
Verifying Imperative Programs

Copyright 2020-22, Graeme Smith and Cesare Tinelli.
Produced by Cesare Tinelli at the University of Iowa from notes originally developed by Graeme Smith at the University of Queensland. These notes
are copyrighted materials and may not be used in other course settings outside of the University of Iowa in their current form or modified form without
the express written permission of one of the copyright holders. During this course, students are prohibited from selling notes to or being paid for taking
notes by any person or commercial firm without the express written permission of one of the copyright holders.

Programming with Proofs

Hoare triples

For predicates P and Q and program S, the Hoare triple

{ P } S { Q }

states the following:

 if S is started in any state that satisfies P,
 then S will not crash (or do other bad things) and
 will terminate in some state satisfying Q

Examples: { x == 1 } x := 20 { x == 20 }
 { x < 18 } y := 18 – x { y >= 0 }
 { x < 18 } y := 5 { y >= 0 }

Non-example: { x < 18 } x := y { y >= 0 }

precondition postcondition

Reducing an Imperative Program to a Formula
{ true }
// Check that this implication is valid (negation is unsatisfiable)
{ (a  (b  (true  (a  b)))  (b  (false  (a  b))))  (a  (true  (a  b)) }
if (a) {
{ (b  (true  (a  b)))  (b  (false  (a  b))) }
 if (b) {
{ true  (a  b) }
 res := true
{ res  (a  b) }
 } else {
{ false  (a  b) }
 res := false
{ res  (a  b) }
 }
{ res  (a  b) }
} else {
{ true  (a  b) }
 res := true
{ res  (a  b) }
}
{ res  (a  b) }

Forward reasoning

Constructing a postcondition from a given precondition

In general, there are many possible postconditions

Examples:

1. { x == 0 } y := x + 3 { y < 100 }

2. { x == 0 } y := x + 3 { x == 0 }

3. { x == 0 } y := x + 3 { 0 <= x && y == 3 }

4. { x == 0 } y := x + 3 { 3 <= y }

5. { x == 0 } y := x + 3 { true }

Strongest postcondition

Forward reasoning constructs the strongest (i.e., most specific)
postcondition

{ x == 0 } y := x + 3 { 0 == x && y == 3 }

Def: A is stronger than B if A ==> B is a valid formula

Def: A formula is valid if it is true for any valuation of its free variables

Backward reasoning

Construct a precondition for a given postcondition

Again, there are many preconditions

Examples:

1. { x <= 70 } y := x + 3 { y <= 80 }

2. { x == 65 && y < 21 } y := x + 3 { y <= 80 }

3. { x <= 77 } y := x + 3 { y <= 80 }

4. { x*x + y*y <= 2500 } y := x + 3 { y <= 80 }

5. { false } y := x + 3 { y <= 80 }

Weakest precondition

Backward reasoning constructs the weakest (i.e., most general) precondition

{ x <= 77 } y := x + 3 { y <= 80 }

Def: A is weaker than B if B ==> A is a valid formula

Weakest precondition for assignment

Given { ? } x := E { Q }

we construct ? by replacing each x in Q with E (denoted by Q[x\E])

Weakest precondition for assignment

Given {Q[x\E]} x := E { Q }

Examples: { ? } y := a + b { 25 <= y }

 25 <= a + b

1. { 25 <= x + 3 + 12 } a := x + 3 { 25 <= a + 12 }

2. { x + 1 <= y } x := x + 1 { x <= y }

3. { 3*2*x + 5*y < 100 } x := 2*x { 3*x + 5*y < 100 }

Swap example

var tmp := x;

x := y;

y := tmp;

{ x == X && y == Y }

var tmp := x;

x := y;

y := tmp;
{ x == Y && y == X }

The initial values of x and y are
specified using logical variables
X and Y

Swap example

{ x == X && y == Y }
{ ? }
var tmp := x;
{ ? }
x := y;
{ ? }
y := tmp;
{ x == Y && y == X }

Swap example

The initial values of x and y are
specified using logical variables
X and Y

{ x == X && y == Y }
{ ? }
var tmp := x;
{ ? }
x := y;
{ x == Y && tmp == X }
y := tmp;
{ x == Y && y == X }

Swap example

{ x == X && y == Y }
{ ? }
var tmp := x;
{ y == Y && tmp == X }
x := y;
{ x == Y && tmp == X }
y := tmp;
{ x == Y && y == X }

