SAT Solving
and
Its Applications

Ilya Sergey
Copyright: Sarah Winkler (Free University of Bozen-Bolzano)

SAT Solving

input: propositional formula ¢

SAT solver

SAT Solving

input: propositional formula ¢
output: SAT + valuation v such that v(p) =T if @ satisfiable

SAT (v)

SAT solver

SAT Solving

input: propositional formula ¢
output: SAT + valuation v such that v(p) = T if ¢ satisfiable
UNSAT otherwise
SAT (v)
P — <
UNSAT

SAT solver

SAT Solving

input: propositional formula ¢
output: SAT + valuation v such that v(p) = T if ¢ satisfiable
UNSAT otherwise

SAT solver

SAT Solving

input: propositional formula ¢
output: SAT + valuation v such that v(p) = T if ¢ satisfiable
UNSAT otherwise

SAT solver

Terminology

» decision problem P is problem with answer yes or no

SAT Solving

input: propositional formula ¢
output: SAT + valuation v such that v(p) = T if ¢ satisfiable
UNSAT otherwise

SAT solver

Terminology

» decision problem P is problem with answer yes or no

» SAT encoding of decision problem P is propositional formula ¢p such that
answer to P is yes <= (p is satisfiable

SMT Solving

input: formula ¢ involving theory T

SMT solver

SMT Solving

input: formula ¢ involving theory T
output: SAT + valuation v such that v(p) =T if v is T-satisfiable

SAT (v)

SMT solver

SMT Solving

input: formula ¢ involving theory T
output: SAT + valuation v such that v(p) =T if v is T-satisfiable
UNSAT otherwise
SAT
¥ > / Y
\ UNSAT

SMT solver

SMT Solving

input: formula ¢ involving theory T
output: SAT + valuation v such that v(p) =T if v is T-satisfiable
UNSAT otherwise

v(a)=3 v(b)=0

ATV =0 wp) =T

¥
a+b>cV(a=0ADp)

-
\

UNSAT

SMT solver

SMT Solving

input: formula ¢ involving theory T
output: SAT + valuation v such that v(p) =T if v is T-satisfiable
UNSAT otherwise

v(a)=3 v(b)=0

AT g 20 vy =T
2 \
a+b>cV(a=0ADp)
UNSAT
SMT solver
Example (Theories)
» arithmetic 2a+b>cV(a=0Ap)

SMT Solving

input: formula ¢ involving theory T
output: SAT + valuation v such that v(p) =T if v is T-satisfiable
UNSAT otherwise

v(a)=3 v(b)=0

AT g 20 vy =T
2 \
a+b>cV(a=0ADp)
UNSAT
SMT solver
Example (Theories)
» arithmetic 2a+b>cV(a=0Ap)
» uninterpreted functions f(x,y) # f(y, x) A g(f(x,x)) = g(y)

SMT Solving

input: formula ¢ involving theory T
output: SAT + valuation v such that v(p) =T if v is T-satisfiable
UNSAT otherwise
v(a)=3 v(b)=0
\ AW g 20 =T
2 > \
a+b>cV(a=0ADp)
UNSAT
SMT solver
Example (Theories)
» arithmetic 2a+b>cV(a=0Ap)
» uninterpreted functions f(x,y) # f(y, x) A g(f(x,x)) = g(y)
» bit vectors ((zext32 38) —+ b32) X c32 >4 039

SMT Solving

input: formula ¢ involving theory T
output: SAT + valuation v such that v(p) =T if v is T-satisfiable
UNSAT otherwise

v(a)=3 v(b)=0

. /’ SAT (v) vic) =0 v(p)=T
2 >
a+b>cV(a=0ADp) \
UNSAT
SMT solver
Example (Theories)
» arithmetic 2a+b>cV(a=0Ap)
» uninterpreted functions f(x,y) # f(y, x) A g(f(x,x)) = g(y)
» bit vectors ((zext32 38) —+ b32) X c32 >4 039

Terminology

» SMT encoding over theory T of decision problem P is formula ©p such that

answer to P is yes <= (p is satisfiable 5

Application: Driving License Test

Problem

A

Frage W0 3 Puww

Austrian driving license test consists of 80 questions out of 1500 seuegennscn sen verenszscren

_ o s “Ertaubte Hochsigeschwindigkeit 70 kmvh'
such that the following conditions are satisfied: Sh dannnochtens ot
: . : yoo . (o =4 (o Ex8

» 30 questions “main questions” with 3 sub-questions each L"“\@L}V%

» at least 12 main questions must be about crossroads
» at least 12 questions must have pictures
» atleast 5 “hard”, "medium”, and “easy’ main questions

Application: Driving License Test

Problem n

Frage W0 3 Puww

Austrian driving license test consists of 80 questions out of 1500 seuegennscn sen verenszscren

_ o o “Erlaubte Hochstgeschwindigket 70 kmh®
such that the following conditions are satisfied: s e
» 30 questions “main questions” with 3 sub-questions each tp“ﬁ

=

» at least 12 main questions must be about crossroads
» at least 12 questions must have pictures
» atleast 5 “hard”, "medium”, and “easy’ main questions

» how can software find valid question set?

Application: Driving License Test

Problem n

Frage W0 3 Puww

Austrian driving license test consists of 80 questions out of 1500 seuegennscn sen verenszscren

"Erlaubte Hochsigeschwindigkeit 70 km/h®
im Ortsgebiet rechts ab, Wie schnell dirfen

such that the following conditions are satisfied: Sl dann hochstens fren?

