
CS6213: Special Topics
in Distributed Computing

Distributed Consensus

Consensus
• Common meaning:

a way for a set of parties to come to a shared agreement.

• In distributed computing: ensuring that among the values proposed by
a collection of processes, a single one is chosen.

• Uniformity: Only a single value is chosen

• Non-triviality: Only a value that has been proposed may be chosen

• Irrevocability: Once agreed on a value, the processes do not change
their decision.

Why Consensus?

Why Distributed Consensus is difficult?

• Arbitrary message delays (asynchronous network)

• Independent parties (nodes) can go offline (and also back online)

• Network partitions

• Message reorderings

• Malicious (Byzantine) parties

• Arbitrary message delays (asynchronous network)

• Independent parties (nodes) can go offline (and also back online)

• Network partitions

• Message reorderings

• Malicious (Byzantine) parties

Why Distributed Consensus is difficult?

Reaching a Consensus

(and constructing a protocol for this)

Waa Cow!

Sapore

Hwang’s

Reaching a Consensus on
where to have a dinner

Waa Cow! Hwang’sSapore

?? ??

Waa Cow! Hwang’sSapore

?? ??

HH

Centralised protocol

“Acceptor”

Waa Cow! Hwang’sSapore

Problem 1

A single acceptor can go offline or take forever to answer.

?? ??

Waa Cow! Hwang’sSapore

?? ??

Waa Cow! Hwang’sSapore

Problem 2

Multiple acceptors might disagree on the outcomes:
now they need to reach a consensus themselves.

Separation of Concerns

• Proposers: suggest a value (a restaurant to go);

• Acceptors: support some proposal;

• The proposer with a majority of acceptors supporting its
proposal wins.

Others learn the outcome by querying all the acceptors.

Acceptors

Proposers

HW W
W

H
H

Acceptors

Proposers

W H

W H

W

Key Idea 1
Rely on majority quorums for agreement

to prevent the “split brain” problem.

• Common meaning: Quorum is the minimum number of members to
conduct the business on behalf of the entire group they represent;

• In computing: quorum is a necessary number of processes to agree
on the decision in the presence of potentially faulty ones.

Key Properties of Quorums
• Property 1: any two quorums must have non-empty intersection

n/2 + 1 n/2 + 1

• Property 2: no need for the global agreement: can tolerate some faults

Quorum of n/2 + 1 acceptors

H

W H

W W
n = 3

Problem

A quorum is difficult to obtain in a single interaction.

As the result, such a system will often get stuck.

Acceptors

Proposers

HW W
W

H
HS S S

Acceptors

Proposers

W HS

W H
S

Key Ideas 2 and 3
• Proceed in rounds:

• A proposer first “secures” itself a quorum, willing to support its
proposal (i.e., becomes a “leader”);

• Only if a quorum is secured, it goes on to “propose” a value.

• Introduce fixed globally known priorities between proposers
to “break ties” when securing quorums.

• Acceptors only “choose to support” proposers with higher priorities
than they have already seen.

Some Terminology

• Rounds — Phases
• Phase 1 — “prepare”, securing quorums to propose
• Phase 2 — “accept”, sending values to accept

• Fixed priorities — Ballots

1 2 3

1 3

1
3

31

Phase 1

1 2 3

31

1

3

1

3

Phase 1

1 2 3

3

1

3

1 1

3

Phase 1

1 2 3

3

1 1 3

1
3

Phase 1

1 2 3

3

1 1 3

3

Phase 1

1 2 3

1 3 3

Phase 1

1 2 3

1 3 3

HH

Phase 2

1 2 3

1 H 3

H

Phase 2

1 2 3

1 H H

Phase 2

Problem 3

Because of asynchrony, low-priority Phase 2 can be
interrupted by a high-priority Phase 1

1 2 3

1 1 3

Phase 2 Phase 1

3WW
3

1 2 3

W 1 3

3W
3

1 2 3

W W 3

33

W wins!

1 2 3

3 W 3

3

1 2 3

3 3 3

1 2 3

3 3 3

HHH

1 2 3

H H H

Oops :(H wins!

Problem 3

How to ensure irrevocability of consensus
in the presence of priorities and asynchrony?

• Cooperation between Proposers and Acceptors:
• Acceptors, when agreeing to support a proposer, must “tell” what was

the highest-ballot value they have accepted;
• Higher-ballot proposers re-propose already (partially) accepted values

from the lower-ballot proposers, who secured the quorum before.

• This way, a proposer “knows" that, once it secured its quorum, either
• its own proposal, or some higher-ballot one will be accepted
• if its proposal got accepted, it will not be revoked

(thanks to quorum intersection)

Key Idea 4

1 2 3

W W 3

33

W wins!

1 2 3

3 W 3

3

W wins!

accepted W from 1 Must
re-propose W

1 2 3

3 3 3

W wins!

accepted W from 1
Must

re-propose W

1 2 3

3 3 3

WWW

W wins!

