Programming with Proofs

Verifying Imperative Programs

Copyright 2020-22, Graeme Smith and Cesare Tinelli.
Produced by Cesare Tinelli at the University of lowa from notes originally developed by Graeme Smith at the University of Queensland. These notes

are copyrighted materials and may not be used in other course settings outside of the University of lowa in their current form or modified form without
the express written permission of one of the copyright holders. During this course, students are prohibited from selling notes to or being paid for taking
notes by any person or commercial firm without the express written permission of one of the copyright holders.

Hoare triples

For predicates P and Q and program S, the Hoare triple

preconditon——{ P } S { Q }

postcondition

states the following:

if S is started in any state that satisfies F,
then S will not crash (or do other bad things) and
will terminate in some state satisfying O

Examples: { x ==1} x := 20 { x == 20 }
{ X< 18 }y (=18 - x{ vy >= 0 }
{ x <18 } y :=5 {y >= 0 }

Non-example: { x < 18 } x :=y { y >= 0 }

Reducing an Imperative Program to a Formula

{ true }
// Check that this implication 1is valid (negation is unsatisfiable) (:::)
{ (a = (b = (true & (a = b))) A (b = (false < (a = b)))) v (—a = (true & (a = b)) }
if (a) {
{ (b = (true < (a = b))) A (-b = (false & (a = b))) }
if (b) {
{ true < (a = b) }
res := true
{ res & (a = b) }
} else {
{ false & (a = b) }
res := false
{ res & (a = b) }
}
res < (a = b) }
else {
true < (a = b) }
res := true
res < (a = b) }

e o el

e)

res < (a = b) }

Forward reasoning

Constructing a postcondition from a given precondition

In general, there are many possible postconditions

Examples:
1. { x =0} vy :=x+3 {y < 100 }
2. {x =0} vy :=x+3 { X =20}
3. { x=01} vy :=x+3 {0<k=x8&& Yy ==31}
4. { x ==0 } y :=x+ 3 { 3 <K=y}
5. { x==0} vy :=x+ 3 { true }

Strongest postcondition

Forward reasoning constructs the strongest (i.e., most specific)
postcondition

Def: A is strongerthan B if A ==> B isavalid formula

Def: A formula is valid if it is true for any valuation of its free variables

Backward reasoning

Construct a precondition for a given postcondition

Again, there are many preconditions

Examples:

1. { x <= 70 }
2. { x==658&% vy < 21 }
3. { X <= 77 }
4. { x*x + y*y <= 2500 }
5. { false }

< K v K X

w W ow W w

{y
{y
1y
1y
{y

<= 80 }
<= 80 }
<= 80 }
<= 80 }
<= 80 }

Weakest precondition

Backward reasoning constructs the weakest (i.e., most general) precondition

{ x<=77} y :=x+ 3 {vy<= 280}

Def: A is weaker than B if B ==> A is avalid formula

Weakest precondition for assighment

Given { }

10}

we construct ? by replacing each x in Q with E (denoted by Q[x\E])

Weakest precondition for assighment
Given {O[x\E]} x := E { Q }

Examples: { ? } yv :=a+b {25«<=y}

t\‘~—— 25 <= a + b

1. { 25 <= x + 3 +12 }a :=x+ 3 4{ 25«<=a + 12 }
2. { X +1<k=y }x =x+1{x<K=y}
3. { 3*2*x + 5*y < 100 } x := 2*x { 3*x + 5*y < 100 }

Swap example

var tmp := X;

Swap example

The initial values of x and y are
specified using logical variables
X XandY

var tmp :

Swap example

The initial values of x and y are
specified using logical variables

var tmp := X; XandY

~—

~ > ~

Il 1|

I Q I

=

S e s>
X

o o o

o I oJ o

< g
Q e =

Il = > Pl

N~ 4~ | | | I

X e C N oo X oo X
)

N S N X Y D

oJ ><
I
>
o
Qo
<
|
I
<
-

I - |l

X
Il
| f'|‘ Il ‘< |

A AN X AN AN

Q

o S

I
=
©
||
X
\o

X
Il

I
< X

Q
e < O KK X

I
=)
“. ©

X
Il
<<

{
{
\Y,
{
X =
{
y
{

x LN]
Il

Swap example

var tmp := X;
X =Y
y = tmp;

The final step is the proof obligation that
(x == X && y == VY) ==> (y == Y && x == X)

is valid

Program-proof bookkeeping

Program-proof bookkeeping

X =Yy - X;
y ‘=Y - X;
X 1=y + X;

The constructed precondition simplifies to

y:: &&X::

Program-proof bookkeeping

>
X =Y - X,
_
>
y (=Y - X;
X =Y + X;

We are also allowed to strengthen the conditions as
we work backwards (but not weaken them!)

