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Hoare triples

For predicates P and Q and program S, the Hoare triple

preconditon——{ P } S { Q }

postcondition

states the following:

if S is started in any state that satisfies F,
then S will not crash (or do other bad things) and
will terminate in some state satisfying O

Examples: { x ==1} x := 20 { x == 20 }
{ X< 18 }y (=18 - x{ vy >= 0 }
{ x <18 } y :=5 {y >= 0 }

Non-example: { x < 18 } x :=y { y >= 0 }



Reducing an Imperative Program to a Formula

{ true }
// Check that this implication 1is valid (negation is unsatisfiable) (:::)
{ (a = (b = (true & (a = b))) A (b = (false < (a = b)))) v (—a = (true & (a = b)) }
if (a) {
{ (b = (true < (a = b))) A (-b = (false & (a = b))) }
if (b) {
{ true < (a = b) }
res := true
{ res & (a = b) }
} else {
{ false & (a = b) }
res := false
{ res & (a = b) }
}
res < (a = b) }
else {
true < (a = b) }
res := true
res < (a = b) }

e o el

e )

res < (a = b) }



Forward reasoning

Constructing a postcondition from a given precondition

In general, there are many possible postconditions

Examples:
1. { x =0} vy :=x+3 {y < 100 }
2. {x =0} vy :=x+3 { X =20}
3. { x=01} vy :=x+3 {0<k=x8&& Yy ==31}
4. { x ==0 } y :=x+ 3 { 3 <K=y}
5. { x==0} vy :=x+ 3 { true }



Strongest postcondition

Forward reasoning constructs the strongest (i.e., most specific)
postcondition

Def: A is strongerthan B if A ==> B isavalid formula

Def: A formula is valid if it is true for any valuation of its free variables



Backward reasoning

Construct a precondition for a given postcondition

Again, there are many preconditions

Examples:

1. { x <= 70 }
2. { x==658&% vy < 21 }
3. { X <= 77 }
4. { x*x + y*y <= 2500 }
5. { false }
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Weakest precondition

Backward reasoning constructs the weakest (i.e., most general) precondition

{ x<=77} y :=x+ 3 {vy<= 280}

Def: A is weaker than B if B ==> A is avalid formula



Weakest precondition for assighment

Given { }

10}

we construct ? by replacing each x in Q with E (denoted by Q[ x\E] )



Weakest precondition for assighment
Given {O[x\E]} x := E { Q }

Examples: { ? } yv :=a+b {25«<=y}

t\‘~—— 25 <= a + b

1. { 25 <= x + 3 +12 }a :=x+ 3 4{ 25«<=a + 12 }
2. { X +1<k=y }x =x+1{x<K=y}
3. { 3*2*x + 5*y < 100 } x := 2*x { 3*x + 5*y < 100 }



Swap example

var tmp := X;



Swap example

The initial values of x and y are
specified using logical variables
X XandY

var tmp :



Swap example

The initial values of x and y are
specified using logical variables

var tmp := X; XandY
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Swap example

var tmp := X;
X =Y
y = tmp;

The final step is the proof obligation that
(x == X && y == VY) ==> (y == Y && x == X)

is valid



Program-proof bookkeeping



Program-proof bookkeeping

X =Yy - X;
y ‘=Y - X;
X 1=y + X;

The constructed precondition simplifies to

y:: &&X::



Program-proof bookkeeping

>
X =Y - X,
_
>
y (=Y - X;
X =Y + X;

We are also allowed to strengthen the conditions as
we work backwards (but not weaken them!)



What about strongest postconditions?

