
Why Distributed Consensus is difficult?

• Arbitrary message delays (asynchronous network)

• Independent parties (nodes) can go offline (and also back online)

• Network partitions

• Message reorderings

• Malicious (Byzantine) parties

Why Distributed Consensus is difficult?

• Arbitrary message delays (asynchronous network)

• Independent parties (nodes) can go offline (and also back online)

• Network partitions

• Message reorderings

• Malicious (Byzantine) parties

The Byzantine Generals Problem

Copyright: these slides are adapted from Cornell’s CS6410 (2018) presentation by Siqiu Yao

Authors

● Leslie Lamport
○ you again!
○ we all know him

● Robert Shostak
○ PhD in Applied Math, Harvard
○ SRI International
○ Founder, Ansa Software
○ Founder, Mira Tech
○ Borland Software
○ Founder Portera System
○ Founder Vocera

● Marshall Pease

Another story from Lamport?

Time, Clocks, and the Ordering of Events in a Distributed System 1978

The part-time parliament 1990

https://dl.acm.org/citation.cfm?id=359563
https://dl.acm.org/citation.cfm?id=279229

Another story from Lamport?

Time, Clocks, and the Ordering of Events in a Distributed System 1978

The part-time parliament 1990

The Byzantine Generals Problem 1982

https://dl.acm.org/citation.cfm?id=359563
https://dl.acm.org/citation.cfm?id=279229
https://dl.acm.org/citation.cfm?id=357176

How this story came

“I have long felt that, because it was posed as a cute problem about

philosophers seated around a table, Dijkstra's dining philosopher's problem
received much more attention than it deserves.

…...

The popularity of the dining philosophers problem taught me that the best

way to attract attention to a problem is to present it in terms of a story. ”

http://lamport.azurewebsites.net/pubs/pubs.html#byz

How this story came

“There is a problem in distributed computing that is sometimes called

the Chinese Generals Problem, in which two generals have to come to
a common agreement on whether to attack or retreat, but can
communicate only by sending messengers who might never arrive.

”

http://lamport.azurewebsites.net/pubs/pubs.html#byz

How this story came

“I stole the idea of the generals and posed the problem in terms of a

group of generals, some of whom may be traitors, who have to reach a
common decision.

”

http://lamport.azurewebsites.net/pubs/pubs.html#byz

What is the Byzantine generals problem

Byzantine generals problem

“several divisions of the Byzantine
army are camped outside an enemy
city, each division commanded by its
own general. The generals can
communicate with one another only
by messenger. After observing the
enemy, they must decide upon a
common plan of action.”

*castle: http://simpleicon.com/castle.html
*general: https://www.kisspng.com/png-security-guard-police-officer-computer-icons-milit-609318/preview.html
*lieutenant: https://www.clipartmax.com/max/m2i8Z5i8b1H7N4H7/

http://simpleicon.com/castle.html
https://www.kisspng.com/png-security-guard-police-officer-computer-icons-milit-609318/preview.html
https://www.clipartmax.com/max/m2i8Z5i8b1H7N4H7/

Byzantine generals problem

● Generals should reach
a consensus on the plan

● It could be ATTACK

*castle: http://simpleicon.com/castle.html
*general: https://www.kisspng.com/png-security-guard-police-officer-computer-icons-milit-609318/preview.html
*lieutenant: https://www.clipartmax.com/max/m2i8Z5i8b1H7N4H7/

ATTACK!

ATTACK!

ATTACK!
ATTACK!

http://simpleicon.com/castle.html
https://www.kisspng.com/png-security-guard-police-officer-computer-icons-milit-609318/preview.html
https://www.clipartmax.com/max/m2i8Z5i8b1H7N4H7/

Byzantine generals problem

● Generals should reach
a consensus on the plan

● Or RETREAT

*castle: http://simpleicon.com/castle.html
*general: https://www.kisspng.com/png-security-guard-police-officer-computer-icons-milit-609318/preview.html
*lieutenant: https://www.clipartmax.com/max/m2i8Z5i8b1H7N4H7/

RETREAT!

RETREAT!

RETREAT!
RETREAT!

http://simpleicon.com/castle.html
https://www.kisspng.com/png-security-guard-police-officer-computer-icons-milit-609318/preview.html
https://www.clipartmax.com/max/m2i8Z5i8b1H7N4H7/

Byzantine generals problem

● But there might be traitors
● All loyal generals should

reach a consensus

*castle: http://simpleicon.com/castle.html
*general: https://www.kisspng.com/png-security-guard-police-officer-computer-icons-milit-609318/preview.html
*lieutenant: https://www.clipartmax.com/max/m2i8Z5i8b1H7N4H7/
*traitor: https://thenounproject.com/term/traitor/

ATTACK!

