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Last week
§ Introduction to SAT
§ DNF, CNF, Tseitin’s algorithm
§ minisat demo
§ Examples of problems that can be encoded as SAT
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Automating program verification

Main steps of a tool for automatically verifying

1. Compute weakest preconditions for B under S:                        

2. Decide                                   ® We employ an SMT solver
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SMT solvers

1. Propositional logic and satisfiability solvers

2. Using Z3 as a SAT solver

3. First-order logic and SMT solvers

4. Using Z3 as an SMT solver
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Propositional logic

Syntax of propositional logic

binds stronger

Syntactic sugar:

Satisfaction relation
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Satisfiability and validity

§ F is satisfiable iff F has some model

§ F is unsatisfiable iff F has no model

§ F is valid iff every interpretation is a model of F
(¬F is unsatisfiable)

§ F is not valid iff some interpretation is not a model of F
(¬F is satisfiable)
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The satisfiability problem

§ A formula is satisfiable if it has a model

§ Satisfiability (SAT) problem: 
Given a propositional logic formula, 
decide whether it is satisfiable

§ If yes, ideally also provide a witness
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Complexity of SAT

§ For formulas in conjunctive normal form (CNF), SAT 
is the classical NP-complete problem
- Many difficult problems can be efficiently encoded
- Every known algorithm is exponential in the formula’s size

§ Modern SAT solvers are extremely efficient in practice
- Scale to formulas with  millions of variables
- May still perform poorly on certain formulas
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Exercise: placement of wedding guests

Model the following problem as a SAT problem:
Consider three chairs in a row: left, middle, right. Can we 
assign chairs to Alice, Bob, and Charlie such that:
§ Alice does not sit next to Charlie,
§ Alice does not sit on the leftmost chair, and
§ Bob does not sit to the right of Charlie?
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Solution: placement of wedding guests
§ Model assignment via nine boolean variables

§ Alice does not sit next to Charlie

§ Alice does not sit on the leftmost chair

§ Bob does not sit to the right of Charlie

§ Each person gets a chair

§ Every person gets at most one chair

§ Every chair gets at most one person
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SMT solvers

1. Propositional logic and satisfiability solvers

2. Using Z3 as a SAT solver

3. First-order logic and SMT solvers

4. Using Z3 as an SMT solver
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Using a SAT solver
§ Is F satisfiable?

§ Is F valid?

SAT solverF

sat + witness

unsat

SAT solver¬F

sat + witness

unsat

satisfiable unsatisfiable

valid

witness (counterexample): 
interpretation that is not a model of F

satisfiable unsatisfiable

witness: model of F
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The Z3 Satisfiability Modulo Theories solver

§ Developed by Microsoft (under MIT license)

§ Building block of many verification tools including Viper

§ Various input formats and APIs
- Z3, SMTLIB-2, C, C++, Python, Java, OCaml, ...

§ For now: Use Z3 as a SAT solver

§ Tutorial: https://ericpony.github.io/z3py-tutorial/guide-examples.htm
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A first example in Z3

from z3 import *

# declare variables
x = Bool('x')
y = Bool('y')

# define formula: x Þ y
F = Implies(x, y)

# print the formula
print(F)

# find a model for F
solve(F)

# find a counterexample for F
solve(Not(F))

F is satisfiable, this is a model

F is not valid, this is a counterexample
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A valid formula example in Z3

from z3 import *

# declare variables
x = Bool('x')
y = Bool('y')

# define formula: ¬(x Ù y) Û ¬x Ú ¬y
F = Not(And(x, y)) == Or(Not(x), Not(y))

# print the formula
print(F)

# find a model for F
solve(F)

# find a counterexample for F
solve(Not(F))

F is satisfiable, all interpretations are models 

F is valid, no interpretation is a counterexample
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A more complex example in Z3

from z3 import *

# declare multiple variables
x, y = Bools('x y’)

# create a solver instance
s = Solver()

# add conjuncts
s.add( Implies(x, y) )
s.add( Implies(y, x) )

# check satisfiability
print( s.check() )
print( s.model() )

s.add( x )
s.add( Not(y) )

# check satisfiability
print( s.check() )

The first two conjuncts are satisfiable,
we get a model

All four conjuncts together are unsatifiable
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Exercise: placement of wedding guests in Z3

§ Model assignment via nine boolean variables

§ Alice does not sit next to Charlie

§ Alice does not sit on the leftmost chair

§ Bob does not sit to the right of Charlie

§ Each person gets a chair

§ Every person gets at most one chair

§ Every chair gets at most one person

Encode the placement of wedding guests in Z3.
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Using a SAT solver to verify a program
{ true }
// Check that this entailment is valid (negation is unsatisfiable)
{ (a Þ (b Þ (true Û (a Þ b))) Ù (¬b Þ (false Û (a Þ b)))) Ú (¬a Þ (true Û (a Þ b)) } 
if (a) {
{ (b Þ (true Û (a Þ b))) Ù (¬b Þ (false Û (a Þ b))) }
if (b) {

{ true Û (a Þ b) }
res := true

{ res Û (a Þ b) }
} else {

{ false Û (a Þ b) }
res := false

{ res Û (a Þ b) }
}

{ res Û (a Þ b) }
} else {
{ true Û (a Þ b) }
res := true

{ res Û (a Þ b) }
}
{ res Û (a Þ b) }
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Propositional logic is not enough!
§ What about this entailment?