» 30 questions “main questions” with 3 sub-questions each
» at least 12 main questions must be about crossroads

» at least 12 questions must have pictures

» atleast 5 “hard”, "medium”, and “easy’ main questions

» how can software find valid question set?

SAT Encoding
» variables g; for 1 <7 < 1500

Application: Driving License Test

Problem n

Frage W0 3 Puww

Austrian driving license test consists of 80 questions out of 1500 seuegennscn sen verenszscren

"Erlaubte Hochsigeschwindigkeit 70 km/h®
im Ortsgebiet rechts ab, Wie schnell dirfen

such that the following conditions are satisfied: Sl dann hochstens fren?

» 30 questions “main questions” with 3 sub-questions each
» at least 12 main questions must be about crossroads

» at least 12 questions must have pictures

» atleast 5 “hard”, "medium”, and “easy’ main questions

» how can software find valid question set?

SAT Encoding
» variables g; for 1 </ < 1500
» idea: valuation v sets v(q;) = T if question / is included, v(q;) = F otherwise

Application: Driving License Test

Problem n

Frage W0 3 Puww

Austrian driving license test consists of 80 questions out of 1500 seuegennscn sen verenszscren

"Erlaubte Hochstgeschwindigkeit 70 kmvh®
im Ortsgebiet rechts ab, Wie schnoll dirfen

such that the following conditions are satisfied: Sl dann hochstens fren?

» 30 questions “main questions” with 3 sub-questions each If‘\%@/eq
» at least 12 main questions must be about crossroads al
» at least 12 questions must have pictures

» atleast 5 “hard”, "medium”, and “easy’ main questions

» how can software find valid question set?

SAT Encoding
» variables g; for 1 </ < 1500
» idea: valuation v sets v(q;) = T if question i is included, v(q;) = F otherwise

> Z:iec‘?xroads ql 2 12

Application: Driving License Test

Problem n

Frage W0 3 Puww

Austrian driving license test consists of 80 questions out of 1500 seuegennscn sen verenszscren

"Erlaubte Hochstgeschwindigkeit 70 kmvh®
im Ortsgebiet rechts ab, Wie schnoll dirfen

such that the following conditions are satisfied: Sl dann hochstens fren?

» 30 questions “main questions” with 3 sub-questions each f"”wﬁg/eq
» at least 12 main questions must be about crossroads al
» at least 12 questions must have pictures

» atleast 5 “hard”, "medium”, and “easy’ main questions

» how can software find valid question set?

SAT Encoding
» variables g; for 1 </ < 1500
» idea: valuation v sets v(q;) = T if question i is included, v(q;) = F otherwise

> ZiEeroadS ql > 12 > ZiEQPictures ql > 12

Application: Driving License Test

Problem n

Frage W0 3 Puww

Austrian driving license test consists of 80 questions out of 1500 seuegennscn sen verenszscren

"Erlaubte Hochsigeschwindigkeit 70 km/h®
im Ortsgebiet rechts ab, Wie schnell dirfen

such that the following conditions are satisfied: Sl dann hochstens fren?

» 30 questions “main questions” with 3 sub-questions each
» at least 12 main questions must be about crossroads

» at least 12 questions must have pictures

» atleast 5 "hard”, "medium”, and “easy’ main questions

» how can software find valid question set?

SAT Encoding
» variables g; for 1 </ < 1500
» idea: valuation v sets v(q;) = T if question i is included, v(q;) = F otherwise

> ZiEeroads ql > 12 > ZiEQpictures ql > 12 > Zl‘thard q’ 2 5 4

Application: Driving License Test

Problem n

Frage W0 3 Puww

Austrian driving license test consists of 80 questions out of 1500 seuegennscn sen verenszscren

"Erlaubte Hochsigeschwindigkeit 70 km/h®
im Ortsgebiet rechts ab, Wie schnell dirfen

such that the following conditions are satisfied: Sl dann hochstens fren?

» 30 questions “main questions” with 3 sub-questions each
» at least 12 main questions must be about crossroads

» at least 12 questions must have pictures

» atleast 5 “hard”, "medium”, and “easy’ main questions

» how can software find valid question set?

SAT Encoding
» variables g; for 1 </ < 1500
» idea: valuation v sets v(q;) = T if question i is included, v(q;) = F otherwise

> ZiEeroads qi > 12 > ZiEQpictures qi > 12 > ZI'EQhard qi > 5 >

Result
easy generation of valid question sets (with some random preselection) 6

Application: Pythagorean Triples

Problem

Can one color all natural numbers with two colors such that whenever
x2 + y? = z% not all of x, y, and z have same color?

Application: Pythagorean Triples

Problem
Can one color all natural numbers with two colors such that whenever

x%2 + y? = z° not all of x, y, and z have same color?

Example
32 + 42 = K2 52 + 122 — 132

5 6 7 8 9 10 11 12 13 ... V

(a) 1 2 3 4
12 13

() 1 2 3 4 5 6 7 8 9 10 11

D3

Application: Pythagorean Triples

Problem
Can one color all natural numbers with two colors such that whenever

x%2 + y? = z° not all of x, y, and z have same color?

Example
32 + 42 = K2 52 + 122 — 132

5 6 7 8 9 10 11 12 13 ... V

(a) 1 2 3 4
12 13

() 1 2 3 4 5 6 7 8 9 10 11

D3

SAT Encoding

» variables x; for 1 </ < n such that x; becomes true iff it is colored red

Application: Pythagorean Triples

Problem
Can one color all natural numbers with two colors such that whenever

x%2 + y? = z° not all of x, y, and z have same color?

