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Programming with Proofs



Hoare triples

For predicates P and Q and program S, the Hoare triple

{ P } S { Q }

states the following:
 

  if S is started in any state that satisfies P, 
  then S will not crash (or do other bad things) and 
             will terminate in some state satisfying Q

Examples:  { x == 1 } x := 20     { x == 20 }  
     { x < 18 } y := 18 – x { y >= 0 }
     { x < 18 } y := 5      { y >= 0 }

Non-example: { x < 18 } x := y { y >= 0 } 

precondition postcondition



Reducing an Imperative Program to a Formula
{ true }
// Check that this implication is valid (negation is unsatisfiable)
{ (a  (b  (true  (a  b)))  (b  (false  (a  b))))  (a  (true  (a  b))  } 
if (a) {
{ (b  (true  (a  b)))  (b  (false  (a  b))) }
  if (b) {
{ true  (a  b) }
    res := true
{ res  (a  b) }
  } else {
{ false  (a  b) }
    res := false
{ res  (a  b) }
  }
{ res  (a  b) }
} else {
{ true  (a  b) }
  res := true
{ res  (a  b) }
}
{ res  (a  b) }



Forward reasoning

Constructing a postcondition from a given precondition

In general, there are many possible postconditions

Examples:

1. { x == 0 }  y := x + 3 { y < 100 }

2. { x == 0 }  y := x + 3 { x == 0 }

3. { x == 0 }  y := x + 3 { 0 <= x && y == 3 }

4. { x == 0 }  y := x + 3 { 3 <= y }

5. { x == 0 }  y := x + 3 { true } 



Strongest postcondition

Forward reasoning constructs the strongest (i.e., most specific) 
postcondition

{ x == 0 }  y := x + 3 { 0 == x && y == 3 }

Def: A is stronger than B if A ==> B is a valid formula

Def: A formula is valid if it is true for any valuation of its free variables



Backward reasoning

Construct a precondition for a given postcondition

Again, there are many preconditions

Examples:

1.            { x <= 70 }  y := x + 3 { y <= 80 }

2.  { x == 65 && y < 21 }  y := x + 3 { y <= 80 }

3. { x <= 77 }  y := x + 3 { y <= 80 } 

4.  { x*x + y*y <= 2500 }  y := x + 3 { y <= 80 }

5.              { false }  y := x + 3 { y <= 80 } 



Weakest precondition

Backward reasoning constructs the weakest (i.e., most general) precondition

{ x <= 77 }  y := x + 3 { y <= 80 }

Def: A is weaker than B if B ==> A is a valid formula



Weakest precondition for assignment

Given {  ? } x := E { Q } 

we construct ? by replacing each x in Q with E (denoted by Q[x\E] )



Weakest precondition for assignment

Given {Q[x\E]} x := E { Q } 

Examples: { ? }  y := a + b  { 25 <= y }

      25 <= a + b

1. { 25 <= x + 3 + 12 } a := x + 3 { 25 <= a + 12 }

2. { x + 1 <= y } x := x + 1 { x <= y }

3. { 3*2*x + 5*y < 100 } x := 2*x   { 3*x + 5*y < 100 }



Swap example

var tmp := x;

x := y; 

y := tmp;



{ x == X && y == Y }

var tmp := x;

x := y; 

y := tmp;
{ x == Y && y == X }

The initial values of x and y are 
specified using logical variables
X and Y

Swap example



{ x == X && y == Y }
{ ? }
var tmp := x;
{ ? }
x := y; 
{ ? }
y := tmp;
{ x == Y && y == X }

Swap example

The initial values of x and y are 
specified using logical variables
X and Y



{ x == X && y == Y }
{ ? }
var tmp := x;
{ ? }
x := y; 
{ x == Y && tmp == X }
y := tmp;
{ x == Y && y == X }

Swap example



{ x == X && y == Y }
{ ? }
var tmp := x;
{ y == Y && tmp == X }
x := y; 
{ x == Y && tmp == X }
y := tmp;
{ x == Y && y == X }

Swap example



{ x == X && y == Y }
{ y == Y && x == X }
var tmp := x;
{ y == Y && tmp == X }
x := y; 
{ x == Y && tmp == X }
y := tmp;
{ x == Y && y == X }