What about strongest postconditions?

Consider { w < X & x <y } x :=100 { ? }

Obviously, X == 100 is a postcondition, but it is not the strongest

Something more is implied by the precondition:
there existsannsuchthat w < n & n < vy
which is equivalent to sayingthat w + 1 < vy

In general:

{ P } x :

E { exists n :: P[x\n] & x == E[x\n] }

WP and SP

Let P be a predicate on the pre-state of a program S and
let O be a predicate on the post-state of S

WP [S, Q] denotes the weakest precondition of S wrt Q
SP [S, P] denotes the strongest postcondition of S wrt P

WP [x :

E, Q] = Q[x\E]

SP [x :

E, Pl

exists n :: P[x\n] && x

E[x\n]

Control flow

Until now:
Assignment: x := E

Variable introduction: var x

Next:

Sequential composition: S ; T
Conditions: if B { S } else { T }

Method calls: r := M(E)

Later:

Loops: while B { S }

Sequential composition

S ;T 1PrS{Q}rTA{R}
1P}rS{10Q}rand {Q} T {R}

Strongest postcondition

letQ = SP[S, P]
SP[S;T,P]=SP [T,Q]=SP [T, SPIS, P]]

Weakest precondition
letQ = WP [T, R]
WP [S;T,R]=WP [S,0Q]=WP [S, WP [T, R]]

Conditional control flow

it B{S } else { T}

P}
Y\
{vy {wy
{xy AV

10Q}

Conditional control flow

it B {S }else{ T}

[{ P }J Floyd-Hoare logic tells us:
R 1. P & B ==> V
1V} [{W} 2. P & !B ==> W
3. {V}s{X}
{x)y AV} 4 {WYT{V}
5 ==>Q
10} 6. Y==>Q

Strongest postcondition

it B{S }else{ T}

Py
/ IB X =SSP [S,P && B]
{P && B {P 8&& 'B} Y = SP[T, P && !B
S
{x}y LV}

>||‘{}} SP[if B { S } else { T }, P]=
SP [S,P && B] || SP[T, P && !B]

{

Weakest precondition

it B{S }else{ T}

{B==>V 8 !B ==> W }]

/ \JB V=WP [S, Q]

{V {Wy W=WP [T, Q]

{0y {0}
Wp[if B { S } else { T }, Q] =
{0} (B ==> WP [S, 0]) &&
(!B ==>wp [T, Q])

Weakest precondition (example)

it x < 3 {

X, Yy :=Xx+ 1, 10;

} else {

Weakest precondition (example)

it x < 3 {

X, Yy :=Xx+ 1, 10;

} else {

Weakest precondition (example)

it x < 3 {

X, Yy :=Xx+ 1, 10;

} else {

Weakest precondition (example)

it x < 3 {

X, Yy :=Xx+ 1, 10;

} else {

Weakest precondition (example)

it x < 3 {

X, Yy :=Xx+ 1, 10;

} else {

Weakest precondition (example)

it x < 3 {

X, Yy :=Xx+ 1, 10;

} else {

Weakest precondition (example)

{ X == 50 }
it x < 3 {

X, Yy :=Xx+ 1, 10;

} else {

Refresher: Implication properties

A ==>B equivto 'A || B

Hence,
A ==>1true| equiv. to |true
A ==> false ! LA
true ==> B ! B
false ==>B ! true

Useful law for simplifying predicates

A ==> (B ==> C) equiv.to (A & & B) ==> C

Weakest precondition (example)

it x < 3 4
X, Yy :=Xx+ 1, 10;
} else {

Weakest precondition (example)

it x < 3 4
X, Yy :=Xx+ 1, 10;
} else {

Weakest precondition (example)

it x < 3 4
X, Yy :=Xx+ 1, 10;
} else {

Weakest precondition (example)

it x < 3 4
X, Yy :=Xx+ 1, 10;
} else {

Weakest precondition (example)

it x < 3 4
X, Yy :=Xx+ 1, 10;
} else {

Demo in Velvet

method IfElse (mut x : Int) (mut y : Int) return (res: Int)
require x = 50
ensures x + y = 100 do
if x < 3 then

