
Copyright: Sarah Winkler (Free University Bolzano)

SAT Solving
and

Its Applica2ons

Ilya Sergey
Copyright: Sarah Winkler (Free University of Bozen-Bolzano)

SAT Solving

input: propositional formula '

output: SAT + valuation v such that v(') = T if ' satisfiable

UNSAT otherwise

'

SAT (v)

UNSAT

SAT solver

(q _ ¬r) ^ (¬q _ r) ^ p

v(p) = T

v(q) = F

v(r) = F

Terminology

I decision problem P is problem with answer yes or no

I SAT encoding of decision problem P is propositional formula 'P such that
answer to P is yes () 'P is satisfiable

4

SAT Solving

input: propositional formula '
output: SAT + valuation v such that v(') = T if ' satisfiable

UNSAT otherwise

'
SAT (v)

UNSAT

SAT solver

(q _ ¬r) ^ (¬q _ r) ^ p

v(p) = T

v(q) = F

v(r) = F

Terminology

I decision problem P is problem with answer yes or no

I SAT encoding of decision problem P is propositional formula 'P such that
answer to P is yes () 'P is satisfiable

4

SAT Solving

input: propositional formula '
output: SAT + valuation v such that v(') = T if ' satisfiable

UNSAT otherwise

'
SAT (v)

UNSAT

SAT solver

(q _ ¬r) ^ (¬q _ r) ^ p

v(p) = T

v(q) = F

v(r) = F

Terminology

I decision problem P is problem with answer yes or no

I SAT encoding of decision problem P is propositional formula 'P such that
answer to P is yes () 'P is satisfiable

4

SAT Solving

input: propositional formula '
output: SAT + valuation v such that v(') = T if ' satisfiable

UNSAT otherwise

'
SAT (v)

UNSAT

SAT solver

(q _ ¬r) ^ (¬q _ r) ^ p

v(p) = T

v(q) = F

v(r) = F

Terminology

I decision problem P is problem with answer yes or no

I SAT encoding of decision problem P is propositional formula 'P such that
answer to P is yes () 'P is satisfiable

4

SAT Solving

input: propositional formula '
output: SAT + valuation v such that v(') = T if ' satisfiable

UNSAT otherwise

'
SAT (v)

UNSAT

SAT solver

(q _ ¬r) ^ (¬q _ r) ^ p

v(p) = T

v(q) = F

v(r) = F

Terminology

I decision problem P is problem with answer yes or no

I SAT encoding of decision problem P is propositional formula 'P such that
answer to P is yes () 'P is satisfiable

4

SAT Solving

input: propositional formula '
output: SAT + valuation v such that v(') = T if ' satisfiable

UNSAT otherwise

'
SAT (v)

UNSAT

SAT solver

(q _ ¬r) ^ (¬q _ r) ^ p

v(p) = T

v(q) = F

v(r) = F

Terminology

I decision problem P is problem with answer yes or no

I SAT encoding of decision problem P is propositional formula 'P such that
answer to P is yes () 'P is satisfiable

4

SMT Solving

input: formula ' involving theory T

output: SAT + valuation v such that v(') = T if ' is T -satisfiable

UNSAT otherwise

'

SAT (v)

UNSAT

SMT solver

a+ b > c _ (a = 0 ^ p)

v(a) = 3 v(b) = 0

v(c) = 0 v(p) = T

Example (Theories)
I arithmetic 2a+ b > c _ (a = 0 ^ p)

I uninterpreted functions f(x , y) 6= f(y , x) ^ g(f(x , x)) = g(y)

I bit vectors ((zext32 a8) + b32)⇥ c32 >u 032

Terminology

I SMT encoding over theory T of decision problem P is formula 'P such that

answer to P is yes () 'P is satisfiable

5

SMT Solving

input: formula ' involving theory T
output: SAT + valuation v such that v(') = T if ' is T -satisfiable

UNSAT otherwise

'
SAT (v)

UNSAT

SMT solver

a+ b > c _ (a = 0 ^ p)

v(a) = 3 v(b) = 0

v(c) = 0 v(p) = T

Example (Theories)
I arithmetic 2a+ b > c _ (a = 0 ^ p)

I uninterpreted functions f(x , y) 6= f(y , x) ^ g(f(x , x)) = g(y)

I bit vectors ((zext32 a8) + b32)⇥ c32 >u 032

Terminology

I SMT encoding over theory T of decision problem P is formula 'P such that

answer to P is yes () 'P is satisfiable

5

SMT Solving

input: formula ' involving theory T
output: SAT + valuation v such that v(') = T if ' is T -satisfiable

UNSAT otherwise

'
SAT (v)

UNSAT

SMT solver

a+ b > c _ (a = 0 ^ p)

v(a) = 3 v(b) = 0

v(c) = 0 v(p) = T

Example (Theories)
I arithmetic 2a+ b > c _ (a = 0 ^ p)

I uninterpreted functions f(x , y) 6= f(y , x) ^ g(f(x , x)) = g(y)

I bit vectors ((zext32 a8) + b32)⇥ c32 >u 032

Terminology

I SMT encoding over theory T of decision problem P is formula 'P such that

answer to P is yes () 'P is satisfiable

5

SMT Solving

input: formula ' involving theory T
output: SAT + valuation v such that v(') = T if ' is T -satisfiable

UNSAT otherwise

'
SAT (v)

UNSAT

SMT solver

a+ b > c _ (a = 0 ^ p)

v(a) = 3 v(b) = 0

v(c) = 0 v(p) = T

Example (Theories)
I arithmetic 2a+ b > c _ (a = 0 ^ p)

I uninterpreted functions f(x , y) 6= f(y , x) ^ g(f(x , x)) = g(y)

I bit vectors ((zext32 a8) + b32)⇥ c32 >u 032

Terminology

I SMT encoding over theory T of decision problem P is formula 'P such that

answer to P is yes () 'P is satisfiable

5

SMT Solving

input: formula ' involving theory T
output: SAT + valuation v such that v(') = T if ' is T -satisfiable

UNSAT otherwise

'
SAT (v)

UNSAT

SMT solver

a+ b > c _ (a = 0 ^ p)

v(a) = 3 v(b) = 0

v(c) = 0 v(p) = T

Example (Theories)
I arithmetic 2a+ b > c _ (a = 0 ^ p)

I uninterpreted functions f(x , y) 6= f(y , x) ^ g(f(x , x)) = g(y)

I bit vectors ((zext32 a8) + b32)⇥ c32 >u 032

Terminology

I SMT encoding over theory T of decision problem P is formula 'P such that

answer to P is yes () 'P is satisfiable

5

SMT Solving

input: formula ' involving theory T
output: SAT + valuation v such that v(') = T if ' is T -satisfiable

UNSAT otherwise

'
SAT (v)

UNSAT

SMT solver

a+ b > c _ (a = 0 ^ p)

v(a) = 3 v(b) = 0

v(c) = 0 v(p) = T

Example (Theories)
I arithmetic 2a+ b > c _ (a = 0 ^ p)

I uninterpreted functions f(x , y) 6= f(y , x) ^ g(f(x , x)) = g(y)

I bit vectors ((zext32 a8) + b32)⇥ c32 >u 032

Terminology

I SMT encoding over theory T of decision problem P is formula 'P such that

answer to P is yes () 'P is satisfiable

5

SMT Solving

input: formula ' involving theory T
output: SAT + valuation v such that v(') = T if ' is T -satisfiable

UNSAT otherwise

'
SAT (v)

UNSAT

SMT solver

a+ b > c _ (a = 0 ^ p)

v(a) = 3 v(b) = 0

v(c) = 0 v(p) = T

Example (Theories)
I arithmetic 2a+ b > c _ (a = 0 ^ p)

I uninterpreted functions f(x , y) 6= f(y , x) ^ g(f(x , x)) = g(y)

I bit vectors ((zext32 a8) + b32)⇥ c32 >u 032

Terminology

I SMT encoding over theory T of decision problem P is formula 'P such that

answer to P is yes () 'P is satisfiable

5

SMT Solving

input: formula ' involving theory T
output: SAT + valuation v such that v(') = T if ' is T -satisfiable

UNSAT otherwise

'
SAT (v)

UNSAT

SMT solver

a+ b > c _ (a = 0 ^ p)

v(a) = 3 v(b) = 0

v(c) = 0 v(p) = T

Example (Theories)
I arithmetic 2a+ b > c _ (a = 0 ^ p)

I uninterpreted functions f(x , y) 6= f(y , x) ^ g(f(x , x)) = g(y)

I bit vectors ((zext32 a8) + b32)⇥ c32 >u 032

Terminology

I SMT encoding over theory T of decision problem P is formula 'P such that

answer to P is yes () 'P is satisfiable 5

Application: Driving License Test

Problem

Austrian driving license test consists of 80 questions out of 1500

such that the following conditions are satisfied:

I 30 questions “main questions” with 3 sub-questions each
I at least 12 main questions must be about crossroads
I at least 12 questions must have pictures
I at least 5 “hard”, “medium”, and “easy” main questions

I how can software find valid question set?