Swap example

{ x == X && y == Y }
{ y == Y && x == X }
var tmp := x;
{ y == Y && tmp == X }
x := y;
{ x == Y && tmp == X }
y := tmp;
{ x == Y && y == X }

Swap example

{ x == X && y == Y }
{ y == Y && x == X }
var tmp := x;
{ y == Y && tmp == X }
x := y;
{ x == Y && tmp == X }
y := tmp;
{ x == Y && y == X }

The final step is the proof obligation that

(x == X && y == Y) ==> (y == Y && x == X)

is valid

Swap example

Program-proof bookkeeping

{ x == X && y == Y }

x := y - x;

y := y - x;

x := y + x;
{ x == Y && y == X }

Program-proof bookkeeping

{ x == X && y == Y }
{ y – (y – x) + (y – x) == Y && y – (y – x) == X }
x := y - x;
{ y – x + x ==Y && y – x == X }
y := y - x;
{ y + x == Y && y == X }
x := y + x;
{ x == Y && y == X }

The constructed precondition simplifies to

y == Y && x == X

Program-proof bookkeeping

{ x == X && y == Y }
{ y == Y && x == X }
{ y == Y && y – (y – x) == X }
x := y - x;
{ y == Y && y – x == X }
{ y – x + x == Y && y – x == X }
y := y - x;
{ y + x == Y && y == X }
x := y + x;
{ x == Y && y == X }

We are also allowed to strengthen the conditions as
we work backwards (but not weaken them!)

What about strongest postconditions?

Consider { w < x && x < y } x := 100 { ? }

Obviously, x == 100 is a postcondition, but it is not the strongest

Something more is implied by the precondition:

there exists an n such that w < n && n < y

which is equivalent to saying that w + 1 < y

In general:

{ P } x := E { exists n :: P[x\n] && x == E[x\n] }

WP and SP

Let P be a predicate on the pre-state of a program S and
let Q be a predicate on the post-state of S

WP [S, Q] denotes the weakest precondition of S wrt Q

SP [S, P] denotes the strongest postcondition of S wrt P

WP [x := E, Q] = Q[x\E]

SP [x := E, P] = exists n :: P[x\n] && x == E[x\n]

Control flow

Until now:

 Assignment: x := E

 Variable introduction: var x

Next:

 Sequential composition: S ; T

 Conditions: if B { S } else { T }

 Method calls: r := M(E)

Later:

 Loops: while B { S }

Sequential composition

 S ; T { P } S { Q } T { R }

 { P } S { Q } and { Q } T { R }

Strongest postcondition

 let Q = SP [S, P]

 SP [S;T, P] = SP [T, Q] = SP [T, SP [S, P]]

Weakest precondition

 let Q = WP [T, R]

 WP [S;T, R] = WP [S, Q] = WP [S, WP [T, R]]

Conditional control flow

if B { S } else { T }

{ P }

{ Y }{ X }

{ W }{ V }

{ Q }

B !B

S T

Conditional control flow

Floyd-Hoare logic tells us:

1. P && B ==> V

2. P && !B ==> W

3. { V } S { X }

4. { W } T { Y }

5. X ==> Q

6. Y ==> Q

if B { S } else { T }

{ P }

{ Y }{ X }

{ W }{ V }

{ Q }

B !B

S T

Strongest postcondition

X = SP [S, P && B]

Y = SP [T, P && !B]

SP [if B { S } else { T }, P] =

SP [S, P && B] || SP [T, P && !B]

{ P }

{ Y }{ X }

{P && !B}{P && B}

{ X || Y }

B !B

S T

if B { S } else { T }

Weakest precondition

{ B ==> V && !B ==> W }

{ Q }{ Q }

{ W }{ V }

{ Q }

B !B

S T

V = WP [S, Q]

W = WP [T, Q]

WP [if B { S } else { T }, Q] =

 (B ==> WP [S, Q]) &&
 (!B ==> WP [T, Q])

if B { S } else { T }

Weakest precondition (example)

{ (x < 3 ==> x == 89) && (x >= 3 ==> x == 50) }
 if x < 3 {
 { x == 89 }
 { x+1 + 10 == 100 }
 x, y := x + 1, 10;
 { x + y == 100 }
 } else {
 { x == 50 }
 { x + x == 100 }
 y := x;
 { x + y == 100 }
 }
 { x + y == 100 }

