
CS6213: Special Topics  
in Distributed Computing

Distributed Consensus



Consensus
• Common meaning:  

a way for a set of parties to come to a shared agreement. 

• In distributed computing: ensuring that among the values proposed by  
a collection of processes, a single one is chosen. 

• Uniformity: Only a single value is chosen  

• Non-triviality: Only a value that has been proposed may be chosen  

• Irrevocability: Once agreed on a value, the processes do not change 
their decision.



Why Consensus?



Why Distributed Consensus is difficult?

• Arbitrary message delays (asynchronous network) 

• Independent parties (nodes) can go offline (and also back online) 

• Network partitions 

• Message reorderings 

• Malicious (Byzantine) parties
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Reaching a Consensus

(and constructing a protocol for this)
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Reaching a Consensus on  
where to have a dinner
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Problem 1

A single acceptor can go offline or take forever to answer.
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Problem 2

Multiple acceptors might disagree on the outcomes: 
now they need to reach a consensus themselves.



Separation of Concerns

• Proposers: suggest a value (a restaurant to go); 

• Acceptors: support some proposal;  

• The proposer with a majority of acceptors supporting its 
proposal wins.  
 
Others learn the outcome by querying all the acceptors.
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Key Idea 1
Rely on majority quorums for agreement 

to prevent the “split brain” problem.

• Common meaning: Quorum is the minimum number of members to 
conduct the business on behalf of the entire group they represent; 

• In computing: quorum is a necessary number of processes to agree 
on the decision in the presence of potentially faulty ones.



Key Properties of Quorums
• Property 1: any two quorums must have non-empty intersection

n/2 + 1 n/2 + 1

• Property 2: no need for the global agreement: can tolerate some faults
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Problem

A quorum is difficult to obtain in a single interaction. 
 

As the result, such a system will often get stuck.
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Key Ideas 2 and 3
• Proceed in rounds:  

• A proposer first “secures” itself a quorum, willing to support its 
proposal (i.e., becomes a “leader”); 

• Only if a quorum is secured, it goes on to “propose” a value. 

• Introduce fixed globally known priorities between proposers  
to “break ties” when securing quorums. 

• Acceptors only “choose to support” proposers with higher priorities  
than they have already seen.



Some Terminology

• Rounds — Phases 
• Phase 1 — “prepare”, securing quorums to propose 
• Phase 2 — “accept”, sending values to accept 

• Fixed priorities — Ballots
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Problem 3

Because of asynchrony, low-priority Phase 2 can be 
interrupted by a high-priority Phase 1
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Problem 3

How to ensure irrevocability of consensus 
in the presence of priorities and asynchrony?



• Cooperation between Proposers and Acceptors:  
• Acceptors, when agreeing to support a proposer, must “tell” what was 

the highest-ballot value they have accepted; 
• Higher-ballot proposers re-propose already (partially) accepted values 

from the lower-ballot proposers, who secured the quorum before. 

• This way, a proposer “knows" that, once it secured its quorum, either 
• its own proposal, or some higher-ballot one will be accepted 
• if its proposal got accepted, it will not be revoked  

(thanks to quorum intersection)

Key Idea 4
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Two-Phase Ballot-based Consensus
• Proposers suggest values, acceptors decide upon acceptance; 

• Each proposal goes in two rounds:  
• Phase 1: securing a quorum of acceptors for a proposal 
• Phase 2: sending out the proposal 

• Acceptors agree only to support ballots higher than what they’ve seen;  

• They inform proposers of previously accepted values,  
which those then re-propose.



The Algorithm in a Nutshell
Proposer Acceptor

• Send my ballot b to all acceptors 

• Wait for response of at least n/2 + 1 acceptors

• Upon receiving a ballot b
• if it’s the first one, remember it and send “ok” back.
• if it’s higher than b′ we supported before, send 

back a previously accepted (b′, v′), and 
remember b as what’s currently supported.

• When heard back from n/2 + 1 acceptors, 
send them back (b, w), where 

• b is my ballot 
• w is the value from the acceptors with  

the highest ballot, or my own value.

