazon
Web Services
Uses Formal
Methods

Current and Future Trends

Need for secure systems is increasing the use of FMs
» Security is intrinsically hard
* Redundant fault-tolerant systems are often used to meet safety requirements
+ Fault-tolerance depends on the independence of component failures
» Security attacks are intelligent, coordinated and malicious

» Formal methods provides a systematic way to meet stringent security requirements

Today’s Summary

» Software is becoming pervasive and very complex

Current development techniques are inadequate

* Formal methods ...
» are not a panacea, but will be increasingly necessary
are (more and more) used in practice
can shorten development time
can push the limits of feasible complexity
can increase product quality
can improve system security

* We will learn to use several different formal methods, for different development stages

Next week: formal methods in action!