Weakest precondition (example)

{ (x < 3 ==> x == 89) && (x >= 3 ==> x == 50) }
 if x < 3 {
 { x == 89 }
 { x+1 + 10 == 100 }
 x, y := x + 1, 10;
 { x + y == 100 }
 } else {
 { x == 50 }
 { x + x == 100 }
 y := x;
 { x + y == 100 }
 }
 { x + y == 100 }

Weakest precondition (example)

{ (x < 3 ==> x == 89) && (x >= 3 ==> x == 50) }
 if x < 3 {
 { x == 89 }
 { x+1 + 10 == 100 }
 x, y := x + 1, 10;
 { x + y == 100 }
 } else {
 { x == 50 }
 { x + x == 100 }
 y := x;
 { x + y == 100 }
 }
 { x + y == 100 }

Weakest precondition (example)

{ (x < 3 ==> x == 89) && (x >= 3 ==> x == 50) }
 if x < 3 {
 { x == 89 }
 { x+1 + 10 == 100 }
 x, y := x + 1, 10;
 { x + y == 100 }
 } else {
 { x == 50 }
 { x + x == 100 }
 y := x;
 { x + y == 100 }
 }
 { x + y == 100 }

Weakest precondition (example)

{ (x < 3 ==> x == 89) && (x >= 3 ==> x == 50) }
 if x < 3 {
 { x == 89 }
 { x + 1 + 10 == 100 }
 x, y := x + 1, 10;
 { x + y == 100 }
 } else {
 { x == 50 }
 { x + x == 100 }
 y := x;
 { x + y == 100 }
 }
 { x + y == 100 }

Weakest precondition (example)

{ (x < 3 ==> x == 89) && (x >= 3 ==> x == 50) }
 if x < 3 {
 { x == 89 }
 { x + 1 + 10 == 100 }
 x, y := x + 1, 10;
 { x + y == 100 }
 } else {
 { x == 50 }
 { x + x == 100 }
 y := x;
 { x + y == 100 }
 }
 { x + y == 100 }

Weakest precondition (example)

{ (x < 3 ==> x == 89) && (x >= 3 ==> x == 50) }
 if x < 3 {
 { x == 89 }
 { x + 1 + 10 == 100 }
 x, y := x + 1, 10;
 { x + y == 100 }
 } else {
 { x == 50 }
 { x + x == 100 }
 y := x;
 { x + y == 100 }
 }
 { x + y == 100 }

{ x == 50 }

Refresher: Implication properties

 A ==> B equiv. to !A || B

Hence,

Useful law for simplifying predicates

A ==> (B ==> C) equiv. to (A && B) ==> C

A ==> true equiv. to true

A ==> false " ! A

true ==> B " B

false ==> B " true

Weakest precondition (example)

{ x == 50 }
 { false || x == 50 || false || false }
 { x >= 3 && x < 3) || (x >= 3 && x ==50) ||
 (x ==89 && x < 3) || (x==89 && x==50) }
 { x >= 3 || x == 89) && (x < 3 || x ==50) }
 { (x < 3 ==> x == 89) && (x >= 3 ==> x == 50) }
 if x < 3 {
 x, y := x + 1, 10;
 } else {
 y := x;
 }
 { x + y == 100 }

Weakest precondition (example)

{ x == 50 }
 { false || x == 50 || false || false }
 { x >= 3 && x < 3) || (x >= 3 && x ==50) ||
 (x ==89 && x < 3) || (x==89 && x==50) }
 { (x >= 3 || x == 89) && (x < 3 || x ==50) }
 { (x < 3 ==> x == 89) && (x >= 3 ==> x == 50) }
 if x < 3 {
 x, y := x + 1, 10;
 } else {
 y := x;
 }
 { x + y == 100 }

Weakest precondition (example)

{ x == 50 }
 { false || x == 50 || false || false }
 { (x >= 3 && x < 3) || (x >= 3 && x == 50) ||
 (x == 89 && x < 3) || (x == 89 && x == 50) }
 { (x >= 3 || x == 89) && (x < 3 || x == 50) }
 { (x < 3 ==> x == 89) && (x >= 3 ==> x == 50) }
 if x < 3 {
 x, y := x + 1, 10;
 } else {
 y := x;
 }
 { x + y == 100 }

