
INTRODUCTION TO SMT

Copyright: Peter Müller, ETH Zürich
(slides developed in cooperation with Christoph Matheja)

2

Last week
§ Introduction to SAT
§ DNF, CNF, Tseitin’s algorithm
§ minisat demo
§ Examples of problems that can be encoded as SAT

3

source code
annotated with
specifications

Automated verifier

Intermediate Verification
Language

Generation of
proof obligations

Intermediate Verification
Language

Front-end

SMT solver
feedback

This week: foundations of Dafny

We are here

4

Automating program verification

Main steps of a tool for automatically verifying

1. Compute weakest preconditions for B under S:

2. Decide ® We employ an SMT solver

5

SMT solvers

1. Propositional logic and satisfiability solvers

2. Using Z3 as a SAT solver

3. First-order logic and SMT solvers

4. Using Z3 as an SMT solver

6

Propositional logic

Syntax of propositional logic

binds stronger

Syntactic sugar:

Satisfaction relation

7

Satisfiability and validity

§ F is satisfiable iff F has some model

§ F is unsatisfiable iff F has no model

§ F is valid iff every interpretation is a model of F
(¬F is unsatisfiable)

§ F is not valid iff some interpretation is not a model of F
(¬F is satisfiable)

8

The satisfiability problem

§ A formula is satisfiable if it has a model

§ Satisfiability (SAT) problem:
Given a propositional logic formula,
decide whether it is satisfiable

§ If yes, ideally also provide a witness

9

Complexity of SAT

§ For formulas in conjunctive normal form (CNF), SAT
is the classical NP-complete problem
- Many difficult problems can be efficiently encoded
- Every known algorithm is exponential in the formula’s size

§ Modern SAT solvers are extremely efficient in practice
- Scale to formulas with millions of variables
- May still perform poorly on certain formulas

10

Exercise: placement of wedding guests

Model the following problem as a SAT problem:
Consider three chairs in a row: left, middle, right. Can we
assign chairs to Alice, Bob, and Charlie such that:
§ Alice does not sit next to Charlie,
§ Alice does not sit on the leftmost chair, and
§ Bob does not sit to the right of Charlie?

11

Solution: placement of wedding guests
§ Model assignment via nine boolean variables

§ Alice does not sit next to Charlie

§ Alice does not sit on the leftmost chair

§ Bob does not sit to the right of Charlie

§ Each person gets a chair

§ Every person gets at most one chair

§ Every chair gets at most one person

12

SMT solvers

1. Propositional logic and satisfiability solvers

2. Using Z3 as a SAT solver

3. First-order logic and SMT solvers

4. Using Z3 as an SMT solver

13

Using a SAT solver
§ Is F satisfiable?

§ Is F valid?

SAT solverF

sat + witness

unsat

SAT solver¬F

sat + witness

unsat

satisfiable unsatisfiable

valid

witness (counterexample):
interpretation that is not a model of F

satisfiable unsatisfiable

witness: model of F

14

The Z3 Satisfiability Modulo Theories solver

§ Developed by Microsoft (under MIT license)

§ Building block of many verification tools including Viper

§ Various input formats and APIs
- Z3, SMTLIB-2, C, C++, Python, Java, OCaml, ...

§ For now: Use Z3 as a SAT solver

§ Tutorial: https://ericpony.github.io/z3py-tutorial/guide-examples.htm

15

A first example in Z3

from z3 import *

declare variables
x = Bool('x')
y = Bool('y')

define formula: x Þ y
F = Implies(x, y)

print the formula
print(F)

find a model for F
solve(F)

find a counterexample for F
solve(Not(F))

F is satisfiable, this is a model

F is not valid, this is a counterexample

16

A valid formula example in Z3

from z3 import *

declare variables
x = Bool('x')
y = Bool('y')

define formula: ¬(x Ù y) Û ¬x Ú ¬y
F = Not(And(x, y)) == Or(Not(x), Not(y))

print the formula
print(F)

find a model for F
solve(F)

find a counterexample for F
solve(Not(F))

F is satisfiable, all interpretations are models

F is valid, no interpretation is a counterexample

17

A more complex example in Z3

from z3 import *

declare multiple variables
x, y = Bools('x y’)

create a solver instance
s = Solver()

add conjuncts
s.add(Implies(x, y))
s.add(Implies(y, x))

check satisfiability
print(s.check())
print(s.model())

s.add(x)
s.add(Not(y))

check satisfiability
print(s.check())

The first two conjuncts are satisfiable,
we get a model

All four conjuncts together are unsatifiable

18

Exercise: placement of wedding guests in Z3

§ Model assignment via nine boolean variables

§ Alice does not sit next to Charlie

§ Alice does not sit on the leftmost chair

§ Bob does not sit to the right of Charlie

§ Each person gets a chair

§ Every person gets at most one chair

§ Every chair gets at most one person

Encode the placement of wedding guests in Z3.