Swap example



{ x == X && y == Y }
{ y == Y && x == X }
var tmp := x;
{ y == Y && tmp == X }
x := y; 
{ x == Y && tmp == X }
y := tmp;
{ x == Y && y == X }

The final step is the proof obligation that

(x == X && y == Y) ==> (y == Y && x == X)

is valid

Swap example



Program-proof bookkeeping

{ x == X && y == Y }

x := y - x;

y := y - x; 

x := y + x; 
{ x == Y && y == X } 



Program-proof bookkeeping

{ x == X && y == Y }
{ y – (y – x) + (y – x) == Y && y – (y – x) == X }
x := y - x; 
{ y – x + x ==Y && y – x == X }
y := y - x; 
{ y + x == Y && y == X }
x := y + x; 
{ x == Y && y == X } 

The constructed precondition simplifies to 

y == Y && x == X



Program-proof bookkeeping

{ x == X && y == Y }
{ y == Y && x == X }
{ y == Y && y – (y – x) == X }
x := y - x; 
{ y == Y && y – x == X }
{ y – x + x == Y && y – x == X }
y := y - x; 
{ y + x == Y && y == X }
x := y + x; 
{ x == Y && y == X } 

We are also allowed to strengthen the conditions as 
we work backwards (but not weaken them!)



What about strongest postconditions?

Consider { w < x && x < y } x := 100 { ? }

Obviously, x == 100 is a postcondition, but it is not the strongest

Something more is implied by the precondition:

there exists an n such that w < n && n < y

which is equivalent to saying that w + 1 < y

In general:

{ P } x := E { exists n :: P[x\n] && x == E[x\n] }



WP and SP

Let P be a predicate on the pre-state of a program S and
let Q be a predicate on the post-state of S

WP [S, Q] denotes the weakest precondition of S wrt Q

SP [S, P] denotes the strongest postcondition of S wrt P

WP [x := E, Q] = Q[x\E]

SP [x := E, P] = exists n :: P[x\n] && x == E[x\n]



Control flow

Until now: 

  Assignment:  x := E

  Variable introduction:  var x

Next:

  Sequential composition:  S ; T

  Conditions:  if B { S } else { T }

  Method calls: r := M(E)

Later:

  Loops: while B { S }



Sequential composition

 S ; T   { P } S { Q } T { R }

      { P } S { Q } and { Q } T { R }

Strongest postcondition

 let Q  =  SP [S, P]

     SP [S;T, P] = SP [T, Q] = SP [T,  SP [S, P]]
 
Weakest precondition

 let Q  =  WP [T, R]

 WP [S;T, R ] = WP [S, Q] = WP [S, WP [T, R]]



Conditional control flow

if B { S } else { T }

{ P }

{ Y }{ X }

{ W }{ V }

{ Q }

B !B

S T



Conditional control flow

Floyd-Hoare logic tells us:

1. P && B ==> V

2. P && !B ==> W

3. { V } S { X }

4. { W } T { Y }

5. X ==> Q

6. Y ==> Q

if B { S } else { T }

{ P }

{ Y }{ X }

{ W }{ V }

{ Q }

B !B

S T



Strongest postcondition

X  =  SP [S, P && B]

Y  =  SP [T, P && !B]

SP [if B { S } else { T },  P] =

SP [S, P && B] || SP [T, P && !B]

{ P }

{ Y }{ X }

{P && !B}{P && B}

{ X || Y }

B !B

S T

if B { S } else { T }



Weakest precondition

{ B ==> V && !B ==> W }

{ Q }{ Q }

{ W }{ V }

{ Q }

B !B

S T

V = WP [S, Q]

W = WP [T, Q]

WP [if B { S } else { T },  Q] =

 ( B ==> WP [S,  Q]) &&
 (!B ==> WP [T,  Q])

if B { S } else { T }



Weakest precondition (example)

{ ( x < 3 ==> x == 89) && (x >= 3 ==> x == 50) }
 if x < 3 {
  { x == 89 }
  { x+1 + 10 == 100 }
  x, y := x + 1, 10;
  { x + y == 100 }
 } else { 
  { x == 50 } 
  { x + x == 100 }
  y := x; 
  { x + y == 100 }
 }
 { x + y == 100 }



Weakest precondition (example)
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  { x + y == 100 }
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  { x == 50 } 
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  { x + y == 100 }
 }
 { x + y == 100 }
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Weakest precondition (example)
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Weakest precondition (example)