Weakest precondition (example)

{ x == 50 }
 { false || x == 50 || false || false }
 { (x >= 3 && x < 3) || (x >= 3 && x == 50) ||
 (x == 89 && x < 3) || (x == 89 && x == 50) }
 { (x >= 3 || x == 89) && (x < 3 || x == 50) }
 { (x < 3 ==> x == 89) && (x >= 3 ==> x == 50) }
 if x < 3 {
 x, y := x + 1, 10;
 } else {
 y := x;
 }
 { x + y == 100 }

Weakest precondition (example)

{ x == 50 }
 { false || x == 50 || false || false }
 { (x >= 3 && x < 3) || (x >= 3 && x == 50) ||
 (x == 89 && x < 3) || (x == 89 && x == 50) }
 { (x >= 3 || x == 89) && (x < 3 || x == 50) }
 { (x < 3 ==> x == 89) && (x >= 3 ==> x == 50) }
 if x < 3 {
 x, y := x + 1, 10;
 } else {
 y := x;
 }
 { x + y == 100 }

Demo in Velvet

See PraVDA/Velvet/SimpleExamples.lean

Method correctness

Given

 method M(x: Tx) return (y: Ty)
 require P
 ensures Q
 {
 B
 }

we need to prove

 P ==> WP [B, Q]

Method calls

Methods are opaque, i.e., we reason in terms of their specifications,
not their implementations

Given

 method Triple(x: int) return (y: int)
 ensures y == 3 * x

we expect to be able to prove, for instance, the following method call

{ true } v := Triple(u + 4) { v == 3 * (u + 4) }

Parameters

We need to relate the actual parameters (of the method call) with the
formal parameters (of the method)

To avoid any name clashes, we first rename the formal parameters to
fresh variables:

 method Triple(x': int) return (y': int)
 ensures y' == 3 * x'

Then, for a call v := Triple(u + 1) we have

 x' := u + 1
 v := y'

Assumptions

The caller can assume that the method's postcondition holds

We introduce a new statement , assume E , to capture this

 SP [assume E, P] = E && P

 WP [assume E, Q] = E ==> Q

The semantics of v := Triple(u + 1) is then given by

 var x'; var y';
 x' := u + 1;
 assume y' == 3 * x';
 v := y'

method Triple(x': int)
returns (y': int)
 ensures y' == 3 * x'

Weakest precondition

WP [r := M(E), Q] = forall y':: R[x,y\E,y'] ==> Q[r\y']

where x is M’s input, y is M’s output, and R is M's postcondition

Example. Let Q be v == 48 for the method:

 method Triple(x: int) returns (y: int)
 ensures y == 3 * x

{ u == 15 }

{ 3 * (u + 1) == 48 }

{ forall y' :: y' == 3 * (u + 1) ==> y' == 48 }

v := Triple(u + 1);

{ v == 48 }

Assertions

assert E does nothing when E holds,
otherwise it crashes the program

 method Triple(x: int) return (r: int) do

 let y := 2 * x

 r := x + y

 assert r = 3 * x

 WP [assert E, Q] = E && Q

 SP [assert E, P] = P && E

Method calls with preconditions

Given

 method M(x: X) return (y: Y)
 require P
 ensures R

The semantics of r := M(E) is

 var xE ; var yr ;
 xE := E ;
 assert P[x\xE] ;
 assume R[x,y\xE,yr] ;
 r := yr

WP [r := M(E), Q] = P[x\E] && forall yr :: R[x,y\E,yr] ==> Q[r\yr]

Demo in Velvet

Loops in Velvet

while G
 invariant J
 decreases M
 do
 Body

 G: loop guard, Boolean expression

M: (optional) termination measure, expression whose value is expected to
decrease at each loop iteration

 J: loop invariant, condition expected to hold at each iteration

Hoare triples for loops

{ J }
while G
 invariant J
{ J && !G }

Example

r:= 0;
N := 104;
while (r+1)*(r+1) <= N
 invariant 0 <= r && r*r <= N
assert 0 <= r && r*r <= N < (r+1)*(r+1);

Floyd-Hoare logic for loop body

For a loop

while G
 invariant J
 do
 Body

we need to prove

 { J && G }
 Body
 { J }

Quotient modulus

x := 0;
y := 191;
while !(y < 7)
invariant 0 <= y && 7*x + y == 191
assert x == 191 / 7 && y == 191 % 7;