X i=x + 1

y = 10
else

y = X
return X

prove_correct IfElse by
loom_solve

See PraVDA/Velvet/SimpleExamples.lean

Method correctness

Given

method M(x: T,) return (y: T,)
require P
ensures Q

{
¥

we need to prove

B

P ==> WP [B, Q]

Method calls

Methods are opaque, i.e., we reason in terms of their specifications,
not their implementations

Given

method Triple(x:) return (y:)
ensures y == 3 * X

we expect to be able to prove, for instance, the following method call

v := Triple(u + 4)

Parameters

We need to relate the actual parameters (of the method call) with the
formal parameters (of the method)

To avoid any name clashes, we first rename the formal parameters to
fresh variables:

method Triple(x':) return (y':)
ensures y' == 3 * x'
Then, foracall v := Triple(u + 1) we have
X" =u+1

vV o=y

Assumptions
The caller can assume that the method's postcondition holds

We introduce a new statement, assume E, to capture this
SP [assume E, P] = E & P

WP [assume E,Q] = E ==> Q

The semantics of v Triple(u + 1) isthen given by

var x'; var y'; method Triple(x':)
X =u+ 1; returns (y':)
assume y' == 3 * x'; ensures y' == 3 * x'

V i=y

Weakest precondition

WP[r := M(E), Q] = forall y":: R[x,y\E,y'] ==> Q[r\y']

where x is M’s input, v is M’s output, and R is M's postcondition

Example. Let Q be v == 48 for the method:

method Triple(x:) returns (y:)
ensures y == 3 * X

v := Triple(u + 1);

Assertions

assert E does nothing when E holds,
otherwise it crashes the program

method Triple(x:) return (r:

lety 1= 2 * x
r:=XxX+y

assert r 3 * X

WP [assert E,Q] =E && Q

SP [assert E,P] = P & & E

) do

Method calls with preconditions

Given

method M(x: X) return (y: Y)
require P
ensures R

The semanticsof r := M(E) s

var Xg ; var y. ;

Xg = E 3

assert P[x\x.] ;
assume R[X,y\Xgt, V] ;

r.=Y.

WP [r := M(E),Q] = P[xX\E] && forall y. :: R[x,y\E,vy.] ==> Q[r\vy,.]

Demo in Velvet

method Triple (x: Int) return (r: Int)

(
ensures r = 3 x

do
let y := 2 x X
let mut r :=x +y
return r

prove_correct Triple by
Lloom_solve

method TestTriple (x : Int) return (u : Unit) do
—— Note the syntax for method calls
let r : Int « Triple x
assert r = x x 3

prove_correct TestTriple by
Lloom_solve

Loops in Velvet

while G
invariant J
decreases M
do

Body

G: loop guard, Boolean expression

M: (optional) termination measure, expression whose value is expected to
decrease at each loop iteration

J: loop invariant, condition expected to hold at each iteration

Hoare triples for loops

{ J }
while G
invariant J

{]88 G}

Example

r:.= 0;
N := 104;
while (r+1)*(r+1) <= N
invariant @ <= r && r*r <= N
assert 0 <= r & r*r <= N < (r+1)*(r+l);

Floyd-Hoare logic for loop body

For a loop

while G
invariant J
do

Body

we need to prove

{ J && G }
Body

13}

Quotient modulus

X = 0;

y := 191,

while 1(y < 7)

invariant 0 <=y && 7*x + y == 191
assert x == 191 / 7 && y == 191 % 7;

Full program

X := 0;

y := 191;

while I(y < 7)

invariant 0 <=y && 7*Xx + y == 191

do

& 7*x + y == 191 && 7 <=y }
-7 & 7*x + 7 + (y - 7) == 191 }
/5

Q& 7*x + 7 + y == 191 }

& 7*(x + 1) + y == 191 }

1;

& 7*x + y == 191 }

|

A

< 1
I

o+ <

- O
A
Il
<

|
A
L |

A X AN AN A
® 0 ® -
A A

assert x == 191 / 7 && y == 191 % 7,;