SAT Encoding
I variables qi for 1 6 i 6 1500

I idea: valuation v sets v(qi) = T if question i is included, v(qi) = F otherwise

I
P

i2Qxroads
qi > 12 I

P
i2Qpictures

qi > 12 I
P

i2Qhard
qi > 5 I . . .

Result
easy generation of valid question sets (with some random preselection)

6

Application: Driving License Test

Problem

Austrian driving license test consists of 80 questions out of 1500

such that the following conditions are satisfied:

I 30 questions “main questions” with 3 sub-questions each
I at least 12 main questions must be about crossroads
I at least 12 questions must have pictures
I at least 5 “hard”, “medium”, and “easy” main questions

I how can software find valid question set?

SAT Encoding
I variables qi for 1 6 i 6 1500

I idea: valuation v sets v(qi) = T if question i is included, v(qi) = F otherwise

I
P

i2Qxroads
qi > 12

I
P

i2Qpictures
qi > 12 I

P
i2Qhard

qi > 5 I . . .

Result
easy generation of valid question sets (with some random preselection)

6

Application: Driving License Test

Problem

Austrian driving license test consists of 80 questions out of 1500

such that the following conditions are satisfied:

I 30 questions “main questions” with 3 sub-questions each
I at least 12 main questions must be about crossroads
I at least 12 questions must have pictures
I at least 5 “hard”, “medium”, and “easy” main questions

I how can software find valid question set?

SAT Encoding
I variables qi for 1 6 i 6 1500

I idea: valuation v sets v(qi) = T if question i is included, v(qi) = F otherwise

I
P

i2Qxroads
qi > 12

I
P

i2Qpictures
qi > 12 I

P
i2Qhard

qi > 5 I . . .

Result
easy generation of valid question sets (with some random preselection)

6

Application: Driving License Test

Problem

Austrian driving license test consists of 80 questions out of 1500

such that the following conditions are satisfied:

I 30 questions “main questions” with 3 sub-questions each
I at least 12 main questions must be about crossroads
I at least 12 questions must have pictures
I at least 5 “hard”, “medium”, and “easy” main questions

I how can software find valid question set?

SAT Encoding
I variables qi for 1 6 i 6 1500

I idea: valuation v sets v(qi) = T if question i is included, v(qi) = F otherwise

I
P

i2Qxroads
qi > 12

I
P

i2Qpictures
qi > 12 I

P
i2Qhard

qi > 5 I . . .

Result
easy generation of valid question sets (with some random preselection)

6

Application: Driving License Test

Problem

Austrian driving license test consists of 80 questions out of 1500

such that the following conditions are satisfied:

I 30 questions “main questions” with 3 sub-questions each
I at least 12 main questions must be about crossroads
I at least 12 questions must have pictures
I at least 5 “hard”, “medium”, and “easy” main questions

I how can software find valid question set?

SAT Encoding
I variables qi for 1 6 i 6 1500

I idea: valuation v sets v(qi) = T if question i is included, v(qi) = F otherwise

I
P

i2Qxroads
qi > 12

I
P

i2Qpictures
qi > 12 I

P
i2Qhard

qi > 5 I . . .

Result
easy generation of valid question sets (with some random preselection)

6

Application: Driving License Test

Problem

Austrian driving license test consists of 80 questions out of 1500

such that the following conditions are satisfied:

I 30 questions “main questions” with 3 sub-questions each
I at least 12 main questions must be about crossroads
I at least 12 questions must have pictures
I at least 5 “hard”, “medium”, and “easy” main questions

I how can software find valid question set?

SAT Encoding
I variables qi for 1 6 i 6 1500

I idea: valuation v sets v(qi) = T if question i is included, v(qi) = F otherwise

I
P

i2Qxroads
qi > 12 I

P
i2Qpictures

qi > 12

I
P

i2Qhard
qi > 5 I . . .

Result
easy generation of valid question sets (with some random preselection)

6

Application: Driving License Test

Problem

Austrian driving license test consists of 80 questions out of 1500

such that the following conditions are satisfied:

I 30 questions “main questions” with 3 sub-questions each
I at least 12 main questions must be about crossroads
I at least 12 questions must have pictures
I at least 5 “hard”, “medium”, and “easy” main questions

I how can software find valid question set?

SAT Encoding
I variables qi for 1 6 i 6 1500

I idea: valuation v sets v(qi) = T if question i is included, v(qi) = F otherwise

I
P

i2Qxroads
qi > 12 I

P
i2Qpictures

qi > 12 I
P

i2Qhard
qi > 5 I . . .

Result
easy generation of valid question sets (with some random preselection)

6

Application: Driving License Test

Problem

Austrian driving license test consists of 80 questions out of 1500

such that the following conditions are satisfied:

I 30 questions “main questions” with 3 sub-questions each
I at least 12 main questions must be about crossroads
I at least 12 questions must have pictures
I at least 5 “hard”, “medium”, and “easy” main questions

I how can software find valid question set?

SAT Encoding
I variables qi for 1 6 i 6 1500

I idea: valuation v sets v(qi) = T if question i is included, v(qi) = F otherwise

I
P

i2Qxroads
qi > 12 I

P
i2Qpictures

qi > 12 I
P

i2Qhard
qi > 5 I . . .

Result
easy generation of valid question sets (with some random preselection) 6

Application: Pythagorean Triples

Problem

Can one color all natural numbers with two colors such that whenever

x2 + y2 = z2 not all of x , y , and z have same color?

Example
32 + 42 = 52 52 + 122 = 132

(a) 1 2 3 4 5 6 7 8 9 10 11 12 13 . . . X
(b) 1 2 3 4 5 6 7 8 9 10 11 12 13 . . . 7

SAT Encoding

I variables xi for 1 6 i 6 n such that xi becomes true i↵ it is colored red

I SAT encoding: for all a2 + b2 = c2 include (xa _ xb _ xc) ^ (x̄a _ x̄b _ x̄c)
(+ symmetry breaking, simplification, heuristics)

Result: No. Coloring exists only up to 7,825.

1000s of variables, solving time 2 days with 800 processors, 200 TB of proof

7

Application: Pythagorean Triples

Problem

Can one color all natural numbers with two colors such that whenever

x2 + y2 = z2 not all of x , y , and z have same color?

Example
32 + 42 = 52 52 + 122 = 132

(a) 1 2 3 4 5 6 7 8 9 10 11 12 13 . . . X
(b) 1 2 3 4 5 6 7 8 9 10 11 12 13 . . . 7

SAT Encoding

I variables xi for 1 6 i 6 n such that xi becomes true i↵ it is colored red

I SAT encoding: for all a2 + b2 = c2 include (xa _ xb _ xc) ^ (x̄a _ x̄b _ x̄c)
(+ symmetry breaking, simplification, heuristics)

Result: No. Coloring exists only up to 7,825.

1000s of variables, solving time 2 days with 800 processors, 200 TB of proof

7

Application: Pythagorean Triples

Problem

Can one color all natural numbers with two colors such that whenever

x2 + y2 = z2 not all of x , y , and z have same color?

Example
32 + 42 = 52 52 + 122 = 132

(a) 1 2 3 4 5 6 7 8 9 10 11 12 13 . . . X
(b) 1 2 3 4 5 6 7 8 9 10 11 12 13 . . . 7

SAT Encoding

I variables xi for 1 6 i 6 n such that xi becomes true i↵ it is colored red

I SAT encoding: for all a2 + b2 = c2 include (xa _ xb _ xc) ^ (x̄a _ x̄b _ x̄c)
(+ symmetry breaking, simplification, heuristics)

Result: No. Coloring exists only up to 7,825.

1000s of variables, solving time 2 days with 800 processors, 200 TB of proof

7

Application: Pythagorean Triples

Problem

Can one color all natural numbers with two colors such that whenever

x2 + y2 = z2 not all of x , y , and z have same color?

Example
32 + 42 = 52 52 + 122 = 132

(a) 1 2 3 4 5 6 7 8 9 10 11 12 13 . . . X
(b) 1 2 3 4 5 6 7 8 9 10 11 12 13 . . . 7

SAT Encoding

I variables xi for 1 6 i 6 n such that xi becomes true i↵ it is colored red

I SAT encoding: for all a2 + b2 = c2 include (xa _ xb _ xc) ^ (x̄a _ x̄b _ x̄c)
(+ symmetry breaking, simplification, heuristics)

Result: No. Coloring exists only up to 7,825.

