
28

Programming and Proving with Distributed Protocols

ILYA SERGEY, University College London, UK

JAMES R. WILCOX, University of Washington, USA

ZACHARY TATLOCK, University of Washington, USA

Distributed systems play a crucial role in modern infrastructure, but are notoriously difficult to implement

correctly. This difficulty arises from two main challenges: (a) correctly implementing core system components

(e.g., two-phase commit), so all their internal invariants hold, and (b) correctly composing standalone system

components into functioning trustworthy applications (e.g., persistent storage built on top of a two-phase

commit instance). Recent work has developed several approaches for addressing (a) by means of mechanically

verifying implementations of core distributed components, but no methodology exists to address (b) by

composing such verified components into larger verified applications. As a result, expensive verification

efforts for key system components are not easily reusable, which hinders further verification efforts.

In this paper, we present Disel, the first framework for implementation and compositional verification

of distributed systems and their clients, all within the mechanized, foundational context of the Coq proof

assistant. In Disel, users implement distributed systems using a domain specific language shallowly embedded

in Coq and providing both high-level programming constructs as well as low-level communication primitives.

Components of composite systems are specified in Disel as protocols, which capture system-specific logic

and disentangle system definitions from implementation details. By virtue of Disel’s dependent type system,

well-typed implementations always satisfy their protocols’ invariants and never go wrong, allowing users

to verify system implementations interactively using Disel’s Hoare-style program logic, which extends

state-of-the-art techniques for concurrency verification to the distributed setting. By virtue of the substitution

principle and frame rule provided by Disel’s logic, system components can be composed leading to modular,

reusable verified distributed systems.

We describe Disel, illustrate its use with a series of examples, outline its logic and metatheory, and report

on our experience using it as a framework for implementing, specifying, and verifying distributed systems.

CCS Concepts: • Theory of computation→ Logic and verification; • Software and its engineering→
Distributed programming languages;

Additional Key Words and Phrases: distributed systems, program logics, safety verification, dependent types

ACM Reference Format:

Ilya Sergey, James R. Wilcox, and Zachary Tatlock. 2018. Programming and Proving with Distributed Protocols.

Proc. ACM Program. Lang. 2, POPL, Article 28 (January 2018), 30 pages. https://doi.org/10.1145/3158116

1 INTRODUCTION

Real-world software systems, including distributed systems, are rarely built as standalone, mono-

lithic pieces of code. Rather, they are composed of multiple independent modules, which are

connected either by the linker or through communication channels. Such a compositional approach

enables clean separation of concerns and a modular development process: in order to use one

Authors’ addresses: Ilya Sergey, University College London, UK, i.sergey@ucl.ac.uk; James R. Wilcox, University of

Washington, USA, jrw12@cs.washington.edu; Zachary Tatlock, University of Washington, USA, ztatlock@cs.washington.

edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2018 Copyright held by the owner/author(s).

2475-1421/2018/1-ART28

https://doi.org/10.1145/3158116

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 28. Publication date: January 2018.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3158116
https://doi.org/10.1145/3158116

28:2 Ilya Sergey, James R. Wilcox, and Zachary Tatlock

component within a larger system, one only needs to know what it does without requiring details
on how it works. Unfortunately, the benefits of modular software development are not yet fully
realized in the context of verified distributed systems.

Recent work has produced several impressive formal proofs of correctness for implementations
of core distributed system components, ranging from consensus protocols to causally consistent
key-value stores [Hawblitzel et al. 2015; Lesani et al. 2016; Newcombe et al. 2015; Woos et al.
2016]. These artifacts, while formally verified, are not immediately reusable in the context of
larger verified applications. For example, to compose a linearizable database with a causally
consistent cache [Ahamad et al. 1995], one would need a framework general enough to express
both specifications and reason about their interaction, possibly in the presence of application-
specific constraints. Furthermore, existing verified systems entangle implementation details with
abstract protocol definitions, preventing independent evolution and requiring extensive refactoring
when changes are made [Woos et al. 2016].

Finally, like all software, real-world systems exist in an open world, and should be usable in
multiple contexts by various clients, each of which may make different assumptions.

1.1 Towards Modular Distributed System Verification

Recent advances in the area of formal machine-assisted program verification demonstrated that
composition, obtained by means of expressive specifications and rich semantics, is the key to
producing scalable, robust and reusable software artifacts in correctness-critical domains, such
as compilers [Kumar et al. 2014; Stewart et al. 2015], operating systems [Gu et al. 2015; Klein
et al. 2010] and concurrent libraries [Gu et al. 2016; Sergey et al. 2015]. Following this trend, we
identify the following challenges in designing a verification tool to support compositional proofs
of distributed systems.

(1) Protocol-program modularity. One should be able to define an abstract model of a dis-
tributed protocol (typically represented by a form of a state-transition system) without tying it
to a specific implementation. Any purported implementation should then be proven to follow
the protocol’s abstract model. This separation of concerns supports reuse of existing tech-
niques for reasoning about the high-level behavior of a system, while allowing for optimized
implementations, without redefining the high-level interaction protocol.

(2) Modular program verification. Once proven to implement an abstract protocol, a program
should be given a sufficiently expressive declarative specification, so that clients of the code never
need to be examine the implementation itself. Furthermore, it should be possible to specify and
verify programs made up of parts belonging to different protocols (horizontal compositionality).
This enables decomposing a distributed application into independently specified and proved
parts, making verification scale to large codebases.

(3) Modular proofs about distributed protocols. A single protocol may be useful to multiple
different client applications, each of which may exercise the protocol in different ways. For
instance, a “core” consensus protocol implementation can be employed both for leader election
as well as for a replicated data storage. In this case, the invariants of the core protocol should be
proved once and for all and then reused to establish properties of composite protocols. These
composite protocols often require elaborating the core invariants with client-specific assump-
tions, but it would be unacceptable to re-verify all existing code under new assumptions for
each different use of the core protocol. Instead, clients should be able to prove their elaborated
invariants themselves by reasoning about the core protocol after the fact. This also ensures any
existing program that follows the protocol is guaranteed to also satisfy the client’s new invariant.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 28. Publication date: January 2018.

Programming and Proving with Distributed Protocols 28:3

This decomposition between core protocols and elaborated client invariants reduces and paral-
lelizes the proof engineering effort: the core system implementor verifies basic properties of the
protocol and correctness of the implementation, while the system’s client proves the validity of
their context-specific invariants.

This paper presents Disel, a mechanized framework for verification and implementation of dis-
tributed systems that aims to address these challenges.

1.2 What is Disel?

Disel is a verification framework incorporating ideas from dependent type theory, interactive theo-
rem proving, separation-style program logics for concurrency, resource reasoning, and distributed
protocol design.

From the perspective of a distributed protocol designer, Disel is a domain-specific language for
defining a protocol 𝒫 in terms of its state-space invariants and atomic primitives (e.g., send and
receive). These primitives implement specific transitions which synchronize message-passing with
changes to the local state of a node. Described this way, the protocols are immediately amenable
to machine-assisted verification of their safety and temporal properties [Rahli et al. 2015; Wilcox
et al. 2015], and Disel facilitates these proofs by providing a number of higher-order lemmas and
libraries of auxiliary facts.

From the point of view of a system implementor, Disel is a higher-order programming language,
featuring a complete toolset of programming abstractions, such as first-class functions, algebraic
datatypes, and pattern matching, as well as low-level primitives for message-passing distributed
communication. Disel’s dependent type system makes programs protocol-aware and ensures that
well-typed programs don’t go wrong; that is, if a program 𝑐 type-checks in the context of one or
many protocols 𝒫1, . . . ,𝒫𝑛 (i.e., informally, 𝒫1, . . . ,𝒫𝑛 ⊢ 𝑐), then it correctly exercises and
combines transitions of 𝒫1, . . . ,𝒫𝑛.

Finally, for a human verifier, Disel is an expressive higher-order separation-style program
logic1 that allows programs to be assigned declarative Hoare-style specifications, which can be
subsequently verified in an interactive proof mode. Specifically, one can check that, in the context
of protocols 𝒫1, . . . ,𝒫𝑛, a program 𝑐 satisfies pre/postconditions 𝑃 and 𝑄, where 𝑃 constrains
the pre-state 𝑠 of the system, and 𝑄 constrains the result res and the post-state 𝑠′. The established
pre-/postconditions can be then used for verifying larger client programs that use 𝑐 as a subroutine.
Disel takes a partial correctness interpretation of Hoare-style specifications, thus focusing on
verification of safety properties and leaving reasoning about liveness properties for future work.

We implemented Disel on top of the Coq proof assistant, making use of Coq’s dependent types
and higher-order programming features. In the tradition of Hoare Type Theory (HTT) by Nanevski
et al. [2006, 2008, 2010] and its recent versions for concurrency [Ley-Wild and Nanevski 2013;
Nanevski et al. 2014], we give the semantics to effectful primitives, such as send/receive, with
respect to a specific abstract protocol (or protocols). Thus, we address challenge (1) by ensuring
that any well-typed program is correct (i.e., respects its protocols) by construction, independently
of which and how many of the imposed protocols’ transitions are taken and of any imperative
state the program might use. This type-based verification method for distributed systems, which
was motivated by a recent vision paper by Wilcox et al. [2017], is different from more traditional
techniques for establishing refinement [Abadi and Lamport 1988; Hawblitzel et al. 2015] between
an actual implementation (the code) and a specification (an abstract protocol) via a simulation
argument [Lynch and Vaandrager 1995]. In comparison with the refinement-based techniques, the
type-based verification method makes it easy to account for horizontal composition of protocols

1The framework name stands for Distributed Separation Logic.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 28. Publication date: January 2018.

28:4 Ilya Sergey, James R. Wilcox, and Zachary Tatlock

(necessary, e.g., for reasoning about remote procedure calls, as we will show in Section 2) and
accommodate advanced programming features, such as higher-order functions.

As a program logic, Disel draws on ideas from separation-style logics for shared-memory
concurrency [Nanevski et al. 2014; Turon et al. 2014], allowing one to instrument programs with
pre/postconditions and providing a form of the frame rule [Reynolds 2002] with respect to protocols.
For example, assuming that the state-spaces of𝒫1 and𝒫2 are disjoint,𝒫1 ⊢ 𝑐1 and𝒫2 ⊢ 𝑐2 together
with the frame rule imply 𝒫1,𝒫2 ⊢ 𝐶[𝑐1, 𝑐2] for any well-formed program context 𝐶 . This ensures
that the composite program 𝐶[𝑐1, 𝑐2] can “span” multiple protocols, thus addressing challenge (2).
The assumption of protocol state-spaces being disjoint might seem overly restrictive, but, in fact, it
reflects the existing programming practices. For instance, the local state of a node responsible for
tracking access permissions is typically different from the state used to store persistent data.

Disel further alleviates the issue of disjoint state and also addresses challenge (3) with two
novel logical mechanisms, described in detail in Section 3. The first one supports the possibility
of elaborating protocol invariants via an inference rule, WithInv, allowing one to strengthen
the assumptions about a system’s state, resulting in the strengthened guarantees, as long as
these assumptions form an inductive invariant. Second, Disel supports “coupling” protocols via
inter-protocol behavioral dependencies, which allow one protocol restricted logical access to state
in another protocol, all while preserving the benefits of disjointness, including the frame rule.
Dependencies are specified with the novel logical mechanism of inter-protocol send-hooks, allowing
one to restrict interaction between a core protocol and its clients by placing additional preconditions
on certain message sends. For example, a send-hook could disallow certain transitions of the client
protocol unless a particular condition holds for the local state associated with the core protocol.
These additional preconditions do not require re-verifying any core components.

While we do not explicitly model node failures, by focusing on establishing safety properties,
Disel allows one to reason about systems where some of the nodes can experience non-Byzantine
failures (i.e., stop replying to messages). From the perspective of other participants in such systems,
a failed node will be, thus, indistinguishable from a node that just takes “too long” to respond.
As customary in reasoning about partial program correctness, this behavior will not violate the
established notion of safety, which is termination-insensitive.

To summarize, this paper makes the following contributions:

∙ Disel, a domain-specific language and the first separation-style program logic for the imple-
mentation and compositional verification of message-passing distributed applications for full
functional correctness, supporting effectful higher-order functional programming style, as well
as custom distributed protocols and their combinations;

∙ Two conceptually novel logical mechanisms allowing reuse of Hoare-style and inductive invari-
ant proofs while reasoning about distributed protocols: (a) the WithInv rule enabling elaboration
of the protocol invariant in program specifications, and (b) send-hooks, providing a way to
modularly verify programs operating in a restricted product of multiple protocols.

∙ A proof-of-concept implementation of Disel as a foundational (i.e., proven sound from first
principles [Appel 2001]) verification tool, built on top of Coq, as well as mechanized soundness
proofs of Disel’s logical rules with respect to a denotational semantics of message-passing
distributed programs;

∙ An extraction mechanism into OCaml and a trusted shim implementation, allowing one to run
programs written in Disel on multiple physical nodes;

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 28. Publication date: January 2018.

Programming and Proving with Distributed Protocols 28:5

∙ A series of case studies implemented and verified in Disel (including the Two-Phase Commit
protocol [Weikum and Vossen 2002] and its client application), as well as a report on our
experience of using Disel and a discussion on the executable code.

The implementation of Disel, including its mechanized metatheory and proofs of all examples
from this paper, is available online: https://github.com/DistributedComponents/disel.

2 OVERVIEW

In this section we illustrate the Disel methodology for specifying, implementing, and verifying
distributed systems by developing a simple distributed calculator. Disel systems are composed of
concurrently running nodes communicating asynchronously by exchanging messages, which, as in
real networks, can be reordered and dropped.

C1

C2

S

(R
eq

, args
1)

(R
eq

, a
rg

s 2
)

(Req, args
3)

(R
es
p,

 f
 (a

rg
s1)

, a
rg

s1)

(Resp, f (args
2), args

2)

(R
es
p,

 f
 (a

rg
s3

),
ar

gs
3
)

Fig. 1. A communication scenario between a server

and two client nodes in a distributed calculator.

In the calculator system, each node 𝑛 is ei-
ther a client (written 𝑛 ∈ 𝐶) or a server (𝑛 ∈ 𝑆),
and the system is parameterized over some
expensive partial function 𝑓 with domain
dom(𝑓). Given arguments args ∈ dom(𝑓), a
client can send a request containing args to
a server, which will reply with 𝑓(args). Fig. 1
depicts an example execution for the calculator
system with one server 𝑆 and two clients, 𝐶1

and 𝐶2. Note that requests and responses may
not be received in the order they are sent due
to network reordering, and the server may ser-
vice requests in any order (e.g., due to implementation details such as differing priorities among
requests). However, the system should satisfy weak causality constraints, e.g., a client 𝐶 should
only receive a response 𝑓(args) if 𝐶 had previously made a request for args . In the remainder of
this section we show how Disel enables developers to specify the calculator protocol, implement
several versions of server and client nodes that follow the protocol, and prove key invariants of the
system.