Demo in Velvet

method QuotientModulus (mut x : Int) (mut y : Int) return (res: Int x Int)
require x = 0 & y = 191
do
while !(y < 7)
invariant 0 <=y & 7 *x X + y == 191

do

y i=y -/

X i =X + 1
assert x = 191 / 7
assert y = 191 % 7
return (x, y)

#eval (QuotientModulus © 191).run

Leap to the answer

X := 0;
y := 191;
while I(y < 7)
invariant 0 <=y && 7*x + y == 191
do
{0 <=y & 7 * x+y ==191 && 7 <=y }

= 27

0

< X
IIN

y 8 7 * x + y == 191 }

assert x == 191 / 7 && y == 191 % 7,;

Leap to the answer

X := 0;

y := 191;

while I(y < 7)

invariant 0 <=y && 7*x + y == 191
do

{0 <=y & 7 * x+y ==191 && 7 <=y }
{ true }

{0 <=288 7 * 27 + 2 == 191 }

X 1= 27

y = 2

{ 0<k=y & 7 * x +y == 191 }

assert x == 191 / 7 && y == 191 % 7,;

Computing sums
while n 1= 33
invariant s == n * (n - 1) / 2

do
{s=n*(n-1) /2 8& n != 33 }

{s==n*(n-1) / 2}

assert s == 33 * 32 / 2;

Computing sums

while n I'= 33

invariant s == n * (n - 1) / 2
do
s=n%*(n-1) / 2 & n =33}
s ==n%*(n-1) / 2}
'= S + n;
n* (n-1) / 2+ n }
(n*n - n) / 2+ 2*n / 2 }

n*
(n*n - n + 2*n) / 2 }
(n*n + n) / 2 }

(n +1) *n/ 2}
(
+
n

I
n = 1 n 1 nu

n+1) *(n+1-1) / 2}
1;
X

AN S A A A AN A N A
n u N N N n

(n-1)/ 2}

m LN]
Il

assert s == 33 * 32 / 2;

Full program

Need to choose initial values of s and n to establish invariant

S := 0;
n := 0;
while n I= 33
invariant s == n * (n - 1) / 2
do
S := S + n;
n :=n+ 1;

Reasoning about Termination

Loop termination

For a loop

while G
invariant J
decreasing D
do

Body

Ghost variables are for
we need to prove reasoning only. They are not
part of the compiled code.

{J && G }
ghost var d := Dj;
Body

{D<d&& 0 <=D }

Termination of quotient modulus

X, y =0, 191;

while 7 <=y
invariant 0 <=y && 7 * x + y == 191
decreasing y

do
y =y - 7/;
X = X + 1;

{0<k=y && 7 * x +y ==191 && 7 <=y }
ghost var d := vy;
y 1=y - 7/; e y < d followsfromy =y - 7
X 1= X+ 1;

{d>y8& vy > 0 }° © <= d follows from©@ <= yininvariant

Quick body

X, y =0, 191;

while 7 <=y
invariant 0 <=y && 7 * x + y == 191
decreasing y

do
y = 2;
X = 27;

{0<k=y & 7 * x+y ==191 && 7 <=y }
ghost var d := vy;

y = 2; e y < d followsfrom 7 <=y ininvariant

X 1= 27; e 0 <= d followsfrom©@ <= yininvariant

{d>y &y > 0}

Complete loop rule

{ J}
while G
invariant J

decreasing D

do { J && G }
Body ghost var d := D;
Body

{J88& IG } {718 d >D & D >= 0 }

Integer square root

method SquareRoot(N:) return (r:
ensures r*r <= N < (r+l1)*(r+l)

Integer square root

method SquareRoot(N:) return (r:
ensures r*r <= N & N < (r+1)*(r+l)

Loop design pattern
For a postcondition A && B, use
A as the invariant and !B as the guard

do

while (r+1)*(r+1) <= N
invariant r*r <= N

Integer square root

method SquareRoot(N:) return (r:
ensures r*r <= N & N < (r+1)*(r+l)

Loop design pattern
For a postcondition A && B, use
A as the invariant and !B as the guard

do
let mut r := 0;
while (r+1)*(r+1) <= N
invariant r*r <= N
do
r:=r+1

A more efficient algorithm

Rather than calculate (r + 1)*(r + 1) on each iteration, add
a new variable s and maintain invariant
s == (r + 1)*(r + 1)

A more efficient algorithm

Rather than calculate (r + 1)*(r + 1) on each iteration add
a new variable s == (r + 1)*(r + 1)