1000s of variables, solving time 2 days with 800 processors, 200 TB of proof

7

Application: Pythagorean Triples

Problem

Can one color all natural numbers with two colors such that whenever

x2 + y2 = z2 not all of x , y , and z have same color?

Example
32 + 42 = 52 52 + 122 = 132

(a) 1 2 3 4 5 6 7 8 9 10 11 12 13 . . . X
(b) 1 2 3 4 5 6 7 8 9 10 11 12 13 . . . 7

SAT Encoding

I variables xi for 1 6 i 6 n such that xi becomes true i↵ it is colored red

I SAT encoding: for all a2 + b2 = c2 include (xa _ xb _ xc) ^ (x̄a _ x̄b _ x̄c)
(+ symmetry breaking, simplification, heuristics)

Result: No. Coloring exists only up to 7,825.

1000s of variables, solving time 2 days with 800 processors, 200 TB of proof

7

Application: Pythagorean Triples

Problem

Can one color all natural numbers with two colors such that whenever

x2 + y2 = z2 not all of x , y , and z have same color?

Example
32 + 42 = 52 52 + 122 = 132

(a) 1 2 3 4 5 6 7 8 9 10 11 12 13 . . . X
(b) 1 2 3 4 5 6 7 8 9 10 11 12 13 . . . 7

SAT Encoding

I variables xi for 1 6 i 6 n such that xi becomes true i↵ it is colored red

I SAT encoding: for all a2 + b2 = c2 include (xa _ xb _ xc) ^ (x̄a _ x̄b _ x̄c)
(+ symmetry breaking, simplification, heuristics)

Result: No. Coloring exists only up to 7,825.

1000s of variables, solving time 2 days with 800 processors, 200 TB of proof

7

Application: Pythagorean Triples

Problem

Can one color all natural numbers with two colors such that whenever

x2 + y2 = z2 not all of x , y , and z have same color?

Example
32 + 42 = 52 52 + 122 = 132

(a) 1 2 3 4 5 6 7 8 9 10 11 12 13 . . . X
(b) 1 2 3 4 5 6 7 8 9 10 11 12 13 . . . 7

SAT Encoding

I variables xi for 1 6 i 6 n such that xi becomes true i↵ it is colored red

I SAT encoding: for all a2 + b2 = c2 include (xa _ xb _ xc) ^ (x̄a _ x̄b _ x̄c)
(+ symmetry breaking, simplification, heuristics)

Result: No. Coloring exists only up to 7,825.

1000s of variables, solving time 2 days with 800 processors, 200 TB of proof

7

8

Application: Tournament Scheduling

Problem: Round Robin Scheduling

Schedule sports league tournament for n teams, p periods of n � 1 rounds each
(+ venue restrictions, break restrictions, . . .)

Example (Österreichische Fußball-Bundesliga)

10 teams play in 4 periods (9 rounds each), periods 1 & 2 and 3 & 4 mirrored

(Part of) SAT Encoding

I variable xijpr is true if team i plays team j at home in period p, round r

I ^

i,p,r

_

j 6=i

(xijpr _ xjipr) each team plays in every round

^

i,p,r

^

j 6=i

^

k 6=i^k 6=j

(xijpr ! ¬(xikpr _ xkipr)) each team plays at most once in every round

^

i,j,r

(xij1r ! xji2r) ^ (xij3r ! xji4r) mirror rounds 1& 2 and 3& 4

Result

SAT scheduling is 100x faster than previous industrial scheduling tools

9

Application: Tournament Scheduling

Problem: Round Robin Scheduling

Schedule sports league tournament for n teams, p periods of n � 1 rounds each
(+ venue restrictions, break restrictions, . . .)

Example (Österreichische Fußball-Bundesliga)

10 teams play in 4 periods (9 rounds each), periods 1 & 2 and 3 & 4 mirrored

(Part of) SAT Encoding

I variable xijpr is true if team i plays team j at home in period p, round r

I ^

i,p,r

_

j 6=i

(xijpr _ xjipr) each team plays in every round

^

i,p,r

^

j 6=i

^

k 6=i^k 6=j

(xijpr ! ¬(xikpr _ xkipr)) each team plays at most once in every round

^

i,j,r

(xij1r ! xji2r) ^ (xij3r ! xji4r) mirror rounds 1& 2 and 3& 4

Result

SAT scheduling is 100x faster than previous industrial scheduling tools

9

Application: Tournament Scheduling

Problem: Round Robin Scheduling

Schedule sports league tournament for n teams, p periods of n � 1 rounds each
(+ venue restrictions, break restrictions, . . .)

Example (Österreichische Fußball-Bundesliga)

10 teams play in 4 periods (9 rounds each), periods 1 & 2 and 3 & 4 mirrored

(Part of) SAT Encoding

I variable xijpr is true if team i plays team j at home in period p, round r

I ^

i,p,r

_

j 6=i

(xijpr _ xjipr) each team plays in every round

^

i,p,r

^

j 6=i

^

k 6=i^k 6=j

(xijpr ! ¬(xikpr _ xkipr)) each team plays at most once in every round

^

i,j,r

(xij1r ! xji2r) ^ (xij3r ! xji4r) mirror rounds 1& 2 and 3& 4

Result

SAT scheduling is 100x faster than previous industrial scheduling tools

9

Application: Tournament Scheduling

Problem: Round Robin Scheduling

Schedule sports league tournament for n teams, p periods of n � 1 rounds each
(+ venue restrictions, break restrictions, . . .)

Example (Österreichische Fußball-Bundesliga)

10 teams play in 4 periods (9 rounds each), periods 1 & 2 and 3 & 4 mirrored

(Part of) SAT Encoding

I variable xijpr is true if team i plays team j at home in period p, round r

I ^

i,p,r

_

j 6=i

(xijpr _ xjipr) each team plays in every round

^

i,p,r

^

j 6=i

^

k 6=i^k 6=j

(xijpr ! ¬(xikpr _ xkipr)) each team plays at most once in every round

^

i,j,r

(xij1r ! xji2r) ^ (xij3r ! xji4r) mirror rounds 1& 2 and 3& 4

Result

SAT scheduling is 100x faster than previous industrial scheduling tools

9

Application: Tournament Scheduling

Problem: Round Robin Scheduling

Schedule sports league tournament for n teams, p periods of n � 1 rounds each
(+ venue restrictions, break restrictions, . . .)

Example (Österreichische Fußball-Bundesliga)

10 teams play in 4 periods (9 rounds each), periods 1 & 2 and 3 & 4 mirrored

(Part of) SAT Encoding

I variable xijpr is true if team i plays team j at home in period p, round r

I ^

i,p,r

_

j 6=i

(xijpr _ xjipr) each team plays in every round

^

i,p,r

^

j 6=i

^

k 6=i^k 6=j

(xijpr ! ¬(xikpr _ xkipr)) each team plays at most once in every round

^

i,j,r

(xij1r ! xji2r) ^ (xij3r ! xji4r) mirror rounds 1& 2 and 3& 4

Result

SAT scheduling is 100x faster than previous industrial scheduling tools

9

Application: Tournament Scheduling

Problem: Round Robin Scheduling

Schedule sports league tournament for n teams, p periods of n � 1 rounds each
(+ venue restrictions, break restrictions, . . .)

Example (Österreichische Fußball-Bundesliga)

10 teams play in 4 periods (9 rounds each), periods 1 & 2 and 3 & 4 mirrored

(Part of) SAT Encoding

I variable xijpr is true if team i plays team j at home in period p, round r

I ^

i,p,r

_

j 6=i

(xijpr _ xjipr) each team plays in every round

^

i,p,r

^

j 6=i

^

k 6=i^k 6=j

(xijpr ! ¬(xikpr _ xkipr)) each team plays at most once in every round

^

i,j,r

(xij1r ! xji2r) ^ (xij3r ! xji4r) mirror rounds 1& 2 and 3& 4

Result

SAT scheduling is 100x faster than previous industrial scheduling tools

9

Application: Tournament Scheduling

Problem: Round Robin Scheduling

Schedule sports league tournament for n teams, p periods of n � 1 rounds each
(+ venue restrictions, break restrictions, . . .)