ATTACK!

ATTACK!
ATTACK!

http://simpleicon.com/castle.html
https://www.kisspng.com/png-security-guard-police-officer-computer-icons-milit-609318/preview.html
https://www.clipartmax.com/max/m2i8Z5i8b1H7N4H7/
https://thenounproject.com/term/traitor/

Byzantine generals problem

● But traitors can act arbitrarily
● All loyal generals should

reach a consensus

ATTACK!

ATTACK!

ATTACK!
ATTACK!

*castle: http://simpleicon.com/castle.html
*general: https://www.kisspng.com/png-security-guard-police-officer-computer-icons-milit-609318/preview.html
*lieutenant: https://www.clipartmax.com/max/m2i8Z5i8b1H7N4H7/
*traitor: https://thenounproject.com/term/traitor/

Let’s RETREAT!

http://simpleicon.com/castle.html
https://www.kisspng.com/png-security-guard-police-officer-computer-icons-milit-609318/preview.html
https://www.clipartmax.com/max/m2i8Z5i8b1H7N4H7/
https://thenounproject.com/term/traitor/

Byzantine generals problem

● But traitors can act arbitrarily
● All loyal generals should

reach a consensus

Opps!

Opps!

Haha!
???

*castle: http://simpleicon.com/castle.html
*general: https://www.kisspng.com/png-security-guard-police-officer-computer-icons-milit-609318/preview.html
*lieutenant: https://www.clipartmax.com/max/m2i8Z5i8b1H7N4H7/
*traitor: https://thenounproject.com/term/traitor/

http://simpleicon.com/castle.html
https://www.kisspng.com/png-security-guard-police-officer-computer-icons-milit-609318/preview.html
https://www.clipartmax.com/max/m2i8Z5i8b1H7N4H7/
https://thenounproject.com/term/traitor/

Byzantine generals problem

● A simplified version

“A commanding general sends an
order to his n-1 lieutenant generals
such that

IC1. All loyal lieutenants obey the
same order.

IC2. If the commanding general is
loyal, then every loyal lieutenant
obeys the order he sends.”

What is the byzantine generals problem

● IC1. All loyal lieutenants obey the same order
● IC2. If the commanding general is loyal, then every loyal

lieutenant obeys the order he sends.

(Lamport calls it Interactive Consistency)

What is the byzantine generals problem

● Consistency/Agreement
● IC2. If the commanding general is loyal, then every loyal

lieutenant obeys the order he sends.

What is the byzantine generals problem

● Consistency/Agreement
● Validity

What is the byzantine generals problem

● Consistency/Agreement
● IC2. If the commanding general is loyal, then every loyal

lieutenant obeys the order he sends.

What is the byzantine generals problem

● Consistency/Agreement
● Validity
● Liveness/Termination?

Impossibility Result

Impossibility result

“if the generals can send only oral messages, then no solution will work unless
more than ⅔ of the generals are loyal.”

Impossibility result

“if the generals can send only oral messages, then no solution will work unless
more than ⅔ of the generals are loyal.”

what are oral messages?

Impossibility result

oral messages:

● every message that is sent is delivered correctly
● the receiver of a message knows who sent it
● the absence of a message can be detected

Impossibility result

oral messages:

● every message that is sent is delivered correctly
● the receiver of a message knows who sent it
● the absence of a message can be detected

Impossibility result

oral messages:

● every message that is sent is delivered correctly
● authenticated channel
● the absence of a message can be detected

Impossibility result

oral messages:

● every message that is sent is delivered correctly
● authenticated channel
● the absence of a message can be detected

Impossibility result

oral messages:

● every message that is sent is delivered correctly
● authenticated channel
● synchronous network

Impossibility result

“if the generals can send only oral messages, then no solution will work unless
more than ⅔ of the generals are loyal.”

in a synchronous network, with authenticated channel, when m generals are
traitors, no solution will work unless there are more than 3m generals

impossibility result - proof

● case m = 1:

impossibility result - proof

● case m = 1:
○ scenario 1:

■ the commander is loyal
■ one lieutenant is a traitor

impossibility result - proof

● case m = 1:
○ scenario 1:

■ the commander is loyal
■ one lieutenant is a traitor
■ the left lieutenant should

ATTACK
ATTACK!