{ (x < 3 ==> x == 89) && (x >= 3 ==> x == 50) }
 if x < 3 {
  { x == 89 }
  { x + 1 + 10 == 100 }
  x, y := x + 1, 10;
  { x + y == 100 }
 } else { 
  { x == 50 } 
  { x + x == 100 }
  y := x; 
  { x + y == 100 }
 }
 { x + y == 100 }



Weakest precondition (example)

{ (x < 3 ==> x == 89) && (x >= 3 ==> x == 50) }
 if x < 3 {
  { x == 89 }
  { x + 1 + 10 == 100 }
  x, y := x + 1, 10;
  { x + y == 100 }
 } else { 
  { x == 50 } 
  { x + x == 100 }
  y := x; 
  { x + y == 100 }
 }
 { x + y == 100 }

{ x == 50 }



Refresher: Implication properties

 A ==> B      equiv. to      !A || B

Hence,   

   

Useful law for simplifying predicates

A ==> (B ==> C)     equiv. to     (A && B) ==> C

A ==> true equiv. to true

A ==> false " ! A

true ==> B " B

false ==> B " true



Weakest precondition (example)

{ x == 50 }
 { false || x == 50 || false || false }
 { x >= 3 && x < 3) || (x >= 3 && x ==50) || 
    (x ==89 && x < 3) || (x==89 && x==50) }
 { x >= 3 || x == 89) && (x < 3 || x ==50) }
 { (x < 3 ==> x == 89) && (x >= 3 ==> x == 50) }
 if x < 3 {
  x, y := x + 1, 10;
 } else { 
  y := x; 
 }
 { x + y == 100 }



Weakest precondition (example)

{ x == 50 }
 { false || x == 50 || false || false }
 { x >= 3 && x < 3) || (x >= 3 && x ==50) || 
    (x ==89 && x < 3) || (x==89 && x==50) }
 { (x >= 3 || x == 89) && (x < 3 || x ==50) }
 { (x < 3 ==> x == 89) && (x >= 3 ==> x == 50) }
 if x < 3 {
  x, y := x + 1, 10;
 } else { 
  y := x; 
 }
 { x + y == 100 }



Weakest precondition (example)

{ x == 50 }
 { false || x == 50 || false || false }
 { (x >= 3 && x < 3) || (x >= 3 && x == 50) || 
   (x == 89 && x < 3) || (x == 89 && x == 50) }
 { (x >= 3 || x == 89) && (x < 3 || x == 50) }
 { (x < 3 ==> x == 89) && (x >= 3 ==> x == 50) }
 if x < 3 {
  x, y := x + 1, 10;
 } else { 
  y := x; 
 }
 { x + y == 100 }



Weakest precondition (example)

{ x == 50 }
 { false || x == 50 || false || false }
 { (x >= 3 && x < 3) || (x >= 3 && x == 50) || 
   (x == 89 && x < 3) || (x == 89 && x == 50) }
 { (x >= 3 || x == 89) && (x < 3 || x == 50) }
 { (x < 3 ==> x == 89) && (x >= 3 ==> x == 50) }
 if x < 3 {
  x, y := x + 1, 10;
 } else { 
  y := x; 
 }
 { x + y == 100 }



Weakest precondition (example)

{ x == 50 }
 { false || x == 50 || false || false }
 { (x >= 3 && x < 3) || (x >= 3 && x == 50) || 
   (x == 89 && x < 3) || (x == 89 && x == 50) }
 { (x >= 3 || x == 89) && (x < 3 || x == 50) }
 { (x < 3 ==> x == 89) && (x >= 3 ==> x == 50) }
 if x < 3 {
  x, y := x + 1, 10;
 } else { 
  y := x; 
 }
 { x + y == 100 }



Demo in Velvet

See PraVDA/Velvet/SimpleExamples.lean



Method correctness

Given

 method M(x: Tx) return (y: Ty)
  require P
  ensures Q
 {
  B
 } 

we need to prove 

  P ==> WP [B, Q]
 



Method calls

Methods are opaque, i.e., we reason in terms of their specifications, 
not their implementations

Given 

 method Triple(x: int) return (y: int) 
  ensures y == 3 * x 

we expect to be able to prove, for instance, the following method call

{ true } v := Triple(u + 4) { v == 3 * (u + 4) }
 



Parameters

We need to relate the actual parameters (of the method call) with the 
formal parameters (of the method)