Example (Österreichische Fußball-Bundesliga)

10 teams play in 4 periods (9 rounds each), periods 1 & 2 and 3 & 4 mirrored

(Part of) SAT Encoding

I variable xijpr is true if team i plays team j at home in period p, round r

I ^

i,p,r

_

j 6=i

(xijpr _ xjipr) each team plays in every round

^

i,p,r

^

j 6=i

^

k 6=i^k 6=j

(xijpr ! ¬(xikpr _ xkipr)) each team plays at most once in every round

^

i,j,r

(xij1r ! xji2r) ^ (xij3r ! xji4r) mirror rounds 1& 2 and 3& 4

Result

SAT scheduling is 100x faster than previous industrial scheduling tools
9

Application: Hardware Verification

Problem
I errors in hardware chips are costly (Intel paid $475 million for FDIV bug)

I testing is not enough to guarantee desired behavior

Example (Formal Circuit Model)
x1

x3
x4

x2

y

SAT Encoding
I variables for input and output
I SAT formulas for implemented behavior and expected behavior (specification)
I check for equivalence

Impact
I ensured correctness, more reliable hardware components (formal verification)
I manufacturers rely on SAT-based verification since beginning of 2000s

e.g., Intel Core i7 implements over 2700 distinct verified microinstructions

10

Application: Hardware Verification

Problem
I errors in hardware chips are costly (Intel paid $475 million for FDIV bug)
I testing is not enough to guarantee desired behavior

Example (Formal Circuit Model)
x1

x3
x4

x2

y

SAT Encoding
I variables for input and output
I SAT formulas for implemented behavior and expected behavior (specification)
I check for equivalence

Impact
I ensured correctness, more reliable hardware components (formal verification)
I manufacturers rely on SAT-based verification since beginning of 2000s

e.g., Intel Core i7 implements over 2700 distinct verified microinstructions

10

Application: Hardware Verification

Problem
I errors in hardware chips are costly (Intel paid $475 million for FDIV bug)
I testing is not enough to guarantee desired behavior

Example (Formal Circuit Model)
x1

x3
x4

x2

y

SAT Encoding
I variables for input and output
I SAT formulas for implemented behavior and expected behavior (specification)
I check for equivalence

Impact
I ensured correctness, more reliable hardware components (formal verification)
I manufacturers rely on SAT-based verification since beginning of 2000s

e.g., Intel Core i7 implements over 2700 distinct verified microinstructions

10

Application: Hardware Verification

Problem
I errors in hardware chips are costly (Intel paid $475 million for FDIV bug)
I testing is not enough to guarantee desired behavior

Example (Formal Circuit Model)
x1

x3
x4

x2

y

SAT Encoding
I variables for input and output
I SAT formulas for implemented behavior and expected behavior (specification)
I check for equivalence

Impact
I ensured correctness, more reliable hardware components (formal verification)
I manufacturers rely on SAT-based verification since beginning of 2000s

e.g., Intel Core i7 implements over 2700 distinct verified microinstructions 10

Propositional Logic Revisited

Concepts

I literal

I formula

I assignment

I satisfiability and validity

I negation normal form (NNF)

I conjunctive normal form (CNF)

I disjunctive normal form (DNF)

14

Definition (Propositional Logic: Syntax)

propositional formulas are built form

I atoms p, q, r , p1, p2, . . .

I constants ?, >
I negation ¬p “not p”

I conjunction p ^ q “p and q”

I disjunction p _ q “p or q”

I implication p ! q “if p then q holds”

I equivalence p $ q “p if and only if q”

according to the BNF grammar

' ::= p | ? | > | (¬') | (' ^ ') | (' _ ') | ('! ') | ('$ ')

Conventions

I binding precedence ¬ > ^ > _ > !,$

I omit outer parantheses

I !, ^, _ are right-associative: p ! q ! r denotes p ! (q ! r)

15

Definition (Propositional Logic: Syntax)

propositional formulas are built form

I atoms p, q, r , p1, p2, . . .

I constants ?, >

I negation ¬p “not p”

I conjunction p ^ q “p and q”

I disjunction p _ q “p or q”

I implication p ! q “if p then q holds”

I equivalence p $ q “p if and only if q”

according to the BNF grammar

' ::= p | ? | > | (¬') | (' ^ ') | (' _ ') | ('! ') | ('$ ')

Conventions

I binding precedence ¬ > ^ > _ > !,$

I omit outer parantheses

I !, ^, _ are right-associative: p ! q ! r denotes p ! (q ! r)

15

Definition (Propositional Logic: Syntax)

propositional formulas are built form

I atoms p, q, r , p1, p2, . . .

I constants ?, >
I negation ¬p “not p”

I conjunction p ^ q “p and q”

I disjunction p _ q “p or q”

I implication p ! q “if p then q holds”

I equivalence p $ q “p if and only if q”

according to the BNF grammar

' ::= p | ? | > | (¬') | (' ^ ') | (' _ ') | ('! ') | ('$ ')

Conventions

I binding precedence ¬ > ^ > _ > !,$

I omit outer parantheses

I !, ^, _ are right-associative: p ! q ! r denotes p ! (q ! r)

15

Definition (Propositional Logic: Syntax)

propositional formulas are built form

I atoms p, q, r , p1, p2, . . .

I constants ?, >
I negation ¬p “not p”

I conjunction p ^ q “p and q”

I disjunction p _ q “p or q”

I implication p ! q “if p then q holds”

I equivalence p $ q “p if and only if q”

according to the BNF grammar

' ::= p | ? | > | (¬') | (' ^ ') | (' _ ') | ('! ') | ('$ ')

Conventions

I binding precedence ¬ > ^ > _ > !,$

I omit outer parantheses

I !, ^, _ are right-associative: p ! q ! r denotes p ! (q ! r)

15

Definition (Propositional Logic: Syntax)

propositional formulas are built form

I atoms p, q, r , p1, p2, . . .

I constants ?, >
I negation ¬p “not p”

I conjunction p ^ q “p and q”

I disjunction p _ q “p or q”

I implication p ! q “if p then q holds”

I equivalence p $ q “p if and only if q”

according to the BNF grammar

' ::= p | ? | > | (¬') | (' ^ ') | (' _ ') | ('! ') | ('$ ')

Conventions

I binding precedence ¬ > ^ > _ > !,$

I omit outer parantheses

I !, ^, _ are right-associative: p ! q ! r denotes p ! (q ! r)

15

Definition (Propositional Logic: Syntax)

propositional formulas are built form

I atoms p, q, r , p1, p2, . . .

I constants ?, >
I negation ¬p “not p”

I conjunction p ^ q “p and q”

I disjunction p _ q “p or q”

I implication p ! q “if p then q holds”

I equivalence p $ q “p if and only if q”

according to the BNF grammar

' ::= p | ? | > | (¬') | (' ^ ') | (' _ ') | ('! ') | ('$ ')

Conventions

I binding precedence ¬ > ^ > _ > !,$

I omit outer parantheses

I !, ^, _ are right-associative: p ! q ! r denotes p ! (q ! r)

15

Definition (Propositional Logic: Syntax)

propositional formulas are built form

I atoms p, q, r , p1, p2, . . .

I constants ?, >
I negation ¬p “not p”

I conjunction p ^ q “p and q”

I disjunction p _ q “p or q”

I implication p ! q “if p then q holds”

I equivalence p $ q “p if and only if q”

according to the BNF grammar

' ::= p | ? | > | (¬') | (' ^ ') | (' _ ') | ('! ') | ('$ ')

Conventions

I binding precedence ¬ > ^ > _ > !,$

I omit outer parantheses

I !, ^, _ are right-associative: p ! q ! r denotes p ! (q ! r)

15

Definition (Propositional Logic: Syntax)

propositional formulas are built form

I atoms p, q, r , p1, p2, . . .

I constants ?, >
I negation ¬p “not p”

I conjunction p ^ q “p and q”

I disjunction p _ q “p or q”

I implication p ! q “if p then q holds”

I equivalence p $ q “p if and only if q”

according to the BNF grammar

' ::= p | ? | > | (¬') | (' ^ ') | (' _ ') | ('! ') | ('$ ')

Conventions

I binding precedence ¬ > ^ > _ > !,$

I omit outer parantheses

I !, ^, _ are right-associative: p ! q ! r denotes p ! (q ! r)

15

Definition (Propositional Logic: Syntax)

propositional formulas are built form

I atoms p, q, r , p1, p2, . . .

I constants ?, >
I negation ¬p “not p”

I conjunction p ^ q “p and q”

I disjunction p _ q “p or q”

I implication p ! q “if p then q holds”

I equivalence p $ q “p if and only if q”

according to the BNF grammar

' ::= p | ? | > | (¬') | (' ^ ') | (' _ ') | ('! ') | ('$ ')

Conventions

I binding precedence ¬ > ^ > _ > !,$

I omit outer parantheses

I !, ^, _ are right-associative: p ! q ! r denotes p ! (q ! r)

15

Definition (Propositional Logic: Syntax)

propositional formulas are built form

I atoms p, q, r , p1, p2, . . .

