INTRODUCTION TO SMT

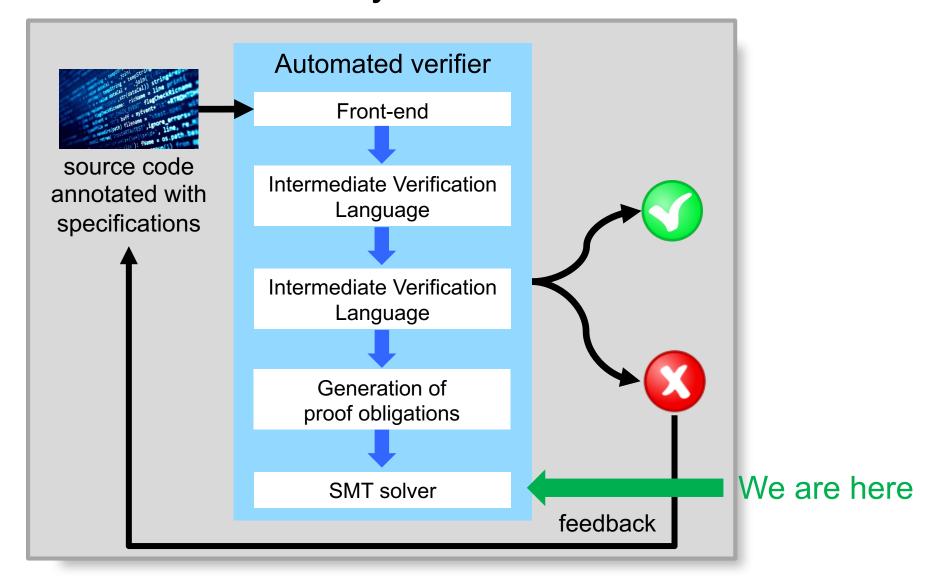
Copyright: Peter Müller, ETH Zürich

(slides developed in cooperation with Christoph Matheja)

Last week

- Introduction to SAT
- DNF, CNF, Tseitin's algorithm
- minisat demo
- Examples of problems that can be encoded as SAT

This week: foundations of Dafny



Automating program verification

Main steps of a tool for automatically verifying $\models \{A\} S \{B\}$

1. Compute *weakest preconditions* for B under S: *wp* [S] (B)

2. Decide $A \Rightarrow wp [S](B) \rightarrow We employ an SMT solver$

SMT solvers

- 1. Propositional logic and satisfiability solvers
- 2. Using Z3 as a SAT solver
- 3. First-order logic and SMT solvers
- 4. Using Z3 as an SMT solver

Propositional logic

Syntax of propositional logic taken from a set Var of variables $\mathsf{F} ::= x | \mathsf{true} | \mathsf{false} | \neg \mathsf{F} | \mathsf{F} \wedge \mathsf{F} | \mathsf{F} \vee \mathsf{F} | \mathsf{F} \Rightarrow \mathsf{F} | \mathsf{F} \Leftrightarrow \mathsf{F} | \mathsf{A} \vee \mathsf{B} ::= \neg (\neg \mathsf{A} \wedge \neg \mathsf{B}) \qquad \mathsf{A} \Rightarrow \mathsf{B} ::= \neg \mathsf{A} \vee \mathsf{B}$ binds stronger

Syntactic sugar:

$$\begin{array}{lll} \texttt{false} & ::= & x \land \neg x & \texttt{true} & ::= & \neg \texttt{false} \\ \textbf{A} \lor \textbf{B} & ::= & \neg (\neg \textbf{A} \land \neg \textbf{B}) & \textbf{A} \Rightarrow \textbf{B} & ::= & \neg \textbf{A} \lor \textbf{B} \\ \textbf{A} \Leftrightarrow \textbf{B} & ::= & (\textbf{A} \Rightarrow \textbf{B}) \land (\textbf{B} \Rightarrow \textbf{A}) \end{array}$$

