INTRODUCTION TO SMT

Copyright: Peter Muller, ETH Zurich
(slides developed in cooperation with Christoph Matheja)

Last week

» |ntroduction to SAT

= DNF, CNF, Tseitin’s algorithm

* minisat demo

= Examples of problems that can be encoded as SAT

ETH:zurich

This week: foundations of Dafny

Automated verifier

Front-end

2

source code

annotated with Intermediate Verification
e o Language
specifications ‘

Intermediate Verification
Language

3

Generation of
proof obligations

4

SMT solver We are here

feedback

ETH:zurich

Automating program verification

Main steps of a tool for automatically verifying = {A} S {B}

1. Compute weakest preconditions for B under S: wp [S] (B)

2. Decide A = wp[S](B) — Weemployan SMT solver

ETH:zurich

SMT solvers

1. Propositional logic and satisfiability solvers
2. Using Z3 as a SAT solver
3. First-order logic and SMT solvers

4. Using Z3 as an SMT solver

ETH:zurich

Propositional logic

Syntax of propositional logic Syntactic sugar:
/“ taken from a set Var of variables false = x A —x true ;1= —false
F .= x| -F|FAF AvB := -(-AA-B) A=B := -AVB

: Binds stranger A<B ::= A=B)A(B=A)

Interpretation: p: Var — { true, false} @ = |x = false,y = true]

1 is a model of F iff u satisfies F p=rh(z=y) =y
Satisfaction relation [~ ulExA(x=y) <y
= x iff u(x) = true
u - AAB iff 4 Aandu B

p=xNx=y)sr Ay

ETH:zurich 6

Satisfiability and validity

= F is satisfiable

iff F has some model

= F is unsatisfiable iff F has no model

= Fisvalid

F is not valid

iff every interpretation is a model of F
(—F is unsatisfiable)

(r =y) =y
x Ny (x=1y)

N\ (r=1y) =y

iff some interpretation is not a model of F T A (r=y) <y

(—F is satisfiable)

ETH:zurich

The satisfiability problem

= A formula is satisfiable if it has a model

= Satisfiability (SAT) problem:
Given a propositional logic formula,
decide whether it is satisfiable

* |f yes, ideally also provide a witness

(.’L‘l vV I9 V ﬁfb‘g)
A\ (JZ’5 V —15132)
A

(_1331 V -3 VxyV ﬁ.CL’5)

L = [x] = true,xs = true,

T3 = true,r4 = true,rs; = true]

ETH:zurich

Complexity of SAT

» For formulas in conjunctive normal form (CNF), SAT
Is the classical NP-complete problem A\ Ci; where Ci; € {z;;, ~w; ;)
- Many difficult problems can be efficiently encoded v
- Every known algorithm is exponential in the formula’s size

* Modern SAT solvers are extremely efficient in practice
- Scale to formulas with millions of variables
- Mauy still perform poorly on certain formulas

ETH:zurich

Exercise: placement of wedding guests

Model the following problem as a SAT problem:

Consider three chairs in a row: left, middle, right. Can we
assign chairs to Alice, Bob, and Charlie such that:

= Alice does not sit next to Charlie,
= Alice does not sit on the leftmost chair, and
= Bob does not sit to the right of Charlie?

ETH:zurich

10

Solution: placement of wedding guests

* Model assignment via nine boolean variables z,..: “person p sits in chair ¢”

» Alice does not sit next to Charlie (Ta1VTar= 2Tom) N(Tam = "Tor AT,
= Alice does not sit on the leftmost chair LA

= Bob does not sit to the right of Charlie (xoy = ~@m) N (Tem = ~TB,r)

= Each person gets a chair AV oz

1<p<3 1<c<3

= Every person gets at most one chair A A (zpeV-aa)
1<p<3 1<¢,d<3,c#d

= Every chair gets at most one person A\ N\ (G2peV orge)
1<p,q<3,p#q 1=<c=<3

ETH:zurich 11

SMT solvers

1. Propositional logic and satisfiability solvers
2. Using Z3 as a SAT solver
3. First-order logic and SMT solvers

4. Using Z3 as an SMT solver

ETH:zurich

12

Using a SAT solver

o witness: model of F
» |s F satisfiable?