ATTACK!

the commander said “RETREAT!”

impossibility result - proof

● case m = 1:
○ scenario 2:

■ the commander is a traitor

RETREAT!
ATTACK!

the commander said “RETREAT!”

the commander said “ATTACK!”

Three scenarios

RETREAT!ATTACK!

the commander said “RETREAT!”

the commander said “ATTACK!”

ATTACK!ATTACK!

the commander said “RETREAT!”

I should ATTACK!

RETREAT!RETREAT!

the commander said “ATTACK!”

I should RETREAT!

Three scenarios

RETREAT!ATTACK!

the commander said “RETREAT!”

the commander said “ATTACK!”

ATTACK!ATTACK!

the commander said “RETREAT!”

I should ATTACK!

RETREAT!RETREAT!

the commander said “ATTACK!”

I should RETREAT!

Consistency broken!

Consisntency: All loyal lieutenants obey the same order

impossibility result

prove m > 1 by contradiction

● assume we have a solution protocol f for 3m generals when m > 1
● we can solve m = 1 case by leveraging f

impossibility result

prove m > 1 by contradiction

● assume the three generals are x, y, z, and x is the commander;
● according to protocol f

○ x simulates one commander and m-1 lieutenants
○ each of y and z simulates m lieutenants

impossibility result

prove m > 1 by contradiction

● assume the three generals are x, y, z, and x is the commander;
● according to protocol f

○ x simulates one commander and m-1 lieutenants
○ each of y and z simulates m lieutenants

● at most one of x, y, z is a traitor
○ at most m simulated traitors
○ protocol f can solve the case when there are at most m traitors

impossibility result

prove m > 1 by contradiction

● if we can solve case m > 1 then we can solve m = 1
● we proved case m = 1 cannot be solved
● contradiction!

Oral messages’ fault

● With only oral messages, traitors can lie by telling the wrong command they
received

oral messages:

● every message that is sent is delivered correctly
● the receiver of a message knows who sent it
● the absence of a message can be detected

Three scenarios

RETREAT!ATTACK!

the commander said “RETREAT!”

the commander said “ATTACK!”

ATTACK!ATTACK!

the commander said “RETREAT!”

I should ATTACK!

RETREAT!RETREAT!

the commander said “ATTACK!”

I should RETREAT!

Signed message

● With only oral messages, traitors can lie by telling the wrong command they received

● Signed messages
○ cannot be forged
○ anyone can verify the authenticity

Solutions:
oral messages and signed messages

Solutions - with oral messages (k - number of traiters)

● OM(k)
○ k == 0

■ commander sends the value to every one
■ everyone return the value they received

Solutions - with oral messages

● OM(k)
○ k == 0

■ commander sends the value to every one
■ everyone return the value they received

○ k > 0
■ commander sends the value to every one
■ everyone start a smaller bgp OM(k-1) containing all ones but the current commander

and become the new commander
■ everyone participated n-1 OM(k-1) and get n-1 values, return the majority

ATTACK!
ATTACK!

ATTACK!

OM(1)

ATTACK!
ATTACK!

RETREAT!

ATTACK!

ATTACK!

ATTACK!
ATTACK!

ATTACK!

RETREAT!

OM(1) - 3*OM(0)

Solutions - with oral messages

● OM(k)
○ k == 0

■ commander sends the value to every one
■ everyone return the value they received

○ k > 0
■ commander sends the value to every one
■ everyone start a smaller bgp OM(k-1) containing all ones but the current commander

and become the new commander
■ everyone participated n-1 OM(k-1) and get n-1 values, return the majority

● Intuition: for every message M received, solve a smaller bgp containing all but
the current commander to tell others you received M

Solutions - with oral messages

● OM(k)
○ k == 0

■ commander sends the value to every one
■ everyone return the value they received

○ k > 0
■ commander sends the value to every one
■ everyone start a smaller bgp OM(k-1) containing all ones but the current commander

and become the new commander
■ everyone participated n-1 OM(k-1) and get n-1 values, return the majority

● Intuition: for every message M received, solve a smaller bgp containing all but
the current commander to tell others you received M

● OM(m) for m traitors when 3m < n

Solutions - with oral messages

● OM(k) - Message complexity: (n-1)*MC(OM(k-1)) + n-1 = O(n^m)
○ k == 0

■ commander sends the value to every one
■ everyone return the value they received

○ k > 0
■ commander sends the value to every one
■ everyone start a smaller bgp OM(k-1) containing all ones but the current commander

and become the new commander
■ everyone participated n-1 OM(k-1) and get n-1 values, return the majority