2.1 Defining a Calculator Protocol

A protocol in Disel provides a high-level specification of the interface between distributed system
components. As with traditional program specifications, Disel protocols serve to separate concerns:
implementations can refine details not specified by the protocol (e.g., the order in which to respond
to client requests), invariants of the protocol can be proven separately (e.g., showing that calculator
responses contain correct answers), and interactions between components within a larger system
can be reasoned about in terms of their protocols rather than their implementations. Following the
tradition established by Lamport [1978], Disel protocols are defined as state-transition systems.

Fig. 2 depicts the state-transition system for the calculator example with two send-transitions
and two receive-transition. Each transition is named in the first column: 𝑠-transitions are for
sending and 𝑟-ones for receiving. Their pre- and postconditions (in the form of requires/ensures
pairs) are given as assertions in the second and third columns respectively. These assertions are
phrased in terms of the message being sent/received, recipient/sender (to/from), and the protocol-
specific state of a node 𝑛. For the calculator, the state for node 𝑛 is a multiset of outstanding
requests rs , denoted as 𝑛 rs .

Protocol transitions synchronize the exchange of messages with changes in a node’s state.
Preconditions in send-transitions specify requirements that must be satisfied by the local state of

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 28. Publication date: January 2018.

https://github.com/DistributedComponents/disel

28:6 Ilya Sergey, James R. Wilcox, and Zachary Tatlock

Send-transitions

𝜏𝑠 Requires (𝑚, to) Ensures

sreq 𝑛 ∈ 𝐶 ∧ to ∈ 𝑆 ∧ 𝑛 rs ∧𝑚 = (Req, args) ∧ args ∈ dom(𝑓) 𝑛 (to, args) ⊎ rs

sresp 𝑛 ∈ 𝑆 ∧ 𝑓(args) = 𝑣 ∧ 𝑛 (to, args) ⊎ rs ∧𝑚 = (Resp, 𝑣, args) 𝑛 rs

Receive-transitions

𝜏𝑟 Requires (𝑚, from) Ensures

rreq 𝑛 ∈ 𝑆 && 𝑛 rs && 𝑚 = (Req, args) 𝑛 (from, args) ⊎ rs

rresp 𝑛 ∈ 𝐶 && 𝑛 (from, args) ⊎ rs && 𝑚 = (Resp, ans, args) 𝑛 rs

Fig. 2. Send- and receive-transitions of the distributed calculator protocol with respect to a node 𝑛.

node 𝑛 for it to send message 𝑚 to recipient to and postconditions specify how 𝑛’s state must
be updated afterward. For example, the sreq transition can be taken by a client node 𝑛 ∈ 𝐶
to send a request message (Req, args) to server to where args ∈ dom(𝑓) and, after sending, 𝑛
has added (to, args) to its state. Preconditions in receive-transitions specify requirements that
must be satisfied by the local state of node 𝑛 for it to receive message 𝑚 from sender from and
postconditions specify how 𝑛’s state must be updated. For example, the rreq transition can be
taken by a server node 𝑛 to receive a request message (Req, args) from node from where, after
receiving, 𝑛 has added (from, args) to its state.

Notice that preconditions in send-transition can be arbitrary predicates, while the precondition
of receive-transitions must be decidable (which we emphasize by using boolean conjunction &&
instead of propositional ∧). This is because a program’s decision to send a message is active and
corresponds to calling the low-level send primitive (described later in this section); the system
implementer must prove such preconditions to use the transition. In contrast, receiving messages
is passive and corresponds to using the low-level recv primitive (also described later in this section)
that will react to any valid message. A message 𝑚 sent to node 𝑛 should trigger the corresponding
receive transition only if 𝑛’s state along with the message satisfies the transition’s precondition.
To choose such a transition unambiguously, we require that each message’s tag (e.g., Req and
Resp) uniquely identifies a receive-transition that should be run. Combined with the decidability
of receive-transition preconditions, this allows Disel systems to automatically decide whether a
transition can be executed.

As defined, the calculator protocol prohibits several unwelcome behaviors. For instance, a server
cannot send a response without a client first requesting it, since (a) servers only send messages via
the sresp transition, (b) sresp requires (to, args) to be in the multiset of outstanding requests at
the server, and (c) (to, args) can only be added to the set of outstanding requests once it has been
received from a client. Also note that the precondition of sreq requires that when a client sends
a request to a server to compute 𝑓(args), args ∈ dom(𝑓). Similarly, the precondition of sresp
requires that when a server responds to a client request for args , it may only send the correct
result 𝑓(args). In this case, the initial arguments args are included into the response in order make
it possible for the client to distinguish between responses to multiple outstanding requests.

The protocol also leaves several details up to the implementation. For example, the sresp tran-
sition allows a server to respond to any outstanding request, not necessarily the least recently
received. This flexibility allows for diverse implementation strategies and enables the implemen-
tation ℐ of a component to evolve without requiring updates to other components which only
assume that ℐ satisfies its protocol.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 28. Publication date: January 2018.

Programming and Proving with Distributed Protocols 28:7

This state-space and transitions define the calculator protocol 𝒞. Protocols are basic specification
units in Disel, and, as we will soon see, a single program can “span” multiple protocols. Thus, we
will annotate each protocol instance with a unique label ℓ𝑖 (e.g., 𝒞ℓ1 , 𝒞ℓ2).

2.2 From Protocols to Programs

The transitions in Fig. 2 define functions mapping a state, message, and node id to a new state.
We can use these functions as basic elements in building implementations of distributed system
components, but first we need to “tie” them to realistic low-level message sending/receiving
primitives. We can then combine these basic elements, via high-level programming constructs, into
executable programs.

In Disel a programmer can define a new programming primitive based on a send- or receive
transition using a library of transition wrappers, that decorate send/receive primitives with transi-
tions of protocols at hand. The generic send[𝜏𝑠, ℓ] wrapper from this library takes a send-transition
𝜏𝑠 of a protocol identified by a label ℓ and yields a program that sends a message. For instance,
from the description in Fig. 2 and Disel’s logic (discussed in Section 3), we can assign the following
Hoare type (specification) to a “wrapped” transition sresp run by server 𝑛 in the context of the
protocol 𝒞ℓ:

𝒞ℓ
𝑛

⊢ send[sresp, ℓ](𝑚, to) :

{︂

𝑛 ∈ 𝑆 ∧ 𝑛 ((to, args) ⊎ rs)
∧𝑚 = (Resp, 𝑓(args), args)

}︂

{︀

𝑛 rs ∧ res = 𝑚
}︀

(1)

The assertions in the pre/postconditions of the type (1) quantify implicitly over the entire global
distributed state 𝑠 (including previously sent messages), although the calculator protocol only
constrains 𝑛’s local contents in 𝑠, which are referred using the “node 𝑛’s local state points-to”
assertion of the form 𝑛 −. In particular, the specification ensures that the outstanding request
(to, args) is removed from the local state of a node 𝑛 upon sending a message. As customary in
Hoare logic, all unbound variables (e.g., rs , args) are universally-quantified and their scope spans
both the pre- and post-condition. The return value res, occurring freely in the postcondition of a
wrapped send-transition, is the message sent. In most of the cases, we will omit the type of res for
the sake of brevity.

Disel’s type system ensures Hoare-style pre/postconditions in types are stable, i.e., invariant
under possible concurrent transitions of nodes other than 𝑛. Stability often requires manual proving,
but is indeed the case in the triple (1), as its pres/posts constrain only local state of the node 𝑛,
which cannot be changed by other nodes. In general, Hoare triples in Disel can refer to state of
other nodes as well, as we will demonstrate in Section 4.

Using a wrapper recv for tying a receive-transition to a non-blocking receive command is slightly
more subtle. In general, we cannot predict which messages from which protocols a node 𝑛 may
receive at any particular point during its execution. To address this, receive wrapper recv[𝑇, 𝐿]
specifies a set 𝑇 of message tags and a set 𝐿 of protocol labels; and only accept messages whose
tag is in 𝑇 for a protocol whose label is in 𝐿.2 The resulting primitive provides non-blocking
receive: if there are no messages matching the criteria, it returns None and acts as an idle transition.
Otherwise, it returns Some (from,𝑚) for a matching incoming message 𝑚 from sender from ,
chosen non-deterministically from those available. For example, we can assign the following Hoare
type to a wrapper, associated with the tag Req of 𝒞ℓ:

2Our implementation also allows “filtering” messages to be received with respect to their content.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 28. Publication date: January 2018.

28:8 Ilya Sergey, James R. Wilcox, and Zachary Tatlock

𝒞ℓ
𝑛

⊢ recv[{Req} , {ℓ}] :
{︀

𝑛 ∈ 𝑆 ∧ 𝑛 rs
}︀

⎧

⎪

⎪

⎨

⎪

⎪

⎩

if res = Some (from, (Req, args))
then 𝑛 ((from, args) ⊎ rs) ∧

⟨from, 𝑛, ∙, (Req, args)⟩ ∈ MS ℓ

else 𝑛 rs

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(2)

The postcondition of the type (2) demonstrates an important feature of Disel’s Hoare-style specs:
in the case of a received message, it existentially binds its components (i.e., from , args) in then-
branch, and also identifies the message ⟨from, 𝑛, ∙, (Req, args)⟩ in the message soupMS ℓ (which
models both the current state and history of the network) of the post-state 𝑠′ wrt. the protocol 𝒞ℓ.
Messages in Disel’s model (described in detail in Section 3.1) are never “thrown away”; instead they
are added to the soup, where they remain active (∘) until received, at which points they become
consumed (∙).3

We can now employ the program (2) to write a blocking receive for request messages via Disel’s
built-in general recursion combinator letrec (explained in Section 3), assigning this procedure the
following specification:

𝒞ℓ
𝑛

⊢ letrec receive_req (_ : unit) ,
𝑟 ← recv[{Req} , {ℓ}];
if res = Some (from,𝑚)
then return (from,𝑚)

else receive_req () : ∀𝑢 : unit.
{︀

𝑛 ∈ 𝑆 ∧ 𝑛 rs
}︀

{︂

𝑛 ((res.1, res.2) ⊎ rs) ∧
⟨res.1, 𝑛, ∙, (Req, res.2)⟩ ∈ MS ℓ

}︂

(3)

The Hoare type of receive_req describes it as a function, which takes an argument of type unit
and is safe to run in a state, satisfied by its precondition. The pre/postconditions of receive_req
are derived from the type (2) by application of a typing (inference) rule for fixpoint combinator,
with an assistance of a human prover and according to the inference rules of Disel, described in
Section 3.2. Internally, receive_req corresponds to an execution of possibly several idle transitions,
followed by one receive-transition. That is, when invoked, it still follows 𝒞ℓ’s transitions: otherwise
we simply could not have assigned a type to it at all! In other words, a body of receive_req is merely
a combination of more primitive sub-programs (namely, the “wrapped” non-blocking receive (2))
that are proven to be protocol-compliant.

2.3 Elaborating State-Space Invariants of a Protocol

1 letrec simple_server (_ : unit) ,

2 (from, args)← receive_req ();
3 let 𝑣 = 𝑓(args) in
4 send[sresp, ℓ]((Resp, 𝑣, args), from);
5 simple_server ()
6 in simple_server ()

Let us now use receive_req to implement our first use-
ful component of the system: a simple server, which
runs an infinite loop, responding to one request each
iteration (on the right). In trying to assign a type to
this program in the context of 𝒞ℓ for a node 𝑛 ∈ 𝑆,
we encounter a problem at line 3. Since 𝑓 is partially-
defined, Disel will emit a verification condition (VC),
requiring us to prove that 𝑓 is defined at args . Unfortunately, the postcondition in the spec (3) of
receive_req does not allow us to prove the triple: we can only conclude that a message from the
soup is consumed, but not that its contents are well-formed, i.e., that args ∈ dom(𝑓). The issue is
caused by the lack of constraints, imposed by the protocol 𝒞ℓ on the system state 𝑠, specifically,
on the messages in its soup, which we refer to as 𝑠#MS ℓ. The necessary requirement for this

3This design choice with respect to message representation is common in state-of-the-art frameworks for distributed
systems verification, e.g., IronFleet [Hawblitzel et al. 2015] and Ivy [Padon et al. 2016], as it simplifies reasoning about past
events.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 28. Publication date: January 2018.

Programming and Proving with Distributed Protocols 28:9

letrec receive_batch (𝑘 : nat) ,
if 𝑘 = 𝑘′ + 1
then fargs ← receive_req ();

rest ← receive_batch 𝑘′;

return fargs :: rest
else return []

letrec send_batch (rs : [(Node, [nat])]) ,
if rs = (from, args) :: rs′

then let 𝑣 = 𝑓(args) in
send[sresp, ℓ]((Resp, 𝑣, args), from);
send_batch rs′

else return ()

letrec batch_server (bsize : 𝑛𝑎𝑡) ,
reqs ← receive_batch bsize;
send_batch reqs;
batch_server bsize

letrec memo_server (mmap : map) ,
(from, args)← receive_req ();

let ans = lookup mmap args in

if ans ̸= ⊥
then

send[sresp, ℓ]((Resp, ans, args), from);
memo_server mmap

else

let ans = 𝑓(args) in
send[sresp, ℓ](𝑚, (Resp, ans, args));
let mmap′ = updatemmap args ans in

memo_server mmap′

(a) (b)

Fig. 3. Batching (a) and memoizing (b) calculator servers defined on top of the protocol 𝒞′ℓ.

example, however, could be derived from the following property of a state 𝑠:

Inv1(𝑠) , ∀m ∈ 𝑠#MS ℓ, m = ⟨from, to,−, (Req, args)⟩ =⇒ args ∈ dom(𝑓) (4)

The good news is that the property Inv1 is an inductive invariant with respect to the transitions
of 𝒞ℓ: if it holds at some initial state 𝑠0, then it holds for any state 𝑠 reachable from 𝑠0 via 𝒞ℓ’s
transitions. Better yet, since every well-typed program in Disel is composed of protocol transitions,
it will automatically preserve the inductive invariant and can be given the same pre/postconditions,
as long as the pre-state satisfies the invariant.

To account for this possibility of invariant elaboration, Disel provides a protocol combinator

WithInv that takes a protocol 𝒫 and a state invariant 𝐼 , proven to be inductive wrt. 𝒫 , and returns a
new protocol 𝒫 ′, whose state-space definition is strengthened with 𝐼 . That is, the pre/postcondition
of every transition can be strengthened with 𝐼 “for free” once 𝐼 is shown to be an inductive invariant.
Therefore, taking 𝒞′ℓ , WithInv(𝒞ℓ, Inv1), we can reuse all of simple_server’s subprograms in
the new context 𝒞′ℓ. The postcondition on line 3, in conjunction with Inv1 holding over any
intermediate states ensures that 𝑓 is defined at args , allowing us to complete the verification
of our looping server implementation, assigning it the following type (with the standard False

postcondition due to non-termination):

𝒞′ℓ
𝑛

⊢ simple_server () :
{︀

𝑛 ∈ 𝑆 ∧ 𝑛 rs
}︀

{False} (5)

Having a server loop assigned a specification (5) ensures that it faithfully follows the protocol’s
transitions and does not terminate.