§ Entailment is not in propositional logic
- Real-valued variables (a, b, c) and numeric constants
- Arithmetic operations (+, -, *, /, 2, √) and comparisons (=, <, £)

§ Logic must support at least the expressions appearing in programs
- It is also useful to support quantifiers (e.g., for array algorithms)

§ General framework: first-order predicate logic (FO) over suitable theories

{ a = 1 Ù 0 £ b*b – 4*c }
// Check that this entailment is valid 
{ b*b – 4*a*c < 0 Ù false Ú
¬(b*b – 4*a*c < 0) Ù a*((-b + b∗b – 4∗a∗c) / 2)2 + b*((-b + b∗b – 4∗a∗c) / 2) + c = 0 } 
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SMT solvers

1. Propositional logic and satisfiability solvers

2. Using Z3 as a SAT solver

3. First-order logic and SMT solvers

4. Using Z3 as an SMT solver
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First-order (FO) predicate logic
FO logic is a framework with three syntactical ingredients:

1. Logical symbols
2. Theory symbols

variables, constant symbols, function symbols
3. Predicate symbols

bridge from theories to logic

A signature collects all constants, functions, and predicates
assumption:     contains at least one sort

Terms are constructed from theory symbols

Constraints lift terms to the logical level via predicates

A                   is a logical formula over constraints

Special case: a sort identifies a non-empty set S with a 
unary predicate symbol interpreted as membership in S
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Exercise: satisfiability of FO formulas

Is                                                                               satisfiable?
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Solution: satisfiability of FO formulas

Is                                                                               satisfiable?

Yes, if
§ the theory symbols                     have the 

usual interpretation

No, if
§ 1 actually means 2, or
§ addition is interpreted as maximum

Satisfiability of FO formulas depends on the admissible interpretations of theory symbols

determined by “theories” determined by “structures”
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Semantics of FO

A                        interprets the theory symbols in     by mapping:
§ each free variable (those not bound by a quantifier) to an element in 
§ each constant to an element in
§ each   -ary function symbol to a function of type 
§ each   -ary predicate symbol to a predicate of type 
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Satisfiability Modulo Theories
§ A sentence is a formula without free variables

§ An axiomatic system AX is a set of    -sentences

§ The    -theory     given by AX is the set of all    -sentences inferable from AX

A                     is   -satisfiable iff
there exists a                       such that
§ , and
§ holds for every sentence          .

A                     is   -valid iff
for all                         ,

(for all           ,             ) 
implies             . 
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Exercise: satisfiability and validity

Is F -satisfiable? Is F -valid?
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Solution: satisfiability and validity

Is F -satisfiable? Is F -valid?

after adding an axiom
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Some important theories
§ Arithmetic (with canonical axioms)

- Presburger arithmetic:
- Peano arithmetic:
- Real arithmetic:

§ Equality logic with uninterpreted functions (EUF)
-
- arbitrary universe U (no specific sort)
- axioms ensure that     is an equivalence relation (reflexive, symmetric, transitive)
- arbitrary number of uninterpreted function symbols of any arity

§ We typically need a combination of multiple theories
- Example: Presburger arithmetic + uninterpreted functions
- Program verification: theories for modeling different data types

undecidable

decidable

decidable

decidable
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SMT solvers

1. Propositional logic and satisfiability solvers

2. Using Z3 as a SAT solver

3. First-order logic and SMT solvers

4. Using Z3 as an SMT solver
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Using theories
§ Sorts (beyond Bool)

- Int, Real, BitVec(precision)
- DeclareSort(name) 

(uninterpreted)

§ Variables are syntactic sugar 
for uninterpreted constants
- Const(name, sort)

§ Uninterpreted functions are 
declared with parameter and 
result types

§ We will discuss quantifiers later

from z3 import *

Pair = DeclareSort('Pair')

null = Const('null', Pair)

cons = Function('cons', IntSort(), IntSort(), Pair)
first = Function('first', Pair, IntSort())

ax1 = (null == cons(0, 0))
x, y = Ints('x y')
ax2 = ForAll([x, y], first(cons(x, y)) == x)

s = Solver()
s.add(ax1)
s.add(ax2)