Then we have s initially 1, loop guard s <= N and
invariants == (r + 1)*(r + 1)

{s=(r+ D*(r+1) }

(r+1+ D)*(r+1+ 1)}
+ 1
(r +)*(r + 1) }

n
Il

wn)
1l

e N
|
n = |l

A more efficient algorithm

Rather than calculate (r + 1)*(r + 1) on each iteration add
a newvariable s == (r + 1)*(r + 1)

Then we have s initially 1, loop guard s <= N and

invariants == (r + 1)*(r + 1)
s == (r +)*(r +1) }
S +2*r + 3 == (r+ 1)*(r + 1) + 2*r + 3 }
:= S + 2%r + 3;
s == (r + D*(r + 1) + 2*r + 3}
S == pr¥*r + 2*r + 1 + 2%r + 3 }
S == r¥*r + 4*r + 4}
s=(r+1+ 1D*(r +1+ 1)}
=r + 1
s == (r + D*(r +1) }

AN TS AN AN A AN A

Full program

method SquareRoot(N:) return (r:
ensures r*r <= N < (r+1)*(r+l)
do
let mut r := 03
var s := 1;
while s <= N
invariant r*r <= N

invariant s == (r+l1)*(r+l)
do
S =S + 2*%r + 3;

r:=r + 1;

Iterative Fibonacci

def Fib (n: Nat) := match n with
@ => 0
1 =>1

n+2=>Fib (n + 1) + Fib n

method ComputeFib(n:) returns (x:

ensures X = Fib(n)

do

X = 0;

var i := 0;

while 1 !=n
invariant @ <= 1 <= n
invariant x = Fib(1i)

Iterative Fibonacci

Loop design technique (Replace a constant by a variable)

For a loop to establish a condition P[E], where E is an expression
that maintains a constant value throughout the loop,

e use a variable i that the loop changes until it equals E, and

* make P[i] aloop invariant

Example: to establish x = Fib(n) introduce i and

invariant x = Fib(1)

Iterative Fibonacci

method ComputeFib(n:) returns (x:
ensures x == Fib(n)
do

let mut x := ©

let mut vy :=1

let mut 1 := ©

while 1 !=n
invariant 0 <= 1 & & 1 <= n
invariant x = Fib(1i)
do

i :=1 + 1;

Iterative Fibonacci

method ComputeFib(n:) returns (x:)
ensures x == Fib(n)
do

let mut x := 0
let mut vy :=1
let mut 1 := ©
while i = n
invariant 0 <=1 & 1 <= n
invariant x = Fib(1i)
invariant x == Fib(i) & & y == Fib(i + 1)

o ~

1 =1+ 1; —
’ Cannotuse y == Fib(i-1)
as not defined when 1 ==

{ 0 <=1<=n && x == Fib(1i)
&& y == Fib(i+l) && 1 != n}

i :=1 + 1;
{ 0 <=1<=n && x == Fib(i) & & y == Fib(i+l) }

Loop body

{ 0 <=1<=n && x == Fib(1)
&& y == Fib(i+l) && 1 != n}

{0 <k=1<=n & & x == Fib(i) & & y == Fib(i+1) }
{ 0 <= i+1 <= n & & x == Fib(i) & & y == Fib(i+l) }
{ 0 <= i+l <= n && y == Fib(i+l)

&& x+y == Fib(i) + Fib(i+1) }
let tmp := Xx; X :1=y; y = tmp + vy
{ @0 <= i+1 <= n && x == Fib(i+1)

&& y == Fib(i) + Fib(i+1) }
{ 0 <= i+1 <= n && x == Fib(i+l) && y == Fib(i+2)}
{ @0 <= i+1 <= n && x == Fib(i+1)

&& y == Fib(i+1+1) }
i :=1 + 1;

{ @ <=1<=n & x == Fib(i) && y == Fib(i+1) }

Full program

method ComputeFib(n:) return (x:
ensures x = Fib(n)
do

let mut x := ©
let mut y =1
let mut 1 := 0;
while 1 !=n
invariant @ <= 1 & 1 <= n
invariant x = Fib(1i)
invariant y = Fib(i + 1)
do
let tmp = X; X (= y; y = tmp + vy
i :=1+ 1