To avoid any name clashes, we first rename the formal parameters to 
fresh variables:

 method Triple(x': int) return (y': int) 
   ensures y' == 3 * x'

Then, for a call    v := Triple(u + 1)  we have

  x' := u + 1
  v  := y'



Assumptions

The caller can assume that the method's postcondition holds

We introduce a new statement ,  assume E ,  to capture this

 SP [assume E,  P]  =  E && P

 WP [assume E, Q]  =  E ==> Q

The semantics of   v := Triple(u + 1)  is then given by 

  var x'; var y';  
  x' := u + 1; 
  assume y' == 3 * x';
  v := y'

method Triple(x': int) 
returns (y': int) 
  ensures y' == 3 * x'



Weakest precondition

WP [r := M(E),  Q]   =   forall y':: R[x,y\E,y'] ==> Q[r\y']

where x is M’s input, y is M’s output, and R is M's postcondition

Example. Let Q be  v == 48  for the method:

  method Triple(x: int) returns (y: int) 
    ensures y == 3 * x 

{ u == 15 }

{ 3 * (u + 1) == 48 }

{ forall y' :: y' == 3 * (u + 1) ==> y' == 48 }

v := Triple(u + 1);

{ v == 48 }



Assertions

assert E  does nothing when E holds, 
otherwise it crashes the program

  method Triple(x: int) return (r: int) do 

    let y := 2 * x

    r := x + y

    assert r = 3 * x

  

  WP [assert E, Q]   = E && Q

  SP [assert E, P]  =  P && E



Method calls with preconditions

Given 

  method M(x: X) return (y: Y) 
    require P 
    ensures R

The semantics of   r := M(E)  is

  var xE ; var yr ; 
  xE := E ; 
  assert P[x\xE] ; 
  assume R[x,y\xE,yr] ; 
  r := yr

WP [r := M(E), Q]  =  P[x\E] && forall yr :: R[x,y\E,yr] ==> Q[r\yr]



Demo in Velvet



Loops in Velvet

while G 
  invariant J 
  decreases M
  do
    Body 
   

 G: loop guard, Boolean expression

M: (optional) termination measure, expression whose value is expected to 
decrease at each loop iteration

  J: loop invariant, condition expected to hold at each iteration



Hoare triples for loops

{ J }
while G 
  invariant J 
{ J && !G }

Example

r:= 0; 
N := 104; 
while (r+1)*(r+1) <= N 
  invariant 0 <= r && r*r <= N 
assert 0 <= r && r*r <= N < (r+1)*(r+1);



Floyd-Hoare logic for loop body

For a loop 

while G 
  invariant J 
  do
    Body 

we need to prove

  { J && G }
  Body 
  { J }



Quotient modulus

x := 0; 
y := 191; 
while !(y < 7) 
invariant 0 <= y && 7*x + y == 191 
assert x == 191 / 7 && y == 191 % 7;



Full program

x := 0; 
y := 191; 
while !(y < 7) 
invariant 0 <= y && 7*x + y == 191 
do
  { 0 <= y && 7*x + y == 191 && 7 <= y }
  { 0 <= y - 7 && 7*x + 7 + (y - 7) == 191 }
  y := y - 7;
  { 0 <= y && 7*x + 7 + y == 191 }
  { 0 <= y && 7*(x + 1) + y == 191 }
  x := x + 1;
  { 0 <= y && 7*x + y == 191 }

assert x == 191 / 7 && y == 191 % 7;



Demo in Velvet



Leap to the answer

x := 0; 
y := 191; 
while !(y < 7) 
invariant 0 <= y && 7*x + y == 191 
do
  { 0 <= y && 7 * x + y == 191 && 7 <= y }

  x := 27
  y := 2
  { 0 <= y && 7 * x + y == 191 }

assert x == 191 / 7 && y == 191 % 7;



Leap to the answer

x := 0; 
y := 191; 
while !(y < 7) 
invariant 0 <= y && 7*x + y == 191 
do
  { 0 <= y && 7 * x + y == 191 && 7 <= y }
  { true }
  { 0 <= 2 && 7 * 27 + 2 == 191 }
  x := 27
  y := 2
  { 0 <= y && 7 * x + y == 191 }

assert x == 191 / 7 && y == 191 % 7;