2.4 More Implementations for Cheap

With the elaborated protocol 𝒞′ℓ, we can now develop and verify a variety of system components,
reusing the previously developed libraries and enjoying the compositionality of specs, afforded by
Hoare types quantifying over a distributed state and sent/received messages. It is still up to the
programmer to verify those implementations in a Hoare style, but writing them does not require
changing the protocol, only composing the verified subroutines.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 28. Publication date: January 2018.

28:10 Ilya Sergey, James R. Wilcox, and Zachary Tatlock

Alternative servers. Fig. 3 presents two alternative looping server implementations. The first
one processes requests in batches of a predefined size bsize . This batching may cause batch_server
to loop for an unbounded period, until bsize requests have been received, but this is perfectly
safe. Once this is done, the batch is passed to the second subroutine, send_batch, which deliv-
ers the results. Finally, the server loop restarts. Another, more efficient server implementation
memo_server uses memoization, implemented by means of store-passing style, in order to avoid
repeating computations. It first checks whether the answer for a requested argument list is available
in the memoization table mmap, and, if so, sends it back to the client. Otherwise, it computes
the answer and stores it in the local state, which is then passed to the next recursive call. Both
implementations, when invoked with a suitable initial argument (batch size and an empty map,
correspondingly), type-check against the same Hoare type as the simple server (5) and are verified
directly from the specifications of their components in the context of 𝒞′ℓ.

1 letrec compute (args, serv) ,

2 send[sreq , ℓ]((Req, args), serv);
3 𝑣 ← receive_resp ();

4 return 𝑣

Implementing a calculator client. Let us now build and
verify a simple client-side procedure that requests a com-
putation and obtains the result. It can be implemented
as shown on the right. The program compute sends a
request to a server serv and then runs a blocking pro-
cedure receive_resp for a message with the Resp tag, implemented similarly to receive_req, and
having, when invoked as a function, the following specification, stating that res is the received
response:

𝒞′ℓ
𝑛

⊢ receive_resp () :
{︀

𝑛 ∈ 𝐶 ∧ 𝑛 {(serv , args)}
}︀

{︀

⟨serv , 𝑛, ∙, (Resp, res, args)⟩ ∈ MS ℓ ∧ 𝑛 ∅
}︀ (6)

Unfortunately, this type is not helpful to prove the desired spec of compute, stating that its result
is equal to 𝑓(args): this dependency is not captured in (6)’s postcondition. In order to deliver a
stronger postcondition of receive_resp, we need to elaborate the protocol’s state-space assumption
even further, proving the following invariant Inv2 inductive:

Inv2(𝑠) , ∀m ∈ 𝑠#MS ℓ, m = ⟨𝑛1, 𝑛2,−, (Resp, ans, args)⟩ =⇒ 𝑓(args) = ans (7)

What is left is to verify the implementation of receive_resp in the context of
𝒞′′ℓ , WithInv(𝒞′ℓ, Inv2). The property Inv2 ensures that any answer carried by a Resp-message
is correct wrt. the corresponding arguments. Since the client has only one outstanding request
at the moment it calls receive_resp, it will only accept a message with an answer to that request.
Thus, we can prove the following spec for the RPC compute:

𝒞′′ℓ
𝑛

⊢ compute (args, serv) :
{︀

𝑛 ∈ 𝐶 ∧ 𝑛 ∅ ∧ serv ∈ 𝑆 ∧ args ∈ dom(𝑓)
}︀

{︀

res = 𝑓(args) ∧ 𝑛 ∅
}︀ (8)

letrec deleg_server (𝑛′ : Node) ,

(from, args)← receive_reqℓ1 ();

ans ← computeℓ2 (args, 𝑛
′);

send[sresp, ℓ1]((Resp, ans, args), from);
deleg_server 𝑛′

Server as a client. So far, we have only considered
programs that operate in the context of a single proto-
col. However, it is common for realistic applications
to participate in several systems. Disel accounts for
such a possibility by providing an injection/protocol
framing mechanism, inspired by the FCSL program
logic by Nanevski et al. [2014], and allowing one to type-check a program in the context of several
protocols with disjoint state-spaces. The disjointness of those does not mean the disjointness of
the node sets: one node can be a part of several protocols, in which case its local state is divided
among them. As an example, let us implement yet another calculator server, this time using an
ℓ1-labelled protocol run by a node 𝑛, which, instead of calculating directly, delegates to a server 𝑛′

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 28. Publication date: January 2018.

Programming and Proving with Distributed Protocols 28:11

memo_server

batch_server

simple_server

of 𝒞′′ℓ

𝒞′ℓ

𝒞ℓ

recv[{Req}, {ℓ}]

deleg_server
compute

recv[{Resp}, {ℓ}]

p
r

o
t

o
c

o
l

 e
l

a
b

o
r

a
t

io
n

receive_req

receive_resp

send[sreq, ℓ]send[sresp, ℓ]

Fig. 4. Components of the calculator system.

n1

n2

n3

𝒞′′ℓ1

𝒞′′ℓ2

n1 ↦ []

n2 ↦ []

n2 ↦ []

 

n3 ↦ []

initial state nodes running programs

R
eq

R
eq

compute (args, n2)

memo_server ({ })

R
es
p

R
es
p

deleg_server (n3)

p
r

o
t

o
c

o
l

s

Fig. 5. Initial state and execution with three nodes.

in another protocol (labelled with ℓ2, which we use to annotate the corresponding call to compute

to emphasize the protocol it “belongs to”), in which 𝑛 is a client. The code of deleg_server is
almost identical to the code of simple_server and it has the following type in the context of two
independent protocols, 𝒞′′ℓ1 and 𝒞′′ℓ2 :

𝒞′′ℓ1 , 𝒞
′′

ℓ2

𝑛

⊢ deleg_server (𝑛′) :
{︀

(𝑛 ∈ 𝑆ℓ1
∧ 𝑛

ℓ1 rs) * (𝑛 ∈ 𝐶ℓ2
∧ 𝑛′ ∈ 𝑆ℓ2

∧ 𝑛
ℓ2 ∅)

}︀

{False} (9)

In the precondition, the assertions about the nodes’ roles and local state are elaborated for specific
constituent protocols, labeled with ℓ1 and ℓ2, correspondingly. Furthermore, we use the separating
conjunction * in order to emphasize the disjointness of the protocol-specific local states, used to
handle outstanding requests within two different protocols. As a server, 𝑛 can have an arbitrary
number of “outstanding responses” rs in its local state (hence 𝑛 ℓ1 rs), but should start with an
empty set of its own outstanding requests, thus 𝑛 ℓ2 ∅.

Summary of the Disel methodology. Our entire development of the calculator-aware applications
(e.g., servers and clients) is outlined in Fig. 4. This is a general layout of structuring the development
of applications in Disel. In the figure, the top-down direction corresponds to elaborating the
protocol invariants (so the specs of programs verified there can be directly reused further down),
and the arrows denote dependencies between components.

2.5 Putting It All Together

Disel programs can be extracted into OCaml code, linked with a trusted shim, and run. In order
to do so, one needs to assign each participant node a program to run (some nodes might have
no programs assigned) and provide an initial distributed configuration that instantiates the local
state for each participant in each protocol and satisfies all imposed state-space invariants (e.g., (4)
and (7)). The semantics of Hoare types in Disel, defined in Section 3.3, specifies what does it mean
for a program to be type-safe (i.e., correct) in a distributed setting: postconditions (even those
constraining the global state) of well-typed programs are not affected by execution of programs
running concurrently on other nodes, and such programs are always safe to run when their
precondition is stable and satisfied.

As an illustration of one possible finalized protocol/program composition, Fig. 5 depicts the three
calculator-based programs, described earlier, running concurrently by three different nodes, 𝑛1,
𝑛2, and 𝑛3, such that 𝑛1 and 𝑛2 communicate according to the protocol 𝒞′′ℓ1 , and 𝑛2 and 𝑛3 follow
the protocol 𝒞′′ℓ2 . Solid arrows between nodes denote message exchange, with the time going from
left to right. The initial local states for all the nodes/protocols are instantiated with empty lists of
requests. Importantly, the code run by the nodes 𝑛1 and 𝑛3 has been verified separately, in simpler,
smaller contexts, and only the implementation of 𝑛2’s program deleg_server has been done in the
composite context of two protocols. Our accompanying Coq development provides the complete

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 28. Publication date: January 2018.

28:12 Ilya Sergey, James R. Wilcox, and Zachary Tatlock

State-space components World components

Node, Loc,Mid , N

Lab,Tag , N

𝑙 ∈ LocState , Loc
fin
⇀ Val

DistLocState , Node
fin
⇀ LocState

MS ∈ MessageSoup , Mid
fin
⇀ Msg

m ∈ Msg , Node × Node × {∘, ∙} × MBody

𝑚 ∈ MBody , Tag × N
*

𝑑 ∈ Statelet , MessageSoup × DistLocState

𝑠 ∈ State , Lab
fin
⇀ Statelet

coh ∈ Coh , Statelet→ Prop

𝜏s ∈ 𝑇s , Tag × Pres × Step
s

𝜏r ∈ 𝑇r , Tag × Prer × Step
r

Pres , Node× Node×MBody × Statelet→ Prop

Step
s

, Node×MBody × LocState ⇀ LocState

Prer , Msg × LocState→ bool

Step
r

, Msg × LocState→ LocState

𝒫 ∈ Protocol , Coh× 𝑇*

s
× 𝑇*

r

ℎ ∈ hook , LocState×LocState×MBody×Node→Prop

𝐻 ∈ Hooks , HkId× Lab× Lab× Tag
fin
⇀ hook

𝐶 ∈ Context , Lab
fin
⇀ Protocol

𝑊 ∈ World , Context× Hooks

Fig. 6. Disel’s distributed state and world components.

implementation of the described programs in Disel DSL, their extracted executable counterparts in
OCaml, and mechanized proofs of all of the mentioned invariants and specifications.

3 DISTRIBUTED SEPARATION LOGIC

We next describe the formal model of the state and protocols, giving meaning to Disel’s Hoare-style
specifications in the context of multiple protocols with disjoint state-spaces and possible imposed
inter-protocol dependencies.

3.1 State and Worlds

Distributed state and its components. The left part of Fig. 6 defines the components of the state,
subject to manipulation by concurrently executing programs run by different nodes. Each global
system state 𝑠 is a finite partial mapping from protocol labels ℓ ∈ Lab to statelets. Each statelet
represents a protocol-specific component, consisting of a “message soup” MS and a per-node local
state (DistLocState). The former represents a finite partial map from unique message identifiers to
messages,4 each of which carries its sender and recipient node ids, the payload 𝑚, which includes
a tag, and a boolean indicating whether the message is already received (∙) or not yet (∘). The
per-node local state maps each node id into protocol-specific piece of local state, represented as a
mapping from locations (isomorphic to natural numbers) to specific values. For instance, in the
calculator system example from Section 2, all local states had the same type and each carried just
one value, updated in the course of execution,—a multiset of outstanding requests—so we omitted
the only location from assertions in the program specs.

Protocols, hooks and worlds. The right part of Fig. 6 shows the components of Disel protocols
and worlds. A protocol 𝒫 consists of a state-space coherence predicate coh, which defines the
shape of the corresponding statelet (i.e., components of the per-node local state and message soup
properties), and two finite sets of send- and receive transitions: 𝑇𝑠 and 𝑇𝑟 , correspondingly. Each
send-transition is defined by a tag of a message it can send, a precondition, and a step function. The
precondition constrains the sender, the addressee, the message to be sent, and the local state of the
sender. The step function, which is partially defined, describes the changes in the local state of the
sender, assuming that the state satisfies the precondition. Each receive-transition comes with a tag,
which uniquely identifies it in a specific protocol. Its precondition is decidable in order to allow the

4The uniqueness constraint is introduced to make the encoding easier in Coq, but our specs and proofs do not rely on it,
and the implementation prevents using message ids as values in programs.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 28. Publication date: January 2018.

Programming and Proving with Distributed Protocols 28:13

𝑠 � 𝑛
ℓ
 𝑙 iff ∃𝑑, 𝑠(ℓ) = (−, 𝑑) ∧ 𝑑(𝑛) = 𝑙

𝑠 � 𝑃 (MS ℓ) iff ∃MS , 𝑠(ℓ) = (MS ,−) ∧ 𝑃 (MS)

𝑠 � 𝑃1 * 𝑃2 iff ∃𝑠1 𝑠2, 𝑠 = 𝑠1 ⊎ 𝑠2 ∧ 𝑠1 � 𝑃1 ∧ 𝑠2 � 𝑃2

𝑠 � this 𝑠′ iff 𝑠 = 𝑠′

Fig. 7. Semantics of Disel state assertions.

runtime to check it for applicability. Its step function is totally defined. We will use the notations
𝜏.tag , 𝜏.pre and 𝜏.step to refer correspondingly to the tag, precondition and step-components of a
transition 𝜏 , which might be either send- or receive-one.

A world 𝑊 is represented by a pair ⟨𝐶,𝐻⟩, with its first component 𝐶 being a collection of
protocols that are assigned unique labels. For instance, deleg_server from Section 2 was specified
in the context of a world with two protocols with disjoint state-spaces, 𝒞′′ℓ1 and 𝒞

′′
ℓ2
. The second

component of a world 𝐻 contains client-provided send-hooks, used to impose application-specific
restrictions on interacting protocols, as we will demonstrate in Section 4. Each hook ℎ(𝑙𝑠, 𝑙𝑐,𝑚, to)
is a predicate, relating a local state of a node 𝑙𝑠, which belongs to a core (or server) protocol, a
local state 𝑙𝑐 of the same node from a client protocol, a content of a message 𝑚 to be sent and a
potential recipient to. A hook-map Hooks associates each hook ℎ with a unique id 𝑧 ∈ HkId, a
core protocol label ℓ𝑠, a client protocol label ℓ𝑐 and a tag 𝑡 of a send-transition it applies to. Each
send-hook prevents a send-transition 𝜏𝑠 in a particular client protocol from being taken by a node
𝑛, unless the hook’s predicate holds wrt. 𝑛’s local state in both server and client protocols; in other
words hooks allow strengthening 𝜏𝑠’s precondition. Hooks are discussed in more detail below. All
examples we have seen so far in Section 2 were defined with 𝐻 = ∅ (i.e., without any imposed
inter-protocol restrictions), but in Section 4 we will show how the mechanism of send-hooks
enables modular verification of programs operating in a restricted product of protocols, allowing
one to build verified distributed client applications on top of verified core systems.

A world𝑊 = ⟨𝐶,𝐻⟩ is well-formed iff all protocol labels (for servers and clients) in the domain
of 𝐻 are also in the domain of 𝐶 . A state 𝑠 is coherent wrt. a world 𝑊 = ⟨𝐶,𝐻⟩ (𝑊 𝑠) iff
(a) both 𝐶 and 𝑠 are defined on the same set of unique labels, and (b) ∀ℓ ∈ dom(𝐶), 𝐶(ℓ).coh(𝑠(ℓ)),
i.e., each statelet in 𝑠 is coherent with respect to the corresponding protocol in 𝐶 . When defining
a protocol, it is a programmer’s responsibility to show that all its transitions preserve the global
protocol-specific state coherence, a fact that can be then used freely in the proofs about programs.