Example
32 + 42 = K2 52 + 122 — 132
1 2 3 4 5 6 7 8 9 10 11 12 13 ... V

(a)
10 11 12 13

() 1 2 3 4 5 6 7 8 9

D3

SAT Encoding

» variables x; for 1 </ < n such that x; becomes true iff it is colored red
» SAT encoding: for all a° + b* = ¢? include (x; V x5 V xc) A (X3 V Xp V X¢)
(+ symmetry breaking, simplification, heuristics)

Application: Pythagorean Triples

Problem
Can one color all natural numbers with two colors such that whenever

x%2 + y? = z° not all of x, y, and z have same color?

Example
32 + 42 = K2 52 + 122 — 132

5 6 7 8 9 10 11 12 13 ... V

(a) 1 2 3 4
12 13

() 1 2 3 4 5 6 7 8 9 10 11

D3

SAT Encoding

» variables x; for 1 </ < n such that x; becomes true iff it is colored red
» SAT encoding: for all a° + b* = ¢? include (x; V x5 V xc) A (X3 V Xp V X¢)
(+ symmetry breaking, simplification, heuristics)

Result: No. Coloring exists only up to 7,825.

Application: Pythagorean Triples

Problem

8
o
;

£

Can one cc
X2 & yz _

Eilard® 55

el e M
R o T e e s TR Nl ;

o
[==]

Example

e e

e Y R

ot o,

(a) 1
(b) 1

R

EN I .|.I"I-_-1—t_i Ty
L

Wi W A e el
.r g - .l .. » L] . =

Pl

L} 1.. q l_l---

RN 302 ER{IZER{IL!
201 PIYA 203 204 2
red
102 104 1
D bV %)

N~

R 2y e
T e

I. LI] -.l L L1} .l m-l.
L} L} I J

. "Bull ol TR

SAT Enc

» variak

» SAT ¢
(+ sy

(=23
[==]

-
o
o
o
[X=]
o

Result: No. Coloring exists only up to 7,825.

Application: Pythagorean Triples

Problem
Can one color all natural numbers with two colors such that whenever

x%2 + y? = z° not all of x, y, and z have same color?

Example
32 + 42 = K2 52 + 122 — 132

5 6 7 8 9 10 11 12 13 ... V

(a) 1 2 3 4
12 13

() 1 2 3 4 5 6 7 8 9 10 11

D3

SAT Encoding

» variables x; for 1 </ < n such that x; becomes true iff it is colored red
» SAT encoding: for all a° + b* = ¢? include (x; V x5 V xc) A (X3 V Xp V X¢)
(+ symmetry breaking, simplification, heuristics)

Result: No. Coloring exists only up to 7,825.
1000s of variables, solving time 2 days with 800 processors, 200 TB of proof

5 Derlangste Mathe-Bew X

< C

aPIEG

— .
m— \enu

WISSEN

Zahlenrats

Der lar

Drei Mathe
200 Terabyj

Q-

Supercomputd

D VA ww
£+ Most Visited @ Getting Started oo OLAT

Der langste Mathe-Beweis der Welt umFfasst 200 Terabyte - SPIEGEL ONLINE - Mozilla Firefox

v.spiegel.de/w

® Zahlen, bitte! Mit 800 ¢

< C @

£+ Most Visited @ Getting Started oo OLAT

News
IT Mobiles

Topthemen: Mo

heise online > Newq

Zahlen, bij

14.06.2016 13:37 Uh

N @ =

O][Qs v

X

@ &

v.heise.de

Newsticker Foren \

Mozilla Fi

Two-hundred-terabyte maths proof is largest ever : Nature News & Comment -

@ Two-hundred-terabyte

¢« c o o a
£+ Most Visited @ Getting Started oo OLAT

v.nature.com

nature International weekly journal of science

Home omment Research Careers & Jobs Current Issue Archive Audio & Video For Authors

Two-hundred-terabyte maths proof is largest ever

A computer cracks the Boolean Pythagorean triples problem — but is it really maths?
Evelyn Lamb

26 May 2016

@’z] PDF \ Rights & Permissions

Application: Tournament Scheduling

Problem: Round Robin Scheduling

Schedule sports league tournament for n teams, p periods of n — 1 rounds each
(+ venue restrictions, break restrictions, .. .)

Application: Tournament Scheduling

Problem: Round Robin Scheduling

Schedule sports league tournament for n teams, p periods of n — 1 rounds each
(+ venue restrictions, break restrictions, .. .)

Example (Osterreichische FuBball-Bundesliga)
10 teams play in 4 periods (9 rounds each), periods 1 & 2 and 3 & 4 mirrored

Application: Tournament Scheduling

Problem: Round Robin Scheduling

Schedule sports league tournament for n teams, p periods of n — 1 rounds each
(+ venue restrictions, break restrictions, .. .)

Example (Osterreichische FuBball-Bundesliga)
10 teams play in 4 periods (9 rounds each), periods 1 & 2 and 3 & 4 mirrored

(Part of) SAT Encoding

» variable x;j,r is true if team / plays team j at home in period p, round r

Application: Tournament Scheduling

Problem: Round Robin Scheduling

Schedule sports league tournament for n teams, p periods of n — 1 rounds each
(+ venue restrictions, break restrictions, .. .)

Example (Osterreichische FuBball-Bundesliga)
10 teams play in 4 periods (9 rounds each), periods 1 & 2 and 3 & 4 mirrored

(Part of) SAT Encoding

» variable x;j,r is true if team / plays team j at home in period p, round r

> :
/\ \/(X,'jpr V Xjior) each team plays in every round
NS

Application: Tournament Scheduling

Problem: Round Robin Scheduling

Schedule sports league tournament for n teams, p periods of n — 1 rounds each
(+ venue restrictions, break restrictions, .. .)