sat + withess
satisfiable unsatisfiable
F— SAT solver

unsat

n id? witness (counterexample):
Is F valid interpretation that is not a model of F

- —
sat + withess

satisfiable unsatisfiable

—F — SAT solver
unsat

ETH:zurich 13

The Z3 Satisfiability Modulo Theories solver

25

= Developed by Microsoft (under MIT license)
= Building block of many verification tools including Viper

= Various input formats and APIs
- Z3, SMTLIB-2, C, C++, Python, Java, OCaml, ...

= For now: Use Z3 as a SAT solver

= Tutorial: https://ericpony.github.io/z3py-tutorial/guide-examples.htm

ETH:zurich 14

A first example in Z3

from z3 import *

declare variables
X = Bool('x")
y = Bool('y")

define formula: x = vy
F = Implies(x, y)

print the formula F is satisfiable, this is a model

print(F) Implies(x, y)
find a model for F [y g Aty
solve(F) Ly = False, X

find a counterexample for F

F is not valid, this is a counterexample
solve(Not(F))

ETH:zurich

15

A valid formula example in Z3

from z3 import *

declare variables
X = Bool('x")
y = Bool('y")

define formula: —(X A Yy) & =X VvV —y
F = Not(And(x, y)) == Or(Not(x), Not(y))

o et e ere F is satisfiable, all interpretations are models

print(F) Not (And(xs+¥)) == Or(Not(x), Not(y))
find a model for F [] o
solve(F) no solution

find a counterexample for F
solve(Not(F))

F is valid, no interpretation is a counterexample

ETH:zurich 16

A more complex example in Z3

from z3 import *

declare multiple variables
X, y = Bools('x y’)

create a solver 1instance

= Solver()

add conjuncts
.add(Implies(x, y))
.add(Implies(y, x))

nw n ¥ wn H

check satisfiability
print(s.check())
print(s.model())

s.add(x)
s.add(Not(y))

check satisfiability
print(s.check())

The first two conjuncts are satisfiable,
we get a model

sat
[y = False, x = False]

unsat

All four conjuncts together are unsatifiable

ETH:zurich

17

Exercise: placement of wedding guests in Z3

Encode the placement of wedding guests in Z3.

* Model assignment via nine boolean variables z,.: “person psits in chair ¢’

» Alice does not sit next to Charlie

= Alice does not sit on the leftmost chair
= Bob does not sit to the right of Charlie
= Each person gets a chair

= Every person gets at most one chair

= Every chair gets at most one person

(a1 Vaar="Tcom)N(@Tam = "Tci NTc,)

LA

(xcqg = "xBm) N (xCom = "TB,r)

AV

1<p<3 1<c<3

/\ /\ (mZp,c V 2Tp.a)

1<p<3 1<c,d<3,c#d

/\ /\ (m@p,c V 72g,c)

1<p,q<3,p#q 1<c<3

ETH:zurich

18

Using a SAT solver to verify a program

{ true }
// Check that this entailment 1is valid (negation is unsatisfiable)
{ (a = (b = (true < (a = b))) A (b = (false & (a = b)))) v (—a = (true & (a = b))
if (a) {
{ (b = (true & (a = b))) A (b = (false & (a = b))) }
if (b) {
{ true & (a = b) }
res := true
{ res & (a = b) }
} else {
{ false < (a = b) }
res := false
{ res & (a = b) }
}
res < (a = b) }
else {
true < (a = b) }
res := true
res < (a = b) }

b

el e e

res < (a = b) }

O

ETH:zurich

21

Propositional logic is not enough!

= \What about this entailment?