Consider { w < X & x <y } x :=100 { ? }

Obviously, X == 100 is a postcondition, but it is not the strongest

Something more is implied by the precondition:
there existsannsuchthat w < n & n < vy
which is equivalent to sayingthat w + 1 < vy

In general:

{ P } x :

E { exists n :: P[x\n] & x == E[x\n] }



WP and SP

Let P be a predicate on the pre-state of a program S and
let O be a predicate on the post-state of S

WP [S, Q] denotes the weakest precondition of S wrt Q
SP [S, P] denotes the strongest postcondition of S wrt P

WP [x :

E, Q] = Q[x\E]

SP [x :

E, Pl

exists n :: P[x\n] && x

E[x\n]



Control flow

Until now:
Assignment: x := E

Variable introduction: var x

Next:

Sequential composition: S ; T
Conditions: if B { S } else { T }

Method calls: r := M(E)

Later:

Loops: while B { S }



Sequential composition

S ;T 1PrS{Q}rTA{R}
1P}rS{10Q}rand {Q} T {R}

Strongest postcondition

letQ = SP[S, P]
SP[S;T,P]=SP [T,Q]=SP [T, SPIS, P]]

Weakest precondition
letQ = WP [T, R]
WP [S;T,R]=WP [S,0Q]=WP [S, WP [T, R]]



Conditional control flow

it B{S } else { T}

P}
Y\
{vy {wy
{xy AV

10Q}




Conditional control flow

it B {S }else{ T}

[{ P }J Floyd-Hoare logic tells us:
R 1. P & B ==> V
1V} [{W} 2. P & !B ==> W
3. {V}s{X}
{x)y AV} 4 {WYT{V}
5 ==>Q
10} 6. Y==>Q




Strongest postcondition

it B{S }else{ T}

Py
/ IB X =SSP [S,P && B]
{P && B {P 8&& 'B} Y = SP[T, P && !B
S
{x}y LV}

>||‘{}} SP[if B { S } else { T }, P]=
SP [S,P && B] || SP[T, P && !B]

{




Weakest precondition

it B{S }else{ T}

{B==>V 8 !B ==> W }]

/ \JB V=WP [S, Q]

{V {Wy W=WP [T, Q]

{0y {0}
Wp[if B { S } else { T }, Q] =
{0} ( B ==> WP [S, 0]) &&
(!B ==>wp [T, Q])



Weakest precondition (example)

it x < 3 {

X, Yy :=Xx+ 1, 10;

} else {



Weakest precondition (example)

it x < 3 {

X, Yy :=Xx+ 1, 10;

} else {
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Weakest precondition (example)

it x < 3 {
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Weakest precondition (example)

it x < 3 {

X, Yy :=Xx+ 1, 10;

} else {



Weakest precondition (example)

{ X == 50 }
it x < 3 {

X, Yy :=Xx+ 1, 10;

} else {



Refresher: Implication properties

A ==>B equivto 'A || B

Hence,
A ==>1true| equiv. to |true
A ==> false ! LA
true ==> B ! B
false ==>B ! true

Useful law for simplifying predicates

A ==> (B ==> C) equiv.to (A & & B) ==> C



Weakest precondition (example)

it x < 3 4
X, Yy :=Xx+ 1, 10;
} else {



Weakest precondition (example)
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Weakest precondition (example)

it x < 3 4
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Weakest precondition (example)

it x < 3 4
X, Yy :=Xx+ 1, 10;
} else {



Weakest precondition (example)

it x < 3 4
X, Yy :=Xx+ 1, 10;
} else {



Demo in Velvet

method IfElse (mut x : Int) (mut y : Int) return (res: Int)
require x = 50
ensures x + y = 100 do
if x < 3 then

X i=x + 1

y = 10
else

y = X
return X

prove_correct IfElse by
loom_solve

See PraVDA/Velvet/SimpleExamples.lean



Method correctness

Given

method M(x: T,) return (y: T,)
require P
ensures Q

{
¥

we need to prove

B

P ==> WP [B, Q]



Method calls

Methods are opaque, i.e., we reason in terms of their specifications,
not their implementations

Given

method Triple(x: ) return (y: )
ensures y == 3 * X

we expect to be able to prove, for instance, the following method call

v := Triple(u + 4)



Parameters

We need to relate the actual parameters (of the method call) with the
formal parameters (of the method)