Example (Osterreichische FuBball-Bundesliga)
10 teams play in 4 periods (9 rounds each), periods 1 & 2 and 3 & 4 mirrored

(Part of) SAT Encoding

» variable x;j,r is true if team / plays team j at home in period p, round r

> :
/\ \/(X,'jpr V Xjior) each team plays in every round
NS

/\ /\ /\ (Xiipr = ~(Xikpr V Xkipr)) ~ each team plays at most once in every round
jopyr j#i ketinkj

Application: Tournament Scheduling

Problem: Round Robin Scheduling

Schedule sports league tournament for n teams, p periods of n — 1 rounds each
(+ venue restrictions, break restrictions, .. .)

Example (Osterreichische FuBball-Bundesliga)

10 teams play in 4 periods (9 rounds each), periods 1 & 2 and 3 & 4 mirrored

(Part of) SAT Encoding

» variable x;j,r is true if team / plays team j at home in period p, round r

> :
/\ \/(X,'jpr V Xjior) each team plays in every round
L,p,r j#i
/\ /\ /\ (Xiipr = ~(Xikpr V Xkipr)) ~ each team plays at most once in every round
jopyr j#i ketinkj

/\(x,-jlr — Xjior) N (Xjj3r — Xjiar) mirror rounds 1& 2 and 3& 4

IsJ,r

Application: Tournament Scheduling

Problem: Round Robin Scheduling

Schedule sports league tournament for n teams, p periods of n — 1 rounds each
(+ venue restrictions, break restrictions, .. .)

Example (Osterreichische FuBball-Bundesliga)
10 teams play in 4 periods (9 rounds each), periods 1 & 2 and 3 & 4 mirrored

(Part of) SAT Encoding

» variable x;j,r is true if team / plays team j at home in period p, round r

> :
/\ \/(X,'jpr V Xjior) each team plays in every round
NS

/\ /\ /\ (Xiipr = ~(Xikpr V Xkipr)) ~ each team plays at most once in every round
jopyr j#i ketinkj

/\(x,-jlr — Xjior) N (Xjj3r — Xjiar) mirror rounds 1& 2 and 3& 4

or
Result

SAT scheduling is 100x faster than previous industrial scheduling tools

Application: Hardware Verification

Problem
» errors in hardware chips are costly (Intel paid $475 million for FDIV bug)

Example (Formal Circuit Model)

xz %D—\ DO }ﬁDi y

10

Application: Hardware Verification

Problem

» errors in hardware chips are costly (Intel paid $475 million for FDIV bug)
» testing is not enough to guarantee desired behavior

Example (Formal Circuit Model)

I e g B >y

10

Application: Hardware Verification

Problem
» errors in hardware chips are costly (Intel paid $475 million for FDIV bug)
» testing is not enough to guarantee desired behavior

Example (Formal Circuit Model)

I e g B >y

SAT Encoding

» variables for input and output

» SAT formulas for implemented behavior and expected behavior (specification)
» check for equivalence

10

Application: Hardware Verification

Problem

» errors in hardware chips are costly (Intel paid $475 million for FDIV bug)
» testing is not enough to guarantee desired behavior

Example (Formal Circuit Model)

Xz %D—\ DO }ﬁDi y

SAT Encoding

» variables for input and output
» SAT formulas for implemented behavior and expected behavior (specification)
» check for equivalence

Impact

» ensured correctness, more reliable hardware components (formal verification)

» manufacturers rely on SAT-based verification since beginning of 2000s
e.g., Intel Core i7 implements over 2700 distinct verified microinstructions 10

Propositional Logic Revisited

Concepts
» literal
» formula
» assignment
» satisfiability and validity
» negation normal form (NNF)
» conjunctive normal form (CNF)
» disjunctive normal form (DNF)

14

Definition (Propositional Logic: Syntax)

propositional formulas are built form

> atoms P, 4, r, P, P2, --.

15

Definition (Propositional Logic: Syntax)

propositional formulas are built form

> atoms P, 4, r, P, P2, --.
» constants 1, T

15

Definition (Propositional Logic: Syntax)

propositional formulas are built form

> atoms P, 4, r, P, P2, --.
» constants 1, T
» negation —p

Hnot p”

15

Definition (Propositional Logic: Syntax)

propositional formulas are built form

» atoms p, q, r, pi1, p2, ...

» constants 1, T

» negation —p “not p"

» conjunction pAq “pand q"

Definition (Propositional Logic: Syntax)

propositional formulas are built form

>
>
>
>
>

atoms
constants
negation
conjunction
disjunction

P, 4, r, p1, P2, ...

1, T

—p “not p"
pAq “pand q"
pVq “porq’

15

Definition (Propositional Logic: Syntax)

propositional formulas are built form

>
>
>
>
>
>

atoms
constants
negation
conjunction
disjunction
implication

P, G, I, P1, P2, -
1, T

—p “not p"

pAq “pand q"

pVq “porq’

p—q “if p then g holds”

15

Definition (Propositional Logic: Syntax)

propositional formulas are built form

>
>
>
>
>
>
>

atoms
constants
negation
conjunction
disjunction
implication
equivalence

P, G, I, P1, P2, -
1, T

—p “not p"

pAq “pand q"

pVq “porq’

p—q “if p then g holds”
p<>q “p if and only if "

15

Definition (Propositional Logic: Syntax)

propositional formulas are built form

» atoms p, q, r, pi1, p2, ...