3.2 Language, Specifications and Selected Inference Rules

The programming language of Disel, embedded shallowly into Coq, features pure, strictly nor-
malizing, expressions (i.e., those of Gallina), such as let-expressions, tuples, variables and literals,
ranged over by 𝑒 (with 𝑣 being a fully reduced value), and commands 𝑐, whose effect is distributed
interaction, reading from local state and divergence, due to general recursion. The meta-variable 𝐹
ranges over possibly recursive procedures. Non-interpreted effectful procedures are ranged over
by a functional symbol 𝑓 . Non-Hoare types are ranged over by a meta-variable 𝒯 . The syntax of
Disel commands is given below:

𝑐 ::= send[𝜏𝑠, ℓ](𝑒𝑚, 𝑒to) | recv[𝑇, 𝐿] | readℓ(𝑣) | 𝑥← 𝑐1; 𝑐2 | return 𝑒 | if 𝑒 then 𝑐1 else 𝑐2 | 𝐹 (𝑒)

𝐹 ::= 𝑓 | letrec 𝑓(𝑥 : 𝒯) , 𝑐

Commands include send, receive and read actions, decorated with the corresponding protocol
labels and transition tags. A decorated receive takes a set of tags 𝑇 and a set of protocol labels
𝐿 to identify the messages to react to. The readℓ(𝑣) command is used to examine the contents
of a location 𝑣 of a local state with respect to the protocol labelled ℓ, at the corresponding node

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 28. Publication date: January 2018.

28:14 Ilya Sergey, James R. Wilcox, and Zachary Tatlock

executing the command. The commands also include the standard monadic return 𝑒 that returns
the value of 𝑒, a sequential composition 𝑥 ← 𝑐1; 𝑐2, implemented as a monadic bind (𝑥 may be
omitted if not used in 𝑐2), a conditional statement, and an application 𝐹 (𝑒).

Program specifications. Fig. 7 provides the semantics of the assertions with respect to a dis-
tributed system state that we have used in the examples in Section 2, referring to particular
component of the state constrained by pre- and postconditions of the corresponding Hoare specs.
Specifically, a local state assertion 𝑛 ℓ

 𝑙 allows one to refer to a specific component 𝑙 of a local
state of a node 𝑛 (which might be different from the one running the code), with respect to a proto-
col labelled ℓ. Themessage soup selectorMS ℓ allows one to make statement about message soup of a
specific protocol. Finally, the separating conjunction (*), allows one to decompose assertions in the
presence of a composite state 𝑠, which can be represented as a disjoint union of sub-states 𝑠1 ⊎ 𝑠2.
The separating conjunction allows one to combine separately proved specifications wrt. multiple
involved protocols, as we did when assigning the type (9) to deleg_server. As is customary in
Separation Logic [Reynolds 2002], the * operator distributes over plain conjunction for assertions
that do not constrain state. this 𝑠′ allows one to assert that the immediate state is equal to a certain
fixed state 𝑠′.

A command 𝑐 run by a node 𝑛 in a world 𝑊 satisfies a spec 𝑊
𝑛

⊢ 𝑐 : {𝑃}{𝑄} if it is safe
to execute 𝑐 from a global system state 𝑠 satisfying 𝑃 , concurrently with programs on other
nodes, 𝑐 respects the protocols and hooks from 𝑊 , and returns a result value res, leaving the
system in a state 𝑠′, such that 𝑠′ � 𝑄 holds. Here and below, we assume that res occurs freely in
𝑄. All other unbound variables in 𝑄 and 𝑃 are considered to be logical variables, whose scope
spans both pre- and postcondition of the specification, with logical variables in 𝑄 (except for res)
being a subset of those in 𝑃 . In order to describe an effect of an uninterpreted and potentially
recursive procedure 𝑓(𝑥 : 𝒯), we employ the following notation for parameterized Hoare specs:

𝑊
𝑛

⊢ 𝑓(𝑥) : ∀𝑥 : 𝒯 .{𝑃}{𝑄}, where 𝑥 may occur freely in 𝑃 and 𝑄. The Hoare-style logic of
Disel will ensure that all intermediate program-level assertions, describing the global state from a
perspective of a node 𝑛, which runs the code being verified, are stable [Jones 1983; Vafeiadis and
Parkinson 2007], i.e., closed under observable changes performed by all other nodes, involved into
execution of the protocol, and, thus, captured by its definition.

Logic judgements and inference rules. The top part of Fig. 8 shows selected inference rules of
Disel. In order to account for typed free program variables and functional symbols 𝑓 , Disel’s
judgements are stated in the presence of a typing context Γ, defined as follows:

Γ ::= ∅ | Γ, 𝑥 : 𝒯 | Γ, 𝑓 : ⟨𝑊, ∀𝑥 : 𝒯 .{𝑃}{𝑄}⟩

Typing entries for procedures 𝑓 include the world𝑊 in which their specification was derived. The
top two rules, Bind and Letrec, demonstrate the use of typing contexts.

The next two rules, SendWrap and ReceiveWrap, are crucial for program verification in
Disel, as they allow one to assign Hoare specifications to atomic decorated send- and receive-
commands, instrumented with the suitable protocol annotations. Both rules require user-assigned
pre/postconditions to be stable with respect to interference imposed by the protocols in the world
𝑊 . The net effect of sending or receiving a message atomically is captured by the two auxiliary
assertion tuples Sent and Received, defined at the bottom of Fig. 8, which relate the states 𝑠 and 𝑠′

(captured via free logical variables) immediately before and after sending and receiving a message
correspondingly.

Specifically, Sent ensures that the precondition of the corresponding send-transition 𝜏𝑠, holds
over the pre-state 𝑠, as well as all of the hook statements imposed by 𝐻 , which is ensured by the
auxiliary predicate HooksOk defined below in the same figure. The immediate post-state 𝑠′ is the

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 28. Publication date: January 2018.

Programming and Proving with Distributed Protocols 28:15

Bind
Γ;𝑊

𝑛

⊢ 𝑐1 : {𝑃}{𝑄 ∧ res : 𝒯 }

Γ, 𝑥 : 𝒯 ;𝑊
𝑛

⊢ [𝑥/res]𝑐2 : {𝑄}{𝑅} 𝑥 /∈ FV(𝑅)

Γ;𝑊
𝑛

⊢ 𝑥← 𝑐1; 𝑐2 : {𝑃}{𝑅}

Letrec
Γ, 𝑥 : 𝒯 , 𝑓 : ⟨𝑊, ∀𝑥 : 𝒯 . {𝑃}{𝑄}⟩;𝑊

𝑛

⊢ 𝑐 : {𝑃}{𝑄}

Γ;𝑊
𝑛

⊢ letrec 𝑓(𝑥 : 𝒯) , 𝑐 : ∀𝑥.𝒯 . {𝑃}{𝑄}

SendWrap
𝑃,𝑄 are 𝑊 -stable 𝑊 = ⟨𝐶,𝐻⟩ 𝜏𝑠 ∈ 𝐶(ℓ).𝑇𝑠

Sent(𝜏𝑠, ℓ, 𝑛,𝑚, to, 𝐻) ⊑ (𝑃,𝑄)

Γ;𝑊
𝑛

⊢ send[𝜏s , ℓ](𝑚, to) : {𝑃}{𝑄}

ReceiveWrap
𝑃,𝑄 are 𝑊 -stable 𝑊 = ⟨𝐶,𝐻⟩

Received(𝑇, 𝐿,𝐶) ⊑ (𝑃,𝑄)

Γ;𝑊
𝑛

⊢ recv[𝑇, 𝐿](𝑚, to) : {𝑃}{𝑄}

Read
𝑃,𝑄 are 𝑊 -stable 𝑊 = ⟨𝐶,𝐻⟩

(︂

this 𝑠 ∧ coh 𝑠 ∧
𝑣 ∈ dom(𝑠(ℓ)(𝑛))

,
this 𝑠 ∧ coh 𝑠 ∧
res = 𝑠(ℓ)(𝑛)(𝑣)

)︂

⊑ (𝑃,𝑄)

Γ;𝑊
𝑛

⊢ readℓ(𝑣) : {𝑃}{𝑄}

Frame
Γ;𝑊

𝑛

⊢ 𝑐 : {𝑃}{𝑄}

NotHooked(𝑊,𝐻) 𝑅 is 𝐶-stable

Γ;𝑊 ⊎ ⟨𝐶,𝐻⟩
𝑛

⊢ 𝑐 : {𝑃 *𝑅}{𝑄 *𝑅}

WithInv
Γ; ⟨ℓ ↦→ 𝒫ℓ ⊎𝑊,𝐻⟩

𝑛

⊢ 𝑐 : {𝑃}{𝑄} 𝐼 is inductive wrt. 𝒫ℓ ℐ , ∀𝑠, this 𝑠⇒ 𝐼(𝑠)

Γ; ⟨ℓ ↦→WithInv(𝒫ℓ, 𝐼) ⊎𝑊,𝐻⟩
𝑛

⊢ 𝑐 : {𝑃 ∧ ℐ}{𝑄 ∧ ℐ}

Auxiliary definitions

Sent(𝜏𝑠, ℓ, 𝑛,𝑚, to, 𝐻) ,

⎛

⎝

this 𝑠 ∧ coh 𝑠 ∧
𝜏𝑠.pre(𝑛, to,𝑚, 𝑠(ℓ)) ∧
HooksOk(𝐻, 𝜏𝑠, ℓ, 𝑛,𝑚, to)

,
this 𝑠′ ∧ coh 𝑠′ ∧ res = 𝑚 ∧
𝑠′ = (𝑠[ℓ, 𝑛] ↦→ 𝜏𝑠.step(to,𝑚, 𝑠(ℓ)(𝑛))) ∧
𝑠′#MSℓ = 𝑠#MS ℓ ⊎ ⟨𝑛, to, ∘, (𝜏𝑠.tag,𝑚)⟩

⎞

⎠

Received(𝑇, 𝐿,𝐶) ,

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

this 𝑠 ∧
coh 𝑠

,

this 𝑠′ ∧ coh 𝑠′ ∧ if res = Some (from,𝑚)

then ∃ℓ ∈ 𝐿, 𝑡 ∈ 𝑇,MS ′, 𝜏𝑟 ∈ 𝐶(ℓ).𝑇𝑟, 𝑡 = 𝜏𝑟.tag ∧
𝑠#MSℓ = MS ′ ⊎ ⟨from, 𝑛, ∘, (𝑡,𝑚)⟩ ∧
𝑠′#MSℓ = MS ′ ⊎ ⟨from, 𝑛, ∙, (𝑡,𝑚)⟩ ∧
𝜏𝑟.pre(m, 𝑠(ℓ)(𝑛)) ∧
𝑠′ = (𝑠[ℓ, 𝑛] ↦→ 𝜏𝑟.step(𝑚, 𝑠(ℓ)(𝑛)))

else 𝑠 = 𝑠′

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

HooksOk(𝐻, 𝜏𝑠, ℓ𝑐, 𝑠, 𝑛,𝑚, to) , ∀ℓ𝑠 ℎ 𝑧,𝐻(𝑧, ℓ𝑠, ℓ𝑐, 𝜏𝑠.tag) = ℎ =⇒ ℎ(𝑠(ℓ𝑠)(𝑛), 𝑠(ℓ𝑐)(𝑛),𝑚, to)

NotHooked(𝑊,𝐻) , ∃𝐶, 𝑊 = ⟨𝐶,−⟩ ∧ ∀(𝑧, ℓ𝑠, ℓ𝑐, 𝑡) ∈ dom(𝐻), ℓ𝑐 /∈ dom(𝐶).

Fig. 8. Selected logic inference rules of Disel and auxiliary predicates.

same as 𝑠, except for the local state of node 𝑠(ℓ)(𝑛) of the node 𝑛 wrt. the protocol ℓ, which is
updated with the effect of the state transition 𝜏𝑠.step (we use the notation 𝑠(ℓ)(𝑛) to refer directly
to the local state of 𝑛 of in the second component of 𝑠(ℓ)). Finally, the new message is added to the
ℓ-related message soupMS ℓ of 𝑠′. In contrast with sending, receiving messages does not impose
any non-trivial preconditions, but in case of a successfully received message (i.e., res is not None), it
allows one to learn a number of facts about the pre-state, as captured by the assertions of Received.
For instance, the tag 𝑡 of a received message corresponds to the tag of the corresponding triggered
receive-transition 𝜏𝑟 of the ℓ-labelled protocol, so the transition has changed the local state of 𝑛
accordingly, and also “consumed” the received message in the message soup MS ℓ. In conjunction
with the protocol invariants, relating local state and message soup properties, this allows one to
infer global assertions about the state of the network, as we have shown in Section 2.3.

The premises of these rules rely on the following definition of Hoare ordering ⊑, allowing one to
strengthen the precondition 𝑃2 ⇒ 𝑃1 and weaken the postcondition 𝑄1 ⇒ 𝑄2, while accounting
for the local scope of free logical variables in the assertions [Kleymann 1999].

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 28. Publication date: January 2018.

28:16 Ilya Sergey, James R. Wilcox, and Zachary Tatlock

Definition 3.1 (Hoare ordering). For the given pairs preconditions 𝑃1, 𝑃2 and postconditions
𝑄1, 𝑄2, possibly containing free logical variables, we say (𝑃1, 𝑄1) ⊑ (𝑃2, 𝑄2) iff ∀𝑠 𝑠′, (𝑠 �

∃𝑥2.𝑃2 ⇒ 𝑠 � ∃𝑥1.𝑃1) ∧ ((∀𝑥1 res. 𝑠 � 𝑃1 ⇒ 𝑠′ � 𝑄1) ⇒ (∀𝑥2 res. 𝑠 � 𝑃2 ⇒ 𝑠′ � 𝑄2), where 𝑥𝑖 are
the free logical variables of both 𝑃𝑖 and 𝑄𝑖 correspondingly.

The rule Read is similar to the rules for sending and receiving messages, but it does not modify
the local state in any way, observable by other nodes, which is what is ensured by the “atomic
specification” in its premise, which expresses that the pre/post-states are the very same state this 𝑠,
modulo 𝑊 -interference, tolerated by pre/postconditions 𝑃 and 𝑄 .