Computing sums

while n != 33 
  invariant s == n * (n - 1) / 2 
  do
  { s == n * (n - 1) / 2 && n != 33 }
  { s == n * (n - 1) / 2 }
  s := s + n; 
  { s = n * (n - 1) / 2 + n }
  { s = (n*n – n) / 2 + 2*n / 2 }
  { s == (n*n – n + 2*n) / 2 }
  { s == (n*n + n) / 2 }
  { s == (n + 1) * n / 2 }
  { s == (n + 1) * (n + 1 - 1) / 2 }
  n := n + 1; 
  { s == n * (n - 1) / 2 }

assert s == 33 * 32 / 2;



Computing sums

while n != 33 
  invariant s == n * (n - 1) / 2 
  do 

  { s == n * (n - 1) / 2 && n != 33 }
  { s == n * (n - 1) / 2 }
  s := s + n; 
  { s = n * (n - 1) / 2 + n }
  { s = (n*n – n) / 2 + 2*n / 2 }
  { s == (n*n – n + 2*n) / 2 }
  { s == (n*n + n) / 2 }
  { s == (n + 1) * n / 2 }
  { s == (n + 1) * (n + 1 - 1) / 2 }
  n := n + 1; 
  { s == n * (n - 1) / 2 }

assert s == 33 * 32 / 2;



Full program

Need to choose initial values of s and n to establish invariant

s := 0;
n := 0;
while n != 33 
  invariant s == n * (n - 1) / 2 
  do 
   s := s + n;
   n := n + 1;



Reasoning about Termination



Loop termination

For a loop

 while G 
  invariant J 
  decreasing D 
     do
    Body 
 

we need to prove

 { J && G }
 ghost var d := D; 
 Body 
 { D < d && 0 <= D } 

Ghost variables are for 
reasoning only. They are not 
part of the compiled code.



Termination of quotient modulus

x, y := 0, 191; 
while 7 <= y 
  invariant 0 <= y && 7 * x + y == 191 
  decreasing y 
  do 
   y := y - 7;  
   x := x + 1; 

{ 0 <= y && 7 * x + y == 191 && 7 <= y }
ghost var d := y; 
y := y - 7; 
x := x + 1; 
{ d > y && y >= 0 } 

• y < d  follows from  y := y – 7

• 0 <= d  follows from 0 <= y in invariant



Quick body

x, y := 0, 191; 
while 7 <= y 
  invariant 0 <= y && 7 * x + y == 191 
  decreasing y 
  do 
   y := 2; 
   x := 27; 

{ 0 <= y && 7 * x + y == 191 && 7 <= y }
ghost var d := y; 
y := 2; 
x := 27; 
{ d > y && y >= 0 } 

• y < d  follows from  7 <= y in invariant

• 0 <= d  follows from 0 <= y in invariant



Complete loop rule

{ J }
while G 
 invariant J 
 decreasing D 
  do  
  Body 
 
{ J && !G }

 { J && G }
 ghost var d := D; 
 Body 
 { J && d > D && D >= 0 }



Integer square root
method SquareRoot(N: Nat) return (r: Nat) 
  ensures r*r <= N < (r+1)*(r+1)



Integer square root
method SquareRoot(N: Nat) return (r: Nat) 
  ensures r*r <= N && N < (r+1)*(r+1)

do    

  while (r+1)*(r+1) <= N 
    invariant r*r <= N
  
 

Loop design pattern
For a postcondition  A && B,  use 
A as the invariant and !B as the guard



Integer square root
method SquareRoot(N: Nat) return (r: Nat) 
  ensures r*r <= N && N < (r+1)*(r+1)

 do
  let mut r := 0;
  while (r+1)*(r+1) <= N 
    invariant r*r <= N
    do 
      r := r + 1

Loop design pattern
For a postcondition  A && B,  use 
A as the invariant and !B as the guard



A more efficient algorithm

Rather than calculate (r + 1)*(r + 1) on each iteration, add 
a new variable s and maintain invariant 

s == (r + 1)*(r + 1)



A more efficient algorithm

Rather than calculate (r + 1)*(r + 1) on each iteration add 
a new variable  s == (r + 1)*(r + 1)

Then we have  s initially  1,  loop guard  s <= N  and 
invariant s == (r + 1)*(r + 1)