» constants 1, T

» negation —p “not p"

» conjunction pAq “pand q"

» disjunction pVq “porqg"

» implication p—4q “if p then g holds”
» equivalence p<>q “p if and only if "

according to the BNF grammar

pr=p| LI T[(=e) [(eA@) | (pVe)l(p—0)| (g)

15

Definition (Propositional Logic: Syntax)

propositional formulas are built form

» atoms p, q, r, pi1, p2, ...

» constants 1, T

» negation —p “not p"

» conjunction pAq “pand q"

» disjunction pVq “porqg"

» implication p—4q “if p then g holds”
» equivalence p<>q “p if and only if "

according to the BNF grammar

pr=p| LI T[(=e) [(eA@) | (pVe)l(p—0)| (g)

Conventions

» binding precedence - > A > VvV > — &

15

Definition (Propositional Logic: Syntax)

propositional formulas are built form

» atoms p, q, r, pi1, p2, ...

» constants 1, T

» negation —p “not p"

» conjunction pAq “pand q"

» disjunction pVq “porqg"

» implication p—4q “if p then g holds”
» equivalence p<>q “p if and only if "

according to the BNF grammar

pr=p| LI T[(=e) [(eA@) | (pVe)l(p—0)| (g)

Conventions

» binding precedence - > A > VvV > — &
» omit outer parantheses

15

Definition (Propositional Logic: Syntax)

propositional formulas are built form

» atoms p, q, r, pi1, p2, ...

» constants 1, T

» negation —p “not p"

» conjunction pAq “pand q"

» disjunction pVq “porqg"

» implication p—4q “if p then g holds”
» equivalence p<>q “p if and only if "

according to the BNF grammar

pr=p| LI T[(=e) [(eA@) | (pVe)l(p—0)| (g)

Conventions

» binding precedence - > A > VvV > — &
» omit outer parantheses
» —, A, V are right-associative: p — q — r denotes p — (q — r)

15

Definition (Propositional Logic: Semantics)

» valuation (truth assignment) is mapping v : {p,q,r,...} = {F, T}
from atoms to truth values

16

Definition (Propositional Logic: Semantics)

» valuation (truth assignment) is mapping v: {p,q,r,...} = {F, T}
from atoms to truth values
» extension to formulas:

v(L)=F

16

Definition (Propositional Logic: Semantics)

» valuation (truth assignment) is mapping v: {p,q,r,...} = {F, T}
from atoms to truth values
» extension to formulas:

v(L)=F v(T)=T

16

Definition (Propositional Logic: Semantics)

» valuation (truth assignment) is mapping v: {p,q,r,...} = {F, T}
from atoms to truth values
» extension to formulas:

v(L)=F v(T)=T

T ifv(ip)=v(yY)=T
F otherwise

V(@Aw)Z{

16

Definition (Propositional Logic: Semantics)

» valuation (truth assignment) is mapping v: {p,q,r,...} = {F, T}
from atoms to truth values
» extension to formulas:

v(L)=F W(T)=T
v(gko):{T tole) m) =T V(w):{T f v(p) = F

F otherwise

16

Definition (Propositional Logic: Semantics)

» valuation (truth assignment) is mapping v: {p,q,r,...} = {F, T}
from atoms to truth values
» extension to formulas:

v(L)=F v(T)=T
[T v =) =T [T ifv(p)=F
v NY) = | F otherwise v(70) = { Foifv(e)=T
(V=07 oo

16

Definition (Propositional Logic: Semantics)

» valuation (truth assignment) is mapping v: {p,q,r,...} = {F, T}

from atoms to truth values
» extension to formulas:

v(L)=F
[T v =) =T
V(SO a w) B \ F otherwise
[F ifv(e) = v(y) =F
V(SO v ¢) | T otherwise

v(T)=T
T
v(—p) = F
(o ov)=1_

if vip) =F

if vip)=T

it v(p) = v(v)
otherwise

16

Definition (Propositional Logic: Semantics)

» valuation (truth assignment) is mapping v: {p,q,r,...} = {F, T}

from atoms to truth values
» extension to formulas:

v(L)=F
o= {1 L0
vy = {§ 10—
o0 ={] o

v(T)=T
(T
V(=) F
foporv) =11

if vip)=F

if vip)=T

if v(p) = v(¥)
otherwise

16

Definitions

» formula ¢ is satisfiable if v(¢) = T for some valuation v

17

Definitions

» formula ¢ is satisfiable if v(¢) = T for some valuation v
» formula ¢ is valid if v(p) =T for every valuation v

17

Definitions

» formula ¢ is satisfiable if v(¢) = T for some valuation v
» formula ¢ is valid if v(¢) = T for every valuation v
» semantic entailment ¢1,...,0, F Y

if v(v) =T whenever v(p1) =v(p2) =---=v(p,) =T

17

Definitions

» formula ¢ is satisfiable if v(¢) = T for some valuation v
» formula ¢ is valid if v(¢) = T for every valuation v
» semantic entailment ¢1,...,p, F Y

if v(yp) =T whenever v(p1) =v(p2) =---=v(p,) =T
» formulas ¢ and v are equivalent (p = ¢) if v(gp) = v(1)) for every valuation v

17

Definitions

» formula ¢ is satisfiable if v(¢) = T for some valuation v
» formula ¢ is valid if v(¢) = T for every valuation v
» semantic entailment ¢1,...,p, F Y
if v(yp) =T whenever v(p1) =v(p2) =---=v(p,) =T
» formulas ¢ and v are equivalent (¢ =) if v(y) = v(v) for every valuation v
» formulas ¢ and v are equisatisfiable (¢ ~ 1)) if