The rule Frame is the key to horizontal compositionality with respect to involved protocols. It
allows one to add a “framed in” world part ⟨𝐶,𝐻⟩ (with the corresponding assertion𝑅, quantifying
over components of 𝐶-relevant state) to a specification, assuming that all involved assertions are
stable. This rule is inherently asymmetric due to the “hooking” component𝐻 . Specifically, it allows
any additions ⟨𝐶,𝐻⟩ as long as hooks in 𝐻 cannot invalidate preconditions of send-transitions of
𝑊 ’s protocols. This check, captured by the NotHooked auxiliary predicate defined at the bottom
of Fig. 8, can be done syntactically on the domains of 𝑊 and 𝐻 , just by checking the “intersection”
of their “footprints”, very much in the spirit of ordinary Separation Logic.5 Furthermore, if 𝐻 = ∅,
the rule Frame becomes symmetric and can be used to combine any two worlds that do not have
mutual inter-protocol restrictions, which is what we did in Section 2.4 when implementing a
delegating server. Typically, the world 𝑊 contains a number of core protocols (e.g., for locking
or replication), whereas the addition ⟨𝐶,𝐻⟩ comes with client-specific protocols and restrictions
imposed by the state wrt.𝑊 , so client applications have to be verified in a joint “large-footprint”
world 𝑊 ⊎ ⟨𝐶,𝐻⟩. Here, ⊎ is a pointwise disjoint union of labeled protocols and hooks, so the
rule only applies when the result of ⊎ is defined. In Section 4, we will demonstrate how to make
such efforts reusable by exploiting Coq’s higher-order definitions and abstract predicates.

Finally, the rule WithInv allows one to elaborate the context assumptions wrt. a specific
protocol 𝒫ℓ and also the corresponding state assertions for any invariant 𝐼 , which is 𝒫ℓ-inductive,
i.e., it, as an assertion, over the global network state, is preserved while any node invokes any
allowed send- or receive-transitions of𝒫ℓ.6 Internally, the protocol combinatorWithInv(𝒫ℓ) replaces
the coherence predicate coh of the protocol 𝒫ℓ with a new one, elaborated with the inductive 𝐼 .
Applying this rule corresponds to proving whole-system properties, which is complementary to
Hoare-style specifications, local for specific nodes.

The remaining rules, such as the rule of conjunction, function application, specification weaken-
ing etc, are standard and thus omitted.

3.3 Program Semantics and Logic Soundness

The semantics of programs and the soundness result in Disel are closely tied to the notion of
protocol-aware network semantics. This is a non-deterministic small-step operational semantics, and
its two transition rules are shown in Fig. 9 (ignore the gray boxes for now). All free variables in the
rules other than 𝑠, 𝑛 and𝑊 are existentially quantified. That is, the SendStep-rule will fire for a
node 𝑛 in a world𝑊 = ⟨𝐶,𝐻⟩ if there is a protocol 𝒫ℓ in 𝐶 and there is a send-transition 𝜏𝑠 in 𝒫ℓ,
such that the corresponding local state of the sender 𝑛 and the message 𝑚 satisfy its precondition
and also all 𝑊 ’s hooks constraining 𝜏𝑠 are satisfied. The resulting state will thus have its 𝑛-entry

5This definition of NotHooked is a syntactic approximation of “framing wrt. transitions” that suffices for our purposes.
More elaborated checks could be devised for tracking fine-grained dependencies between the core and the client protocols
by considering the “transition footprint” instead of a “protocol footprint”.
6The formal definition of inductive invariants is with respect to the protocol-aware network semantics, defined in Section 3.3,
and is available in the accompanying Coq development.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 28. Publication date: January 2018.

Programming and Proving with Distributed Protocols 28:17

SendStep
𝑊 = ⟨𝐶,𝐻⟩

𝑊 𝑠 ℓ ∈ dom(𝐶) 𝒫ℓ = 𝐶(ℓ) (MS , 𝑑) = 𝑠(ℓ)
{︁

𝑛, to
}︁

⊆ dom(𝑑) 𝜏𝑠 ∈ 𝒫ℓ.𝑇𝑠

𝜏𝑠.pre(𝑛, to, 𝑚 , 𝑑) HooksOk(𝐻, 𝜏𝑠, ℓ, 𝑠, 𝑛,𝑚, to) MS ′ = MS ⊎ ⟨𝑛, to, ∘, (𝜏𝑠.tag,𝑚)⟩

𝑠 𝑛
 𝑊 𝑠[ℓ ↦→ (MS ′, 𝑑[𝑛 ↦→ 𝜏𝑠.step(to,𝑚, 𝑑(𝑛))])]

ReceiveStep
𝑊 = ⟨𝐶,𝐻⟩ 𝑊 𝑠 ℓ ∈ dom(𝐶) 𝒫ℓ = 𝐶(ℓ) (MS , 𝑑) = 𝑠(ℓ)

𝜏𝑟 ∈ 𝒫ℓ.𝑇𝑟 MS = MS ′ ⊎m m = ⟨from, 𝑛, ∘, (𝜏𝑟.tag,𝑚)⟩ {from, 𝑛} ⊆ dom(𝑑) 𝜏𝑟.pre(m, 𝑑(𝑛))

MS ′′ = MS ′ ⊎ ⟨from, 𝑛, ∙, (𝜏𝑟.tag,𝑚)⟩

𝑠 𝑛
 𝑊 𝑠[ℓ ↦→ (MS ′′, 𝑑[𝑛 ↦→ 𝜏𝑟.step(m, 𝑑(𝑛))])]

Fig. 9. Transition rules of the network semantics.

wrt. 𝒫ℓ updated correspondingly, and a new message added to the soupMS with a fresh logical
message id (omitted here for brevity). The rule ReceiveStep is similar in that it looks for an active
message m in the soup MS of a arbitrarily chosen protocol 𝒫ℓ, such that 𝑛 is its addressee, and its
tag corresponds to a specific receive-transition 𝜏𝑟 of 𝒫ℓ. It then checks the precondition of 𝜏𝑟 at
𝑛’s local state, and executes it, updating 𝑠’s local state and soup correspondingly.

One can notice the similarity between the network semantic rules SendStep and ReceiveStep
and the inference rules SendWrap and ReceiveWrap from Fig. 8. This should not come as a
surprise: indeed, the two mentioned inference rules provide a way to symbolically account for
corresponding local executions of send- receive-transtions by a specific node, consistend with the
network semantics.

We build the semantics of programs in Disel with respect to a specific node 𝑛 and a world
𝑊 . To do so, we provide the semantics of wrappers for transitions via the following semi-formal
definitions (the formal ones are in our Coq code), accompanied by the natural adequacy result
(Lemma 3.4).

Definition 3.2 (Send-wrapper). The semantics of a send-wrapper call 𝑤 = send[𝜏s , ℓ](𝑚, to) is
defined by fixing the grayed elements in the rule Send to be the wrapper’s arguments 𝜏𝑠, 𝑚, ℓ, and
to. The wrapper precondition 𝑤.pre is 𝜏𝑠.pre and its result is𝑚.

Definition 3.3 (Receive-wrapper). The semantics of a receive-wrapper call recv[𝑇, 𝐿] is defined
by fixing the grayed elements in the rule Recv such that ℓ ∈ 𝐿 and 𝜏𝑟.tag ∈ 𝑇 are chosen
non-deterministically. The precondition 𝑤.pre is True and the result is the pair Some (from,𝑚)
from m, if side conditions of Recv are satisfied and there is a message in the soup matching some
tag 𝑡 ∈ 𝑇 and a label ℓ ∈ 𝐿, or None otherwise.

We use the notation 𝑠 𝑤,𝑛
 𝑊 𝑠′ to indicate the effect of a wrapper 𝑤, executed by a node 𝑛 in a

global system state 𝑠, such that 𝑠 𝑊 , resulting in a new state 𝑠′.

Lemma 3.4 (Wrappers obey the network semantics). Let 𝑤 be a send- or receive-wrapper call

at a node 𝑛 in a world𝑊 , instantiated with valid arguments. Then for any global state 𝑠, such that

𝑊 𝑠, the resulting state 𝑠′ of a wrapper execution 𝑠 𝑤,𝑛
 𝑊 𝑠′ is computable from 𝑠 and 𝑤, and

𝑠
𝑛
 𝑊 𝑠′ holds.

A program execution in Disel can be thought of as a sequence of wrapper calls. Indeed, in a
distributed system, every such execution at a specific node takes place concurrently with executions
on other nodes, which will typically result in multiple possible outcomes for the global state
𝑠. To account for all such behaviors experienced by a program 𝑒 running locally, we adopt the

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 28. Publication date: January 2018.

28:18 Ilya Sergey, James R. Wilcox, and Zachary Tatlock

trace-based approach for semantics of sequentially-consistent concurrent programs [Brookes 2007].
We define a denotational semantics of a Disel command 𝑐 as a (possibly infinite) set of finite partial
execution traces J𝑐K = {t𝜅 | t = [𝑤1, . . . , 𝑤𝑛]}, where each element 𝑤𝑖 of a trace t is a transition
wrapper call or an idle step (corresponding to reading local state) as it occurs during a single,
potentially incomplete, sequential execution of 𝑐, and 𝜅 ∈ {⊥, done 𝑣}, where ⊥ indicates an
incomplete execution of 𝑐, and done 𝑣 stands for a complete execution returning a result value 𝑣.
Thus, a trace t is generated by a program running at a node, so each of its element corresponds to a
single, possible idle, transition, changing the global system state. Since all composite commands in
Disel preserve monotonicity in the complete lattice of sets of traces, the semantics of a recursive
procedure is defined as the least fixed point of the corresponding functional by the Knaster-Tarski
theorem. That is, Disel programs are not directly executable within Coq, but are rather extracted
into the corresponding OCaml definitions, as we will outline in Section 5.

To give semantics for the Hoare types and formulate a type soundness result, we need several
auxiliary definitions, relating program traces and system states. Those are directly inspired by
modern concurrency logics [Ley-Wild and Nanevski 2013; Nanevski et al. 2014], and we refer the
reader to our Coq code for fully formal definitions. We first define interference-reachable states
from a system state 𝑠 with respect to a node 𝑛:

Definition 3.5. A state 𝑠′ is interference-reachable from 𝑠 wrt. a node 𝑛 (denoted by 𝑠 ¬𝑛*
 𝑊 𝑠′) iff

𝑠 = 𝑠′ or there exist 𝑠′′, 𝑛′ ̸= 𝑛, such that 𝑠
𝑛′

 𝑊 𝑠′′ and 𝑠′′ ¬𝑛*
 𝑊 𝑠′.

We next define𝑄-satisfying safe traces wrt. a node 𝑛, state 𝑠, and an assertion𝑄, as traces executing
from 𝑠 to the end under interference, so the final state and the result satisfy 𝑄:

Definition 3.6. A trace t𝜅 is post-safe for 𝑛, 𝑠 and 𝑄 iff either

∙ t = [], 𝜅 = done 𝑣 and ∀𝑠′, 𝑠 ¬𝑛*
 𝑊 𝑠′ =⇒ 𝑠′ � [𝑣/res]𝑄, or

∙ t = 𝑤 :: t′, and for any 𝑠′, such that 𝑠 ¬𝑛*
 𝑊 𝑠′, the state 𝑠′ satisfies 𝑤.pre , and for any 𝑠′′, such

that 𝑠′ 𝑤,𝑛
 𝑊 𝑠′′, t′𝜅 is post-safe for 𝑛, 𝑠′′ and 𝑄.

Finally, we define well-typed programs via our denotational semantics and post-safe traces.

Definition 3.7 (Hoare Type Semantics). 𝑊
𝑛

⊢ 𝑐 : {𝑃}{𝑄} iff for any 𝑠, such that 𝑠 � 𝑃 , and for
any trace t𝜅 ∈ J𝑐K, such that 𝜅 = done 𝑣, the trace t𝜅 is post-safe for 𝑛, 𝑠 and 𝑄.

Definition 3.7 implicitly incorporates fault-avoidance (safety) into the semantics of a type: if a
program can be assigned a type, it will safely run from a state satisfying its precondition till the
end or diverge, with each wrapper in its trace being able to execute, and the final state satisfying
the postcondition. Our implementation comes with a number of lemmas, allowing one to reduce a
derivation of a Hoare type for a composite program 𝑐 to those of its components, corresponding
precisely to inference rules (cf. Fig. 8) in program logics. The proofs of those lemmas with respect
to the denotational semantics J·K of specific programming constructs deliver the soundness result
of Disel as a logic:

Theorem 3.8 (Soundness of Disel logic). If the type ∅;𝑊
𝑛

⊢ 𝑐 : {𝑃}{𝑄} can be derived in

Disel, the program 𝑐 satisfies the spec 𝑊
𝑛

⊢ 𝑐 : {𝑃}{𝑄} according to Definition 3.7.

Definition 3.7 of a type incorporates interference, hence the stability obligations in the premises
of the rules for the basic commands, such as SendWrap, ReceiveWrap. While the logic does
not enforce the stability of a precondition imposed by the client at each proof rule (as those can
be strengthened arbitrarily), it is impossible to prove an unstable postcondition (as those can be
only weakened). Since having an non-stable precondition 𝑃 wrt. a node 𝑛 means an inconsistent

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 28. Publication date: January 2018.

Programming and Proving with Distributed Protocols 28:19

cn

pt1

pt2

(P
re
pa
re

, r
, x

)

(Yes, r
)

(Prepare, r
, x

)

(Y
es

,
r

)

(C
om

m
it,

 r
)

(A
ckC

o
m
m
it, r

)

(A
ck
C
om

m
it
, r

)(C
om

m
it, r)

Phase One Phase Two

Fig. 10. One round of the Two-Phase Commit.

PInit

PGotReq x

PRespNo x

PCommited x PAborted x

rPrep

sNosYes

rCommit rAbort

PRespYes x
rAbort

sAckAbort

sA
ck
C
om
m
it

(b)(a)

CCommit x

CWaitPrepResp x

CAbort x

CSendPrep x

CWaitCommitAck x

CInit

CAbortCommitAck x

rA
ckA

b
o
rt

sAbort

rYes/rNo

rAckAbort

sAbort

sPrepsPrep

rYes/rNo

sCommitsCommit

rAckCommit

rA
ck
C
o
m
m
it

rA
ck
C
om
m
it rAckAbort

Fig. 11. States of a coordinator (a) and a participant (b).

specification (i.e., 𝑠 � 𝑃 ∧ 𝑠 ¬𝑛*
 𝑊 𝑠′∧ 𝑠′ � 𝑃 ⇒ False), it will not be possible to invoke a subroutine

with a non-stable precondition within any large consistently specified program context. In order to
avoid unsoundness with respect the “topmost” calls, which are extracted and executed on a shim
as the end programs in a trusted (i.e., unverified) environment, we require the user to establish
stability of their preconditions, which should hold over the initial state, used to initialize the
network. For instance, this is the case for the Hoare specifications of the calculator servers from
Section 2.4, whose preconditions mention only the node-local state and are, thus, stable.

4 CASE STUDY: TWO-PHASE COMMIT AND ITS CLIENT APPLICATION

We now present a case study: an implementation and verification in Disel of the basic distributed
Two-Phase Commit algorithm (TPC) [Weikum and Vossen 2002, Chapter 19]. TPC is widely used
in distributed systems to implement a centralized consensus protocol, whose goal is to achieve
agreement among several nodes about whether a transaction should be committed or aborted (e.g.,
as part of a distributed database). Since the system may execute in an asynchronous environment
where message delivery is unreliable and machines may experience transient crashes, achieving
agreement requires care.