21

Using a SAT solver to verify a program
{ true }
// Check that this entailment is valid (negation is unsatisfiable)
{ (a Þ (b Þ (true Û (a Þ b))) Ù (¬b Þ (false Û (a Þ b)))) Ú (¬a Þ (true Û (a Þ b)) }
if (a) {
{ (b Þ (true Û (a Þ b))) Ù (¬b Þ (false Û (a Þ b))) }
if (b) {

{ true Û (a Þ b) }
res := true

{ res Û (a Þ b) }
} else {

{ false Û (a Þ b) }
res := false

{ res Û (a Þ b) }
}

{ res Û (a Þ b) }
} else {
{ true Û (a Þ b) }
res := true

{ res Û (a Þ b) }
}
{ res Û (a Þ b) }

22

Propositional logic is not enough!
§ What about this entailment?

§ Entailment is not in propositional logic
- Real-valued variables (a, b, c) and numeric constants
- Arithmetic operations (+, -, *, /, 2, √) and comparisons (=, <, £)

§ Logic must support at least the expressions appearing in programs
- It is also useful to support quantifiers (e.g., for array algorithms)

§ General framework: first-order predicate logic (FO) over suitable theories

{ a = 1 Ù 0 £ b*b – 4*c }
// Check that this entailment is valid
{ b*b – 4*a*c < 0 Ù false Ú
¬(b*b – 4*a*c < 0) Ù a*((-b + b∗b – 4∗a∗c) / 2)2 + b*((-b + b∗b – 4∗a∗c) / 2) + c = 0 }

23

SMT solvers

1. Propositional logic and satisfiability solvers

2. Using Z3 as a SAT solver

3. First-order logic and SMT solvers

4. Using Z3 as an SMT solver

24

First-order (FO) predicate logic
FO logic is a framework with three syntactical ingredients:

1. Logical symbols
2. Theory symbols

variables, constant symbols, function symbols
3. Predicate symbols

bridge from theories to logic

A signature collects all constants, functions, and predicates
assumption: contains at least one sort

Terms are constructed from theory symbols

Constraints lift terms to the logical level via predicates

A is a logical formula over constraints

Special case: a sort identifies a non-empty set S with a
unary predicate symbol interpreted as membership in S

25

Exercise: satisfiability of FO formulas

Is satisfiable?

26

Solution: satisfiability of FO formulas

Is satisfiable?

Yes, if
§ the theory symbols have the

usual interpretation

No, if
§ 1 actually means 2, or
§ addition is interpreted as maximum

Satisfiability of FO formulas depends on the admissible interpretations of theory symbols

determined by “theories” determined by “structures”

27

Semantics of FO

A interprets the theory symbols in by mapping:
§ each free variable (those not bound by a quantifier) to an element in
§ each constant to an element in
§ each -ary function symbol to a function of type
§ each -ary predicate symbol to a predicate of type

28

Satisfiability Modulo Theories
§ A sentence is a formula without free variables

§ An axiomatic system AX is a set of -sentences

§ The -theory given by AX is the set of all -sentences inferable from AX

A is -satisfiable iff
there exists a such that
§ , and
§ holds for every sentence .

A is -valid iff
for all ,

(for all ,)
implies .

29

Exercise: satisfiability and validity

Is F -satisfiable? Is F -valid?

30

Solution: satisfiability and validity

Is F -satisfiable? Is F -valid?

after adding an axiom

31

Some important theories
§ Arithmetic (with canonical axioms)

- Presburger arithmetic:
- Peano arithmetic:
- Real arithmetic:

§ Equality logic with uninterpreted functions (EUF)
-
- arbitrary universe U (no specific sort)
- axioms ensure that is an equivalence relation (reflexive, symmetric, transitive)
- arbitrary number of uninterpreted function symbols of any arity

§ We typically need a combination of multiple theories
- Example: Presburger arithmetic + uninterpreted functions
- Program verification: theories for modeling different data types

undecidable

decidable

decidable

decidable

32

SMT solvers

1. Propositional logic and satisfiability solvers

2. Using Z3 as a SAT solver

3. First-order logic and SMT solvers

4. Using Z3 as an SMT solver

33

Using theories
§ Sorts (beyond Bool)

- Int, Real, BitVec(precision)
- DeclareSort(name)

(uninterpreted)

§ Variables are syntactic sugar
for uninterpreted constants
- Const(name, sort)

§ Uninterpreted functions are
declared with parameter and
result types

§ We will discuss quantifiers later

from z3 import *

Pair = DeclareSort('Pair')

null = Const('null', Pair)

cons = Function('cons', IntSort(), IntSort(), Pair)
first = Function('first', Pair, IntSort())

ax1 = (null == cons(0, 0))
x, y = Ints('x y')
ax2 = ForAll([x, y], first(cons(x, y)) == x)

s = Solver()
s.add(ax1)
s.add(ax2)