• Accept incoming value w if it comes with a 
ballot b, which we currently support; 
ignore otherwise.

Phase 1

Phase 2



Learning an Accepted Value

• A dedicated learner sends request to all acceptors; 

• If at least n/2 + 1 acceptors respond back with the same 
value v, this is an accepted value. 

• Correctness of this reasoning follows from irrevocability.



Learning an Accepted Value

• And what if n/2 + 1 have the value, but one of them does 
not respond?

• In this case we need to introduce a time out (synchrony).

• A dedicated learner sends request to all acceptors; 

• If at least n/2 + 1 acceptors respond back with the same 
value v, this is an accepted value. 

• Correctness of this reasoning follows from irrevocability.



If we expect failures,

we should rely on time-outs.



Paxos

• A practical fault-tolerant distributed consensus algorithm; 

• Invented in 1990, published in 1998; 

• Nowadays used everywhere: Google (Bigtable, Chubby),  
IBM, Microsoft; 

• You have just seen it explained.



History of Paxos

Leslie Lamport  
(also known for LaTeX, Vector clocks, TLA)  

Turing Award winner 2014

1990: Paxos first described

1998: Paxos paper published

2005: First practical deployments

2010: Widespread use!

2014: Lamport gets Turing Award
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Recent archaeological discoveries on the island of 
Paxos reveal that the parliament functioned despite 
the peripatetic propensity of its part-time legislators.  

The legislators maintained consistent copies of the 
parliamentary record, despite their frequent forays 
from the chamber and the forgetfulness of their 
messengers.



History of Paxos
1990: Paxos first described

1998: Paxos paper published

2005: First practical deployments

2010: Widespread use!

2014: Lamport gets Turing Award

• The ABCDs of Paxos [2001] 
• Paxos Made Simple [2001]  
• Paxos Made Practical [2007]  
• Paxos Made Live [2007] 
• Paxos Made Moderately Complex [2011]  
• Paxos Consensus, Deconstructed and Abstracted [2018]

Leslie Lamport  
(also known for LaTeX, Vector clocks, TLA)  

Turing Award winner 2014



Multi-Paxos

• Presented in the original Lamport’s 1998 paper. 

• Uses the described idea for a sequence of “slots” (think transactions). 

• Includes reconfiguration (changing set of acceptors on the fly). 

• Naive implementation: run Simple Paxos for each slot. 

• Better approach — secure a quorum for several slots.



Running Paxos with Scala Actors
class PaxosConfiguration(val proposers: Seq[ActorRef],  
                         val learners:  Seq[ActorRef],         
                         val acceptors: Seq[ActorRef]) { ... }                              

def createPaxosInstance(system: ActorSystem, numProposers: Int, 
                        numAcceptors: Int, numLearners: Int): PaxosConfiguration = {       

  val acceptors = createAcceptors(system, numAcceptors) 
  val proposers = createProposers(system, numProposers, acceptors) 
  val learners = createLearners(system, numLearners, acceptors) 
    new PaxosConfiguration(proposers, learners, acceptors) 
}

  def createProposers(system: ActorSystem, numProposers: Int, acceptors: Seq[ActorRef]) = { 
    for (i <- 0 until numProposers) yield { 
      system.actorOf(Props(ProposerClass, this, acceptors, i), name = s"Proposer-P$i") 
    } 
  }



Live Demo



Alternative Consensus Protocols

• View-Stamped Replication  
by Brian M. Oki and Barbara Liskov, 1989 

• Raft  
by Diego Ongaro and John K. Ousterhout, 2014



• Fault-Tolerant Consensus Protocols are a critical component of modern 
distributed systems and applications 

• Consensus properties are uniformity, non-triviality, and irrevocability 

• The key ideas of Lamport’s Paxos protocol are: 
• Majority quorums (avoiding split brain and enabling fault-tolerance); 
• Two-phase structure (secure-then-commit); 
• Dichotomy and cooperation between proposers and acceptors.

To Take Away