Demo in Velvet

@[grind]
v def isMax (mx: Int) (arr: Array Int) :=
forall i, (h: i < arr.size) -> mx >= (arr[i]'h)

v method maxElem (arr: Array Int) return (res: Int)
require arr.size > 0
ensures isMax res arr
do
let mut i := 0
let mut mx := arr[i]!
i:=1+1
while i < arr.size
invariant @ <= i A 1 <= arr.size
invariant forall j, j < i —> mx >= arr[j]!
do
let elem := arr[i]!
if elem > mx then
mx := elem
else
mx := mx
i:=1+1
return mx

v prove_correct maxElem by
loom_solve

What Have We Learned

Theorems as Types

Proofs as Programs

Basics of Lean

nductive Definitions

Proofs by Induction
Relations as Predicates
State Machines as Relations
Stating Safety Properties
Basics of SMT solvers

Verifying State Machines in Veil
Subset/Refinement Types
Setoids and Quotient Types
Defining Z, Q, and R
Hoare-Style Logic

Weakest Preconditions

Loop Invariants

Reasoning about Arrays
Verifying Programs in Velvet

What’s Next

e Research Project:
— Proving a cute mathematical theorem
— Formalising a state Machine / distributed protocol in Veil
— Verifying an algorithm/data structure in Velvet

* Forinspiration:
— Some ideas: https://ilyasergey.net/PWP25/projects.html

— I’m happy to discuss project ideas!

https://ilyasergey.net/PWP25/projects.html

And then what?

* Books and Resources:
— The Hitchhiker’s Guide to Logical Verification (2025)
— Functional Programming in Lean
— Theorem Proving in Lean 4
— https://leanprover.zulipchat.com/

* Conferences to check out: POPL, PLDI, OOPSLA, CAV

— PLMW: https://www.sigplan.org/Conferences/PLMW/
— VMW: https://i-cav.org /2024 /workshops/mentoring/

* Researchers to follow (very incomplete list):

— Isil Dillig, Peter Mtller, Peter O’Hearn, Leonardo de Moura, Leslie Lamport,
Rustan Leino, Kenneth McMillan, Ranjit Jhala, Thomas Wies,
Derek Dreyer, Swarat Chaudhuri, Clément Pit-Laudel

https://leanprover.zulipchat.com/
https://leanprover.zulipchat.com/
https://www.sigplan.org/Conferences/PLMW/
https://i-cav.org/2024/workshops/mentoring/
https://i-cav.org/2024/workshops/mentoring/
https://i-cav.org/2024/workshops/mentoring/

VERSE lab: Verified Systems Engineering

> __ Multi- I\‘hodal Verification in Lean
SOftwa re Correct-by-anstructlon Program Synthesns
systems Fm%pdatlons of Proofs about Proggnyf

formal
verification

Velvet: A Multi-Modal Verifier for Effectful Programs

Qiyuan Zhao L

Vladimir Gladshtein George Pirlea

National University of Sir . . Wel)
Veil: A Framework for Automated and Interactive s Foundational Multi-Modal Program Verifiers

Verification of Transition Systems
\/1 AnII\AID nl AHQHTFINI Nlatianal TThitravcityr af Qincanara Q;nn‘or\nve
Compositional Verification of Composite Byzantine Protocols

George Pirlea' ©, Vladimir Gladshtein'®, Elad Kinsbruner®*®, Qiyuan Zhao'®,
and Ilya Sergeyl(@) Qivuan Zhao George Pirlea Karolina Grzeszkiewicz

CAV Jational University of Singapore Yale-NUS College

e ! National University of Six Sound and Efficient Generation of Data-Oriented Exploits Singapore, Singapore Singapore, Singapore
Evclu:fion . ;‘zz:;;]]_:labﬁgaii; via P].'Ogl" min g Lan guage S ynth esis gpirlea@comp.nus.edu.sg karolina.grzeszkiewicz@u.yale-nus.edu.sg
’ irt Ilya Sergey r

f Singapore National University of Singapore
S sr ok : : i * japore Singapore, Singapore
- Yuxi Ling Gokul Rajiv Kiran Gopinathan Ilya Sergey Bos cdu.se ilya@nus ech.sg

*National University OfSingapore —

verse- I a b] g |t h u b . | 0 TUniversity of Illinois Urbana-Champaign

If you

Like understanding complex software artefacts

(compilers, concurrency, distributed systems)
Enjoy thinking about logics and type systems
Love metaprogramming and hacking proofs in Lean NSt 0> S0

Want to publish at top PL/FM venues (PLDI, POPL, ICFP, CAV)

Join VERSE lab @ NUS!
« Fully-funded 5-year PhD positions

« Also hiring Postdocs and Interns

This is a durian.