Full program

x := 0;
y := 191;
while !(y < 7)
invariant 0 <= y && 7*x + y == 191
do
 { 0 <= y && 7*x + y == 191 && 7 <= y }
 { 0 <= y - 7 && 7*x + 7 + (y - 7) == 191 }
 y := y - 7;
 { 0 <= y && 7*x + 7 + y == 191 }
 { 0 <= y && 7*(x + 1) + y == 191 }
 x := x + 1;
 { 0 <= y && 7*x + y == 191 }

assert x == 191 / 7 && y == 191 % 7;

Demo in Velvet

Leap to the answer

x := 0;
y := 191;
while !(y < 7)
invariant 0 <= y && 7*x + y == 191
do
 { 0 <= y && 7 * x + y == 191 && 7 <= y }

 x := 27
 y := 2
 { 0 <= y && 7 * x + y == 191 }

assert x == 191 / 7 && y == 191 % 7;

Leap to the answer

x := 0;
y := 191;
while !(y < 7)
invariant 0 <= y && 7*x + y == 191
do
 { 0 <= y && 7 * x + y == 191 && 7 <= y }
 { true }
 { 0 <= 2 && 7 * 27 + 2 == 191 }
 x := 27
 y := 2
 { 0 <= y && 7 * x + y == 191 }

assert x == 191 / 7 && y == 191 % 7;

Computing sums

while n != 33
 invariant s == n * (n - 1) / 2
 do
 { s == n * (n - 1) / 2 && n != 33 }
 { s == n * (n - 1) / 2 }
 s := s + n;
 { s = n * (n - 1) / 2 + n }
 { s = (n*n – n) / 2 + 2*n / 2 }
 { s == (n*n – n + 2*n) / 2 }
 { s == (n*n + n) / 2 }
 { s == (n + 1) * n / 2 }
 { s == (n + 1) * (n + 1 - 1) / 2 }
 n := n + 1;
 { s == n * (n - 1) / 2 }

assert s == 33 * 32 / 2;

Computing sums

while n != 33
 invariant s == n * (n - 1) / 2
 do

 { s == n * (n - 1) / 2 && n != 33 }
 { s == n * (n - 1) / 2 }
 s := s + n;
 { s = n * (n - 1) / 2 + n }
 { s = (n*n – n) / 2 + 2*n / 2 }
 { s == (n*n – n + 2*n) / 2 }
 { s == (n*n + n) / 2 }
 { s == (n + 1) * n / 2 }
 { s == (n + 1) * (n + 1 - 1) / 2 }
 n := n + 1;
 { s == n * (n - 1) / 2 }

assert s == 33 * 32 / 2;

Full program

Need to choose initial values of s and n to establish invariant

s := 0;
n := 0;
while n != 33
 invariant s == n * (n - 1) / 2
 do
 s := s + n;
 n := n + 1;

Reasoning about Termination

Loop termination

For a loop

 while G
 invariant J
 decreasing D
 do
 Body

we need to prove

 { J && G }
 ghost var d := D;
 Body
 { D < d && 0 <= D }

Ghost variables are for
reasoning only. They are not
part of the compiled code.

Termination of quotient modulus

x, y := 0, 191;
while 7 <= y
 invariant 0 <= y && 7 * x + y == 191
 decreasing y
 do
 y := y - 7;
 x := x + 1;

{ 0 <= y && 7 * x + y == 191 && 7 <= y }
ghost var d := y;
y := y - 7;
x := x + 1;
{ d > y && y >= 0 }

• y < d follows from y := y – 7

• 0 <= d follows from 0 <= y in invariant

Quick body

x, y := 0, 191;
while 7 <= y
 invariant 0 <= y && 7 * x + y == 191
 decreasing y
 do
 y := 2;
 x := 27;

{ 0 <= y && 7 * x + y == 191 && 7 <= y }
ghost var d := y;
y := 2;
x := 27;
{ d > y && y >= 0 }

• y < d follows from 7 <= y in invariant

• 0 <= d follows from 0 <= y in invariant

Complete loop rule

{ J }
while G
 invariant J
 decreasing D
 do
 Body

{ J && !G }

 { J && G }
 ghost var d := D;
 Body
 { J && d > D && D >= 0 }

Integer square root
method SquareRoot(N: Nat) return (r: Nat)
 ensures r*r <= N < (r+1)*(r+1)