Interpretation: μ : Var \rightarrow { true, false }

 μ is a model of **F** iff μ satisfies **F**

$$\begin{array}{lll} \textbf{Satisfaction relation} &\models \\ \mu \models x & \text{iff} & \mu(x) = \texttt{true} \\ \mu \models \neg \textbf{A} & \text{iff} & \mu \not\models \textbf{A} \\ \mu \models \textbf{A} \land \textbf{B} & \text{iff} & \mu \models \textbf{A} \text{ and } \mu \models \textbf{B} \end{array}$$

$$\mu = [x = \mathtt{false}, y = \mathtt{true}]$$

$$\mu \models x \land (x \Rightarrow y) \Rightarrow y$$

$$\mu \not\models x \land (x \Rightarrow y) \Leftrightarrow y$$

$$\mu \models x \land (x \Rightarrow y) \Leftrightarrow x \land y$$

Satisfiability and validity

F is satisfiable iff F has some model

$$(x \Rightarrow y) \Rightarrow y$$

• F is unsatisfiable iff F has no model

$$x \land \neg y \land (x \Rightarrow y)$$

F is valid iff every interpretation is a model of F
 (¬F is unsatisfiable)

$$x \land (x \Rightarrow y) \Rightarrow y$$

F is not valid

iff some interpretation is not a model of **F** (¬**F** is satisfiable)

$$x \land (x \Rightarrow y) \Leftrightarrow y$$

The satisfiability problem

- A formula is satisfiable if it has a model
- Satisfiability (SAT) problem:
 Given a propositional logic formula,
 decide whether it is satisfiable
- If yes, ideally also provide a witness

$$(x_1 \lor x_2 \lor \neg x_3)$$

$$\land (x_5 \lor \neg x_2)$$

$$\land (\neg x_1 \lor \neg x_3 \lor x_4 \lor \neg x_5)$$

$$\mu = [x_1 = \mathsf{true}, x_2 = \mathsf{true},$$
 $x_3 = \mathsf{true}, x_4 = \mathsf{true}, x_5 = \mathsf{true}]$

Complexity of SAT

- For formulas in conjunctive normal form (CNF), SAT is the classical NP-complete problem
- $\bigwedge_i \bigvee_j C_{i,j}$ where $C_{i,j} \in \{x_{i,j}, \neg x_{i,j}\}$

- Many difficult problems can be efficiently encoded
- Every known algorithm is exponential in the formula's size
- Modern SAT solvers are extremely efficient in practice
 - Scale to formulas with millions of variables
 - May still perform poorly on certain formulas

Exercise: placement of wedding guests

Model the following problem as a SAT problem:

Consider three chairs in a row: left, middle, right. Can we assign chairs to Alice, Bob, and Charlie such that:

- Alice does not sit next to Charlie,
- Alice does not sit on the leftmost chair, and
- Bob does not sit to the right of Charlie?

Solution: placement of wedding guests

- Model assignment via nine boolean variables $x_{p,c}$: "person p sits in chair c"
- Alice does not sit next to Charlie

$$(x_{A,l} \lor x_{A,r} \Rightarrow \neg x_{C,m}) \land (x_{A,m} \Rightarrow \neg x_{C,l} \land \neg x_{C,r})$$

Alice does not sit on the leftmost chair

$$\neg x_{A.l}$$

Bob does not sit to the right of Charlie

$$(x_{C,l} \Rightarrow \neg x_{B,m}) \land (x_{C,m} \Rightarrow \neg x_{B,r})$$

Each person gets a chair

$$\bigwedge_{1 \le p \le 3} \bigvee_{1 \le c \le 3} x_{p,c}$$

Every person gets at most one chair

$$\bigwedge_{1 \le p \le 3} \bigwedge_{1 \le c, d \le 3, c \ne d} (\neg x_{p,c} \lor \neg x_{p,d})$$

Every chair gets at most one person

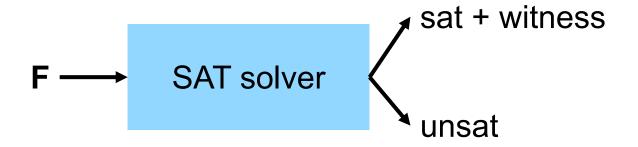
$$\bigwedge_{1 \le p, q \le 3, p \ne q} \bigwedge_{1 \le c \le 3} (\neg x_{p,c} \lor \neg x_{q,c})$$