{a=1A0<>b*b - 4*%c }
// Check that this entailment 1is valid
{ b*b - 4*a*c < @ A false v
—(b*b - 4*a*c < @) A a*((-b + vbxb - 4xaxc) / 2)2 + b*((-b + Vbxb - 4xaxc) / 2) + c = 0 }

= Entailment is not in propositional logic
- Real-valued variables (a, b, ¢) and numeric constants
- Arithmetic operations (+, -, *, /, 2, \/) and comparisons (=, <, <)

» Logic must support at least the expressions appearing in programs
- ltis also useful to support quantifiers (e.g., for array algorithms)

» General framework: first-order predicate logic (FO) over suitable theories

ETH:zurich 22

SMT solvers

1. Propositional logic and satisfiability solvers
2. Using Z3 as a SAT solver
3. First-order logic and SMT solvers

4. Using Z3 as an SMT solver

ETH:zurich

23

First-order (FO) predicate logic

FO logic is a framework with three syntactical ingredients:

1. Logical symbols A, V, o, =, &, 3,V L
2. Theory symbols
variables, constant symbols, function symbols Y, Z,... 0, 1,... +, — %,...

3. Predicate symbols

bridge from theories to logic <=
Special case: a sort identifies a non-empty set S with a Bool, Int,Real, ...
unary predicate symbol interpreted as membership in S
Terms are constructed from theory symbols r, 0, O0+z—-y+1
Constraints lift terms to the logical level via predicates r+y<l+z-0, Int(l+x)
A signature X collects all constants, functions, and predicates X = {Int, 0,1, +, %, <}
assumption: ¥ contains at least one sort
A >-formula is a logical formula over constraints Vedy (yxy=axxx+(1+1)xx+1)

ETHzurich 24

Exercise: satisfiability of FO formulas

IsVzdy (y=ax+1Ayxy=x*xx+ (1+1)*2x+ 1) satisfiable?

ETH:zurich

25

Solution: satisfiability of FO formulas

IsVady (y=x+1Ayxy=x*xx+ (1+1)*x+1)satisfiable?

Yes, if No, if
= the theory symbols 1, 4, , x,= have the = 1 actually means 2, or
usual interpretation = addition is interpreted as maximum

Satisfiability of FO formulas depends on the‘admissible,‘interpretations of theory symbols’
Y Y

determined by “theories” determined by “structures”

ETH:zurich 26

Semantics of FO

Let D denote the union of the sets of all sorts in signature X

A >-structure p interprets the theory symbols in X by mapping:

= each free variable (those not bound by a quantifier) to an element in D
» each constant to an element in D

> = {Int,0,1,+, =} D=1Int

p(0)=0 u(l)=1
pt(+): Int x Int — Int

» each n-ary function symbol to a function of type D — D (a,0) = a+b
= each n-ary predicate symbol to a predicate of type D™ — {true, false} f(=): Int X Int — {true, false}
(a,b) —a=1>
Satisfaction relation for >-formulas
p = pred(ty, ... t,) iff p(pred)(u(ty), ..., u(t1)) = true
p = 3zA iff forsome d € D, plz:=d E A o= Vady (
p = VA iff foreveryd e D, ulz:=d = A)
v = AAB iff p=Aandpy = B
ETH:zurich

27

Satisfiability Modulo Theories

= A sentence is a formula without free variables

= An axiomatic system AX is a set of X -sentences

» The X-theory 7 given by AX is the set of all 2-sentences inferable from AX

A XY-formula F is 7-satisfiable iff A X-formula F is 7-valid iff
there exists a X-structure i such that for all X-structures p
=, = F, and (foral Ac T, pn = A)
= 4, = A holds for every sentence A € T. implies 1 = F .

ETH:zurich 28

Exercise: satisfiability and validity

> = {Nat, zero, one, @, =
7T is given by the axioms:
Vo (x = x) Ve Vy (x Dy =y D x)

F := dxz (x & zero = one)

Is F ‘T-satisfiable?

Is F 7-valid?