@ Is satisfiable <= 1) is satisfiable

17

Definitions

» formula ¢ is satisfiable if v(¢) = T for some valuation v
» formula ¢ is valid if v(¢) = T for every valuation v
» semantic entailment ¢1,...,p, F Y

if v(v) =T whenever v(p1) =v(p2) =---=v(p,) =T
» formulas ¢ and v are equivalent (¢ =) if v(y) = v(v) for every valuation v
» formulas ¢ and v are equisatisfiable (¢ ~) if

@ Is satisfiable <= 1) is satisfiable

Theorem

formula o is unsatisfiable if and only if - is valid

17

Definitions

» formula ¢ is satisfiable if v(¢) = T for some valuation v
» formula ¢ is valid if v(¢) = T for every valuation v
» semantic entailment ¢1,...,p, F Y

if v(v) =T whenever v(p1) =v(p2) =---=v(p,) =T
» formulas ¢ and v are equivalent (¢ =) if v(y) = v(v) for every valuation v
» formulas ¢ and v are equisatisfiable (¢ ~) if

@ Is satisfiable <= 1) is satisfiable

Theorem

formula o is unsatisfiable if and only if - is valid

Theorem
satisfiability and validity are decidable

17

Definition (Literal)

» literal is atom p or negation of atom —p

18

Definition (Literal)

» literal is atom p or negation of atom —p
» literals /; and / are complementary if h = —=b or L = =/

18

Definition (Literal)

» literal is atom p or negation of atom —p
» literals /; and /, are complementary if 1 = =bh or |, = =/

Definitions

» negation normal form (NNF) if formula with negation only applied to atoms

18

Definition (Literal)

» literal is atom p or negation of atom —p
» literals /; and /, are complementary if 1 = =bh or |, = =/

Definitions

» negation normal form (NNF) if formula with negation only applied to atoms
» conjunctive normal form (CNF) is conjunction of disjunctions

18

Definition (Literal)

» literal is atom p or negation of atom —p
» literals /; and /, are complementary if 1 = =bh or |, = =/

Definitions

» negation normal form (NNF) if formula with negation only applied to atoms
» conjunctive normal form (CNF) is conjunction of disjunctions
» 3-CNF is conjunction of disjunctions with 3 literals: A.(a; V b; V ¢;)

18

Definition (Literal)

» literal is atom p or negation of atom —p
» literals /; and /, are complementary if [} = —=h or b = =/
Definitions
» negation normal form (NNF) if formula with negation only applied to atoms
» conjunctive normal form (CNF) is conjunction of disjunctions
» 3-CNF is conjunction of disjunctions with 3 literals: A.(a; V b; V ¢;)
» disjunctive normal form (DNF) is disjunction of conjunctions

18

Definition (Literal)

» literal is atom p or negation of atom —p
» literals /; and /, are complementary if 1 = =bh or |, = =/

Definitions

» negation normal form (NNF) if formula with negation only applied to atoms
» conjunctive normal form (CNF) is conjunction of disjunctions

» 3-CNF is conjunction of disjunctions with 3 literals: A.(a; V b; V ¢;)

» disjunctive normal form (DNF) is disjunction of conjunctions

Theorem
for every formula o there is CNF), 3-CNF x and DNF n such that o = 1) = v =7

18

Definition (Literal)

» literal is atom p or negation of atom —p
» literals /; and /, are complementary if 1 = =bh or |, = =/

Definitions

» negation normal form (NNF) if formula with negation only applied to atoms

» conjunctive normal form (CNF) is conjunction of disjunctions
» 3-CNF is conjunction of disjunctions with 3 literals: A.(a; V b; V ¢;)
» disjunctive normal form (DNF) is disjunction of conjunctions

Theorem

for every formula there is CNF v, 3-CNF x and DNF n such that p =19 =x =7

Remarks

» translation from formula to CNF can result in exponential blowup

18

Definition (Literal)

» literal is atom p or negation of atom —p
» literals /; and /, are complementary if 1 = =bh or |, = =/

Definitions

» negation normal form (NNF) if formula with negation only applied to atoms

» conjunctive normal form (CNF) is conjunction of disjunctions
» 3-CNF is conjunction of disjunctions with 3 literals: A.(a; V b; V ¢;)
» disjunctive normal form (DNF) is disjunction of conjunctions

Theorem

for every formula there is CNF v, 3-CNF x and DNF n such that p =19 =x =7

Remarks

» translation from formula to CNF can result in exponential blowup
» [seitin's transformation is linear and produces equisatisfiable formula

18

Satisfiability (SAT)

Instance:
question:

propositional formula ¢
Is ¢ satisfiable?

19

Satisfiability (SAT)

instance: propositional formula ¢
question: Is ¢ satisfiable?

3-Satisfiability (3-SAT)

instance: propositional formula ¢ in 3-CNF
question: Is ¢ satisfiable?

19

Satisfiability (SAT)

instance: propositional formula ¢
question: Is ¢ satisfiable?

3-Satisfiability (3-SAT)

instance: propositional formula ¢ in 3-CNF
question: Is ¢ satisfiable?
Theorem

SAT and 3-SAT are NP-complete problems

19

Satisfiability (SAT)

instance: propositional formula ¢
question: is ¢ satisfiable?