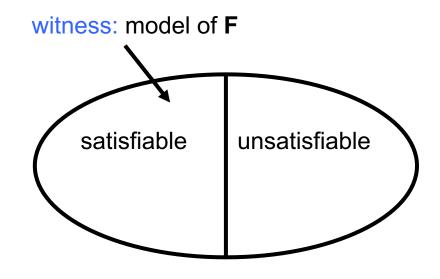
SMT solvers

- 1. Propositional logic and satisfiability solvers
- 2. Using Z3 as a SAT solver
- 3. First-order logic and SMT solvers
- 4. Using Z3 as an SMT solver

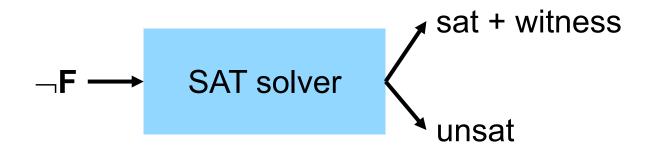
Using a SAT solver

Is F satisfiable?

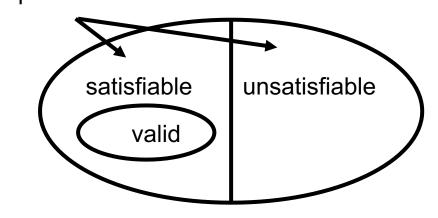




■ Is F valid?



witness (counterexample): interpretation that is not a model of **F**



The Z3 Satisfiability Modulo Theories solver

- Developed by Microsoft (under MIT license)
- Building block of many verification tools including Viper
- Various input formats and APIs
 - Z3, SMTLIB-2, C, C++, Python, Java, OCaml, ...
- For now: Use Z3 as a SAT solver
- Tutorial: https://ericpony.github.io/z3py-tutorial/guide-examples.htm

A first example in Z3

```
from z3 import *
# declare variables
x = Bool('x')
y = Bool('y')
# define formula: x \Rightarrow y
F = Implies(x, y)
# print the formula
print(F)
# find a model for F
solve(F)
# find a counterexample for F
solve(Not(F))
```

F is satisfiable, this is a model

```
Implies(x, y)
[y = False, x = False]
[y = False, x = True]
```

F is not valid, this is a counterexample

A valid formula example in Z3

```
from z3 import *
# declare variables
x = Bool('x')
y = Bool('y')
# define formula: \neg(x \land y) \Leftrightarrow \neg x \lor \neg y
F = Not(And(x, y)) == Or(Not(x), Not(y))
# print the formula
print(F)
# find a model for F
solve(F)
# find a counterexample for F
solve(Not(F))
```

F is satisfiable, all interpretations are models

```
Not(And(x, y)) == Or(Not(x), Not(y))
[]
no solution
```

F is valid, no interpretation is a counterexample

A more complex example in Z3

```
from z3 import *
# declare multiple variables
x, y = Bools('x y')
# create a solver instance
s = Solver()
# add conjuncts
s.add( Implies(x, y) )
s.add( Implies(y, x) )
# check satisfiability
print( s.check() )
print( s.model() )
s.add(x)
s.add( Not(y) )
# check satisfiability
print( s.check() )
```

The first two conjuncts are satisfiable, we get a model

```
sat
[y = False, x = False]
unsat
```

All four conjuncts together are unsatifiable

Exercise: placement of wedding guests in Z3

Encode the placement of wedding guests in Z3.