« Get to live in Singapore: the world’s y We have them oo

most diverse and safest city

« and travel around the world August 2025

| | Langkawi, Ma’aysia
verse-lab.github.io

More PL/SE/FM at NUS School of Computing

1 Umang Mathur

dynamic concurrency analysis,
algorithmic verification
focs-lab.comp.nus.edu.sg

Manuel Rigger
testing for databases,
compilers, solvers
nus-test.github.io

Prateek Saxena
PL for security
comp.nus.edu.sg/~prateeks

Abhik Roychoudhury

program repair, fuzzing, LLMs
nus-tss.github.io

nus-plse.github.io

	Slide 1: Programming with Proofs
	Slide 2: Hoare triples
	Slide 3: Reducing an Imperative Program to a Formula
	Slide 4: Forward reasoning
	Slide 5: Strongest postcondition
	Slide 6: Backward reasoning
	Slide 7: Weakest precondition
	Slide 8: Weakest precondition for assignment
	Slide 9: Weakest precondition for assignment
	Slide 10: Swap example
	Slide 11: Swap example
	Slide 12: Swap example
	Slide 13: Swap example
	Slide 14: Swap example
	Slide 15: Swap example
	Slide 16: Swap example
	Slide 17: Program-proof bookkeeping
	Slide 18: Program-proof bookkeeping
	Slide 19: Program-proof bookkeeping
	Slide 20: What about strongest postconditions?
	Slide 21: WP and SP
	Slide 22: Control flow
	Slide 23: Sequential composition
	Slide 24: Conditional control flow
	Slide 25: Conditional control flow
	Slide 26: Strongest postcondition
	Slide 27: Weakest precondition
	Slide 28: Weakest precondition (example)
	Slide 29: Weakest precondition (example)
	Slide 30: Weakest precondition (example)
	Slide 31: Weakest precondition (example)
	Slide 32: Weakest precondition (example)
	Slide 33: Weakest precondition (example)
	Slide 34: Weakest precondition (example)
	Slide 35: Refresher: Implication properties
	Slide 36: Weakest precondition (example)
	Slide 37: Weakest precondition (example)
	Slide 38: Weakest precondition (example)
	Slide 39: Weakest precondition (example)
	Slide 40: Weakest precondition (example)
	Slide 41: Demo in Velvet
	Slide 42: Method correctness
	Slide 43: Method calls
	Slide 44: Parameters
	Slide 45: Assumptions
	Slide 46: Weakest precondition
	Slide 47: Assertions
	Slide 48: Method calls with preconditions
	Slide 49: Demo in Velvet
	Slide 50: Loops in Velvet
	Slide 51: Hoare triples for loops
	Slide 52: Floyd-Hoare logic for loop body
	Slide 53: Quotient modulus
	Slide 60: Full program
	Slide 61: Demo in Velvet
	Slide 62: Leap to the answer
	Slide 63: Leap to the answer
	Slide 64: Computing sums
	Slide 73: Computing sums
	Slide 74: Full program
	Slide 75: Reasoning about Termination
	Slide 76: Loop termination
	Slide 77: Termination of quotient modulus
	Slide 78: Quick body
	Slide 79: Complete loop rule
	Slide 80: Integer square root
	Slide 81: Integer square root
	Slide 82: Integer square root
	Slide 83: A more efficient algorithm
	Slide 84: A more efficient algorithm
	Slide 89: A more efficient algorithm
	Slide 90: Full program
	Slide 91: More examples
	Slide 92: Iterative Fibonacci
	Slide 93: Iterative Fibonacci
	Slide 94: Iterative Fibonacci
	Slide 95: Iterative Fibonacci
	Slide 96: Loop body
	Slide 103: Loop body
	Slide 104: Full program
	Slide 105: Demo in Velvet
	Slide 106: What Have We Learned
	Slide 107: What’s Next
	Slide 108: And then what?
	Slide 109: VERSE lab: Verified Systems Engineering
	Slide 110
	Slide 111: More PL/SE/FM at NUS School of Computing