F = first(null) == 0

# check validity
s.add(Not(F))
print( s.check() )
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Using an SMT solver to verify a program
{ a = 1 Ù 0 £ b*b – 4*c }
// Check that this entailment is valid (its negation is unsatisfiable) 
{ b*b – 4*a*c < 0 Ù false Ú
¬(b*b – 4*a*c < 0) Ù a*((-b + b∗b – 4∗a∗c) / 2)2 + b*((-b + b∗b – 4∗a∗c) / 2) + c = 0 } 

from z3 import *

a, b, c = Reals('a b c')
d = b*b - 4*a*c

PO = Implies(
And(a == 1, 0 <= b*b - 4*c),
Or( And(d < 0, False),

And(Not(d < 0),
a*((-b + Sqrt(d))/2)*((-b + Sqrt(d))/2) + b*((-b + Sqrt(d))/2) + c == 0

)))

# check validity
s = Solver()
s.add(Not(PO)); print( s.check() )
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Some important theories
Linear integer/real arithmetic § (Unbounded) arithmetic is often used to approximate int and float

§ Multiplication by constants is supported

§ To encode data types such as arrays

Equality logic with uninterpreted functions § Universal mechanism to encode operations not natively 
supported by a theory

Array theory

Fixed-size bitvector arithmetic § To encode bit-level operations
§ To perform bit-precise reasoning, e.g., floats

Non-linear integer/real arithmetic § Useful for programs that perform multiplication and division, e.g., 
crypto libraries
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Example: encoding hard problems to SMT

https://xkcd.com/287/

How do we model this as an SMT query?
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Theory reasoning
§ Z3 selects theories based on the features appearing in formulas

- Most verification problems require a combination of many theories

§ Some theories are decideable, e.g., quantifier-free linear arithmetic
- SMT solver will terminate and report either “sat” or “unsat”

§ Some theories are undecideable, e.g., nonlinear integer arithmetic
- Especially in combination with quantifiers
- SMT solver uses heuristics and may not terminate or return “unknown”
- Results can be flaky, e.g., depend on order of declarations or random seeds

Quantifier-free linear integer arithmetic with uninterpreted functions
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Working with quantifiers is non-trivial
from z3 import *
s = Solver()

x = Real('x')
f = Function('f', RealSort(), RealSort())

s.add(
ForAll(x, Implies(x >= 0, f(x) * f(x) == x))

)

s.add(x > 0)
s.add( Sqrt(x) == f(x))

print(s.check())

$ python ...
unknown
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Exercise: the N-queens problem

The N-queens problem is to place N-queens on an N x N chess 
board such that no two queens threaten each other.
Let’s use Z3 to compute a solution to the N-queens problem for 
any given N.

Hints: 
§ Represent the board as a list of N integers: 

IntVector(‘board’, N). board[i] gives the row of the 
queen in column i.

§ Distinct(l) is a Z3-constraint that expresses that all 
elements in list l are disjoint.

§ You can easily check the diagonals by shifting the queens 
vertically and then checking the rows.

Extend your encoding to find all solutions. How many are there?

[2, 4, 6, 8, 3, 1, 7, 5]



44

More background on SAT solvers

§ DPLL: Davis-Putnam-Logemann-Loveland Algorithm
- A machine program for theorem-proving. Martin Davis, George Logemann, 

and Donald Loveland. 1962.

§ CDCL: Conflict-Driven Clause Learning Algorithm
- GRASP – A New Search Algorithm for Satisfiability. João P. Marques Silva 

and Karem A. Sakallah. 1996.

§ Further developments
- Chaff: engineering an efficient SAT solver. Matthew W. Moskewicz, 

Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. 2001.
- SAT-solving in practice. Koen Claessen, Niklas Een, Mary Sheeran, 

Niklas Sörensson. 2008.

§ Annual SAT competition: 
- http://www.satcompetition.org/

https://dl.acm.org/doi/abs/10.1145/368273.368557
https://link.springer.com/chapter/10.1007/978-1-4615-0292-0_7
https://dl.acm.org/doi/abs/10.1145/378239.379017
https://ieeexplore.ieee.org/abstract/document/4605923
http://www.satcompetition.org/
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More background on SMT solvers
§ http://www.decision-procedures.org/ (website of book)

§ Programming Z3, Nikolaj Bjørner, Leonardo de Moura, 
Lev Nachmanson, Christoph M. Wintersteiger, 2018

§ SMT-LIB standard

§ Other teaching material
- SMT solvers: Theory and Implementation. Leonardo de Moura
- SMT Solvers: Theory and Practice. Clark Barrett
- Satisfiability Checking, Erika Ábrahám

http://www.decision-procedures.org/
https://theory.stanford.edu/~nikolaj/programmingz3.html
http://smtlib.cs.uiowa.edu/