- Model assignment via nine boolean variables $x_{p,c}$: "person p sits in chair c"
- Alice does not sit next to Charlie

- Bob does not sit to the right of Charlie
- Each person gets a chair
- Every person gets at most one chair
- Every chair gets at most one person

$$(x_{A,l} \lor x_{A,r} \Rightarrow \neg x_{C,m}) \land (x_{A,m} \Rightarrow \neg x_{C,l} \land \neg x_{C,r})$$

$$\neg x_{A,l}$$

$$(x_{C,l} \Rightarrow \neg x_{B,m}) \land (x_{C,m} \Rightarrow \neg x_{B,r})$$

$$\bigwedge_{1 \le p \le 3} \bigvee_{1 \le c \le 3} x_{p,c}$$

$$\bigwedge_{1 \le p \le 3} \bigwedge_{1 \le c, d \le 3, c \ne d} (\neg x_{p,c} \lor \neg x_{p,d})$$

$$\bigwedge_{1 \le p, q \le 3, p \ne q} \bigwedge_{1 \le c \le 3} (\neg x_{p,c} \lor \neg x_{q,c})$$

Using a SAT solver to verify a program

```
{ true }
// Check that this entailment is valid (negation is unsatisfiable)
{ (a \Rightarrow (b \Rightarrow (true \Leftrightarrow (a \Rightarrow b))) \land (\neg b \Rightarrow (false \Leftrightarrow (a \Rightarrow b)))) \lor (\neg a \Rightarrow (true \Leftrightarrow (a \Rightarrow b)) }
if (a) {
{ (b \Rightarrow (true \Leftrightarrow (a \Rightarrow b))) \land (\neg b \Rightarrow (false \Leftrightarrow (a \Rightarrow b))) }
   if (b) {
{ true \Leftrightarrow (a \Rightarrow b) }
       res := true
\{ \text{ res} \Leftrightarrow (a \Rightarrow b) \}
   } else {
{ false \Leftrightarrow (a \Rightarrow b) }
       res := false
\{ \text{ res} \Leftrightarrow (a \Rightarrow b) \}
\{ \text{ res} \Leftrightarrow (a \Rightarrow b) \}
} else {
{ true \Leftrightarrow (a \Rightarrow b) }
   res := true
\{ \text{ res} \Leftrightarrow (a \Rightarrow b) \}
\{ \text{ res} \Leftrightarrow (a \Rightarrow b) \}
```

Propositional logic is not enough!

What about this entailment?

```
{ a = 1 \land 0 \le b*b - 4*c } // Check that this entailment is valid { b*b - 4*a*c < 0 \land false \lor \neg(b*b - 4*a*c < 0) \land a*((-b + <math>\sqrt{b*b - 4*a*c}) / 2)² + b*((-b + \sqrt{b*b - 4*a*c}) / 2) + c = 0 }
```

- Entailment is not in propositional logic
 - Real-valued variables (a, b, c) and numeric constants
 - Arithmetic operations (+, -, *, /, 2 , 1) and comparisons (=, <, 2)
- Logic must support at least the expressions appearing in programs
 - It is also useful to support quantifiers (e.g., for array algorithms)
- General framework: first-order predicate logic (FO) over suitable theories

SMT solvers

- 1. Propositional logic and satisfiability solvers
- 2. Using Z3 as a SAT solver
- 3. First-order logic and SMT solvers
- 4. Using Z3 as an SMT solver

First-order (FO) predicate logic

FO logic is a framework with three syntactical ingredients:

- 1. Logical symbols
- 2. Theory symbols variables, constant symbols, function symbols
- 3. Predicate symbols bridge from theories to logic

Special case: a sort identifies a non-empty set S with a unary predicate symbol interpreted as membership in S

Terms are constructed from theory symbols

Constraints lift terms to the logical level via predicates

A signature Σ collects all constants, functions, and predicates assumption: Σ contains at least one sort

A Σ -formula is a logical formula over constraints

$$\wedge, \vee, \neg, \Rightarrow, \Leftrightarrow, \exists, \forall \ldots$$

$$x, y, z, \ldots 0, 1, \ldots +, -, *, \ldots$$

$$<, =, ...$$

Bool, Int, Real, ...

$$x, 0, 0+x-y+1$$

$$x + y < 1 + z - 0$$
, Int $(1 + x)$

$$\Sigma = \{ \text{Int}, 0, 1, +, *, < \}$$

$$\forall x \,\exists y \,(y * y = x * x + (1+1) * x + 1)$$

Exercise: satisfiability of FO formulas

Is
$$\forall x \exists y \ (y = x + 1 \land y * y = x * x + (1 + 1) * x + 1)$$
 satisfiable?