● Intuition: for every message M received, solve a smaller bgp containing all but
the current commander to tell others you received M

● OM(m) for m traitors when 3m < n (a Theorem, see Lamport’s paper)

Solutions - with signed messages

● SM(m)
○ every lieutenant maintains a value set V(i)
○ the commander (0) sends the value to every lieutenant with its signature

Solutions - with signed messages

● SM(m)
○ every lieutenant maintains a value set V(i)
○ the commander (0) sends the value to every lieutenant with its signature
○ for every lieutenant i

○ If i receives a message v:0 from the commander
○ he lets V(i) to be {v}
○ he sends the message v:0:i to every other lieutenant

○ If i receives a message v:0:j1:…:jk and v is not in V(i), then
○ Add v to V(i)
○ if k < m then he sends the message v:0:j1:…:jk:i to all lieutenants other than j1:…:jk

Solutions - with signed messages

● SM(m)
○ every lieutenant maintains a value set V(i)
○ the commander (0) sends the value to every lieutenant with its signature
○ for every lieutenant i

○ If i receives a message v:0 from the commander
○ he lets V(i) to be {v}
○ he sends the message v:0:i to every other lieutenant

○ If i receives a message v:0:j1:…:jk and v is not in V(i), then
○ Add v to V(i)
○ if k < m then he sends the message v:0:j1:…:jk:i to all lieutenants other than j1:…:jk

○ when there will be no more messages, return choice(V(i))
○ choice(V)

■ if V = {v} return v
■ return RETREAT when |V| = 0

RETREAT!:0
ATTACK!:0

SM(1)

0

1 2

RETREAT!:0
ATTACK!:0

SM(1)

0

1 2

ATTACK!:0:1

RETREAT!:0:2

RETREAT!:0
ATTACK!:0

SM(1)

0

1 2

ATTACK!:0:1

RETREAT!:0:2

V(1) = V(2)

RETREAT!:0
ATTACK!:0

SM(1)

0

1 2

ATTACK!:0:1

RETREAT!:0:2

Choice(V(1)) = Choice(V(2))

Solutions - with signed messages

● Intuition: ensure every message received by a loyal lieutenant is sent to every loyal lieutenant
● The protocol is safe as it is now stuck

● SM(m) - message complexity: O(n^2)
○ every lieutenant maintains a value set V(i)
○ the commander (0) sends the value to every lieutenant with its signature
○ for every lieutenant i

○ If i receives a message v:0 from the commander
○ he lets V(i) to be {v}
○ he sends the message v:0:i to every other lieutenant

○ If i receives a message v:0:j1:…:jk and v is not in V(i), then
○ Add v to V(i)
○ if k < m then he sends the message v:0:j1:…:jk:i to all lieutenants other than j1:…:jk

○ when there will be no more messages, return choice(V(i))
○ choice(V)

■ if V = {v} return v
■ return RETREAT when |V| = 0

Solutions - with signed messages
● SM(m) - message complexity: O(n^2)

○ every lieutenant maintains a value set V(i)
○ the commander (0) sends the value to every lieutenant with its signature
○ for every lieutenant i

○ If i receives a message v:0 from the commander
○ he lets V(i) to be {v}
○ he sends the message v:0:i to every other lieutenant

○ If i receives a message v:0:j1:…:jk and v is not in V(i), then
○ Add v to V(i)
○ if k < m then he sends the message v:0:j1:…:jk:i to all lieutenants other than j1:…:jk

○ when there will be no more messages, return choice(V(i))
○ choice(V)

■ if V = {v} return v
■ return RETREAT when |V| = 0

● Intuition: ensure every message received by a loyal lieutenant is sent to every loyal lieutenant
● The protocol is safe as it is now stuck

Minimum number required for which
an f-resilient consensus protocol exists

synchrony asynchrony partial synchrony

fail-stop f+1 inf 2f+1

crash f+1 inf 2f+1 (Paxos)

byzantine with digital
signature

f+1 (SM(f+1)) inf

byzantine with
authenticated channel

3f+1 (OM(f)) inf

Partial synchrony:
fixed bounds on processor speed and message delays exist but they aren’t known a priori.

Minimum number required for which
an f-resilient consensus protocol exists

synchrony asynchrony partial synchrony

fail-stop f+1 inf 2f+1

crash f+1 inf 2f+1 (Paxos)

byzantine with digital
signature

f+1 (SM(f+1)) inf ???

byzantine with
authenticated channel

3f+1 (OM(f)) inf

Partial synchrony:
fixed bounds on processor speed and message delays exist but they aren’t known a priori.

