CS6213: Special Topics
N Distributed Computing

Distributed Consensus

Consensus

o Common meaning:
a way for a set of parties to come to a shared agreement.

e |n distributed computing: ensuring that among the values proposed by
a collection of processes, a single one is chosen.

o Uniformity: Only a single value is chosen
o Non-triviality: Only a value that has been proposed may be chosen

e |rrevocability: Once agreed on a value, the processes do not change
their decision.

W
hy Consensus?

Jgﬁﬁl":ii’

eThereum

Why Distributed Consensus is difficult”

Arbitrary message delays (asynchronous network)

Independent parties (nodes) can go offline (and also back online)
Network partitions

Message reorderings

Malicious (Byzantine) parties

Why Distributed Consensus is difficult”

Arbitrary message delays (asynchronous network)
Independent parties (nodes) can go offline (and also back online)
Network partitions

Message reorderings

Reaching a Consensus

(and constructing a protocol for this)

NUS High School
of Math and Science

yular Bookstore -
, High School of...

@

@

PCF Sparkletots
Preschool. Clementi...

Church of The
Holy Cross

NUS High
Boarding School

¢

Clementi Ry

Py NUBWSD

P

pYy NUBWSID

g Folke
< 0’79;‘)
B S Q Cendana College _ d
g‘” College of Alice &
© Peter Tan (CAPT)
kesfo/,
@,Qd
CAPT
Mytipurpose Hall
' University Scholars
USP Office} programme, National..
\ St Mar,
QYale-NUS College \ 9 @ gar"’&,P
\ o
Cinnamon College
\\\ E
\\\ p 0
\ § Sy
\ k7] R
\\ -‘—u
\\ 2
Q bluPort - NUS UTown Tembusu College
% e Berlin Wall Fragments
\ w
\ Q
) 2
Education 2
Resource Centre \ 2
The Shiok Shack Q \ S
':v Py & %
R & %,
£~ Q University Town,NUS & "
, Starbucks & \ \ 55§ %
\ i R T
\ N UTown Residence
L/ \ Q L
II ’I l‘\ \\ IUS’OO
\\\ // \\\\\\\ epd
FairPrice Xpress NUS 9 .
- Town Green \ South Tower A
Stephen Ri I : %
Waa Cow! | \ 4
\\ l‘ 6\
~ . “‘ S
: ey,
\) C\/’Q
5, . o
S, Phe,, :
% Ry, \
(S
by o Sapore
We TSNS
¢
~. ~ . \\\ San .
o National University dW/c/,,?
Yo, of Singapore... O N
e Tl \
e \ =
€ \ Eycellence and
Y 9 \ Techiz?sgm‘ Enierprs®
Ayp p CREATE Tower NUS @
70//,0 National Research
Q) Foundation Singapore
A !

Maidstone Rq

P L I

Po

Reaching a Consensus on
where to have a dinner

Centralised protocol

Proplem 1

A single acceptor can go offline or take forever to answer.

: N
Waa Cow!

_
.
", 272

~
/

/

2
2
2
\ g
2

Proplem 2

Multiple acceptors might disagree on the outcomes:

Nnow they need to reach a consensus themselves.

Separation of Concerns

* Proposers: suggest a value (a restaurant to go);
* Acceplors: support some proposal;

* [he proposer with a majority of acceptors supporting Its
proposal wins.

Others learn the outcome by querying all the acceptors.

Acceptors

Proposers

Acceptors

Proposers

Key ldea 1

Rely on majority quorums for agreement

to prevent the “split brain™ problem.

« Common meaning. Quorum is the minimum numlber of members to
conduct the business on behalf of the entire group they represent;

* [n computing. quorum Iis a necessary number of processes to agree
on the decision in the presence of potentially faulty ones.

Key Properties of Quorums

e Property 1: any two quorums must have non-empty intersection

e Property 2: no need for the global agreement: can tolerate some taults

Quorum of n/2 + 1 acceptors

e

Proplem

A quorum Is difficult to obtain In a single interaction.

As the result, such a system will often get stuck.

Acceptors

Proposers

Acceptors

S

“

Proposers

Key ldeas 2 and 3

e Proceed In rounds:

* A proposer first "secures’ itself a guorum, willing to support its
proposal (i.e., becomes a “leader”);

* Only if a quorum is secured, it goes on to “propose” a value.