F = first(null) == 0

check validity
s.add(Not(F))
print(s.check())

34

Using an SMT solver to verify a program
{ a = 1 Ù 0 £ b*b – 4*c }
// Check that this entailment is valid (its negation is unsatisfiable)
{ b*b – 4*a*c < 0 Ù false Ú
¬(b*b – 4*a*c < 0) Ù a*((-b + b∗b – 4∗a∗c) / 2)2 + b*((-b + b∗b – 4∗a∗c) / 2) + c = 0 }

from z3 import *

a, b, c = Reals('a b c')
d = b*b - 4*a*c

PO = Implies(
And(a == 1, 0 <= b*b - 4*c),
Or(And(d < 0, False),

And(Not(d < 0),
a*((-b + Sqrt(d))/2)*((-b + Sqrt(d))/2) + b*((-b + Sqrt(d))/2) + c == 0

)))

check validity
s = Solver()
s.add(Not(PO)); print(s.check())

35

Some important theories
Linear integer/real arithmetic § (Unbounded) arithmetic is often used to approximate int and float

§ Multiplication by constants is supported

§ To encode data types such as arrays

Equality logic with uninterpreted functions § Universal mechanism to encode operations not natively
supported by a theory

Array theory

Fixed-size bitvector arithmetic § To encode bit-level operations
§ To perform bit-precise reasoning, e.g., floats

Non-linear integer/real arithmetic § Useful for programs that perform multiplication and division, e.g.,
crypto libraries

36

Example: encoding hard problems to SMT

https://xkcd.com/287/

How do we model this as an SMT query?

40

Theory reasoning
§ Z3 selects theories based on the features appearing in formulas

- Most verification problems require a combination of many theories

§ Some theories are decideable, e.g., quantifier-free linear arithmetic
- SMT solver will terminate and report either “sat” or “unsat”

§ Some theories are undecideable, e.g., nonlinear integer arithmetic
- Especially in combination with quantifiers
- SMT solver uses heuristics and may not terminate or return “unknown”
- Results can be flaky, e.g., depend on order of declarations or random seeds

Quantifier-free linear integer arithmetic with uninterpreted functions

41

Working with quantifiers is non-trivial
from z3 import *
s = Solver()

x = Real('x')
f = Function('f', RealSort(), RealSort())

s.add(
ForAll(x, Implies(x >= 0, f(x) * f(x) == x))

)

s.add(x > 0)
s.add(Sqrt(x) == f(x))

print(s.check())

$ python ...
unknown

42

Exercise: the N-queens problem

The N-queens problem is to place N-queens on an N x N chess
board such that no two queens threaten each other.
Let’s use Z3 to compute a solution to the N-queens problem for
any given N.

Hints:
§ Represent the board as a list of N integers:

IntVector(‘board’, N). board[i] gives the row of the
queen in column i.

§ Distinct(l) is a Z3-constraint that expresses that all
elements in list l are disjoint.

§ You can easily check the diagonals by shifting the queens
vertically and then checking the rows.

Extend your encoding to find all solutions. How many are there?

[2, 4, 6, 8, 3, 1, 7, 5]

44

More background on SAT solvers

§ DPLL: Davis-Putnam-Logemann-Loveland Algorithm
- A machine program for theorem-proving. Martin Davis, George Logemann,

and Donald Loveland. 1962.

§ CDCL: Conflict-Driven Clause Learning Algorithm
- GRASP – A New Search Algorithm for Satisfiability. João P. Marques Silva

and Karem A. Sakallah. 1996.

§ Further developments
- Chaff: engineering an efficient SAT solver. Matthew W. Moskewicz,

Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. 2001.
- SAT-solving in practice. Koen Claessen, Niklas Een, Mary Sheeran,

Niklas Sörensson. 2008.

§ Annual SAT competition:
- http://www.satcompetition.org/

https://dl.acm.org/doi/abs/10.1145/368273.368557
https://link.springer.com/chapter/10.1007/978-1-4615-0292-0_7
https://dl.acm.org/doi/abs/10.1145/378239.379017
https://ieeexplore.ieee.org/abstract/document/4605923
http://www.satcompetition.org/

45

More background on SMT solvers
§ http://www.decision-procedures.org/ (website of book)

§ Programming Z3, Nikolaj Bjørner, Leonardo de Moura,
Lev Nachmanson, Christoph M. Wintersteiger, 2018

§ SMT-LIB standard

§ Other teaching material
- SMT solvers: Theory and Implementation. Leonardo de Moura
- SMT Solvers: Theory and Practice. Clark Barrett
- Satisfiability Checking, Erika Ábrahám

http://www.decision-procedures.org/
https://theory.stanford.edu/~nikolaj/programmingz3.html
http://smtlib.cs.uiowa.edu/