  { s == (r + 1)*(r + 1) } 
  {s + 2*r + 3 == (r+ 1)*(r + 1) + 2*r + 3 } 
  s := s + 2*r + 3;
  { s == (r + 1)*(r + 1) + 2*r + 3}
  { s == r*r + 2*r + 1 + 2*r + 3 }
  { s == r*r + 4*r + 4}
  { s == (r + 1 + 1)*(r + 1 + 1)}
  r := r + 1 
  { s == (r + 1)*(r + 1) }



A more efficient algorithm

Rather than calculate (r + 1)*(r + 1) on each iteration add 
a new variable  s == (r + 1)*(r + 1)

Then we have  s initially  1,  loop guard  s <= N  and 
invariant s == (r + 1)*(r + 1)

  { s == (r + 1)*(r + 1) } 
  { s + 2*r + 3 == (r + 1)*(r + 1) + 2*r + 3 } 
  s := s + 2*r + 3;
  { s == (r + 1)*(r + 1) + 2*r + 3}
  { s == r*r + 2*r + 1 + 2*r + 3 }
  { s == r*r + 4*r + 4}
  { s == (r + 1 + 1)*(r + 1 + 1)}
  r := r + 1 
  { s == (r + 1)*(r + 1) }



Full program

method SquareRoot(N: Nat) return (r: Nat) 
  ensures r*r <= N < (r+1)*(r+1) 
   do 
  let mut r := 0; 
  var s := 1; 
  while s <= N 
   invariant r*r <= N 
   invariant s == (r+1)*(r+1) 
    do  
    s := s + 2*r + 3; 
    r := r + 1; 
   
 



More examples



Iterative Fibonacci

def Fib (n: Nat) :=  match n with
  | 0 => 0
  | 1 => 1
  | n + 2 => Fib (n + 1) + Fib n 

method ComputeFib(n: nat) returns (x: nat) 
  ensures x = Fib(n)
  do 
  x := 0; 
  var i := 0; 
  while i != n
    invariant 0 <= i <= n
    invariant x = Fib(i) 



Iterative Fibonacci

Example: to establish x = Fib(n) introduce i  and

   invariant x = Fib(i) 

 

Loop design technique  (Replace a constant by a variable)
For a loop to establish a condition P[E], where E is an expression 
that maintains a constant value throughout the loop, 
• use a variable i that the loop changes until it equals E, and 
• make P[i] a loop invariant



Iterative Fibonacci

method ComputeFib(n: nat) returns (x: nat) 
  ensures x == Fib(n)
  do
  let mut x := 0
  let mut y := 1
  let mut i := 0  
  while i != n
    invariant 0 <= i && i <= n
    invariant x = Fib(i) 
    do
    ...
    i := i + 1;
  
}



Iterative Fibonacci

method ComputeFib(n: nat) returns (x: nat) 
  ensures x == Fib(n)
  do
  let mut x := 0
  let mut y := 1
  let mut i := 0  
  while i != n
    invariant 0 <= i && i <= n
    invariant x = Fib(i)     
    invariant x == Fib(i) && y == Fib(i + 1)
    do
    ...
     i := i + 1;
  

Cannot use  y == Fib(i-1) 
as not defined when i == 0



Loop body

{ 0 <= i <= n  && x == Fib(i)
               && y == Fib(i+1) &&  i != n}
{ 0 <= i < n   && x == Fib(i) && y == Fib(i+1) }
{ 0 <= i+1 <=n && x == Fib(i) && y == Fib(i+1) }
{ 0 <= i+1 <=n && y == Fib(i+1)
              && x+y == Fib(i) + Fib(i+1) }
x, y := y, x + y;
{ 0 <= i+1 <=n && x == Fib(i+1)
               && y == Fib(i) + Fib(i+1) }
{ 0 <= i+1 <=n && x == Fib(i+1) && y == Fib(i+2) }
{ 0 <= i+1 <=n && x == Fib(i+1) 
               && y == Fib(i+1+1) }
i := i + 1;
{ 0 <= i <= n && x == Fib(i) && y == Fib(i+1) }