To avoid any name clashes, we first rename the formal parameters to
fresh variables:

method Triple(x': ) return (y': )
ensures y' == 3 * x'
Then, foracall v := Triple(u + 1) we have
X" =u+1

vV o=y



Assumptions
The caller can assume that the method's postcondition holds

We introduce a new statement, assume E, to capture this
SP [assume E, P] = E & P

WP [assume E,Q] = E ==> Q

The semantics of v Triple(u + 1) isthen given by

var x'; var y'; method Triple(x': )
X =u+ 1; returns (y': )
assume y' == 3 * x'; ensures y' == 3 * x'

V i=y



Weakest precondition

WP[r := M(E), Q] = forall y":: R[x,y\E,y'] ==> Q[r\y']

where x is M’s input, v is M’s output, and R is M's postcondition

Example. Let Q be v == 48 for the method:

method Triple(x: ) returns (y: )
ensures y == 3 * X

v := Triple(u + 1);



Assertions

assert E does nothing when E holds,
otherwise it crashes the program

method Triple(x: ) return (r:

lety 1= 2 * x
r:=XxX+y

assert r 3 * X

WP [assert E,Q] =E && Q

SP [assert E,P] = P & & E

) do



Method calls with preconditions

Given

method M(x: X) return (y: Y)
require P
ensures R

The semanticsof r := M(E) s

var Xg ; var y. ;

Xg = E 3

assert P[x\x.] ;
assume R[X,y\Xgt, V] ;

r.=Y.

WP [r := M(E),Q] = P[xX\E] && forall y. :: R[x,y\E,vy.] ==> Q[r\vy,.]



Demo in Velvet

method Triple (x: Int) return (r: Int)

(
ensures r = 3 x

do
let y := 2 x X
let mut r :=x +y
return r

prove_correct Triple by
Lloom_solve

method TestTriple (x : Int) return (u : Unit) do
—— Note the syntax for method calls
let r : Int « Triple x
assert r = x x 3

prove_correct TestTriple by
Lloom_solve



Loops in Velvet

while G
invariant J
decreases M
do

Body

G: loop guard, Boolean expression

M: (optional) termination measure, expression whose value is expected to
decrease at each loop iteration

J: loop invariant, condition expected to hold at each iteration



Hoare triples for loops

{ J }
while G
invariant J

{ ]88 G}

Example

r:.= 0;
N := 104;
while (r+1)*(r+1) <= N
invariant @ <= r && r*r <= N
assert 0 <= r & r*r <= N < (r+1)*(r+l);



Floyd-Hoare logic for loop body

For a loop

while G
invariant J
do

Body

we need to prove

{ J && G }
Body

13}



Quotient modulus

X = 0;

y := 191,

while 1(y < 7)

invariant 0 <=y && 7*x + y == 191
assert x == 191 / 7 && y == 191 % 7;



Full program

X := 0;

y := 191;

while I(y < 7)

invariant 0 <=y && 7*Xx + y == 191

do

& 7*x + y == 191 && 7 <=y }
-7 & 7*x + 7 + (y - 7) == 191 }
/5

Q& 7*x + 7 + y == 191 }

& 7*(x + 1) + y == 191 }

1;

& 7*x + y == 191 }
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assert x == 191 / 7 && y == 191 % 7,;



Demo in Velvet

method QuotientModulus (mut x : Int) (mut y : Int) return (res: Int x Int)
require x = 0 & y = 191
do
while !(y < 7)
invariant 0 <=y & 7 *x X + y == 191

do

y i=y -/

X i =X + 1
assert x = 191 / 7
assert y = 191 % 7
return (x, y)

#eval (QuotientModulus © 191).run




Leap to the answer

X := 0;
y := 191;
while I(y < 7)
invariant 0 <=y && 7*x + y == 191
do
{0 <=y & 7 * x+y ==191 && 7 <=y }

= 27

0

< X
IIN

y 8 7 * x + y == 191 }

assert x == 191 / 7 && y == 191 % 7,;