* Introduce fixed globally known priorities between proposers
to “break ties” when securing quorums.

* Acceptors only “choose to support” proposers with higher priorities
than they have already seen.

sSome Terminology

« Rounds — Phases
 Phase 1 — “prepare”, securing guorums to propose

 Phase 2 — "accept’, sending values to accept

e Fixed priorities — Ballots

Phase 1

Phase 1

‘--------‘

1

Phase 1

‘--------‘

-1

‘--------‘

1

0
0
0
0
0
0
0
4

Phase 1

‘--------‘

-1

‘--------‘

1

‘--------‘

'3

0
0
0
0
0
0
0
4

0
0
0
0
0
0
0
4

‘--------‘

1

-1

Phase 1

‘--------‘

‘--------‘

'3

0
0
0
0
0
0
0
4

Phase 1

il 1 I I N = = =
Il B B B BN BN = =

il o I I == = = =
Il B B B BB BB = =

il B I = =N = = =

il 1 I I N = = =

il o I I == = = =

Phase 2

il 1 I I N = = =
Il B B B BN BN = =

il o I I == = = =
Il B B B BB BB = =

Proplem 3

Because of asynchrony, low-priority Phase 2 can be

interrupted by a high-priority Phase 1

‘--------‘

1

0
0
0
0
0
0
0
4

W

Phase 2

‘--------‘

0
0
0
0
0
0
0
4

Phase 1

‘--------‘

'3

0
0
0
0
0
0
0
4

‘--------‘

0
0
0
0
0
0
0
4

‘--------‘

'3

0
0
0
0
0
0
0
4

‘--------‘

'3

0
0
0
0
0
0
0
4

gmEEEREEEA
@

0
0
0
0
0
0
0
4

‘--------‘

13 :
:]
®
— i

i

i

i

’

il 1 I I N = = =
Il B B B BN BN = =

il 1 I I N = = =
Il B B B BN BN = =

il B I I I = = =
Il B B BB BB = = =

Proplem 3

HOow to ensure Irrevocabillity of consensus

N the presence of priorities and asynchrony’?

Key ldea 4

» Cooperation between Proposers and Acceptors:

* Acceptors, when agreeing to support a proposer, must “tell” what was
the highest-ballot value they have accepted;

* Higher-ballot proposers already (partially) accepted values
from the lower-ballot proposers, who secured the quorum before.

e [his way, a proposer "knows' that, once It secured Its quorum, either
e |ts own proposal, or some higher-ballot one will be accepted

* If its proposal got accepted, it will not be revoked
(thanks to quorum intersection)

‘--------‘

'3

0
0
0
0
0
0
0
4

‘--------‘

3

0
0
0
0
0
0
0
4

‘--------‘

'3

]

! 0
]

—]

]

"
]

4

Must
re-propose W

gmEEEREEEA
@

0
0
0
0
0
0
0
4

‘--------‘

13

0
0
0
0
0
0
0
4

‘--------‘

'3

]

! 0
]

—]

]

"
]

4

Must
re-propose W

Two-Phase Ballot-based Consensus

« Proposers suggest values, acceptors decide upon acceptance;

 Each proposal goes in two rounds:
 Phase 1: securing a guorum of acceptors for a proposal

 Phase 2: sending out the proposal
 Acceptors agree only to support ballots than what they've seen;

 They inform proposers of ,
which those then re-propose.

The Algorithm in a Nutshell

Proposer Acceptor

 Upon receiving a ballot b
Send my ballot b to all acceptors e ifit’'s the first one, remember it and send “ok” back.

if it's higher than b’ we supported before, send
back a previously accepted (b’, v’), and
remember b as what's currently supported.

e Wait for response of at least n/2 + 1 acceptors

Phase 2

 When heard back from n/2 + 1 acceptors,
send them back (b, w), where

| Acceptincoming value w if it comes with a
* bis my ballot nallot b, which we currently support;

 w is the value from the acceptors with ignore otherwise.
the highest ballot, or my own value.

|_earning an Accepted Value

A dedicated /earner sends request to all acceptors;

o |f atleast n/2 + 1 acceptors respond back with the same
value v, this Is an accepted value.