Solution: satisfiability of FO formulas

Is
$$\forall x \exists y \ (y = x + 1 \land y * y = x * x + (1 + 1) * x + 1)$$
 satisfiable?

Yes, if

• the theory symbols 1, +, , *,= have the usual interpretation

No, if

- 1 actually means 2, or
- addition is interpreted as maximum

Satisfiability of FO formulas depends on the admissible interpretations of theory symbols determined by "theories" determined by "structures"

Semantics of FO

Let D denote the union of the sets of all sorts in signature Σ

A Σ -structure μ interprets the theory symbols in Σ by mapping:

- each free variable (those not bound by a quantifier) to an element in D
- each constant to an element in D
- each n-ary function symbol to a function of type $D^n \to D$
- each n-ary predicate symbol to a predicate of type $D^n \to \{\mathtt{true}, \mathtt{false}\}$

$$\begin{split} \Sigma &= \{\, \mathbf{Int}, \, \mathbf{0}, \, \mathbf{1}, \, +, \, = \, \} \quad \, D = \mathbf{Int} \\ \mu(\mathbf{0}) &= 0 \quad \mu(\mathbf{1}) = 1 \\ \mu(+) \colon \mathbf{Int} \times \mathbf{Int} \to \mathbf{Int} \\ (a,b) &\mapsto a + b \\ \mu(=) \colon \mathbf{Int} \times \mathbf{Int} \to \{\mathbf{true}, \, \mathbf{false}\} \end{split}$$

 $(a,b) \mapsto a = b$

Satisfaction relation for Σ -formulas

$$\mu \models \textit{pred}(t_1, \dots, t_n)$$
 iff $\mu(\textit{pred})(\mu(t_1), \dots, \mu(t_1)) = \text{true}$
 $\mu \models \exists x \mathbf{A}$ iff for some $d \in D$, $\mu[x := d] \models \mathbf{A}$
 $\mu \models \forall x \mathbf{A}$ iff for every $d \in D$, $\mu[x := d] \models \mathbf{A}$
 $\mu \models \mathbf{A} \land \mathbf{B}$ iff $\mu \models \mathbf{A}$ and $\mu \models \mathbf{B}$
 \vdots

$$\mu \models \forall x \exists y ($$

$$y * y = x * x + (1+1) * x + 1$$
)

Satisfiability Modulo Theories

- A sentence is a formula without free variables
- An axiomatic system **AX** is a set of Σ -sentences
- The Σ -theory $\mathcal T$ given by $\mathbf A \mathbf X$ is the set of all Σ -sentences inferable from $\mathbf A \mathbf X$

A Σ -formula **F** is \mathcal{T} -satisfiable iff there exists a Σ -structure μ such that

- $\bullet \mu \models \mathbf{F}$, and
- ullet $\mu \models \mathbf{A}$ holds for every sentence $\mathbf{A} \in \mathcal{T}$.

A Σ -formula ${\bf F}$ is ${\bf \mathcal{T}}$ -valid iff for all Σ -structures μ , (for all ${\bf A} \in {\bf \mathcal{T}}, \mu \models {\bf A}$) implies $\mu \models {\bf F}$.

Exercise: satisfiability and validity

$$\Sigma = \{ \text{Nat}, zero, one, \oplus, \equiv \}$$

 \mathcal{T} is given by the axioms:

$$\forall x \ (x \equiv x) \qquad \forall x \ \forall y \ (x \oplus y \equiv y \oplus x)$$

$$\mathbf{F} ::= \exists x \ (x \oplus \mathbf{zero} \equiv \mathbf{one})$$

Is **F** \mathcal{T} -satisfiable?

Is **F** \mathcal{T} -valid?

Solution: satisfiability and validity

$$\Sigma = \{ \text{Nat}, zero, one, \oplus, \equiv \}$$

 \mathcal{T} is given by the axioms:

$$\forall x \ (x \equiv x) \qquad \forall x \ \forall y \ (x \oplus y \equiv y \oplus x)$$

 $\mathbf{F} ::= \exists x \ (x \oplus zero \equiv one)$

Is **F** \mathcal{T} -satisfiable?