ETH:zurich

29

Solution: satisfiability and validity

> = {Nat, zero, one, @, =
7T is given by the axioms:
Vo (x = x) Ve Vy (x Dy =y D x)

F := dxz (x & zero = one)
Is F T-satisfiable? Is F 7-valid?
O plx) =1 Q p(zero) =1 and p(one) = 0
u(zero) = 0 u(one) =1
p(h): addition O after adding an axiom
u(=): equality Vo (x & zero = x)

ETH:zurich 30

Some important theories

» Arithmetic (with canonical axioms)
- Presburger arithmetic: ¥ = {1Int, 0, 1, +, <}
- Peano arithmetic: >={Int, 0, 1, +, %, <}
- Real arithmetic: > ={Real, 0, 1, +, *, <}

= Equality logic with uninterpreted functions (EUF)
B Z:{Ua) f17f27°°'}

- arbitrary universe U (no specific sort)

decidable

undecidable
decidable

decidable

- axioms ensure that = is an equivalence relation (reflexive, symmetric, transitive)

- arbitrary number of uninterpreted function symbols of any arity

= We typically need a combination of multiple theories
- Example: Presburger arithmetic + uninterpreted functions
- Program verification: theories for modeling different data types

ETH:zurich

31

SMT solvers

1. Propositional logic and satisfiability solvers
2. Using Z3 as a SAT solver
3. First-order logic and SMT solvers

4. Using Z3 as an SMT solver

ETH:zurich

32

Using theories
= Sorts (beyond Bool)

- Int, Real, BitVec(precision)

- DeclareSort(name)
(uninterpreted)

= Variables are syntactic sugar
for uninterpreted constants
- Const(name, sort)

» Uninterpreted functions are
declared with parameter and
result types

= We will discuss quantifiers later

from z3 import *
Pair = DeclareSort('Pair')
null = Const('null', Pair)

cons = Function('cons', IntSort(), IntSort(), Pair)
first = Function('first', Pair, IntSort())

axl = (null == cons(@, 0))

X, Yy =Ints('xy'")

ax2 = ForAll([x, y], first(cons(x, y)) == X)
= Solver()

.add(axl)
.add(ax2)

S
S
S
F = first(null) == ©
#
S.

check validity
add(Not(F))
print(s.check())

ETH:zurich

33

Using an SMT solver to verify a program

{a=1A0<>b*b - 4*%c }
// Check that this entailment is valid (its negation 1is unsatisfiable)
{ b*b - 4*a*c < @ A false v

—(b*b - 4*a*c < @) A a*((-b + vbxb - 4xaxc) / 2)2 + b*((-b + Vvbxb - 4xaxc) / 2) + c = @ }

from z3 import *

a, b, c = Reals('a b c')
d = b*b - 4*a*c
PO = Implies(
And(a == 1, @ <= b*b - 4*c),
Or(And(d < @, False),
And(Not(d < 0),
a*((-b + Sqgrt(d))/2)*((-b + Sqrt(d))/2) + b*((-b + Sqrt(d))/2) + c ==

)))
check validity
s = Solver()

s.add(Not(P0O)); print(s.check())

ETH:zurich 34

Some important theories

Linear integer/real arithmetic
19%xx+2*xy =42

Non-linear integer/real arithmetic
cxy+2xzxy+1=(z+y)*(@+y)

Equality logic with uninterpreted functions
(z=yAu=v)= f(z,u) = f(y,v)

Fixed-size bitvector arithmetic
r&y < xly

Array theory
read(write(a,i,v),i) = v

(Unbounded) arithmetic is often used to approximate int and float
Multiplication by constants is supported

Useful for programs that perform multiplication and division, e.g.,
crypto libraries

Universal mechanism to encode operations not natively
supported by a theory

To encode bit-level operations
To perform bit-precise reasoning, e.g., floats

To encode data types such as arrays

ETH:zurich

35

Example: encoding hard problems to SMT

MY HOBBY:
EVBEDDING NP-(DMPLETE PROBLEMS IN RESTAURANT ORDERS

CHOTCHKIES RESTAURAWT

«— APPENZERS
MIXED FRUIT 2.15
FRENCH FRIES 2.75
SIDE 5ALAD 3.35
HoT WINGS B

MOZZAREUA STICXS 420
SAMPLER PLATE 5.80

—— SANDWICHES ~—

WED LIKE EXACTLY §15. 05
WORTH OF APPETIZERS, PLEASE..