3-Satisfiability (3-SAT)

Instance: propositional formula ¢ in 3-CNF
question: Is ¢ satisfiable?
Theorem

SAT and 3-SAT are NP-complete problems

SAT

Z-factorization 3-SAT
Minesweeper

travelling salesman

» 1 million $ prize money awarded for solution to P =’ NP

19

Fact
most SAT solvers require input to be in CNF

31

Fact
most SAT solvers require input to be in CNF

Remarks

» transforming formula to equivalent CNF can cause exponential blowup
» transforming formula into equisatisfiable CNF is possible in linear time

31

Fact
most SAT solvers require input to be in CNF

Remarks

» transforming formula to equivalent CNF can cause exponential blowup
» transforming formula into equisatisfiable CNF is possible in linear time

Definition

formulas ¢ and 1 are equisatisfiable (¢ ~) if

@ Is satisfiable — 1 is satisfiable

31

Fact
most SAT solvers require input to be in CNF

Remarks

» transforming formula to equivalent CNF can cause exponential blowup
» transforming formula into equisatisfiable CNF is possible in linear time

Definition

formulas ¢ and 1 are equisatisfiable (¢ ~) if

@ Is satisfiable — 1 is satisfiable

Example

pVg~T pA—p =~ qA—q pA—p % pA—q

L

31

Example (Tseitin’s Transformation)

> p=-(pVq)V(pA(pVaq))

32

Example (Tseitin’s Transformation)

> p=-(pVq)V(pA(pVaq))

ap V

/ N\

a2 vV P as V

AT

32

Example (Tseitin’s Transformation) a V

> =(pVqg)VIpAN(pV //\\
p=-(pVa)VipA(pVaq) o = a A
» use fresh propositional variable for every connective ‘ / \
a: ~(pVaq)V(pA(pVaq) ai:—(pVq) 2 V.o PV
a: pVg az: pA(pVQq) /\ /\
P q P 9

as: pVqg

Example (Tseitin’s Transformation) a V

» p==(pVaq)V(pA(pVaq)) 2 ﬁ/ as\A

» use fresh propositional variable for every connective ‘ / \
a: ~(pVaq)V(pA(pVaq) ai:—(pVq) 2 V.o PV
a: pVg az: pA(pVQq) /\ /\
255 PV q P q P 9

> o~ aAN(ag<rarVaz)A(ar < —ax)A(ax < pVag A
(a3 <> pAag)A(ag <> pVQq)

32

Example (Tseitin’s Transformation) a V

> p=—(pva)V(pA(pVaq)) 2 ﬁ/ 33\A

» use fresh propositional variable for every connective ‘ / \
a: ~(pVaq)V(pA(pVaq) ai:—(pVq) 2 V.o PV
a:pVq az: pA(pVQq) /\ /\
255 PV q P q P 9

> o~ aAN(ag<rarVaz)A(ar < —ax)A(ax < pVag A
(a3 <> pAag)A(ag <> pVQq)

> every <> subexpression can be replaced by at most three clauses:

a<>bANc = (-aVb)A(—-aVc)A(aV-bV —c)
a<>bVvec = (-aVvbVc)A(aV-b)A(aV —c)
a<>—b = (-aVvV-b)A(aVb)

32

Example (Tseitin’s Transformation) a V

>

>

p==(pVa)V(pA(pVa) o ﬁ/ 33\A

use fresh propositional variable for every connective ‘ / \
ag: (pvVaqg)V(pA(pVaqg) ai:—(pVq) a p as Vv
a: pVg az: pA(pVQq) /\ /\
21 pV q P q P q

Vol ao/\(30H31V33)/\(31H_Iaz)/\(QQHp\/Q)/\
(a3 <> pAag)A(ag <> pVaq)

every <+ subexpression can be replaced by at most three clauses:

a<>bANc = (-aVb)A(—-aVc)A(aV-bV —c)
a<>bVvec = (-aVvbVc)A(aV-b)A(aV —c)
a<>—b = (-aVvV-b)A(aVb)

common subexpressions can be shared

Example (Tseitin’s Transformation) a V

>

>

p=-(pva)VvipA(pVa)) 2 ﬁ/ 33\A

use fresh propositional variable for every connective ‘ / \
a: ~(pVaq)V(pA(pVaq) ai:—(pVq) 2 V.o PV
a:pVq az: pA(pVQq) /\ /\
255 PV q P q P 9

e~ agN(ag>rarVas)A(ar < a)A(ax < pVg)A
(a3 <> p A an)

every <+ subexpression can be replaced by at most three clauses:

a<>bANc = (-aVb)A(—-aVc)A(aV-bV —c)
a<>bVvec = (-aVvbVc)A(aV-b)A(aV —c)
a<>—b = (-aVvV-b)A(aVb)

common subexpressions can be shared

SAT Solvers

Minisat, Glucose, CaDiCal, Glu_VC, Plingeling, MapleLRB LCM, MapleCOMPSPS, Riss,
Lingeling, Treengeling, CryptoMiniSat, abcdSAT, Dimetheus, Kiel, MapleCOMSPS, Rsat,
SWDiA5BY, BlackBox, SWDiA5BY, pprobSAT, glueSplit_clasp, BalancedZ, SApperloT,
PeneLoPe, MXC, ROKKminisat, MiniSat_ HACK_999ED, ZENN, CSHCrandMC, MiniGolf,
march_rw, sattime2011, mphasesat64, sparrow2011, pmcSAT, CSHCpar8, gluebit_clasp,
clasp, precosat, gNovelty, SATzilla, SatELite, Score2SAT, YalSAT, tch glucose3, ...