I constants ?, >
I negation ¬p “not p”

I conjunction p ^ q “p and q”

I disjunction p _ q “p or q”

I implication p ! q “if p then q holds”

I equivalence p $ q “p if and only if q”

according to the BNF grammar

' ::= p | ? | > | (¬') | (' ^ ') | (' _ ') | ('! ') | ('$ ')

Conventions

I binding precedence ¬ > ^ > _ > !,$
I omit outer parantheses

I !, ^, _ are right-associative: p ! q ! r denotes p ! (q ! r)

15

Definition (Propositional Logic: Syntax)

propositional formulas are built form

I atoms p, q, r , p1, p2, . . .

I constants ?, >
I negation ¬p “not p”

I conjunction p ^ q “p and q”

I disjunction p _ q “p or q”

I implication p ! q “if p then q holds”

I equivalence p $ q “p if and only if q”

according to the BNF grammar

' ::= p | ? | > | (¬') | (' ^ ') | (' _ ') | ('! ') | ('$ ')

Conventions

I binding precedence ¬ > ^ > _ > !,$
I omit outer parantheses

I !, ^, _ are right-associative: p ! q ! r denotes p ! (q ! r)
15

Definition (Propositional Logic: Semantics)

I valuation (truth assignment) is mapping v : {p, q, r , . . . } ! {F,T}
from atoms to truth values

I extension to formulas:

v(?) = F v(>) = T

v(' ^) =
(
T if v(') = v() = T

F otherwise
v(¬') =

(
T if v(') = F

F if v(') = T

v(' _) =
(
F if v(') = v() = F

T otherwise
v('$) =

(
T if v(') = v()

F otherwise

v('!) =

(
F if v(') = T, v() = F

T otherwise

16

Definition (Propositional Logic: Semantics)

I valuation (truth assignment) is mapping v : {p, q, r , . . . } ! {F,T}
from atoms to truth values

I extension to formulas:

v(?) = F

v(>) = T

v(' ^) =
(
T if v(') = v() = T

F otherwise
v(¬') =

(
T if v(') = F

F if v(') = T

v(' _) =
(
F if v(') = v() = F

T otherwise
v('$) =

(
T if v(') = v()

F otherwise

v('!) =

(
F if v(') = T, v() = F

T otherwise

16

Definition (Propositional Logic: Semantics)

I valuation (truth assignment) is mapping v : {p, q, r , . . . } ! {F,T}
from atoms to truth values

I extension to formulas:

v(?) = F v(>) = T

v(' ^) =
(
T if v(') = v() = T

F otherwise
v(¬') =

(
T if v(') = F

F if v(') = T

v(' _) =
(
F if v(') = v() = F

T otherwise
v('$) =

(
T if v(') = v()

F otherwise

v('!) =

(
F if v(') = T, v() = F

T otherwise

16

Definition (Propositional Logic: Semantics)

I valuation (truth assignment) is mapping v : {p, q, r , . . . } ! {F,T}
from atoms to truth values

I extension to formulas:

v(?) = F v(>) = T

v(' ^) =
(
T if v(') = v() = T

F otherwise

v(¬') =
(
T if v(') = F

F if v(') = T

v(' _) =
(
F if v(') = v() = F

T otherwise
v('$) =

(
T if v(') = v()

F otherwise

v('!) =

(
F if v(') = T, v() = F

T otherwise

16

Definition (Propositional Logic: Semantics)

I valuation (truth assignment) is mapping v : {p, q, r , . . . } ! {F,T}
from atoms to truth values

I extension to formulas:

v(?) = F v(>) = T

v(' ^) =
(
T if v(') = v() = T

F otherwise
v(¬') =

(
T if v(') = F

F if v(') = T

v(' _) =
(
F if v(') = v() = F

T otherwise
v('$) =

(
T if v(') = v()

F otherwise

v('!) =

(
F if v(') = T, v() = F

T otherwise

16

Definition (Propositional Logic: Semantics)

I valuation (truth assignment) is mapping v : {p, q, r , . . . } ! {F,T}
from atoms to truth values

I extension to formulas:

v(?) = F v(>) = T

v(' ^) =
(
T if v(') = v() = T

F otherwise
v(¬') =

(
T if v(') = F

F if v(') = T

v(' _) =
(
F if v(') = v() = F

T otherwise

v('$) =

(
T if v(') = v()

F otherwise

v('!) =

(
F if v(') = T, v() = F

T otherwise

16

Definition (Propositional Logic: Semantics)

I valuation (truth assignment) is mapping v : {p, q, r , . . . } ! {F,T}
from atoms to truth values

I extension to formulas:

v(?) = F v(>) = T

v(' ^) =
(
T if v(') = v() = T

F otherwise
v(¬') =

(
T if v(') = F

F if v(') = T

v(' _) =
(
F if v(') = v() = F

T otherwise
v('$) =

(
T if v(') = v()

F otherwise

v('!) =

(
F if v(') = T, v() = F

T otherwise

16

Definition (Propositional Logic: Semantics)

I valuation (truth assignment) is mapping v : {p, q, r , . . . } ! {F,T}
from atoms to truth values

I extension to formulas:

v(?) = F v(>) = T

v(' ^) =
(
T if v(') = v() = T

F otherwise
v(¬') =

(
T if v(') = F

F if v(') = T

v(' _) =
(
F if v(') = v() = F

T otherwise
v('$) =

(
T if v(') = v()

F otherwise

v('!) =

(
F if v(') = T, v() = F

T otherwise

16

Definitions

I formula ' is satisfiable if v(') = T for some valuation v

I formula ' is valid if v(') = T for every valuation v

I semantic entailment '1, . . . ,'n ✏
if v() = T whenever v('1) = v('2) = · · · = v('n) = T

I formulas ' and are equivalent (' ⌘) if v(') = v() for every valuation v

I formulas ' and are equisatisfiable (' ⇡) if

' is satisfiable () is satisfiable

Theorem

formula ' is unsatisfiable if and only if ¬' is valid

Theorem

satisfiability and validity are decidable

17

Definitions

I formula ' is satisfiable if v(') = T for some valuation v

I formula ' is valid if v(') = T for every valuation v

I semantic entailment '1, . . . ,'n ✏
if v() = T whenever v('1) = v('2) = · · · = v('n) = T

I formulas ' and are equivalent (' ⌘) if v(') = v() for every valuation v

I formulas ' and are equisatisfiable (' ⇡) if

' is satisfiable () is satisfiable

Theorem

formula ' is unsatisfiable if and only if ¬' is valid

Theorem

satisfiability and validity are decidable

17

Definitions

I formula ' is satisfiable if v(') = T for some valuation v

I formula ' is valid if v(') = T for every valuation v

I semantic entailment '1, . . . ,'n ✏
if v() = T whenever v('1) = v('2) = · · · = v('n) = T

I formulas ' and are equivalent (' ⌘) if v(') = v() for every valuation v

I formulas ' and are equisatisfiable (' ⇡) if

' is satisfiable () is satisfiable

Theorem

formula ' is unsatisfiable if and only if ¬' is valid

Theorem

satisfiability and validity are decidable

17

Definitions

I formula ' is satisfiable if v(') = T for some valuation v

I formula ' is valid if v(') = T for every valuation v

I semantic entailment '1, . . . ,'n ✏
if v() = T whenever v('1) = v('2) = · · · = v('n) = T

I formulas ' and are equivalent (' ⌘) if v(') = v() for every valuation v

I formulas ' and are equisatisfiable (' ⇡) if

' is satisfiable () is satisfiable

Theorem

formula ' is unsatisfiable if and only if ¬' is valid

Theorem

satisfiability and validity are decidable

17

Definitions

I formula ' is satisfiable if v(') = T for some valuation v

I formula ' is valid if v(') = T for every valuation v

I semantic entailment '1, . . . ,'n ✏
if v() = T whenever v('1) = v('2) = · · · = v('n) = T

I formulas ' and are equivalent (' ⌘) if v(') = v() for every valuation v

I formulas ' and are equisatisfiable (' ⇡) if

' is satisfiable () is satisfiable

Theorem

formula ' is unsatisfiable if and only if ¬' is valid

Theorem

satisfiability and validity are decidable

17

Definitions

I formula ' is satisfiable if v(') = T for some valuation v

I formula ' is valid if v(') = T for every valuation v

I semantic entailment '1, . . . ,'n ✏
if v() = T whenever v('1) = v('2) = · · · = v('n) = T

I formulas ' and are equivalent (' ⌘) if v(') = v() for every valuation v

I formulas ' and are equisatisfiable (' ⇡) if

' is satisfiable () is satisfiable

Theorem

formula ' is unsatisfiable if and only if ¬' is valid

Theorem

satisfiability and validity are decidable

17

Definitions

I formula ' is satisfiable if v(') = T for some valuation v

I formula ' is valid if v(') = T for every valuation v

I semantic entailment '1, . . . ,'n ✏
if v() = T whenever v('1) = v('2) = · · · = v('n) = T