Leap to the answer

X := 0;

y := 191;

while I(y < 7)

invariant 0 <=y && 7*x + y == 191
do

{0 <=y & 7 * x+y ==191 && 7 <=y }
{ true }

{0 <=288 7 * 27 + 2 == 191 }

X 1= 27

y = 2

{ 0<k=y & 7 * x +y == 191 }

assert x == 191 / 7 && y == 191 % 7,;



Computing sums
while n 1= 33
invariant s == n * (n - 1) / 2

do
{s=n*(n-1) /2 8& n != 33 }

{s==n*(n-1) / 2}

assert s == 33 * 32 / 2;



Computing sums

while n I'= 33

invariant s == n * (n - 1) / 2
do
s=n%*(n-1) / 2 & n =33}
s ==n%*(n-1) / 2}
'= S + n;
n* (n-1) / 2+ n }
(n*n - n) / 2+ 2*n / 2 }

n*
(n*n - n + 2*n) / 2 }
(n*n + n) / 2 }

(n +1) *n/ 2}
(
+
n

I
n = 1 n 1 nu

n+1) *(n+1-1) / 2}
1;
X

AN S A A A AN A N A
n u N N N n

(n-1)/ 2}

m LN ]
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assert s == 33 * 32 / 2;



Full program

Need to choose initial values of s and n to establish invariant

S := 0;
n := 0;
while n I= 33
invariant s == n * (n - 1) / 2
do
S := S + n;
n :=n+ 1;



Reasoning about Termination



Loop termination

For a loop

while G
invariant J
decreasing D
do

Body

Ghost variables are for
we need to prove reasoning only. They are not
part of the compiled code.

{J && G }
ghost var d := Dj;
Body

{D<d&& 0 <=D }



Termination of quotient modulus

X, y =0, 191;

while 7 <=y
invariant 0 <=y && 7 * x + y == 191
decreasing y

do
y =y - 7/;
X = X + 1;

{0<k=y && 7 * x +y ==191 && 7 <=y }
ghost var d := vy;
y 1=y - 7/; e y < d followsfromy =y - 7
X 1= X+ 1;

{d>y8& vy > 0 }° © <= d follows from©@ <= yininvariant



Quick body

X, y =0, 191;

while 7 <=y
invariant 0 <=y && 7 * x + y == 191
decreasing y

do
y = 2;
X = 27;

{0<k=y & 7 * x+y ==191 && 7 <=y }
ghost var d := vy;

y = 2; e y < d followsfrom 7 <=y ininvariant

X 1= 27; e 0 <= d followsfrom©@ <= yininvariant

{d>y &y > 0}



Complete loop rule

{ J}
while G
invariant J

decreasing D

do { J && G }
Body ghost var d := D;
Body

{J88& IG } {718 d >D & D >= 0 }



Integer square root

method SquareRoot(N: ) return (r:
ensures r*r <= N < (r+l1)*(r+l)



Integer square root

method SquareRoot(N: ) return (r:
ensures r*r <= N & N < (r+1)*(r+l)

Loop design pattern
For a postcondition A && B, use
A as the invariant and !B as the guard

do

while (r+1)*(r+1) <= N
invariant r*r <= N



Integer square root

method SquareRoot(N: ) return (r:
ensures r*r <= N & N < (r+1)*(r+l)

Loop design pattern
For a postcondition A && B, use
A as the invariant and !B as the guard

do
let mut r := 0;
while (r+1)*(r+1) <= N
invariant r*r <= N
do
r:=r+1



A more efficient algorithm

Rather than calculate (r + 1)*(r + 1) on each iteration, add
a new variable s and maintain invariant
s == (r + 1)*(r + 1)



A more efficient algorithm

Rather than calculate (r + 1)*(r + 1) on each iteration add
a new variable s == (r + 1)*(r + 1)

Then we have s initially 1, loop guard s <= N and
invariants == (r + 1)*(r + 1)