1 2 3

W W W

W wins!
W wins indeed

Two-Phase Ballot-based Consensus
• Proposers suggest values, acceptors decide upon acceptance;

• Each proposal goes in two rounds:
• Phase 1: securing a quorum of acceptors for a proposal
• Phase 2: sending out the proposal

• Acceptors agree only to support ballots higher than what they’ve seen;

• They inform proposers of previously accepted values,
which those then re-propose.

The Algorithm in a Nutshell
Proposer Acceptor

• Send my ballot b to all acceptors

• Wait for response of at least n/2 + 1 acceptors

• Upon receiving a ballot b
• if it’s the first one, remember it and send “ok” back.
• if it’s higher than b′ we supported before, send

back a previously accepted (b′, v′), and
remember b as what’s currently supported.

• When heard back from n/2 + 1 acceptors,
send them back (b, w), where

• b is my ballot
• w is the value from the acceptors with

the highest ballot, or my own value.

• Accept incoming value w if it comes with a
ballot b, which we currently support;
ignore otherwise.

Phase 1

Phase 2

Learning an Accepted Value

• A dedicated learner sends request to all acceptors;

• If at least n/2 + 1 acceptors respond back with the same
value v, this is an accepted value.

• Correctness of this reasoning follows from irrevocability.

Learning an Accepted Value

• And what if n/2 + 1 have the value, but one of them does
not respond?

• In this case we need to introduce a time out (synchrony).

• A dedicated learner sends request to all acceptors;

• If at least n/2 + 1 acceptors respond back with the same
value v, this is an accepted value.

• Correctness of this reasoning follows from irrevocability.

If we expect failures,

we should rely on time-outs.

Paxos

• A practical fault-tolerant distributed consensus algorithm;

• Invented in 1990, published in 1998;

• Nowadays used everywhere: Google (Bigtable, Chubby),
IBM, Microsoft;

• You have just seen it explained.

History of Paxos

Leslie Lamport  
(also known for LaTeX, Vector clocks, TLA)  

Turing Award winner 2014

1990: Paxos first described

1998: Paxos paper published

2005: First practical deployments

2010: Widespread use!

2014: Lamport gets Turing Award

History of Paxos

Leslie Lamport  
(also known for LaTeX, Vector clocks, TLA)  

Turing Award winner 2014

1990: Paxos first described

1998: Paxos paper published

2005: First practical deployments

2010: Widespread use!

2014: Lamport gets Turing Award

Recent archaeological discoveries on the island of
Paxos reveal that the parliament functioned despite
the peripatetic propensity of its part-time legislators.

The legislators maintained consistent copies of the
parliamentary record, despite their frequent forays
from the chamber and the forgetfulness of their
messengers.

History of Paxos
1990: Paxos first described

1998: Paxos paper published

2005: First practical deployments

2010: Widespread use!

2014: Lamport gets Turing Award

• The ABCDs of Paxos [2001]
• Paxos Made Simple [2001]
• Paxos Made Practical [2007]
• Paxos Made Live [2007]
• Paxos Made Moderately Complex [2011]
• Paxos Consensus, Deconstructed and Abstracted [2018]

Leslie Lamport  
(also known for LaTeX, Vector clocks, TLA)  

Turing Award winner 2014

Multi-Paxos

• Presented in the original Lamport’s 1998 paper.

• Uses the described idea for a sequence of “slots” (think transactions).

• Includes reconfiguration (changing set of acceptors on the fly).

• Naive implementation: run Simple Paxos for each slot.

• Better approach — secure a quorum for several slots.

Running Paxos with Scala Actors
class PaxosConfiguration(val proposers: Seq[ActorRef],
 val learners: Seq[ActorRef],
 val acceptors: Seq[ActorRef]) { ... }

def createPaxosInstance(system: ActorSystem, numProposers: Int,
 numAcceptors: Int, numLearners: Int): PaxosConfiguration = {

 val acceptors = createAcceptors(system, numAcceptors)
 val proposers = createProposers(system, numProposers, acceptors)
 val learners = createLearners(system, numLearners, acceptors)
 new PaxosConfiguration(proposers, learners, acceptors)
}

 def createProposers(system: ActorSystem, numProposers: Int, acceptors: Seq[ActorRef]) = {
 for (i <- 0 until numProposers) yield {
 system.actorOf(Props(ProposerClass, this, acceptors, i), name = s"Proposer-P$i")
 }
 }

Live Demo

Alternative Consensus Protocols

• View-Stamped Replication
by Brian M. Oki and Barbara Liskov, 1989

• Raft
by Diego Ongaro and John K. Ousterhout, 2014

• Fault-Tolerant Consensus Protocols are a critical component of modern
distributed systems and applications

• Consensus properties are uniformity, non-triviality, and irrevocability

• The key ideas of Lamport’s Paxos protocol are:
• Majority quorums (avoiding split brain and enabling fault-tolerance);
• Two-phase structure (secure-then-commit);
• Dichotomy and cooperation between proposers and acceptors.

To Take Away

