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Terminology

» decision problem P is problem with answer yes or no

» SAT encoding of decision problem P is propositional formula ¢p such that
answer to P is yes <= (p is satisfiable
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SMT Solving

input: formula ¢ involving theory T
output: SAT + valuation v such that v(p) =T if v is T-satisfiable
UNSAT otherwise

v(a)=3 v(b)=0

. /’ SAT (v) vic) =0 v(p)=T
2 >
a+b>cV(a=0ADp) \
UNSAT
SMT solver
Example (Theories)
» arithmetic 2a+b>cV(a=0Ap)
» uninterpreted functions f(x,y) # f(y, x) A g(f(x,x)) = g(y)
» bit vectors ((zext32 38) —+ b32) X c32 >4 039

Terminology

» SMT encoding over theory T of decision problem P is formula ©p such that

answer to P is yes <= (p is satisfiable 5
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Application: Pythagorean Triples

Problem
Can one color all natural numbers with two colors such that whenever

x%2 + y? = z° not all of x, y, and z have same color?

Example
32 + 42 = K2 52 + 122 — 132

5 6 7 8 9 10 11 12 13 ... V

(a) 1 2 3 4
12 13

() 1 2 3 4 5 6 7 8 9 10 11

D3

SAT Encoding

» variables x; for 1 </ < n such that x; becomes true iff it is colored red
» SAT encoding: for all a° + b* = ¢? include (x; V x5 V xc) A (X3 V Xp V X¢)
(+ symmetry breaking, simplification, heuristics)

Result: No. Coloring exists only up to 7,825.
1000s of variables, solving time 2 days with 800 processors, 200 TB of proof
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Problem: Round Robin Scheduling

Schedule sports league tournament for n teams, p periods of n — 1 rounds each
(+ venue restrictions, break restrictions, .. .)

Example (Osterreichische FuBball-Bundesliga)
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Result

SAT scheduling is 100x faster than previous industrial scheduling tools
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Application: Hardware Verification

Problem

» errors in hardware chips are costly (Intel paid $475 million for FDIV bug )
» testing is not enough to guarantee desired behavior

Example (Formal Circuit Model)

Xz %D—\ DO }ﬁDi y

SAT Encoding

» variables for input and output
» SAT formulas for implemented behavior and expected behavior (specification)
» check for equivalence

Impact

» ensured correctness, more reliable hardware components (formal verification)

» manufacturers rely on SAT-based verification since beginning of 2000s
e.g., Intel Core i7 implements over 2700 distinct verified microinstructions 10



Propositional Logic Revisited

Concepts
» literal
» formula
» assignment
» satisfiability and validity
» negation normal form (NNF)
» conjunctive normal form (CNF)
» disjunctive normal form (DNF)
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» equivalence p<>q “p if and only if "

according to the BNF grammar

pr=p| LI T[(=e) [ (eA@) | (pVe)l(p—0)| (g )

Conventions

» binding precedence - > A > VvV > — &
» omit outer parantheses
» —, A, V are right-associative: p — q — r denotes p — (q — r)
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» valuation (truth assignment) is mapping v: {p,q,r,...} = {F, T}

from atoms to truth values
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Satisfiability (SAT)

instance: propositional formula ¢
question: is ¢ satisfiable?

3-Satisfiability (3-SAT)

Instance: propositional formula ¢ in 3-CNF
question: Is ¢ satisfiable?
Theorem

SAT and 3-SAT are NP-complete problems

SAT

Z-factorization 3-SAT
Minesweeper

travelling salesman

» 1 million $ prize money awarded for solution to P =’ NP
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Fact
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Remarks

» transforming formula to equivalent CNF can cause exponential blowup
» transforming formula into equisatisfiable CNF is possible in linear time

Definition

formulas ¢ and 1 are equisatisfiable (¢ ~ ) if

@ Is satisfiable — 1 is satisfiable

Example

pVg~T pA—p =~ qA—q pA—p % pA—q

L
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SAT Solvers

Minisat, Glucose, CaDiCal, Glu_VC, Plingeling, MapleLRB LCM, MapleCOMPSPS, Riss,
Lingeling, Treengeling, CryptoMiniSat, abcdSAT, Dimetheus, Kiel, MapleCOMSPS, Rsat,
SWDiA5BY, BlackBox, SWDiA5BY, pprobSAT, glueSplit_clasp, BalancedZ, SApperloT,
PeneLoPe, MXC, ROKKminisat, MiniSat_ HACK_999ED, ZENN, CSHCrandMC, MiniGolf,
march_rw, sattime2011, mphasesat64, sparrow2011, pmcSAT, CSHCpar8, gluebit_clasp,
clasp, precosat, gNovelty, SATzilla, SatELite, Score2SAT, YalSAT, tch glucose3, ...
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Minisat
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Example (DIMACS)

formula (x1 V =x3) A (x2 V x3 V =x1) A (—x1 V X2 V x4) can be expressed by

c a very simple example
p cnf 4 3
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