Is **F** \mathcal{T} -valid?

$$\mu(x) = 1$$

$$\mu(zero) = 0 \qquad \mu(one) = 1$$

 $\mu(\oplus)$: addition

 $\mu(\equiv)$: equality

$$\mu(zero) = 1$$
 and $\mu(one) = 0$

after adding an axiom

$$\forall x \ (x \oplus zero = x)$$

Some important theories

Arithmetic (with canonical axioms)

```
decidable
- Presburger arithmetic: \Sigma = \{ \text{ Int}, 0, 1, +, < \}
- Peano arithmetic: \Sigma = \{ \text{ Int}, 0, 1, +, *, < \}
                                                                                          undecidable
- Real arithmetic: \Sigma = \{ \text{Real}, 0, 1, +, *, < \}
                                                                                           decidable
```

- Equality logic with uninterpreted functions (EUF)
- decidable
 - $\Sigma = \{ U, =, f_1, f_2, \dots \}$
 - arbitrary universe U (no specific sort)
 - axioms ensure that = is an equivalence relation (reflexive, symmetric, transitive)
 - arbitrary number of uninterpreted function symbols of any arity
- We typically need a combination of multiple theories
 - Example: Presburger arithmetic + uninterpreted functions
 - Program verification: theories for modeling different data types

SMT solvers

- 1. Propositional logic and satisfiability solvers
- 2. Using Z3 as a SAT solver
- 3. First-order logic and SMT solvers
- 4. Using Z3 as an SMT solver

Using theories

- Sorts (beyond Bool)
 - Int, Real, BitVec(precision)
 - DeclareSort(name)
 (uninterpreted)
- Variables are syntactic sugar for uninterpreted constants
 - Const(name, sort)
- Uninterpreted functions are declared with parameter and result types
- We will discuss quantifiers later

```
from z3 import *
Pair = DeclareSort('Pair')
null = Const('null', Pair)
cons = Function('cons', IntSort(), IntSort(), Pair)
first = Function('first', Pair, IntSort())
ax1 = (null == cons(0, 0))
x, y = Ints('x y')
ax2 = ForAll([x, y], first(cons(x, y)) == x)
s = Solver()
s.add(ax1)
s.add(ax2)
F = first(null) == 0
# check validity
s.add(Not(F))
print( s.check() )
```

Using an SMT solver to verify a program

```
{ a = 1 \land 0 \le b*b - 4*c } // Check that this entailment is valid (its negation is unsatisfiable) { b*b - 4*a*c < 0 \land false \lor \neg(b*b - 4*a*c < 0) \land a*((-b + <math>\sqrt{b*b - 4*a*c}) / 2)^2 + b*((-b + <math>\sqrt{b*b - 4*a*c}) / 2) + c = 0 }
```

```
from z3 import *
a, b, c = Reals('a b c')
d = b*b - 4*a*c
PO = Implies(
       And(a == 1, 0 \le b*b - 4*c),
       Or( And(d < 0, False),
           And(Not(d < 0),
               a*((-b + Sqrt(d))/2)*((-b + Sqrt(d))/2) + b*((-b + Sqrt(d))/2) + c == 0
      )))
# check validity
s = Solver()
s.add(Not(PO)); print( s.check() )
```

Some important theories

Linear integer/real arithmetic

$$19 * x + 2 * y = 42$$

- (Unbounded) arithmetic is often used to approximate int and float
 - Multiplication by constants is supported

Non-linear integer/real arithmetic

$$x * y + 2 * x * y + 1 = (x + y) * (x + y)$$

 Useful for programs that perform multiplication and division, e.g., crypto libraries

Equality logic with uninterpreted functions

$$(x = y \land u = v) \Rightarrow f(x, u) = f(y, v)$$

 Universal mechanism to encode operations not natively supported by a theory

Fixed-size bitvector arithmetic

$$x \& y \le x \mid y$$

- To encode bit-level operations
- To perform bit-precise reasoning, e.g., floats

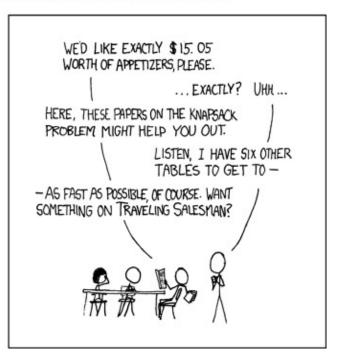
Array theory

$$read(write(a, i, v), i) = v$$

To encode data types such as arrays

Example: encoding hard problems to SMT

MY HOBBY: EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS



https://xkcd.com/287/

How do we model this as an SMT query?