35

SAT Solvers

Minisat, Glucose, CaDiCal, Glu_VC, Plingeling, MapleLRB LCM, MapleCOMPSPS, Riss,
Lingeling, Treengeling, CryptoMiniSat, abcdSAT, Dimetheus, Kiel, MapleCOMSPS, Rsat,
SWDiA5BY, BlackBox, SWDiA5BY, pprobSAT, glueSplit_clasp, BalancedZ, SApperloT,
PeneLoPe, MXC, ROKKminisat, MiniSat_ HACK_999ED, ZENN, CSHCrandMC, MiniGolf,
march_rw, sattime2011, mphasesat64, sparrow2011, pmcSAT, CSHCpar8, gluebit_clasp,
clasp, precosat, gNovelty, SATzilla, SatELite, Score2SAT, YalSAT, tch glucose3, ...

SAT Competition

» annual competition for different tracks (main, parallel, no-limit, ...)

» increasing set of benchmarks from industry, mathematics, cryptography, ...
» standardized input format DIMACS and proof format DRAT

35

SAT Solvers

Minisat, Glucose, CaDiCal, Glu_VC, Plingeling, MapleLRB LCM, MapleCOMPSPS, Riss,
Lingeling, Treengeling, CryptoMiniSat, abcdSAT, Dimetheus, Kiel, MapleCOMSPS, Rsat,
SWDiA5BY, BlackBox, SWDiA5BY, pprobSAT, glueSplit_clasp, BalancedZ, SApperloT,
PeneLoPe, MXC, ROKKminisat, MiniSat_ HACK_999ED, ZENN, CSHCrandMC, MiniGolf,

march_rw, sattime2011, mphasesat64, sparrow2011, pmcSAT, CSHCpar8, gluebit_clasp,
clasp, precosat, gNovelty, SATzilla, SatELite, Score2SAT, YalSAT, tch glucose3, ...

SAT Competition

» annual competition for different tracks (main, parallel, no-limit, ...)

» increasing set of benchmarks from industry, mathematics, cryptography, ...
» standardized input format DIMACS and proof format DRAT

http://www.satcompetition.org/

35

SAT Solvers

Minisat, Glucose, CaDiCal, Glu_VC, Plingeling, MapleLRB LCM, MapleCOMPSPS, Riss,
Lingeling, Treengeling, CryptoMiniSat, abcdSAT, Dimetheus, Kiel, MapleCOMSPS, Rsat,
SWDiA5BY, BlackBox, SWDiA5BY, pprobSAT, glueSplit_clasp, BalancedZ, SApperloT,
PeneLoPe, MXC, ROKKminisat, MiniSat_ HACK_999ED, ZENN, CSHCrandMC, MiniGolf,

march_rw, sattime2011, mphasesat64, sparrow2011, pmcSAT, CSHCpar8, gluebit_clasp,
clasp, precosat, gNovelty, SATzilla, SatELite, Score2SAT, YalSAT, tch glucose3, ...

SAT Competition

» annual competition for different tracks (main, parallel, no-limit, ...)

» increasing set of benchmarks from industry, mathematics, cryptography, ...
» standardized input format DIMACS and proof format DRAT

http://www.satcompetition.org/
Minisat
» minimalistic open source solver (http://minisat.se/ or apt, yum,...)

$ minisat test.sat result.txt
» web interface

35

Example (DIMACS)

formula (x1 V =x3) A (x2 V x3 V =x1) A (—x1 V X2 V x4) can be expressed by

c a very simple example
p cnf 4 3

1 -30

23-10

-1240

36

Example (DIMACS)

formula (x1 V =x3) A (%2 V x3 V =ix1) A (—x1 V X2 V x4) can be expressed by

c a very simple example
p cnf 4 3

1 -30

23-10

-1240

The DIMACS Format

» header p cnf n m specifies number of variables n and number of clauses m

36

Example (DIMACS)

formula (x1 V =x3) A (%2 V x3 V =ix1) A (—x1 V X2 V x4) can be expressed by

c a very simple example
p cnf 4 3

1 -30

23-10

-1240

The DIMACS Format

» header p cnf n m specifies number of variables n and number of clauses m
» variables (atoms) are assumed to be xi, ..., X,

36

Example (DIMACS)

formula (x1 V =x3) A (%2 V x3 V =ix1) A (—x1 V X2 V x4) can be expressed by

c a very simple example
p cnf 4 3

1 -30

23-10

-1240

The DIMACS Format

» header p cnf n m specifies number of variables n and number of clauses m
» variables (atoms) are assumed to be xi, ..., X,
» literal x; is denoted i and literal —x; is denoted —i

36

Example (DIMACS)

formula (x1 V =x3) A (%2 V x3 V =ix1) A (—x1 V X2 V x4) can be expressed by

c a very simple example
p cnf 4 3

1 -30

23-10

-1240

The DIMACS Format

» header p cnf n m specifies number of variables n and number of clauses m
variables (atoms) are assumed to be xg, ..., X,
literal x; is denoted i and literal —x; is denoted -1

v vyy

a clause is a list of literals terminated by 0

36

Example (DIMACS)

formula (x1 V =x3) A (%2 V x3 V =ix1) A (—x1 V X2 V x4) can be expressed by

c a very simple example
p cnf 4 3

1 -30

23-10

-1240

The DIMACS Format

» header p cnf n m specifies number of variables n and number of clauses m
variables (atoms) are assumed to be xg, ..., X,

literal x; is denoted i and literal —x; is denoted —i

a clause is a list of literals terminated by 0

v v vy

lines starting with ¢ are considered comments

36