I formulas ' and are equivalent (' ⌘) if v(') = v() for every valuation v

I formulas ' and are equisatisfiable (' ⇡) if

' is satisfiable () is satisfiable

Theorem

formula ' is unsatisfiable if and only if ¬' is valid

Theorem

satisfiability and validity are decidable

17

Definition (Literal)

I literal is atom p or negation of atom ¬p

I literals l1 and l2 are complementary if l1 = ¬l2 or l2 = ¬l1

Definitions

I negation normal form (NNF) if formula with negation only applied to atoms

I conjunctive normal form (CNF) is conjunction of disjunctions

I 3-CNF is conjunction of disjunctions with 3 literals:
V

i (ai _ bi _ ci)

I disjunctive normal form (DNF) is disjunction of conjunctions

Theorem

for every formula ' there is CNF , 3-CNF � and DNF ⌘ such that ' ⌘ ⌘ � ⌘ ⌘

Remarks

I translation from formula to CNF can result in exponential blowup

I Tseitin’s transformation is linear and produces equisatisfiable formula

18

Definition (Literal)

I literal is atom p or negation of atom ¬p
I literals l1 and l2 are complementary if l1 = ¬l2 or l2 = ¬l1

Definitions

I negation normal form (NNF) if formula with negation only applied to atoms

I conjunctive normal form (CNF) is conjunction of disjunctions

I 3-CNF is conjunction of disjunctions with 3 literals:
V

i (ai _ bi _ ci)

I disjunctive normal form (DNF) is disjunction of conjunctions

Theorem

for every formula ' there is CNF , 3-CNF � and DNF ⌘ such that ' ⌘ ⌘ � ⌘ ⌘

Remarks

I translation from formula to CNF can result in exponential blowup

I Tseitin’s transformation is linear and produces equisatisfiable formula

18

Definition (Literal)

I literal is atom p or negation of atom ¬p
I literals l1 and l2 are complementary if l1 = ¬l2 or l2 = ¬l1

Definitions

I negation normal form (NNF) if formula with negation only applied to atoms

I conjunctive normal form (CNF) is conjunction of disjunctions

I 3-CNF is conjunction of disjunctions with 3 literals:
V

i (ai _ bi _ ci)

I disjunctive normal form (DNF) is disjunction of conjunctions

Theorem

for every formula ' there is CNF , 3-CNF � and DNF ⌘ such that ' ⌘ ⌘ � ⌘ ⌘

Remarks

I translation from formula to CNF can result in exponential blowup

I Tseitin’s transformation is linear and produces equisatisfiable formula

18

Definition (Literal)

I literal is atom p or negation of atom ¬p
I literals l1 and l2 are complementary if l1 = ¬l2 or l2 = ¬l1

Definitions

I negation normal form (NNF) if formula with negation only applied to atoms

I conjunctive normal form (CNF) is conjunction of disjunctions

I 3-CNF is conjunction of disjunctions with 3 literals:
V

i (ai _ bi _ ci)

I disjunctive normal form (DNF) is disjunction of conjunctions

Theorem

for every formula ' there is CNF , 3-CNF � and DNF ⌘ such that ' ⌘ ⌘ � ⌘ ⌘

Remarks

I translation from formula to CNF can result in exponential blowup

I Tseitin’s transformation is linear and produces equisatisfiable formula

18

Definition (Literal)

I literal is atom p or negation of atom ¬p
I literals l1 and l2 are complementary if l1 = ¬l2 or l2 = ¬l1

Definitions

I negation normal form (NNF) if formula with negation only applied to atoms

I conjunctive normal form (CNF) is conjunction of disjunctions

I 3-CNF is conjunction of disjunctions with 3 literals:
V

i (ai _ bi _ ci)

I disjunctive normal form (DNF) is disjunction of conjunctions

Theorem

for every formula ' there is CNF , 3-CNF � and DNF ⌘ such that ' ⌘ ⌘ � ⌘ ⌘

Remarks

I translation from formula to CNF can result in exponential blowup

I Tseitin’s transformation is linear and produces equisatisfiable formula

18

Definition (Literal)

I literal is atom p or negation of atom ¬p
I literals l1 and l2 are complementary if l1 = ¬l2 or l2 = ¬l1

Definitions

I negation normal form (NNF) if formula with negation only applied to atoms

I conjunctive normal form (CNF) is conjunction of disjunctions

I 3-CNF is conjunction of disjunctions with 3 literals:
V

i (ai _ bi _ ci)

I disjunctive normal form (DNF) is disjunction of conjunctions

Theorem

for every formula ' there is CNF , 3-CNF � and DNF ⌘ such that ' ⌘ ⌘ � ⌘ ⌘

Remarks

I translation from formula to CNF can result in exponential blowup

I Tseitin’s transformation is linear and produces equisatisfiable formula

18

Definition (Literal)

I literal is atom p or negation of atom ¬p
I literals l1 and l2 are complementary if l1 = ¬l2 or l2 = ¬l1

Definitions

I negation normal form (NNF) if formula with negation only applied to atoms

I conjunctive normal form (CNF) is conjunction of disjunctions

I 3-CNF is conjunction of disjunctions with 3 literals:
V

i (ai _ bi _ ci)

I disjunctive normal form (DNF) is disjunction of conjunctions

Theorem

for every formula ' there is CNF , 3-CNF � and DNF ⌘ such that ' ⌘ ⌘ � ⌘ ⌘

Remarks

I translation from formula to CNF can result in exponential blowup

I Tseitin’s transformation is linear and produces equisatisfiable formula

18

Definition (Literal)

I literal is atom p or negation of atom ¬p
I literals l1 and l2 are complementary if l1 = ¬l2 or l2 = ¬l1

Definitions

I negation normal form (NNF) if formula with negation only applied to atoms

I conjunctive normal form (CNF) is conjunction of disjunctions

I 3-CNF is conjunction of disjunctions with 3 literals:
V

i (ai _ bi _ ci)

I disjunctive normal form (DNF) is disjunction of conjunctions

Theorem

for every formula ' there is CNF , 3-CNF � and DNF ⌘ such that ' ⌘ ⌘ � ⌘ ⌘

Remarks

I translation from formula to CNF can result in exponential blowup

I Tseitin’s transformation is linear and produces equisatisfiable formula

18

Definition (Literal)

I literal is atom p or negation of atom ¬p
I literals l1 and l2 are complementary if l1 = ¬l2 or l2 = ¬l1

Definitions

I negation normal form (NNF) if formula with negation only applied to atoms

I conjunctive normal form (CNF) is conjunction of disjunctions

I 3-CNF is conjunction of disjunctions with 3 literals:
V

i (ai _ bi _ ci)

I disjunctive normal form (DNF) is disjunction of conjunctions

Theorem

for every formula ' there is CNF , 3-CNF � and DNF ⌘ such that ' ⌘ ⌘ � ⌘ ⌘

Remarks

I translation from formula to CNF can result in exponential blowup

I Tseitin’s transformation is linear and produces equisatisfiable formula

18

Satisfiability (SAT)

instance: propositional formula '
question: is ' satisfiable?

3-Satisfiability (3-SAT)

instance: propositional formula ' in 3-CNF
question: is ' satisfiable?

Theorem

SAT and 3-SAT are NP-complete problems

NP NP-hard
NP-complete

P

Z-factorization 3-SAT

SAT

travelling salesman

. . . Minesweeper

I 1 million $ prize money awarded for solution to P =? NP

19

Satisfiability (SAT)

instance: propositional formula '
question: is ' satisfiable?

3-Satisfiability (3-SAT)

instance: propositional formula ' in 3-CNF
question: is ' satisfiable?

Theorem

SAT and 3-SAT are NP-complete problems

NP NP-hard
NP-complete

P

Z-factorization 3-SAT

SAT

travelling salesman

. . . Minesweeper

I 1 million $ prize money awarded for solution to P =? NP

19

Satisfiability (SAT)

instance: propositional formula '
question: is ' satisfiable?

3-Satisfiability (3-SAT)

instance: propositional formula ' in 3-CNF
question: is ' satisfiable?

Theorem

SAT and 3-SAT are NP-complete problems

NP NP-hard
NP-complete

P

Z-factorization 3-SAT

SAT

travelling salesman

. . . Minesweeper

I 1 million $ prize money awarded for solution to P =? NP

19

Satisfiability (SAT)

instance: propositional formula '
question: is ' satisfiable?

3-Satisfiability (3-SAT)

instance: propositional formula ' in 3-CNF
question: is ' satisfiable?