[. EXACTLY? UMK
HERE, THESE PAPERS ON THE KNAPSACK.
PROBLEM MIGHT HELP YOU OUT.
LISTEN, I HAVE Six OTHER
TABLES TO GET T —

—AS FAST AS POSSIBLE, (F (OURSE. WANT
SOMETHING ON TRAVELING SALESNAN? /

£Y
(FROY

RARRFNE /RS

https://xkcd.com/287/

How do we model this as an SMT query?

36

ETH:zurich

Theory reasoning

» /3 selects theories based on the features appearing in formulas
- Most verification problems require a combination of many theories

Quantifier-free linear integer arithmetic with uninterpreted functions

17xx+23* f(y) >x+y+42

» Some theories are decideable, e.g., quantifier-free linear arithmetic
- SMT solver will terminate and report either “sat” or “unsat”

= Some theories are undecideable, e.g., nonlinear integer arithmetic
- Especially in combination with quantifiers
- SMT solver uses heuristics and may not terminate or return “unknown”
- Results can be flaky, e.g., depend on order of declarations or random seeds

ETH:zurich

40

Working with quantifiers is non-trivial

from z3 import *
s = Solver()

Real('x")

X
f = Function('f', RealSort(), RealSort())

s.add(

ForAll(x, Implies(x »>= 0, f(x) * f(x) == x))
)

s.add(x > 9)
s.add(Sgrt(x) == f(x))

print(s.check())

$ python ...

ETH:zurich

41

Exercise: the N-queens problem

The N-queens problem is to place N-queens on an N x N chess
board such that no two queens threaten each other.

Let’'s use Z3 to compute a solution to the N-queens problem for
any given N.

Hints:

» Represent the board as a list of N integers:
IntVector(‘board’, N).board[i] gives the row of the
queen in column i.

= Distinct(l) is a Z3-constraint that expresses that all
elements in list 1 are disjoint.

= You can easily check the diagonals by shifting the queens
vertically and then checking the rows.

Extend your encoding to find all solutions. How many are there?

a b c d e f g h

IE
—_ N W A " Y ~N

- N W =~ (8] (o2] ~J o

=4

a b c d e f g h

[2.’ 4.’ 6) 8) 3) 1.’ 7J 5]

ETH:zurich

42

More background on SAT solvers

= DPLL: Davis-Putnam-Logemann-Loveland Algorithm K
- A machine program for theorem-proving. Martin Davis, George Logemann, O g g
and Donald Loveland. 1962. Hé\N?B?aK
. : : : e e of satisfiability
= CDCL: Conflict-Driven Clause Learning Algorithm -

- GRASP — A New Search Algorithm for Satisfiability. Jodo P. Marques Silva
and Karem A. Sakallah. 1996.
» Further developments

- Chaff: engineering an efficient SAT solver. Matthew W. Moskewicz,
Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. 2001.

- SAT-solving in practice. Koen Claessen, Niklas Een, Mary Sheeran,
Niklas Sorensson. 2008.

= Annual SAT competition:
- http://www.satcompetition.org/

ETHzurich 44

https://dl.acm.org/doi/abs/10.1145/368273.368557
https://link.springer.com/chapter/10.1007/978-1-4615-0292-0_7
https://dl.acm.org/doi/abs/10.1145/378239.379017
https://ieeexplore.ieee.org/abstract/document/4605923
http://www.satcompetition.org/

More background on SMT solvers

= http://www.decision-procedures.org/ (website of book)

= Programming Z3, Nikolaj Bjegrner, Leonardo de Moura,
Lev Nachmanson, Christoph M. Wintersteiger, 2018

= SMT-LIB standard

» Other teaching material
- SMT solvers: Theory and Implementation. Leonardo de Moura
- SMT Solvers: Theory and Practice. Clark Barrett
- Satisfiability Checking, Erika Abraham

Daniel Kroening
Ofer Strichman

Decision
Procedures

An Algorithmic Point of View

Second Edition

ETH:zurich

45

http://www.decision-procedures.org/
https://theory.stanford.edu/~nikolaj/programmingz3.html
http://smtlib.cs.uiowa.edu/