Theory reasoning

- Z3 selects theories based on the features appearing in formulas
 - Most verification problems require a combination of many theories

Quantifier-free linear integer arithmetic with uninterpreted functions

$$17 * x + 23 * f(y) > x + y + 42$$

- Some theories are decideable, e.g., quantifier-free linear arithmetic
 - SMT solver will terminate and report either "sat" or "unsat"
- Some theories are undecideable, e.g., nonlinear integer arithmetic
 - Especially in combination with quantifiers
 - SMT solver uses heuristics and may not terminate or return "unknown"
 - Results can be flaky, e.g., depend on order of declarations or random seeds

Working with quantifiers is non-trivial

```
from z3 import *
s = Solver()
x = Real('x')
f = Function('f', RealSort(), RealSort())
s.add(
  ForAll(x, Implies(x >= 0, f(x) * f(x) == x))
s.add(x > 0)
s.add(Sqrt(x) == f(x))
print(s.check())
```

```
$ python ...
unknown
```

Exercise: the N-queens problem

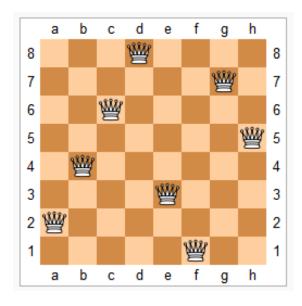
The N-queens problem is to place N-queens on an N x N chess board such that no two queens threaten each other.

Let's use Z3 to compute a solution to the N-queens problem for any given N.

Hints:

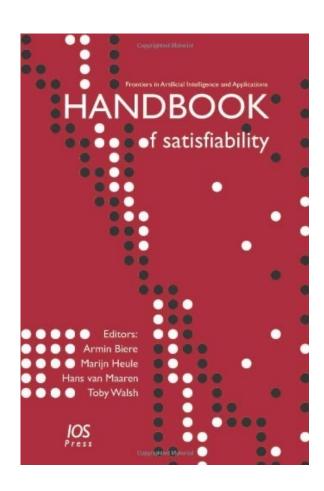
- Represent the board as a list of N integers: IntVector('board', N). board[i] gives the row of the queen in column i.
- Distinct(1) is a Z3-constraint that expresses that all elements in list 1 are disjoint.
- You can easily check the diagonals by shifting the queens vertically and then checking the rows.

Extend your encoding to find all solutions. How many are there?



More background on SAT solvers

- DPLL: Davis-Putnam-Logemann-Loveland Algorithm
 - <u>A machine program for theorem-proving</u>. Martin Davis, George Logemann, and Donald Loveland. 1962.
- CDCL: Conflict-Driven Clause Learning Algorithm
 - GRASP A New Search Algorithm for Satisfiability. João P. Marques Silva and Karem A. Sakallah. 1996.
- Further developments
 - Chaff: engineering an efficient SAT solver. Matthew W. Moskewicz,
 Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. 2001.
 - <u>SAT-solving in practice</u>. Koen Claessen, Niklas Een, Mary Sheeran, Niklas Sörensson. 2008.
- Annual SAT competition:
 - http://www.satcompetition.org/



More background on SMT solvers

- http://www.decision-procedures.org/ (website of book)
- Programming Z3, Nikolaj Bjørner, Leonardo de Moura, Lev Nachmanson, Christoph M. Wintersteiger, 2018
- SMT-LIB standard
- Other teaching material
 - SMT solvers: Theory and Implementation. Leonardo de Moura
 - SMT Solvers: Theory and Practice. Clark Barrett
 - Satisfiability Checking, Erika Ábrahám