* Correctness of this reasoning follows from irrevocability.

|_earning an Accepted Value

A dedicated /earner sends request to all acceptors;

o |f atleast n/?2 + 1 acceptors respond back with the same
value v, this iIs an accepted value.

* Correctness of this reasoning follows from irrevocability.

e And what if n/2 + 1 have the value, but one of them does
not respond?

* |n this case we need to introduce a time out (synchrony).

Impossibility of Distributed Consensus with One Faulty
Process

MICHAEL J. FISCHER

Yale University, New Haven, Connecticut

NANCY A. LYNCH

If we expect failures,

AND we should rely on time-outs.
MICHAEL S. " PATERSUR

University of Warwick, Coventry, England

Abstract. The consensus problem involves an asynchronous system of processes, some of which may be

unreliable. The problem is for the reliable processes to agree on a binary value. In this paper, it is shown
that every protocol for this problem has the possibility of nontermination, even with only one faulty
process. By way of contrast, solutions are known for the synchronous case, the “Byzantine Generals”

problem.
R RRRRRRRRRRRRRRRRRRREREE———————m—

Paxos

A practical fault-tolerant distributed consensus algorithm:;
Invented In 1990, published in 1998;

Nowadays used everywhere: Google (Bigtable, Chubby),
IBM, Microsoft;

You have just seen it explained.

History of Paxos

1990: Paxos first described

1998: Paxos paper published

2005: First practical deployments
2010: Widespread use!

| Leslie Lamport
2014: Lamport gets Turing Award (also known for LaTeX, Vector clocks, TLA)
Turing Award winner 2014

History of Paxos

1990: Paxos first described

1998: Paxos paper published

Leslie Lamport
(also known for LaTeX, Vector clocks, TLA)
Turing Award winner 2014

Recent archaeological discoveries on the island of
2005: First practical dep Paxos reveal that the parliament functioned despite
the peripatetic propensity of its part-time legislators.

2010: Widespread use!

2014: Lamport gets Turi The legislators maintained consistent copies of the

' oarliamentary record, despite their frequent forays
from the chamlber and the forgetfulness of their
messengers.

History of Paxos

1990: Paxos first described

1998: Paxos paper published

Leslie Lamport
(also known for LaTeX, Vector clocks, TLA)
Turing Award winner 2014

e The ABCDs of Paxos [2001]

2005: Fi o Paxos Made Simple [2001]

2010: W ° Paxos Made Practical [2007]

e Paxos Made Live [2007]

e Paxos Made Moderately Complex [2011]

e Paxos Consensus, Deconstructed and Abstracted [2018]

2014: L:

Multl-Paxos

Presented In the original Lamport's 1998 paper.

Uses the described idea for a sequence of “slots” (think transactions).
Includes (changing set of acceptors on the fly).

Naive implementation: run Simple Paxos for each slot.

e Better approach — secure a quorum for several slots.

Running Paxos with Scala Actors

class PaxosConfiguration(val proposers: SeqlActorRef],
val learners: Seql[ActorRef]
val acceptors: Seq[ActorRef]

— .
~
“

def createPaxosInstance(system: ActorSystem, numProposers: Int,
numAcceptors: Int, numLearners: Int): PaxosConfiguration = {

val acceptors createAcceptors(system, numAcceptors)

val proposers createProposers(system, numProposers, acceptors)

val learners = createlLearners(system, numLearners, acceptors)
new PaxosConfiguration(proposers, learners, acceptors)

def createProposers(system: ActorSystem, numProposers: Int, acceptors: Seql[ActorRef]) = {
for (i <— @ until numProposers) yield {
system.actorOf(Props(ProposerClass, this, acceptors, i), name = s"Proposer—P$i'")

}
}

| Ive Demo

Alternative Consensus Protocols

* View-Stamped Replication
by Brian M. Oki and Barbara Liskov, 1989

o Raft
by Diego Ongaro and John K. Ousterhout, 2014

o lake Away

e Fault-Tolerant Consensus Protocols are a of modern
distributed systems and applications

e Consensus properties are uniformity, non-triviality, and irrevocability

 The key ideas of Lamport’s Paxos protocol are:
* Majority quorums (avoiding split brain and enabling fault-tolerance);
o [Wwo-phase structure (secure-then-commit);

* Dichotomy and cooperation between proposers and acceptors.