Integer square root
method SquareRoot(N: Nat) return (r: Nat)
 ensures r*r <= N && N < (r+1)*(r+1)

do

 while (r+1)*(r+1) <= N
 invariant r*r <= N

Loop design pattern
For a postcondition A && B, use
A as the invariant and !B as the guard

Integer square root
method SquareRoot(N: Nat) return (r: Nat)
 ensures r*r <= N && N < (r+1)*(r+1)

 do
 let mut r := 0;
 while (r+1)*(r+1) <= N
 invariant r*r <= N
 do
 r := r + 1

Loop design pattern
For a postcondition A && B, use
A as the invariant and !B as the guard

A more efficient algorithm

Rather than calculate (r + 1)*(r + 1) on each iteration, add
a new variable s and maintain invariant

s == (r + 1)*(r + 1)

A more efficient algorithm

Rather than calculate (r + 1)*(r + 1) on each iteration add
a new variable s == (r + 1)*(r + 1)

Then we have s initially 1, loop guard s <= N and
invariant s == (r + 1)*(r + 1)

 { s == (r + 1)*(r + 1) }
 {s + 2*r + 3 == (r+ 1)*(r + 1) + 2*r + 3 }
 s := s + 2*r + 3;
 { s == (r + 1)*(r + 1) + 2*r + 3}
 { s == r*r + 2*r + 1 + 2*r + 3 }
 { s == r*r + 4*r + 4}
 { s == (r + 1 + 1)*(r + 1 + 1)}
 r := r + 1
 { s == (r + 1)*(r + 1) }

A more efficient algorithm

Rather than calculate (r + 1)*(r + 1) on each iteration add
a new variable s == (r + 1)*(r + 1)

Then we have s initially 1, loop guard s <= N and
invariant s == (r + 1)*(r + 1)

 { s == (r + 1)*(r + 1) }
 { s + 2*r + 3 == (r + 1)*(r + 1) + 2*r + 3 }
 s := s + 2*r + 3;
 { s == (r + 1)*(r + 1) + 2*r + 3}
 { s == r*r + 2*r + 1 + 2*r + 3 }
 { s == r*r + 4*r + 4}
 { s == (r + 1 + 1)*(r + 1 + 1)}
 r := r + 1
 { s == (r + 1)*(r + 1) }

Full program

method SquareRoot(N: Nat) return (r: Nat)
 ensures r*r <= N < (r+1)*(r+1)
 do
 let mut r := 0;
 var s := 1;
 while s <= N
 invariant r*r <= N
 invariant s == (r+1)*(r+1)
 do
 s := s + 2*r + 3;
 r := r + 1;

More examples

Iterative Fibonacci

def Fib (n: Nat) := match n with
 | 0 => 0
 | 1 => 1
 | n + 2 => Fib (n + 1) + Fib n

method ComputeFib(n: nat) returns (x: nat)
 ensures x = Fib(n)
 do
 x := 0;
 var i := 0;
 while i != n
 invariant 0 <= i <= n
 invariant x = Fib(i)

Iterative Fibonacci

Example: to establish x = Fib(n) introduce i and

 invariant x = Fib(i)

Loop design technique (Replace a constant by a variable)
For a loop to establish a condition P[E], where E is an expression
that maintains a constant value throughout the loop,
• use a variable i that the loop changes until it equals E, and
• make P[i] a loop invariant

Iterative Fibonacci

method ComputeFib(n: nat) returns (x: nat)
 ensures x == Fib(n)
 do
 let mut x := 0
 let mut y := 1
 let mut i := 0
 while i != n
 invariant 0 <= i && i <= n
 invariant x = Fib(i)
 do
 ...
 i := i + 1;

}

Iterative Fibonacci

method ComputeFib(n: nat) returns (x: nat)
 ensures x == Fib(n)
 do
 let mut x := 0
 let mut y := 1
 let mut i := 0
 while i != n
 invariant 0 <= i && i <= n
 invariant x = Fib(i)
 invariant x == Fib(i) && y == Fib(i + 1)
 do
 ...
 i := i + 1;