The goal of conducting this exercise for us was twofold: (a) to show that the protocol properties
established for systems in the distributed systems community (e.g., consensus) are useful for
Hoare-style reasoning about program composition and (b) to demonstrate that Disel’s protocols
with disjoint state-space and hooks are sufficient for conducting modular proofs about core
algorithms (e.g., TPC) and their client applications. To give a better taste of Disel-style programming
and verification, in this section we abandon mathematical notation and show fragments of our
development taken, with cosmetic adjustments, from our code.

4.1 The Protocol: Intuition and Formalization

The Two-Phase Commit protocol designates a single node as the coordinator, which is in charge
of managing the commit process; other nodes participating in the protocol are participants. The
protocol proceeds in a series of rounds, each of which makes a single decision. Each round consists
of two phases; an example round execution is shown in Fig. 10. In phase one, the coordinator
begins processing a new transaction by sending Prepare messages to all participants. Each partici-
pant responds with its local decision Yes or No. In the figure, both participants vote Yes, so the
coordinator enters phase two by sending Commit messages to all participants, informing them
of its decision to commit. If some participant had voted No, the coordinator would instead send
Abort messages. In either case, participants acknowledge the decision by sending AckCommit or
AckAbort to the coordinator. When the coordinator receives all acknowledgments, it knows that
all nodes have completed the transaction.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 28. Publication date: January 2018.

28:20 Ilya Sergey, James R. Wilcox, and Zachary Tatlock

Definition c_send_step (r: round) (cs: CState)

(log: Log) (to: node) := match cs with

(* Sending prepare-messages *)

| CSentPrep x tos ⇒ if (* sent all messages *)

(* switch for receiving responses *)

then (r, CWaitPrepResp x [::], l)

(* keep sending requests *)

else (r, CSentPrep x (to :: tos), l)

(* ...more cases depending on cs and to... *)

end.

Definition c_recv_step (r : round) (cs : CState)

(log : Log) (tag : nat) (mbody : seq nat) :=

match cs with

(* Waiting for prepare-responses *)

| CWaitPrepResp x ⇒ if (* received all votes *)

then (r, if (* all votes yes *)

then CCommit x

else CAbort x, log)

else (r, CWaitPrepResp, log)

(* ...more cases depending on cs, tag, mbody... *)

end.

Fig. 12. Send and receive transitions of a coordinator in a Disel definition of the TPC protocol.

The component of the coherence predicate constraining the local state l (expressed via Coq/Ss-
reflect predicate notation [Pred l | ...]) of each node n depending on its role, coordinator or a
participant, is defined as follows:

Definition localCoh (n: nid) := [Pred l |

if n == cn then ∃(r: round) (s: CState) (log: Log), l = st ↦→ (r, s) ⊎ lg ↦→ log

else if n ∈ pts

then ∃(r: round) (s: PState) (log: Log), l = st ↦→ (r, s) ⊎ lg ↦→ log else True].

According to the predicate localCoh, the local state of the coordinator (cn is a parameter bound at
the level of the protocol description) consists of two globally defined locations, st and lg, which
together store a round number r, a coordinator status s, and a log. The state of a participant
(n ∈ pts) is similar, except that its status is a participant status. Finally, any node which is not
the coordinator or a participant (e.g., a node participating only in other protocols) may have an
arbitrary local state with respect to TPC.

The coordinator’s status can be in any of the seven states shown in shown in Fig. 11(a). Between
rounds, the coordinator waits in the CInit state. From the initial state, the coordinators enters
the CSentPrep phase and remains in it until all prepare-requests are sent, after which it switches
into the receiving state CWaitPrepResp 𝑥 for the data 𝑥. Upon receiving all response message
to the prepare-requests, the coordinator changes either to the commit-state or to the abort-state,
notifying all of the participants about the decision and collecting the acknowledgements, eventually
returning to the CInit state with an updated log. The participants follow a similar pattern to the
coordinators’s, except that a participant sends messages to or receives messages only from the
coordinator before changing its state.

Fig. 12 shows how to encode a few of the coordinator’s transitions. Recall that Disel transitions
are computable functions that describe how to update the local state of the node when executing
the transition. The figure shows the snippets of Disel code related to sending a prepare-request
messages and receiving a corresponding response message from participants. In the latter case,
depending on the responses, once all of them are collected, the coordinator switches to either
CCommit or CAbort state.

4.2 Program Specification and Implementation

With the protocol in hand, we can now proceed to build programs that implement the coor-
dinator and participant and assign them useful Hoare-style specifications. An implementation
of a single round of the coordinator and its Hoare type are shown in Fig. 13. The function
coordinator_round takes as an argument the transaction data to be processed in this round. The
type {r log} DHT [cn, TPC] (...) represents a Hoare spec, whose logical variables are r and
log. The spec is parametrized by the dedicated coordinator node id cn and a world with a single
protocol instance TPC, with no hooks. The pre/postconditions (in parentheses) are encoded as Coq

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 28. Publication date: January 2018.

Programming and Proving with Distributed Protocols 28:21

Definition coordinator_round (d : data) :

{r log}, DHT [cn, TPC]

(fun s ⇒ loc cn s = st ↦→ (r, CInit) ⊎ lg ↦→ log,

fun res s’ ⇒

loc cn s’ = st ↦→(r+1, CInit) ⊎ lg ↦→(log++[(res, d)]))

:= Do (r ← read_round;

send_prep_loop r d;;

res ← receive_prep_loop r;

b ← read_resp_result;

(if b then send_commits r d;;

receive_commit_loop r

else send_aborts r d;;

receive_abort_loop r);;

return b).

Fig. 13. Spec and code of a coordinator round.

Definition run_coordinator (data_seq : seq data) :

DHT [cn, _]

(fun s ⇒ s = loc cn s = st ↦→ (0, CInit) ⊎ lg ↦→ [::]

fun _ s’ ⇒ ∃ (choices : seq bool),

let r := size data_seq in

let lg := zip choices data_seq in

loc cn s’ = st ↦→ (r, CInit) ⊎ lg ↦→ log ∧

∀ pt, pt ∈ pts →

loc pt s’ = st ↦→ (r, PInit) ⊎ lg ↦→ log)

:= Do (with_inv TPCInv (coordinator data_seq)).

Fig. 14. Coordinator spec elaborated with TPCInv.

functions fun s ⇒... and fun res s’ ⇒..., correspondingly, so the immediate pre/post-states
s/s’ are made explicit, similarly to using the connective this s.

The precondition, which makes use of the local state getter loc cn s = ..., equivalent to the
connective cn TPC

 . . . from Fig. 7, requires that the coordinator is in the CInit state, with an arbitrary
round number and log. The postcondition ensures that the local state has returned to CInit, the
round number has been incremented, and the return value accurately reflects the decision made on
the data, which is also reflected in the updated log. The code proceeds along the lines required by
the protocol: it reads the round number from the local state, sends requests, collects the responses
and then, depending on the locally stored result b, sends commit/abort messages, collecting the
acknowledgements from participants.

4.3 Protocol Consistency and Inductive Invariant

The spec given to coordinator_round in Fig. 13 only constrains the local state loc of the coordina-
tor, but in fact the protocol maintains stronger global invariants. For example, we might like to
conclude that between rounds, all logs are in agreement. This strong global agreement property
is not implied by the coherence predicate given above, so we must prove an inductive invariant
that implies it. Finding such inductive invariants is the art of verification, and the process typically
requires several iterations before converging on a property that is inductive and implies the desired
spec. Tools such as Ivy [Padon et al. 2016] make the process of finding an inductive invariant much
more pleasant by providing automatic assistance in debugging and correcting invariants, and it
would be interesting to connect Disel to Ivy, which we leave to the future work.

In this case, an invariant that closely follows the intuitive execution of the protocol (its formula-
tion can be found in our Coq files) suffices to prove the global log agreement property. For example,
when the coordinator is in the CSendCommit state, the invariant ensures that all participants are
either waiting to hear about the decision, have received the decision but not acknowledged it,
or have acknowledged the decision and returned to the initial state. The invariant also implies a
simple statement of global log agreement, shown below:

Lemma cn_log_agreement d r log pt : loc cn d = st ↦→ (r, CInit) ⊎ lg ↦→ log →

coh d → TPCInv d → ∀ pt, pt ∈ pts → loc pt d = st ↦→ (r, PInit) ⊎ lg ↦→ log.

In other words, a coordinator cn in the CInit state and a round r can conclude that all participants
pt ∈ pts have also reached the current round r and have logs equal to its own.

Putting the inductive invariant to work. We can freely use the elaborated invariant in proofs
of programs. Fig. 14 shows a coordinator program that executes a series of rounds based on a
given list data_seq of data elements. Its postcondition asserts that all participants have finished

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 28. Publication date: January 2018.

28:22 Ilya Sergey, James R. Wilcox, and Zachary Tatlock

Program Definition run_and_query (ds : seq data) pt :

{reqs resp}, DHT [cn, (TPC ⊎ Query, QHook)]

(fun s ⇒ loc s = st ↦→ (0, CInit) ⊎ lg ↦→ [::] ∧

pt ∈ pts ∧ query_init s],

fun (res : nat * Log) s’ ⇒ ∃ (chs : seq bool),

let d := (size ds, zip chs ds) in

loc s’ = st ↦→ (d.1, CInit) ⊎ lg ↦→ d.2 ∧

query_init s’ ∧ res = d)

:= Do (run_coordinator ds;;

rid ← generate_fresh_request_id pt;

send_request rid pt;;

res ← receive_responce rid pt;

return res).

Fig. 15. Querying after the TPC coordinator.

Parameter core_state : Data → LocState → Prop.

Parameter local_indicator : Data → LocState → Prop.

Definition QHook := (1, lab_c, lab_q, resp) ↦→

fun lc lq m to ⇒

∀ rid data, m = rid :: serialize data →

core_state data lc.

Hypothesis core_state_inj :

∀ l d d’, core_state d l →

core_state d’ l → d = d’.

Hypothesis core_state_step : ∀ data s s’ n1 n2,

n1 != n2 → local_indicator data (loc lab_c n1 s)

→ network_step (lab_c ↦→ pc, ∅) n2 s s’

→ core_state data (loc lab_c n2 s’).

Fig. 16. Hook definition and abstract predicates.

the round and have logs agreeing with the one of the coordinator. The proof of this specification
is by a straightforward application of the WithInv rule, making use of the elaborated invariant
TPCInv as well as the lemma cn_log_agreement. Importantly, the postcondition is stable, because
each round of the Two-Phase Commit begins with a coordinator’s move, hence no participant can
change its state from the “initial” one while the coordinator’s status is CInit.

4.4 Composing Two-Phase Commit with a Querying Application using Hooks

Even though core consensus protocols, such as TPC, are not designed to exist in isolation, but
rather to be used in a context of larger applications (e.g., for crash recovery), formal reasoning
about client-specific properties (i.e., properties of applications relying on certain characteristics of
a “core” distributed protocol) is only barely covered in classical textbooks [Weikum and Vossen
2002] and, with a rare exception [Lesani et al. 2016], almost never a focus of major verification
efforts [Hawblitzel et al. 2015; Rahli et al. 2015; Woos et al. 2016], which, therefore cannot be reused
in any larger verified context.

We now demonstrate how to employ Disel’s logical mechanisms for restricted composition of
protocols in order to prove, in a modular fashion, properties of client code from a core protocol’s
invariants. To do so, we verify a composite application, which uses TPC for building a replicated
log of data elements, and a side-channel protocol for sending independent queries about the state
of TPC participants (e.g., for the purpose of implementing recovery after a coordinator’s failure).
Fig. 15 shows a program that first calls the coordinator program run_coordinator, and then uses
the side protocol to query the local state of a participant pt, which the program then returns as
its final result res. Ignoring the query_init part in the pre/postcondition for now, notice that the
postcondition asserts that res is equal to the pair d (round, log) stored in the local state of the
coordinator (which did not crash this time)!

Establishing such validity of the query wrt. TPC-related state is, however, not trivial at all, given
how the querying protocol is defined. The protocol Query is very similar to the calculator from
Section 2: any node 𝑛1 in it can send a request to any other node 𝑛2, to which 𝑛2 may respond
with any arbitrary message (the details of the formal protocol definition can be found in our Coq
code). This protocol definition is intentionally made very weak: while it allows one to prove some
interesting inductive invariants (e.g., no request is answered twice), it leaves all other interaction
aspects for the final client to specify. In particular, it does not enforce any specific shape of data
being sent in a response to a request.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 28. Publication date: January 2018.

Programming and Proving with Distributed Protocols 28:23

Thus, without imposing the additional restriction that the protocol Query can only transmit

the local state of a node wrt. TPC, we will not be able to prove the spec in Fig. 15. The necessary
restriction is provided by a send-hook entry QHook that is used when composing the protocols TPC
and Query in the spec of run_and_query, and is defined in Fig. 16.

In order to make the client verification effort reusable in the context of any consensus protocol,
not just TPC, we formulate the hook statement in terms of an abstract type Data and an abstract

predicate core_state, which we will later instantiate specifically for TPC, both afforded by Coq’s
higher-order programming capabilities. The hook enforces that any message m containing a request
id rid and serialized data adequately encodes the current local state (storing data) of the sender
node, at the moment of sending m, with respect to the protocol with label lab_c. The abstract
predicate core_state d lc, capturing precisely this “adequacy of the encoding”, is supplied with
the injectivity hypothesis core_state_inj (to be proved by each consensus implementation), which
ensures that the abstract data representation is unambiguous.

We also declare an abstract predicate local_indicator and the corresponding hypothesis
core_state_step, which essentially corresponds to irrevocability of consensus and should be
proved for each consensus implementation (in particular, for TPC), ensuring that if a local state
of a node n1 is of certain shape data, the local state of n2, captured by core_state data will be
remaining the same under interference (network_step) wrt. the core lab_c-labelled protocol pc—
precisely what is ensured by the lemma cn_log_agreement of TPC.

Finally, we can use the abstract predicates from Fig. 16 to provide specifications for querying
procedures from Fig. 15, stating query_init in terms of assertions involving local_indicator and
query_state, in the context parameterized over a “core” consensus protocol pc and restricted with
QHook. To verify the program in Fig. 15 against the desired spec we only need to instantiate the
predicates as follows and prove the corresponding hypotheses for TPC, which follow from the
invariant TPCInv and Lemma cn_log_agreement:

(* For TPC, abstract Data type is instantiated with a round number (nat) and Log. *)

Definition Data := nat * Log.

Definition local_indicator (d : Data) l := l = st ↦→ (d.1, CInit) ⊎ log ↦→ d.2.

Definition core_state (d : Data) l := l = st ↦→ (d.1, PInit) ⊎ log ↦→ d.2.