{s=(r+ D*(r+1) }

(r+1+ D)*(r+1+ 1)}
+ 1
(r + )*(r + 1) }

n
Il
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|
n = |l



A more efficient algorithm

Rather than calculate (r + 1)*(r + 1) on each iteration add
a newvariable s == (r + 1)*(r + 1)

Then we have s initially 1, loop guard s <= N and

invariants == (r + 1)*(r + 1)
s == (r + )*(r +1) }
S +2*r + 3 == (r+ 1)*(r + 1) + 2*r + 3 }
:= S + 2%r + 3;
s == (r + D*(r + 1) + 2*r + 3}
S == pr¥*r + 2*r + 1 + 2%r + 3 }
S == r¥*r + 4*r + 4}
s=(r+1+ 1D*(r +1+ 1)}
=r + 1
s == (r + D*(r +1) }

AN TS AN AN A AN A



Full program

method SquareRoot(N: ) return (r:
ensures r*r <= N < (r+1)*(r+l)
do
let mut r := 03
var s := 1;
while s <= N
invariant r*r <= N

invariant s == (r+l1)*(r+l)
do
S =S + 2*%r + 3;

r:=r + 1;






Iterative Fibonacci

def Fib (n: Nat) := match n with
@ => 0
1 =>1

n+2=>Fib (n + 1) + Fib n

method ComputeFib(n: ) returns (x:

ensures X = Fib(n)

do

X = 0;

var i := 0;

while 1 !=n
invariant @ <= 1 <= n
invariant x = Fib(1i)



Iterative Fibonacci

Loop design technique (Replace a constant by a variable)

For a loop to establish a condition P[E], where E is an expression
that maintains a constant value throughout the loop,

e use a variable i that the loop changes until it equals E, and

* make P[i] aloop invariant

Example: to establish x = Fib(n) introduce i and

invariant x = Fib(1)




Iterative Fibonacci

method ComputeFib(n: ) returns (x:
ensures x == Fib(n)
do

let mut x := ©

let mut vy :=1

let mut 1 := ©

while 1 !=n
invariant 0 <= 1 & & 1 <= n
invariant x = Fib(1i)
do

i :=1 + 1;



Iterative Fibonacci

method ComputeFib(n: ) returns (x: )
ensures x == Fib(n)
do

let mut x := 0
let mut vy :=1
let mut 1 := ©
while i = n
invariant 0 <=1 & 1 <= n
invariant x = Fib(1i)
invariant x == Fib(i) & & y == Fib(i + 1)

o ~

1 =1+ 1; —
’ Cannotuse y == Fib(i-1)
as not defined when 1 ==




{ 0 <=1<=n && x == Fib(1i)
&& y == Fib(i+l) && 1 != n}

i :=1 + 1;
{ 0 <=1<=n && x == Fib(i) & & y == Fib(i+l) }



Loop body

{ 0 <=1<=n && x == Fib(1)
&& y == Fib(i+l) && 1 != n}

{0 <k=1<=n & & x == Fib(i) & & y == Fib(i+1) }
{ 0 <= i+1 <= n & & x == Fib(i) & & y == Fib(i+l) }
{ 0 <= i+l <= n && y == Fib(i+l)

&& x+y == Fib(i) + Fib(i+1) }
let tmp := Xx; X :1=y; y = tmp + vy
{ @0 <= i+1 <= n && x == Fib(i+1)

&& y == Fib(i) + Fib(i+1) }
{ 0 <= i+1 <= n && x == Fib(i+l) && y == Fib(i+2)}
{ @0 <= i+1 <= n && x == Fib(i+1)

&& y == Fib(i+1+1) }
i :=1 + 1;

{ @ <=1<=n & x == Fib(i) && y == Fib(i+1) }



Full program

method ComputeFib(n: ) return (x:
ensures x = Fib(n)
do

let mut x := ©
let mut y =1
let mut 1 := 0;
while 1 !=n
invariant @ <= 1 & 1 <= n
invariant x = Fib(1i)
invariant y = Fib(i + 1)
do
let tmp = X; X (= y; y = tmp + vy
i :=1+ 1