Theorem

SAT and 3-SAT are NP-complete problems

NP NP-hard
NP-complete

P

Z-factorization 3-SAT

SAT

travelling salesman

. . . Minesweeper

I 1 million $ prize money awarded for solution to P =? NP 19

Fact

most SAT solvers require input to be in CNF

Remarks

I transforming formula to equivalent CNF can cause exponential blowup

I transforming formula into equisatisfiable CNF is possible in linear time

Definition

formulas ' and are equisatisfiable (' ⇡) if

' is satisfiable () is satisfiable

Example

p _ q ⇡ > p ^ ¬p ⇡ q ^ ¬q p ^ ¬p 6⇡ p ^ ¬q

31

Fact

most SAT solvers require input to be in CNF

Remarks

I transforming formula to equivalent CNF can cause exponential blowup

I transforming formula into equisatisfiable CNF is possible in linear time

Definition

formulas ' and are equisatisfiable (' ⇡) if

' is satisfiable () is satisfiable

Example

p _ q ⇡ > p ^ ¬p ⇡ q ^ ¬q p ^ ¬p 6⇡ p ^ ¬q

31

Fact

most SAT solvers require input to be in CNF

Remarks

I transforming formula to equivalent CNF can cause exponential blowup

I transforming formula into equisatisfiable CNF is possible in linear time

Definition

formulas ' and are equisatisfiable (' ⇡) if

' is satisfiable () is satisfiable

Example

p _ q ⇡ > p ^ ¬p ⇡ q ^ ¬q p ^ ¬p 6⇡ p ^ ¬q

31

Fact

most SAT solvers require input to be in CNF

Remarks

I transforming formula to equivalent CNF can cause exponential blowup

I transforming formula into equisatisfiable CNF is possible in linear time

Definition

formulas ' and are equisatisfiable (' ⇡) if

' is satisfiable () is satisfiable

Example

p _ q ⇡ > p ^ ¬p ⇡ q ^ ¬q p ^ ¬p 6⇡ p ^ ¬q

31

Example (Tseitin’s Transformation)

I ' = ¬(p _ q) _ (p ^ (p _ q))

I use fresh propositional variable for every connective

a0 : ¬(p _ q) _ (p ^ (p _ q)) a1 : ¬(p _ q)

a2 : p _ q a3 : p ^ (p _ q)

a4 : p _ q

I ' ⇡ a0 ^ (a0 $ a1 _ a3) ^ (a1 $ ¬a2) ^ (a2 $ p _ q) ^
(a3 $ p ^ a4) ^ (a4 $ p _ q)

I every $ subexpression can be replaced by at most three clauses:

a $ b ^ c ⌘ (¬a _ b) ^ (¬a _ c) ^ (a _ ¬b _ ¬c)
a $ b _ c ⌘ (¬a _ b _ c) ^ (a _ ¬b) ^ (a _ ¬c)
a $ ¬b ⌘ (¬a _ ¬b) ^ (a _ b)

I common subexpressions can be shared

_a0

¬a1

_a2

p q

^a3

p _a4

p q

32

Example (Tseitin’s Transformation)

I ' = ¬(p _ q) _ (p ^ (p _ q))

I use fresh propositional variable for every connective

a0 : ¬(p _ q) _ (p ^ (p _ q)) a1 : ¬(p _ q)

a2 : p _ q a3 : p ^ (p _ q)

a4 : p _ q

I ' ⇡ a0 ^ (a0 $ a1 _ a3) ^ (a1 $ ¬a2) ^ (a2 $ p _ q) ^
(a3 $ p ^ a4) ^ (a4 $ p _ q)

I every $ subexpression can be replaced by at most three clauses:

a $ b ^ c ⌘ (¬a _ b) ^ (¬a _ c) ^ (a _ ¬b _ ¬c)
a $ b _ c ⌘ (¬a _ b _ c) ^ (a _ ¬b) ^ (a _ ¬c)
a $ ¬b ⌘ (¬a _ ¬b) ^ (a _ b)

I common subexpressions can be shared

_a0

¬a1

_a2

p q

^a3

p _a4

p q

32

Example (Tseitin’s Transformation)

I ' = ¬(p _ q) _ (p ^ (p _ q))

I use fresh propositional variable for every connective

a0 : ¬(p _ q) _ (p ^ (p _ q)) a1 : ¬(p _ q)

a2 : p _ q a3 : p ^ (p _ q)

a4 : p _ q

I ' ⇡ a0 ^ (a0 $ a1 _ a3) ^ (a1 $ ¬a2) ^ (a2 $ p _ q) ^
(a3 $ p ^ a4) ^ (a4 $ p _ q)

I every $ subexpression can be replaced by at most three clauses:

a $ b ^ c ⌘ (¬a _ b) ^ (¬a _ c) ^ (a _ ¬b _ ¬c)
a $ b _ c ⌘ (¬a _ b _ c) ^ (a _ ¬b) ^ (a _ ¬c)
a $ ¬b ⌘ (¬a _ ¬b) ^ (a _ b)

I common subexpressions can be shared

_a0

¬a1

_a2

p q

^a3

p _a4

p q

32

Example (Tseitin’s Transformation)

I ' = ¬(p _ q) _ (p ^ (p _ q))

I use fresh propositional variable for every connective

a0 : ¬(p _ q) _ (p ^ (p _ q)) a1 : ¬(p _ q)

a2 : p _ q a3 : p ^ (p _ q)

a4 : p _ q

I ' ⇡ a0 ^ (a0 $ a1 _ a3) ^ (a1 $ ¬a2) ^ (a2 $ p _ q) ^
(a3 $ p ^ a4) ^ (a4 $ p _ q)

I every $ subexpression can be replaced by at most three clauses:

a $ b ^ c ⌘ (¬a _ b) ^ (¬a _ c) ^ (a _ ¬b _ ¬c)
a $ b _ c ⌘ (¬a _ b _ c) ^ (a _ ¬b) ^ (a _ ¬c)
a $ ¬b ⌘ (¬a _ ¬b) ^ (a _ b)

I common subexpressions can be shared

_a0

¬a1

_a2

p q

^a3

p _a4

p q

32

Example (Tseitin’s Transformation)

I ' = ¬(p _ q) _ (p ^ (p _ q))

I use fresh propositional variable for every connective

a0 : ¬(p _ q) _ (p ^ (p _ q)) a1 : ¬(p _ q)

a2 : p _ q a3 : p ^ (p _ q)

a4 : p _ q

I ' ⇡ a0 ^ (a0 $ a1 _ a3) ^ (a1 $ ¬a2) ^ (a2 $ p _ q) ^
(a3 $ p ^ a4) ^ (a4 $ p _ q)

I every $ subexpression can be replaced by at most three clauses:

a $ b ^ c ⌘ (¬a _ b) ^ (¬a _ c) ^ (a _ ¬b _ ¬c)
a $ b _ c ⌘ (¬a _ b _ c) ^ (a _ ¬b) ^ (a _ ¬c)
a $ ¬b ⌘ (¬a _ ¬b) ^ (a _ b)

I common subexpressions can be shared

_a0

¬a1

_a2

p q

^a3

p _a4

p q

32

Example (Tseitin’s Transformation)

I ' = ¬(p _ q) _ (p ^ (p _ q))

I use fresh propositional variable for every connective

a0 : ¬(p _ q) _ (p ^ (p _ q)) a1 : ¬(p _ q)

a2 : p _ q a3 : p ^ (p _ q)

a4 : p _ q

I ' ⇡ a0 ^ (a0 $ a1 _ a3) ^ (a1 $ ¬a2) ^ (a2 $ p _ q) ^
(a3 $ p ^ a4) ^ (a4 $ p _ q)

I every $ subexpression can be replaced by at most three clauses:

a $ b ^ c ⌘ (¬a _ b) ^ (¬a _ c) ^ (a _ ¬b _ ¬c)
a $ b _ c ⌘ (¬a _ b _ c) ^ (a _ ¬b) ^ (a _ ¬c)
a $ ¬b ⌘ (¬a _ ¬b) ^ (a _ b)

I common subexpressions can be shared

_a0

¬a1

_a2

p q

^a3

p _a4

p q

32

Example (Tseitin’s Transformation)

I ' = ¬(p _ q) _ (p ^ (p _ q))

I use fresh propositional variable for every connective

a0 : ¬(p _ q) _ (p ^ (p _ q)) a1 : ¬(p _ q)

a2 : p _ q a3 : p ^ (p _ q)

a4 : p _ q

I ' ⇡ a0 ^ (a0 $ a1 _ a3) ^ (a1 $ ¬a2) ^ (a2 $ p _ q) ^
(a3 $ p ^ a2)