The rest of the proof is via the Frame rule with𝑊 = ⟨TPC, ∅⟩, 𝐶 = Query and 𝐻 = QHook. Since
QHook does not restrict the transitions of TPC, NotHooked holds. Thanks to the parametrization of
querying programs with abstract predicates and hypotheses from Fig. 16, we can compose them
with any other instance of a consensus protocol, e.g., Paxos [Lamport 1998b] or Raft [Ongaro and
Ousterhout 2014], thus, reusing the proofs of their core invariants.

5 IMPLEMENTATION AND EXPERIENCE

Disel combines two traits that rarely occur in a single tool for reasoning about programs. First,
thanks to the representation of Hoare types by means of Coq’s dependent types, the soundness
result of Disel scales not just to a toy core calculus, but to the entirety of Gallina, the programming

language of Coq, enhanced with general recursion and message-passing primitives. Second, Disel
programs are immediately executable by means of extracting them into OCaml, which provides the
features that Gallina lacks: general fixpoints, mutable state, and networking constructs, enabled by
our trusted shim implementation.

Formal development and proof sizes. The size of our formalization of the metatheory, inference
rules and soundness proofs is about 4500 LOC. Our development builds on well-established
Ssreflect/MathComp libraries [Gonthier et al. 2009; Mahboubi and Tassi 2017; Sergey 2014] as well
as on the implementation of partial finite maps and heap theory by Nanevski et al. [2010].

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 28. Publication date: January 2018.

28:24 Ilya Sergey, James R. Wilcox, and Zachary Tatlock

Table 1. Statistics for implemented systems: sizes of proto-

col definitions/specs, programs, proofs of protocol axiom-

s/invariants/specs (LOC), and build times (sec).

Component Defs/Specs Impl Proofs Build

Calculator (§2)

protocol (§2.1)

239 - 243 4.8Inv1 (§2.3)

Inv2 (§2.4)

simple_server (§2.3)

192 43 153 8.6batch_server (§2.4)

memo_server (§2.4)

compute (§2.4) 120 24 99 4.8

deleg_server (§2.4) 75 7 49 2.4

Two-Phase Commit (§4.1–§4.3)

protocol (§4.1) 465 - 231 3.9

coordinator (§4.2) 236 35 440 18

participant (§4.2) 163 24 198 10

TPCInv (§4.3) 997 - 2113 25

Query/TPC (§4.4)

protocol 169 - 115 2.1

querying procedures 326 18 707 19

run_and_query 76 5 89 2.6

Table 1 summarizes the proof effort for
the calculator, TPC/Query systems. The Def-
s/Specs column measures all specification
components, including, e.g., auxiliary pred-
icates, whereas Impl reports the sizes of
actual Disel programs. Due to the high de-
gree of code reuse, it is difficult to provide
separate metrics in some cases; for those
parts we only report the joint numbers.
Although Disel is not yet a production-
quality verification tool, safety proofs of
interesting systems can be obtained in it
in a reasonably short period of time and
with moderate verification effort (e.g., the
full development of the core TPC system
took nine person-days of work). Given
that the current version of Disel employs
no advanced proof automation, beyond
what is offered by Coq/Ssreflect, for dis-
charging program-level verification condi-
tions [Chlipala 2011] or inductive invariant
proofs [Padon et al. 2016], we consider these results encouraging for future development.

Extraction and execution. Disel’s logic reasons about programs in terms of their denotational
semantics as traces, but each primitive also has a straightforward operational meaning. For example,
executing a wrapped send transition should actually send the corresponding network message. Thus
it is relatively straightforward to extract Disel programs by providing OCaml implementations of
the primitive operations in a trusted shim. Our shim consists of about 250 lines of OCaml, including
primitives for sending and receiving messages and general recursion. The local state of each node
is implemented as a map from protocol labels to heaps, where a heap is implemented as a map from
locations to values. Since Disel does not draw a distinction between real and auxiliary state so far,
both are manifested at run time. In the future, we plan to allow users to mark state as auxiliary
to improve performance. Due to artifacts of the extraction process, a Disel program that appears
tail-recursive at the Coq source level does not extract to a tail-recursive OCaml program. This
causes long running loops (such as those typically used to implement blocking receive) to quickly
blow the OCaml stack. To circumvent this issue, we added a while-loop combinator to Disel, which
is encoded using the general fixpoint combinator, but is extracted to an efficient OCaml procedure
that uses constant stack space. Our implementations of the calculator and TPC use this while-loop
combinator to implement blocking receive.

In this work, our goal was not to extract high-performance code for Disel programs, but rather
show that, with a careful choice of low-level primitives with precise operational meaning, such
extraction is feasible and requires a very small trusted codebase.

Adequacy of the extraction. What is the correspondence between our denotational semantics,
presented in Section 3.3 and the operational one implemented by our shim? While in this work we
do not state a fully formal correspondence, as the shim is written in OCaml and uses operating
system and network components, which have no formal semantics, we argue that the extraction is
adequate wrt. the denotational semantics for the following reasons:

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 28. Publication date: January 2018.

Programming and Proving with Distributed Protocols 28:25

(1) Our denotational semantics is simply a trace-collecting operational semantics for interleaved,
asynchronous, message-passing concurrency, with the shared message soup being the only
communication medium. Such an operational representation is widely considered adequate for
modelling distributed systems and has been employed and evaluated (also, without verifying the
extraction) in previous works [Hawblitzel et al. 2015; Padon et al. 2016; Wilcox et al. 2015].

(2) The shim implementation follows the operational rules from Fig. 9 verbatim, and protocol
transitions are encoded in Disel as functions on the local state, so they are easy to extract and
execute. The shim, thus, provides an accurate implementation of the protocol-aware network
semantics.

Our fixpoint definition (available in our Coq sources) admits non-terminating executions, “approxi-
mating” them iteratively by sets of incomplete post-safe traces. It is extracted into OCaml’s general
fixpoint operator, with a somewhat ad-hoc tail-call optimisation described above in this Section.
This means that our logic proves only partial correctness: verified programs may loop at runtime,
but they will never violate the protocol.

Information hiding and separation. One might wonder, whether we can hide implementation-
specific parts of local state from the clients, e.g., when reasoning about other nodes’ implemen-
tations? At the moment any mutable state in Disel should be manifested in a protocol definition

(and, thus, known to all its users) and can be only altered by sending/receiving. This is why in the
examples, such as the memoizing calculator from Section 2.4, we model hidden state by passing a
functional argument. However, what the framework does allow one to do is to encode an auxiliary
protocol implementing a mutable storage, which, once joined (via ⊎) with its client protocol (e.g.,
calculator), does not have to be exposed to the clients of the latter one, similarly to how it is done
in the delegating calculator example.

To support a version of a “proper” hidden local mutable state (i.e., a heap with mutable pointers)
we would need to formulate a nested program logic with the corresponding low-level semantics
for state-manipulating programs—a direction we consider as interesting future work, with an idea
of adopting for this role Verifiable C by Appel et al. [2014].

6 RELATED AND FUTURE WORK

6.1 Program Logics for Concurrency

Disel builds on many ideas from modern program logics for compositional concurrency reasoning.
The notion of protocols (often called regions) in shared-memory concurrency logics [Dinsdale-
Young et al. 2010; Nanevski et al. 2014; Raad et al. 2015; Svendsen and Birkedal 2014; Turon et al.
2014, 2013] provides a “localized” version of more traditional Rely/Guarantee obligations [Jones
1983], which, in their original formulation, are not modular [Feng 2009; Feng et al. 2007; Vafeiadis
and Parkinson 2007]. The two closest to Disel logics employing protocols to reason about inter-
ference are FCSL by Nanevski et al. [2014] and GPS by Turon et al. [2014]. Besides those being
logics for shared-memory, rather than message-passing concurrency, protocols in FCSL and GPS
are tailored for the notion of ownership transfer [O’Hearn 2007], as a way to express exclusivity
of access to shared resources. Due to the lack of immediate synchronization between nodes in a
message-passing setting, we consider the notion of ownership to be of less use for most of the
systems of interest. That said, even though Disel does not feature explicit ownership transfer, it
can be easily encoded on a per-protocol basis, by defining a suitable local state and transitions.

Composition of modular proofs about protocols is a problem that has not received much attention
in modern concurrency logics. In FCSL, which tackles a similar challenge, in order to constrain inter-
protocol interaction, a user must set up her protocols with a very specific foresight of how they are

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 28. Publication date: January 2018.

28:26 Ilya Sergey, James R. Wilcox, and Zachary Tatlock

going to be composed with other protocols, defining intrinsic “ownership communication channels”
for all involved components, thus, effectively prohibiting unforeseen interaction scenarios. This is
not the case in Disel: as we have shown in Section 4, “core” and “client” protocols (e.g., TPC and
Query) can be developed and verified independently and then composed in joint applications via
extrinsic client-specified send-hooks.

The recent logical framework Iris [Jung et al. 2016, 2015] suggests to express protocols as a
specific case of resources, represented, in general, by partial commutative monoids, viewing state
reachability as a specific instance of framing [Reynolds 2002]. This generality does not buy much
for verifying distributed applications, as the resulting proof obligations are the same as when
proving inductive invariants. Having an explicit notion of protocols in the logic, though, allowed us
to provide the novel protocol-tailored rules WithInv and Frame (cf. Fig. 8), which enabled modular
invariant proofs and distributed systems composition.

A related logic by Villard et al. [2009] only considers protocols associated with specific message-
passing channels, rather than entire distributed systems. In Villard et al.’s logic, messages do not
carry any payload: they are simply tags, indicating ownership transfer of a certain heap portion in
the same shared memory space. It is not immediately obvious how to use Villard et al.’s specifica-
tions for locally asserting global properties of stateful distributed systems (e.g., the agreement of TPC
in Fig. 14) without considering all involved processes. In addition to that, Villard et al.’s logic does
not provide a mechanism for establishing inductive contract invariants. A recent framework Actor

Services by Summers and Müller [2016] provides abstractions similar to our protocol transitions,
but only allows to state local actor invariants, and lacks a formal metatheory and soundness proof.

To the best of our knowledge, none of the existing concurrency logics features both foundational
soundness proof (i.e., the proof that the entire logic, not just its toy subset, is sound as a verification
tool), and a mechanism to extract and run verified applications.

6.2 Types for Distributed Systems

Session Types [Honda et al. 1998] are traditionally used to ensure that distributed parties follow a
predefined communication protocolwrt. a specific channel. While themultiparty [Honda et al. 2008]
and multirole [Deniélou and Yoshida 2011] Session Types enable a form of system composition
and role-play, and dependent session types allow one to quantify over messages [Toninho et al.
2011], session types do not allow quantification over the global system state and reasoning out of
inductive invariants, neither do they allow restricted composition of protocols.

We believe that Disel’s combination of Hoare types and protocols provides the necessary level
of expressivity to capture rich safety properties of distributed applications. A similar approach has
been explored in F⋆ by Swamy et al. [2011], although that work did not reason about inductive
invariants separately from implementations, neither did it address composition of systems with
inter-protocol dependencies.

6.3 Verification of Large Systems

Recent work has verified implementations of core pieces of distributed systems infrastructure, both
by using specialized models and DSLs.

IronFleet [Hawblitzel et al. 2015] supports proving liveness in addition to safety, all embedded in
Dafny [Leino 2010]. IronFleet focuses on layered verification of standalone monolithic systems. In
those systems, each layer is a state-transition system (STS) specifying the system’s behavior at a
certain abstraction level, with the top-most layer expressing how a collection of nodes together
implement a high-level (e.g., shared-memory) specification, and the actual implementation, run by
the nodes, at the bottom. Adjacent layers are connected by establishing refinement between their
STSs via reduction [Lipton 1975], which often involves proving inductive invariants, similar to

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 28. Publication date: January 2018.

Programming and Proving with Distributed Protocols 28:27

what we have proven in Disel. In our understanding, such specifications do not allow for horizontal
composition, i.e., reasoning about interaction with separately verified systems in a client code.
Such an interaction has been, however, explored wrt. shared-memory concurrency by Gu et al.
[2016], who built a series of abstraction layers in a verified concurrent OS kernel. That work has
shown that establishing a refinement between a spec STSs and a family of interacting lower-level
STSs is possible, although the proofs are usually quite complex, as they involve reasoning about
semantics of a restricted product of STSs. In contrast with those systems, Disel’s logic does not
provide machinery to establish STS refinement, but rather explicitly identifies valid linearization
points [Herlihy and Wing 1990] in the implementations, as they correspond precisely to taken
protocol transitions. Abstract specifications and the corresponding system properties, usable by
client code, such as consensus, are encoded in Disel via parametrized Hoare types and abstract
predicates, as shown in Section 4.4.

Verdi [Wilcox et al. 2015; Woos et al. 2016] provides a form of vertical compositionality by means
of verified system transformers, which allow systems to be decomposed into layers of functionality
(e.g., sequence numbers or state machine replication). The Chapar framework by Lesani et al. [2016]
is tailored to causally consistent key-value stores, and also provides verified model checking for
client programs using the verified KV stores. Ivy is a tool to assist users in iteratively discovering
inductive invariants by finding counterexamples to induction [Padon et al. 2016]. PSync by Dragoi
et al. [2016] is a DSL allowing one to prove inductive invariants of consensus algorithms in
networks with potential faults, operating in a synchronous round-based model [Elrad and Francez
1982]. This assumption enables efficient proof automation, but prohibits low-level optimizations,
such as, e.g., batching. Mace by Killian et al. [2007] and DistAlgo by Liu et al. [2012] adopt an
asynchronous protocol model, similar to ours. Mace provides a suite of tools for generating and
model checking distributed systems, while DistAlgo allows extraction of efficient implementation
from a high-level protocol description. EventML is another DSL for verifying monolithic distributed
systems, based on compiling to the Logic of Events in Nuprl [Rahli et al. 2015]. None of these
frameworks tackles the challenges of modular reasoning about horizontally composed systems (2)
and elaborated protocols (3), stated in the introduction of this paper.

Arguably, our Two-Phase Commit implementation is a relatively small case study when com-
pared to the systems verified in IronFleet, Verdi, and EventML. Nevertheless, we are sure that,
given enough time and manpower, we can conduct safety proofs of Raft [Ongaro and Ousterhout
2014] and MultiPaxos [van Renesse and Altinbuken 2015] in Disel, as their implementations and
invariants are based on the same semantic primitives and reasoning principles that were employed
for TPC. We believe, though, that compositionality, afforded by Disel’s logical mechanisms, is a
key to make the results of future verification efforts reusable for building even larger verified
distributed ecosystems.

6.4 Future Work

We consider Disel as just the beginning of our journey towards building modularly verified and
highly reusable distributed implementations. Our next steps are to investigate more protocol
combinators, in addition to WithInv, establishing refinement, in the spirit of certified abstraction
layers [Gu et al. 2016], of the higher-level distributed models (e.g., round-based register by [Boichat
et al. 2003]) by current Disel’s protocols, formulated in terms of send/receive transitions. We are
also going to expand the language fragment for local node implementations with more imperative
features, such as exceptions and concurrency. We are planning to incorporate the ideas from
program logics to reason, in a modular way, about local system faults [Ntzik et al. 2015] and
liveness properties under fairness assumptions [Liang and Feng 2016]. Finally, we are going to
investigate possibilities for automating proofs of inductive invariants [Padon et al. 2017, 2016].