Cannot use y == Fib(i-1)
as not defined when i == 0

Loop body

{ 0 <= i <= n && x == Fib(i)
 && y == Fib(i+1) && i != n}
{ 0 <= i < n && x == Fib(i) && y == Fib(i+1) }
{ 0 <= i+1 <=n && x == Fib(i) && y == Fib(i+1) }
{ 0 <= i+1 <=n && y == Fib(i+1)
 && x+y == Fib(i) + Fib(i+1) }
x, y := y, x + y;
{ 0 <= i+1 <=n && x == Fib(i+1)
 && y == Fib(i) + Fib(i+1) }
{ 0 <= i+1 <=n && x == Fib(i+1) && y == Fib(i+2) }
{ 0 <= i+1 <=n && x == Fib(i+1)
 && y == Fib(i+1+1) }
i := i + 1;
{ 0 <= i <= n && x == Fib(i) && y == Fib(i+1) }

Loop body

{ 0 <= i <= n && x == Fib(i)
 && y == Fib(i+1) && i != n}
{ 0 <= i <= n && x == Fib(i) && y == Fib(i+1) }
{ 0 <= i+1 <= n && x == Fib(i) && y == Fib(i+1) }
{ 0 <= i+1 <= n && y == Fib(i+1)
 && x+y == Fib(i) + Fib(i+1) }
let tmp := x; x := y; y := tmp + y
{ 0 <= i+1 <= n && x == Fib(i+1)
 && y == Fib(i) + Fib(i+1) }
{ 0 <= i+1 <= n && x == Fib(i+1) && y == Fib(i+2)}
{ 0 <= i+1 <= n && x == Fib(i+1)
 && y == Fib(i+1+1) }
i := i + 1;
{ 0 <= i <= n && x == Fib(i) && y == Fib(i+1) }

Full program

method ComputeFib(n: Nat) return (x: Nat)
 ensures x = Fib(n)
 do
 let mut x := 0
 let mut y := 1
 let mut i := 0;
 while i != n
 invariant 0 <= i && i <= n
 invariant x = Fib(i)
 invariant y = Fib(i + 1)
 do
 let tmp := x; x := y; y := tmp + y
 i := i + 1

Demo in Velvet

What Have We Learned

• Theorems as Types

• Proofs as Programs

• Basics of Lean

• Inductive Definitions

• Proofs by Induction

• Relations as Predicates

• State Machines as Relations

• Stating Safety Properties

• Basics of SMT solvers

• Verifying State Machines in Veil

• Subset/Refinement Types

• Setoids and Quotient Types

• Defining ℤ, ℚ, and ℝ

• Hoare-Style Logic

• Weakest Preconditions

• Loop Invariants

• Reasoning about Arrays

• Verifying Programs in Velvet

What’s Next

• Research Project:

– Proving a cute mathematical theorem

– Formalising a state Machine / distributed protocol in Veil

– Verifying an algorithm/data structure in Velvet

• For inspiration:

– Some ideas: https://ilyasergey.net/PWP25/projects.html

– I’m happy to discuss project ideas!

https://ilyasergey.net/PWP25/projects.html

And then what?

• Books and Resources:
– The Hitchhiker’s Guide to Logical Verification (2025)
– Functional Programming in Lean
– Theorem Proving in Lean 4
– https://leanprover.zulipchat.com/

• Conferences to check out: POPL, PLDI, OOPSLA, CAV
– PLMW: https://www.sigplan.org/Conferences/PLMW/
– VMW: https://i-cav.org/2024/workshops/mentoring/

• Researchers to follow (very incomplete list):
– Isil Dillig, Peter Müller, Peter O’Hearn, Leonardo de Moura, Leslie Lamport,

Rustan Leino, Kenneth McMillan, Ranjit Jhala, Thomas Wies,
Derek Dreyer, Swarat Chaudhuri, Clément Pit-Laudel

https://leanprover.zulipchat.com/
https://leanprover.zulipchat.com/
https://www.sigplan.org/Conferences/PLMW/
https://i-cav.org/2024/workshops/mentoring/
https://i-cav.org/2024/workshops/mentoring/
https://i-cav.org/2024/workshops/mentoring/

VERSE lab: Verified Systems Engineering

software
systems

formal
verification

Multi-Modal Verification in Lean

Correct-by-Construction Program Synthesis

Foundations of Proofs about Programs

verse-lab.github.io

• Like understanding complex software artefacts

(compilers, concurrency, distributed systems)

• Enjoy thinking about logics and type systems

• Love metaprogramming and hacking proofs in Lean

• Want to publish at top PL/FM venues (PLDI, POPL, ICFP, CAV)

If you

● Fully-funded 5-year PhD positions

● Also hiring Postdocs and Interns

● Get to live in Singapore: the world’s

most diverse and safest city

● and travel around the world

Join VERSE lab @ NUS!