Loop body

{ 0 <= i <= n  && x == Fib(i)
               && y == Fib(i+1) &&  i != n}
{ 0 <= i <= n   && x == Fib(i) && y == Fib(i+1) }
{ 0 <= i+1 <= n && x == Fib(i) && y == Fib(i+1) }
{ 0 <= i+1 <= n && y == Fib(i+1)
                && x+y == Fib(i) + Fib(i+1) }
let tmp := x; x := y; y := tmp + y
{ 0 <= i+1 <= n && x == Fib(i+1)
                && y == Fib(i) + Fib(i+1) }
{ 0 <= i+1 <= n && x == Fib(i+1) && y == Fib(i+2)}
{ 0 <= i+1 <= n && x == Fib(i+1) 
                && y == Fib(i+1+1) }
i := i + 1;
{ 0 <= i <= n && x == Fib(i) && y == Fib(i+1) }



Full program

method ComputeFib(n: Nat) return (x: Nat) 
  ensures x = Fib(n)
  do 
  let mut x := 0 
  let mut y := 1  
  let mut i := 0; 
  while i != n
    invariant 0 <= i && i <= n
    invariant x = Fib(i)
    invariant y = Fib(i + 1)
    do
      let tmp := x; x := y; y := tmp + y
      i := i + 1
  



Demo in Velvet



What Have We Learned 

• Theorems as Types

• Proofs as Programs

• Basics of Lean

• Inductive Definitions 

• Proofs by Induction

• Relations as Predicates

• State Machines as Relations

• Stating Safety Properties

• Basics of SMT solvers

• Verifying State Machines in Veil

• Subset/Refinement Types

• Setoids and Quotient Types

• Defining ℤ, ℚ, and ℝ

• Hoare-Style Logic

• Weakest Preconditions

• Loop Invariants

• Reasoning about Arrays

• Verifying Programs in Velvet



What’s Next

• Research Project:

– Proving a cute mathematical theorem

– Formalising a state Machine / distributed protocol in Veil

– Verifying an algorithm/data structure in Velvet

• For inspiration:

– Some ideas: https://ilyasergey.net/PWP25/projects.html 

– I’m happy to discuss project ideas!

https://ilyasergey.net/PWP25/projects.html


And then what?

• Books and Resources:
– The Hitchhiker’s Guide to Logical Verification (2025)
– Functional Programming in Lean
– Theorem Proving in Lean 4 
– https://leanprover.zulipchat.com/ 

• Conferences to check out: POPL, PLDI, OOPSLA, CAV
– PLMW: https://www.sigplan.org/Conferences/PLMW/ 
– VMW: https://i-cav.org/2024/workshops/mentoring/ 

• Researchers to follow (very incomplete list):
– Isil Dillig, Peter Müller, Peter O’Hearn, Leonardo de Moura, Leslie Lamport,

Rustan Leino, Kenneth McMillan, Ranjit Jhala, Thomas Wies, 
Derek Dreyer, Swarat Chaudhuri, Clément Pit-Laudel

https://leanprover.zulipchat.com/
https://leanprover.zulipchat.com/
https://www.sigplan.org/Conferences/PLMW/
https://i-cav.org/2024/workshops/mentoring/
https://i-cav.org/2024/workshops/mentoring/
https://i-cav.org/2024/workshops/mentoring/


VERSE lab: Verified Systems Engineering

software 
systems

formal
verification

Multi-Modal Verification in Lean

Correct-by-Construction Program Synthesis

Foundations of Proofs about Programs

verse-lab.github.io



• Like understanding complex software artefacts

(compilers, concurrency, distributed systems)

• Enjoy thinking about  logics and type systems

• Love metaprogramming and hacking proofs in Lean

• Want to publish at top PL/FM venues (PLDI, POPL, ICFP, CAV)

If you

● Fully-funded 5-year PhD positions

● Also hiring Postdocs and Interns

● Get to live in Singapore: the world’s

most diverse and safest city

● and travel around the world

Join VERSE lab @ NUS!

This is a durian.
We have them too.

verse-lab.github.io



More PL/SE/FM at NUS School of Computing

Umang Mathur 
dynamic concurrency analysis, 

algorithmic verification

focs-lab.comp.nus.edu.sg

Manuel Rigger
testing for databases, 

compilers, solvers

nus-test.github.io

Abhik Roychoudhury 
program repair, fuzzing, LLMs

nus-tss.github.io

Prateek Saxena
PL for security

comp.nus.edu.sg/~prateeks

nus-plse.github.io
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