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 28. Publication date: January 2018.

28:28 Ilya Sergey, James R. Wilcox, and Zachary Tatlock

7 CONCLUSION

Almost two decades ago, Lamport [1998a] propounded the thesis Composition: a way to make

proofs harder, favoring mathematical models over program logics for real system verification: “in
1997, the unfortunate reality is that engineers rarely specify and reason formally about the systems they

build. [...] It seems unlikely that reasoning about the composition of open-system specifications will be

a practical concern within the next 15 years”. He was right: it took two decades of active research in
rigorous program verification, combining the strengths of mathematical models (protocols) and
program logics, to make compositional verification of open-world systems today’s reality.

ACKNOWLEDGMENTS

We thank Philippa Gardner, Alexey Gotsman, Yoichi Hirai, Ranjit Jhala, Luke Nelson, Karl Palmskog,
Daniel Ricketts, Doug Woos, and Nobuko Yoshida for their comments on earlier drafts of this
paper. We are grateful to the PLDI’17 reviewers, especially Reviewers C and E, for their feedback
regarding insufficient support for modularity in an earlier version of Disel, which forced us to
revise the approach and introduce the notion of send-hooks. We wish to acknowledge the feedback
by the OOPSLA’17 reviewers on the presentation. We thank the POPL’18 PC and AEC reviewers
for the careful reading and many constructive suggestions on the paper and the implementation.
Finally, we thank Éric Tanter for his dedication to bring out the best of the paper as our shepherd,
and Andrew C. Myers for his efforts as POPL’18 PC chair.

Sergey’s research was supported by EPSRC First Grant EP/P009271/1 “Program Logics for
Compositional Specification and Verification of Distributed Systems”. Tatlock’s research was
supported by a generous gift from Google. This material is based upon work supported by the
National Science Foundation Graduate Research Fellowship under Grant No. DGE-1256082. Any
opinion, findings, and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National Science Foundation.

REFERENCES

Martín Abadi and Leslie Lamport. 1988. The Existence of Refinement Mappings. In LICS. IEEE Computer Society, 165–175.
Mustaque Ahamad, Gil Neiger, James E. Burns, Prince Kohli, and Phillip W. Hutto. 1995. Causal Memory: Definitions,

Implementation, and Programming. Distributed Computing 9, 1 (1995), 37–49.
Andrew W. Appel. 2001. Foundational Proof-Carrying Code. In LICS. IEEE Computer Society, 247–256.
Andrew W. Appel, Robert Dockins, Aquinas Hobor, Lennart Beringer, Josiah Dodds, Gordon Stewart, Sandrine Blazy, and

Xavier Leroy. 2014. Program Logics for Certified Compilers. Cambridge University Press.
Romain Boichat, Partha Dutta, Svend Frølund, and Rachid Guerraoui. 2003. Deconstructing paxos. SIGACT News 34, 1

(2003), 47–67.
Stephen Brookes. 2007. A semantics for concurrent separation logic. Th. Comp. Sci. 375, 1-3 (2007).
Adam Chlipala. 2011. Mostly-automated verification of low-level programs in computational separation logic. In PLDI.

ACM, 234–245.
Coq Development Team. 2017. The Coq Proof Assistant Reference Manual - Version 8.6.
Pierre-Malo Deniélou and Nobuko Yoshida. 2011. Dynamic multirole session types. In POPL. ACM, 435–446.
Thomas Dinsdale-Young, Mike Dodds, Philippa Gardner, Matthew J. Parkinson, and Viktor Vafeiadis. 2010. Concurrent

Abstract Predicates. In ECOOP (LNCS), Vol. 6183. Springer, 504–528.
Cezara Dragoi, Thomas A. Henzinger, and Damien Zufferey. 2016. PSync: a partially synchronous language for fault-tolerant

distributed algorithms. In POPL. ACM, 400–415.
Tzilla Elrad and Nissim Francez. 1982. Decomposition of Distributed Programs into Communication-Closed Layers. Sci.

Comput. Program. 2, 3 (1982), 155–173.
Xinyu Feng. 2009. Local rely-guarantee reasoning. In POPL. ACM, 315–327.
Xinyu Feng, Rodrigo Ferreira, and Zhong Shao. 2007. On the Relationship Between Concurrent Separation Logic and

Assume-Guarantee Reasoning. In ESOP (LNCS), Vol. 4421. Springer, 173–188.
Georges Gonthier, Assia Mahboubi, and Enrico Tassi. 2009. A Small Scale Reflection Extension for the Coq system. Technical

Report 6455. Microsoft Research – Inria Joint Centre.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 28. Publication date: January 2018.

Programming and Proving with Distributed Protocols 28:29

Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao, Xiongnan Wu, Shu-Chun Weng, Haozhong Zhang, and
Yu Guo. 2015. Deep Specifications and Certified Abstraction Layers. In POPL. ACM, 595–608.

Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jieung Kim, Vilhelm Sjöberg, and David Costanzo. 2016.
CertiKOS: An Extensible Architecture for Building Certified Concurrent OS Kernels. In OSDI. USENIX Association,
653–669.

Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno, Michael L. Roberts, Srinath T. V. Setty, and
Brian Zill. 2015. IronFleet: proving practical distributed systems correct. In SOSP. ACM, 1–17.

Maurice Herlihy and Jeannette M. Wing. 1990. Linearizability: A Correctness Condition for Concurrent Objects. ACM
Trans. Program. Lang. Syst. 12, 3 (1990), 463–492.

Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. 1998. Language Primitives and Type Discipline for
Structured Communication-Based Programming. In ESOP (LNCS), Vol. 1381. Springer, 122–138.

Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008. Multiparty asynchronous session types. In POPL. ACM, 273–284.
Cliff B. Jones. 1983. Tentative Steps Toward a Development Method for Interfering Programs. ACM Trans. Program. Lang.

Syst. 5, 4 (1983), 596–619.
Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. 2016. Higher-order ghost state. In ICFP. ACM, 256–269.
Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris:

Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning. In POPL. ACM, 637–650.
Charles Edwin Killian, James W. Anderson, Ryan Braud, Ranjit Jhala, and Amin M. Vahdat. 2007. Mace: Language Support

for Building Distributed Systems. In PLDI. ACM, 179–188.
Gerwin Klein, June Andronick, Kevin Elphinstone, Gernot Heiser, David Cock, Philip Derrin, Dhammika Elkaduwe, Kai

Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. 2010. seL4: formal
verification of an operating-system kernel. Commun. ACM 53, 6 (2010), 107–115.

Thomas Kleymann. 1999. Hoare Logic and Auxiliary Variables. Formal Asp. Comput. 11, 5 (1999), 541–566.
Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. 2014. CakeML: a verified implementation of ML. In

POPL. ACM, 179–192.
Leslie Lamport. 1978. The Implementation of Reliable Distributed Multiprocess Systems. Computer Networks 2 (1978),

95–114.
Leslie Lamport. 1998a. Composition: A Way to Make Proofs Harder. In Compositionality: The Significant Difference,

International Symposium (LNCS), Vol. 1536. Springer, 402–423.
Leslie Lamport. 1998b. The Part-Time Parliament. ACM Trans. Comput. Syst. 16, 2 (1998), 133–169.
K. Rustan M. Leino. 2010. Dafny: An Automatic Program Verifier for Functional Correctness. In LPAR (LNCS), Vol. 6355.

Springer, 348–370.
Mohsen Lesani, Christian J. Bell, and Adam Chlipala. 2016. Chapar: certified causally consistent distributed key-value stores.

In POPL. ACM, 357–370.
Ruy Ley-Wild and Aleksandar Nanevski. 2013. Subjective auxiliary state for coarse-grained concurrency. In POPL. ACM,

561–574.
Hongjin Liang and Xinyu Feng. 2016. A program logic for concurrent objects under fair scheduling. In POPL. ACM, 385–399.
Richard J. Lipton. 1975. Reduction: A Method of Proving Properties of Parallel Programs. Commun. ACM 18, 12 (1975),

717–721.
Yanhong A. Liu, Scott D. Stoller, Bo Lin, and Michael Gorbovitski. 2012. From Clarity to Efficiency for Distributed Algorithms.

In OOPSLA. ACM, New York, NY, USA, 395–410.
Nancy A. Lynch and Frits W. Vaandrager. 1995. Forward and Backward Simulations: I. Untimed Systems. Inf. Comput. 121,

2 (1995), 214–233.
Assia Mahboubi and Enrico Tassi. 2017. Mathematical Components. Available at https://math-comp.github.io/mcb.
Aleksandar Nanevski, Ruy Ley-Wild, Ilya Sergey, and Germán Andrés Delbianco. 2014. Communicating State Transition

Systems for Fine-Grained Concurrent Resources. In ESOP (LNCS), Vol. 8410. Springer, 290–310.
Aleksandar Nanevski, Greg Morrisett, and Lars Birkedal. 2006. Polymorphism and separation in Hoare Type Theory. In

ICFP. ACM, 62–73.
Aleksandar Nanevski, Greg Morrisett, Avi Shinnar, Paul Govereau, and Lars Birkedal. 2008. Ynot: Dependent Types for

Imperative Programs. In ICFP. ACM Press, 229–240.
Aleksandar Nanevski, Viktor Vafeiadis, and Josh Berdine. 2010. Structuring the verification of heap-manipulating programs.

In POPL. ACM, 261–274.
Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, and Michael Deardeuff. 2015. How Amazon web

services uses formal methods. Commun. ACM 58, 4 (2015), 66–73.
Gian Ntzik, Pedro da Rocha Pinto, and Philippa Gardner. 2015. Fault-Tolerant Resource Reasoning. In APLAS (LNCS),

Vol. 9458. Springer, 169–188.
Peter W. O’Hearn. 2007. Resources, concurrency, and local reasoning. Th. Comp. Sci. 375, 1-3 (2007), 271–307.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 28. Publication date: January 2018.

https://math-comp.github.io/mcb

28:30 Ilya Sergey, James R. Wilcox, and Zachary Tatlock

Diego Ongaro and John K. Ousterhout. 2014. In Search of an Understandable Consensus Algorithm. In 2014 USENIX Annual

Technical Conference. 305–319.
Oded Padon, Giuliano Losa, Mooly Sagiv, and Sharon Shoham. 2017. Paxos made EPR: decidable reasoning about distributed

protocols. PACMPL 1, OOPSLA (2017), 108:1–108:31.
Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and Sharon Shoham. 2016. Ivy: safety verification by

interactive generalization. In PLDI. ACM, 614–630.
Azalea Raad, Jules Villard, and Philippa Gardner. 2015. CoLoSL: Concurrent Local Subjective Logic. In ESOP (LNCS),

Vol. 9032. Springer.
Vincent Rahli, David Guaspari, Mark Bickford, and Robert L. Constable. 2015. Formal Specification, Verification, and

Implementation of Fault-Tolerant Systems using EventML. In AVOCS. EASST.
John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data Structures. In LICS. IEEE Computer Society,

55–74.
Ilya Sergey. 2014. Programs and Proofs: Mechanizing Mathematics with Dependent Types. Lecture notes with exercises.

Available at http://ilyasergey.net/pnp.
Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. 2015. Mechanized Verification of Fine-grained Concurrent

Programs. In PLDI. ACM, 77–87.
Gordon Stewart, Lennart Beringer, Santiago Cuellar, and Andrew W. Appel. 2015. Compositional CompCert. In POPL. ACM,

275–287.
Alexander J. Summers and Peter Müller. 2016. Actor Services - Modular Verification of Message Passing Programs. In ESOP

(LNCS), Vol. 9632. Springer, 699–726.
Kasper Svendsen and Lars Birkedal. 2014. Impredicative Concurrent Abstract Predicates. In ESOP (LNCS), Vol. 8410. Springer,

149–168.
Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub, Karthikeyan Bhargavan, and Jean Yang. 2011. Secure

distributed programming with value-dependent types. In ICFP. ACM, 266–278.
Bernardo Toninho, Luís Caires, and Frank Pfenning. 2011. Dependent session types via intuitionistic linear type theory. In

PPDP. ACM, 161–172.
Aaron Turon, Viktor Vafeiadis, and Derek Dreyer. 2014. GPS: navigating weak memory with ghosts, protocols, and

separation. In OOPSLA. ACM, 691–707.
Aaron Joseph Turon, Jacob Thamsborg, Amal Ahmed, Lars Birkedal, and Derek Dreyer. 2013. Logical relations for

fine-grained concurrency. In POPL. ACM, 343–356.
Viktor Vafeiadis and Matthew J. Parkinson. 2007. A Marriage of Rely/Guarantee and Separation Logic. In CONCUR (LNCS),

Vol. 4703. Springer, 256–271.
Robbert van Renesse and Deniz Altinbuken. 2015. Paxos Made Moderately Complex. ACM Comput. Surv. 47, 3 (2015),

42:1–42:36.
Jules Villard, Étienne Lozes, and Cristiano Calcagno. 2009. Proving Copyless Message Passing. In APLAS (LNCS), Vol. 5904.

Springer, 194–209.
Gerhard Weikum and Gottfried Vossen. 2002. Transactional Information Systems: Theory, Algorithms, and the Practice of

Concurrency Control and Recovery. Morgan Kaufmann.
James R. Wilcox, Ilya Sergey, and Zachary Tatlock. 2017. Programming Language Abstractions for Modularly Verified

Distributed Systems. In SNAPL (LIPIcs), Vol. 71. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 19:1–19:12.
James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang, Michael D. Ernst, and Thomas E. Anderson.

2015. Verdi: a framework for implementing and formally verifying distributed systems. In PLDI. ACM, 357–368.
Doug Woos, James R. Wilcox, Steve Anton, Zachary Tatlock, Michael D. Ernst, and Thomas E. Anderson. 2016. Planning for

change in a formal verification of the Raft Consensus Protocol. In CPP. ACM, 154–165.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 28. Publication date: January 2018.

http://ilyasergey.net/pnp

	Abstract
	1 Introduction
	1.1 Towards Modular Distributed System Verification
	1.2 What is Disel?

	2 Overview
	2.1 Defining a Calculator Protocol
	2.2 From Protocols to Programs
	2.3 Elaborating State-Space Invariants of a Protocol
	2.4 More Implementations for Cheap
	2.5 Putting It All Together

	3 Distributed Separation Logic
	3.1 State and Worlds
	3.2 Language, Specifications and Selected Inference Rules
	3.3 Program Semantics and Logic Soundness

	4 Case Study: Two-Phase Commit and Its Client Application
	4.1 The Protocol: Intuition and Formalization
	4.2 Program Specification and Implementation
	4.3 Protocol Consistency and Inductive Invariant
	4.4 Composing Two-Phase Commit with a Querying Application using Hooks

	5 Implementation and Experience
	6 Related and Future Work
	6.1 Program Logics for Concurrency
	6.2 Types for Distributed Systems
	6.3 Verification of Large Systems
	6.4 Future Work

	7 Conclusion
	Acknowledgments
	References