This is a durian.
We have them too.

verse-lab.github.io

More PL/SE/FM at NUS School of Computing

Umang Mathur
dynamic concurrency analysis,

algorithmic verification

focs-lab.comp.nus.edu.sg

Manuel Rigger
testing for databases,

compilers, solvers

nus-test.github.io

Abhik Roychoudhury
program repair, fuzzing, LLMs

nus-tss.github.io

Prateek Saxena
PL for security

comp.nus.edu.sg/~prateeks

nus-plse.github.io

	Slide 1: Programming with Proofs
	Slide 2: Hoare triples
	Slide 3: Reducing an Imperative Program to a Formula
	Slide 4: Forward reasoning
	Slide 5: Strongest postcondition
	Slide 6: Backward reasoning
	Slide 7: Weakest precondition
	Slide 8: Weakest precondition for assignment
	Slide 9: Weakest precondition for assignment
	Slide 10: Swap example
	Slide 11: Swap example
	Slide 12: Swap example
	Slide 13: Swap example
	Slide 14: Swap example
	Slide 15: Swap example
	Slide 16: Swap example
	Slide 17: Program-proof bookkeeping
	Slide 18: Program-proof bookkeeping
	Slide 19: Program-proof bookkeeping
	Slide 20: What about strongest postconditions?
	Slide 21: WP and SP
	Slide 22: Control flow
	Slide 23: Sequential composition
	Slide 24: Conditional control flow
	Slide 25: Conditional control flow
	Slide 26: Strongest postcondition
	Slide 27: Weakest precondition
	Slide 28: Weakest precondition (example)
	Slide 29: Weakest precondition (example)
	Slide 30: Weakest precondition (example)
	Slide 31: Weakest precondition (example)
	Slide 32: Weakest precondition (example)
	Slide 33: Weakest precondition (example)
	Slide 34: Weakest precondition (example)
	Slide 35: Refresher: Implication properties
	Slide 36: Weakest precondition (example)
	Slide 37: Weakest precondition (example)
	Slide 38: Weakest precondition (example)
	Slide 39: Weakest precondition (example)
	Slide 40: Weakest precondition (example)
	Slide 41: Demo in Velvet
	Slide 42: Method correctness
	Slide 43: Method calls
	Slide 44: Parameters
	Slide 45: Assumptions
	Slide 46: Weakest precondition
	Slide 47: Assertions
	Slide 48: Method calls with preconditions
	Slide 49: Demo in Velvet
	Slide 50: Loops in Velvet
	Slide 51: Hoare triples for loops
	Slide 52: Floyd-Hoare logic for loop body
	Slide 53: Quotient modulus
	Slide 60: Full program
	Slide 61: Demo in Velvet
	Slide 62: Leap to the answer
	Slide 63: Leap to the answer
	Slide 64: Computing sums
	Slide 73: Computing sums
	Slide 74: Full program
	Slide 75: Reasoning about Termination
	Slide 76: Loop termination
	Slide 77: Termination of quotient modulus
	Slide 78: Quick body
	Slide 79: Complete loop rule
	Slide 80: Integer square root
	Slide 81: Integer square root
	Slide 82: Integer square root
	Slide 83: A more efficient algorithm
	Slide 84: A more efficient algorithm
	Slide 89: A more efficient algorithm
	Slide 90: Full program
	Slide 91: More examples
	Slide 92: Iterative Fibonacci
	Slide 93: Iterative Fibonacci
	Slide 94: Iterative Fibonacci
	Slide 95: Iterative Fibonacci
	Slide 96: Loop body
	Slide 103: Loop body
	Slide 104: Full program
	Slide 105: Demo in Velvet
	Slide 106: What Have We Learned
	Slide 107: What’s Next
	Slide 108: And then what?
	Slide 109: VERSE lab: Verified Systems Engineering
	Slide 110
	Slide 111: More PL/SE/FM at NUS School of Computing