Demo in Velvet

@[grind]
v def isMax (mx: Int) (arr: Array Int) :=
forall i, ( h: i < arr.size ) -> mx >= (arr[i]'h)

v method maxElem (arr: Array Int) return (res: Int)
require arr.size > 0
ensures isMax res arr
do
let mut i := 0
let mut mx := arr[i]!
i:=1+1
while i < arr.size
invariant @ <= i A 1 <= arr.size
invariant forall j, j < i —> mx >= arr[j]!
do
let elem := arr[i]!
if elem > mx then
mx := elem
else
mx := mx
i:=1+1
return mx

v prove_correct maxElem by
loom_solve



What Have We Learned

Theorems as Types

Proofs as Programs

Basics of Lean

nductive Definitions

Proofs by Induction
Relations as Predicates
State Machines as Relations
Stating Safety Properties
Basics of SMT solvers

Verifying State Machines in Veil
Subset/Refinement Types
Setoids and Quotient Types
Defining Z, Q, and R
Hoare-Style Logic

Weakest Preconditions

Loop Invariants

Reasoning about Arrays
Verifying Programs in Velvet



What’s Next

e Research Project:
— Proving a cute mathematical theorem
— Formalising a state Machine / distributed protocol in Veil
— Verifying an algorithm/data structure in Velvet

* Forinspiration:
— Some ideas: https://ilyasergey.net/PWP25/projects.html

— I’m happy to discuss project ideas!


https://ilyasergey.net/PWP25/projects.html

And then what?

* Books and Resources:
— The Hitchhiker’s Guide to Logical Verification (2025)
— Functional Programming in Lean
— Theorem Proving in Lean 4
— https://leanprover.zulipchat.com/

* Conferences to check out: POPL, PLDI, OOPSLA, CAV

— PLMW: https://www.sigplan.org/Conferences/PLMW/
— VMW: https://i-cav.org /2024 /workshops/mentoring/

* Researchers to follow (very incomplete list):

— Isil Dillig, Peter Mtller, Peter O’Hearn, Leonardo de Moura, Leslie Lamport,
Rustan Leino, Kenneth McMillan, Ranjit Jhala, Thomas Wies,
Derek Dreyer, Swarat Chaudhuri, Clément Pit-Laudel


https://leanprover.zulipchat.com/
https://leanprover.zulipchat.com/
https://www.sigplan.org/Conferences/PLMW/
https://i-cav.org/2024/workshops/mentoring/
https://i-cav.org/2024/workshops/mentoring/
https://i-cav.org/2024/workshops/mentoring/

VERSE lab: Verified Systems Engineering

> __ Multi- I\‘hodal Verification in Lean
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Velvet: A Multi-Modal Verifier for Effectful Programs

Qiyuan Zhao L

Vladimir Gladshtein George Pirlea

National University of Sir . . Wel)
Veil: A Framework for Automated and Interactive s Foundational Multi-Modal Program Verifiers

Verification of Transition Systems
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If you

Like understanding complex software artefacts

(compilers, concurrency, distributed systems)
Enjoy thinking about logics and type systems
Love metaprogramming and hacking proofs in Lean NSt 0> S0

Want to publish at top PL/FM venues (PLDI, POPL, ICFP, CAV)

Join VERSE lab @ NUS!
« Fully-funded 5-year PhD positions

« Also hiring Postdocs and Interns

This is a durian.

« Get to live in Singapore: the world’s y We have them oo

most diverse and safest city

« and travel around the world August 2025

| | Langkawi, Ma’aysia
verse-lab.github.io



More PL/SE/FM at NUS School of Computing

1 Umang Mathur

dynamic concurrency analysis,
algorithmic verification
focs-lab.comp.nus.edu.sg

Manuel Rigger
testing for databases,
compilers, solvers
nus-test.github.io

Prateek Saxena
PL for security
comp.nus.edu.sg/~prateeks

Abhik Roychoudhury

program repair, fuzzing, LLMs
nus-tss.github.io

nus-plse.github.io
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