^ (a4 $ p _ q)

I every $ subexpression can be replaced by at most three clauses:

a $ b ^ c ⌘ (¬a _ b) ^ (¬a _ c) ^ (a _ ¬b _ ¬c)
a $ b _ c ⌘ (¬a _ b _ c) ^ (a _ ¬b) ^ (a _ ¬c)
a $ ¬b ⌘ (¬a _ ¬b) ^ (a _ b)

I common subexpressions can be shared

_a0

¬a1

_a2

p q

^a3

p _a4

p q

32

SAT Solvers
Minisat, Glucose, CaDiCaL, Glu VC, Plingeling, MapleLRB LCM, MapleCOMPSPS, Riss,

Lingeling, Treengeling, CryptoMiniSat, abcdSAT, Dimetheus, Kiel, MapleCOMSPS, Rsat,

SWDiA5BY, BlackBox, SWDiA5BY, pprobSAT, glueSplit clasp, BalancedZ, SApperloT,

PeneLoPe, MXC, ROKKminisat, MiniSat HACK 999ED, ZENN, CSHCrandMC, MiniGolf,

march rw, sattime2011, mphasesat64, sparrow2011, pmcSAT, CSHCpar8, gluebit clasp,

clasp, precosat, gNovelty, SATzilla, SatELite, Score2SAT, YalSAT, tch glucose3, . . .

SAT Competition

I annual competition for di↵erent tracks (main, parallel, no-limit, . . .)

I increasing set of benchmarks from industry, mathematics, cryptography, . . .

I standardized input format DIMACS and proof format DRAT

http://www.satcompetition.org/

Minisat

I minimalistic open source solver (http://minisat.se/ or apt, yum,. . .)

$ minisat test.sat result.txt
I web interface

35

SAT Solvers
Minisat, Glucose, CaDiCaL, Glu VC, Plingeling, MapleLRB LCM, MapleCOMPSPS, Riss,

Lingeling, Treengeling, CryptoMiniSat, abcdSAT, Dimetheus, Kiel, MapleCOMSPS, Rsat,

SWDiA5BY, BlackBox, SWDiA5BY, pprobSAT, glueSplit clasp, BalancedZ, SApperloT,

PeneLoPe, MXC, ROKKminisat, MiniSat HACK 999ED, ZENN, CSHCrandMC, MiniGolf,

march rw, sattime2011, mphasesat64, sparrow2011, pmcSAT, CSHCpar8, gluebit clasp,

clasp, precosat, gNovelty, SATzilla, SatELite, Score2SAT, YalSAT, tch glucose3, . . .

SAT Competition

I annual competition for di↵erent tracks (main, parallel, no-limit, . . .)

I increasing set of benchmarks from industry, mathematics, cryptography, . . .

I standardized input format DIMACS and proof format DRAT

http://www.satcompetition.org/

Minisat

I minimalistic open source solver (http://minisat.se/ or apt, yum,. . .)

$ minisat test.sat result.txt
I web interface

35

SAT Solvers
Minisat, Glucose, CaDiCaL, Glu VC, Plingeling, MapleLRB LCM, MapleCOMPSPS, Riss,

Lingeling, Treengeling, CryptoMiniSat, abcdSAT, Dimetheus, Kiel, MapleCOMSPS, Rsat,

SWDiA5BY, BlackBox, SWDiA5BY, pprobSAT, glueSplit clasp, BalancedZ, SApperloT,

PeneLoPe, MXC, ROKKminisat, MiniSat HACK 999ED, ZENN, CSHCrandMC, MiniGolf,

march rw, sattime2011, mphasesat64, sparrow2011, pmcSAT, CSHCpar8, gluebit clasp,

clasp, precosat, gNovelty, SATzilla, SatELite, Score2SAT, YalSAT, tch glucose3, . . .

SAT Competition

I annual competition for di↵erent tracks (main, parallel, no-limit, . . .)

I increasing set of benchmarks from industry, mathematics, cryptography, . . .

I standardized input format DIMACS and proof format DRAT

http://www.satcompetition.org/

Minisat

I minimalistic open source solver (http://minisat.se/ or apt, yum,. . .)

$ minisat test.sat result.txt
I web interface

35

SAT Solvers
Minisat, Glucose, CaDiCaL, Glu VC, Plingeling, MapleLRB LCM, MapleCOMPSPS, Riss,

Lingeling, Treengeling, CryptoMiniSat, abcdSAT, Dimetheus, Kiel, MapleCOMSPS, Rsat,

SWDiA5BY, BlackBox, SWDiA5BY, pprobSAT, glueSplit clasp, BalancedZ, SApperloT,

PeneLoPe, MXC, ROKKminisat, MiniSat HACK 999ED, ZENN, CSHCrandMC, MiniGolf,

march rw, sattime2011, mphasesat64, sparrow2011, pmcSAT, CSHCpar8, gluebit clasp,

clasp, precosat, gNovelty, SATzilla, SatELite, Score2SAT, YalSAT, tch glucose3, . . .

SAT Competition

I annual competition for di↵erent tracks (main, parallel, no-limit, . . .)

I increasing set of benchmarks from industry, mathematics, cryptography, . . .

I standardized input format DIMACS and proof format DRAT

http://www.satcompetition.org/

Minisat

I minimalistic open source solver (http://minisat.se/ or apt, yum,. . .)

$ minisat test.sat result.txt
I web interface

35

Example (DIMACS)

formula (x1 _ ¬x3) ^ (x2 _ x3 _ ¬x1) ^ (¬x1 _ x2 _ x4) can be expressed by

c a very simple example

p cnf 4 3

1 -3 0

2 3 -1 0

-1 2 4 0

The DIMACS Format

I header p cnf n m specifies number of variables n and number of clauses m

I variables (atoms) are assumed to be x1, . . . , xn
I literal xi is denoted i and literal ¬xi is denoted -i

I a clause is a list of literals terminated by 0

I lines starting with c are considered comments

36

Example (DIMACS)

formula (x1 _ ¬x3) ^ (x2 _ x3 _ ¬x1) ^ (¬x1 _ x2 _ x4) can be expressed by

c a very simple example

p cnf 4 3

1 -3 0

2 3 -1 0

-1 2 4 0

The DIMACS Format

I header p cnf n m specifies number of variables n and number of clauses m

I variables (atoms) are assumed to be x1, . . . , xn
I literal xi is denoted i and literal ¬xi is denoted -i

I a clause is a list of literals terminated by 0

I lines starting with c are considered comments

36

Example (DIMACS)

formula (x1 _ ¬x3) ^ (x2 _ x3 _ ¬x1) ^ (¬x1 _ x2 _ x4) can be expressed by

c a very simple example

p cnf 4 3

1 -3 0

2 3 -1 0

-1 2 4 0

The DIMACS Format

I header p cnf n m specifies number of variables n and number of clauses m

I variables (atoms) are assumed to be x1, . . . , xn

I literal xi is denoted i and literal ¬xi is denoted -i

I a clause is a list of literals terminated by 0

I lines starting with c are considered comments

36

Example (DIMACS)

formula (x1 _ ¬x3) ^ (x2 _ x3 _ ¬x1) ^ (¬x1 _ x2 _ x4) can be expressed by

c a very simple example

p cnf 4 3

1 -3 0

2 3 -1 0

-1 2 4 0

The DIMACS Format

I header p cnf n m specifies number of variables n and number of clauses m

I variables (atoms) are assumed to be x1, . . . , xn
I literal xi is denoted i and literal ¬xi is denoted -i

I a clause is a list of literals terminated by 0

I lines starting with c are considered comments

36

Example (DIMACS)

formula (x1 _ ¬x3) ^ (x2 _ x3 _ ¬x1) ^ (¬x1 _ x2 _ x4) can be expressed by

c a very simple example

p cnf 4 3

1 -3 0

2 3 -1 0

-1 2 4 0

The DIMACS Format

I header p cnf n m specifies number of variables n and number of clauses m

I variables (atoms) are assumed to be x1, . . . , xn
I literal xi is denoted i and literal ¬xi is denoted -i

I a clause is a list of literals terminated by 0

I lines starting with c are considered comments

36

Example (DIMACS)

formula (x1 _ ¬x3) ^ (x2 _ x3 _ ¬x1) ^ (¬x1 _ x2 _ x4) can be expressed by

c a very simple example

p cnf 4 3

1 -3 0

2 3 -1 0

-1 2 4 0

The DIMACS Format

I header p cnf n m specifies number of variables n and number of clauses m

I variables (atoms) are assumed to be x1, . . . , xn
I literal xi is denoted i and literal ¬xi is denoted -i

I a clause is a list of literals terminated by 0

I lines starting with c are considered comments

36