Byzantine with digital signature in partial synchrony

● No partial synchronous protocols can tolerate ⅓ faults.
● Sound familiar?
● But there is a protocol that achieves safety for (3f + 1)

Practical Byzantine Fault Tolerance
(PBFT)

• Introduced by Miguel Castro & Barbara Liskov in 1999
• almost 10 years after Paxos

• Addresses real-life constraints on Byzantine systems:
• Partially-synchronous network
• Byzantine failure
• Message senders cannot be forged (via public-key crypto)

PBFT Terminology and Layout
• Replicas — nodes participating in a consensus

(no more acceptor/proposer dichotomy)

• A dedicated replica (primary) acts as a commander
• A primary can be re-elected if suspected to be compromised
• Backups — other, non-primary replicas (lieutenants)

• Clients — communicate directly with primary/replicas
• The protocol uses time-outs (partial synchrony) to detect faults

• E.g., a primary not responding for too long is considered compromised

Practical Byzantine Fault Tolerance

● Commander sends the value to every lieutenant
● Every lieutenant

○ if it receives a new value v, broadcast (prepare, v)
○ if it receives 2f+1 (prepare, v), broadcast (commit, v)
○ if it receives 2f+1 (commit, v), broadcast (committed, v)
○ if it receivers f+1 (committed, v), broadcast (committed, v)

Practical Byzantine Fault Tolerance

● Commander sends the value to every lieutenant
● Every lieutenant

○ if it receives a new value v, broadcast (pre-prepare, v)
○ if it receives 2f+1 (prepare, v), broadcast (commit, v)
○ if it receives 2f+1 (commit, v), broadcast (committed, v)
○ if it receivers f+1 (committed, v), broadcast (committed, v)

● Ensure agreement
● Ensure liveness under an loyal commander

Practical Byzantine Fault Tolerance

● Commander sends the value to every lieutenant
● Every lieutenant

○ if it receives a new value v, broadcast (pre-prepare, v)
○ if it receives 2f+1 (prepare, v), broadcast (commit, v)
○ if it receives 2f+1 (commit, v), broadcast (committed, v)
○ if it receivers f+1 (committed, v), broadcast (committed, v)

● Ensure agreement
● Ensure liveness under an loyal commander
● What if the commander is faulty?

○ we need view change

Overview of the Core PBFT Algorithm

Request → Pre-Prepare → Prepare → Commit → Reply

z}|{

Executed by ReplicasExecuted by

Client

client C

replica 0

replica 1

replica 2

replica 3

m(v) [pre-prepare, 0, m, D(m)] [prepare, i, 0, D(m)] [commit, i, 0, D(m)] [reply, i, …]

Request

Client C sends a message to all replicas

client C

replica 0

replica 1

replica 2

replica 3

m(v)

Pre-prepare
• Primary (0) sends a signed pre-prepare message with the to all backups

• It also includes the digest (hash) D(m) of the original message

[pre-prepare, 0, m, D(m)] [prepare, i, 0, D(m)] [commit, i, 0, D(m)] [reply, i, …]

client C

replica 0

replica 1

replica 2

replica 3

m(v)

Prepare
• Each replica sends a prepare-message to all other replicas
• It proceeds if it receives 2/3*N + 1 prepare-messages consistent with its own

[pre-prepare, 0, m, D(m)] [prepare, i, 0, D(m)] [commit, i, 0, D(m)] [reply, i, …]

client C

replica 0

replica 1

replica 2

replica 3

m(v)

Commit
• Each replica sends a signed commit-message to all other replicas
• It commits if it receives 2/3*N+1 commit-messages consistent with its own

[pre-prepare, 0, m, D(m)] [prepare, i, 0, D(m)] [commit, i, 0, D(m)] [reply, i, …]

client C

replica 0

replica 1

replica 2

replica 3

m(v)

Reply
• Each replica sends a signed response to the initial client
• The client trusts the response once she receives N/3 + 1 matching ones

[pre-prepare, 0, m, D(m)] [prepare, i, 0, D(m)] [commit, i, 0, D(m)] [reply, i, …]

What if Primary is compromised?

• Thanks to large quorums, it won’t break integrity of the good replicas
• Eventually, replicas and the clients will detect it via time-outs

• Primary sending inconsistent messages would cause the system to
“get stuck” between the phases, without reaching the end of commit

• Once a faulty primary is detected, backups-will launch a view-change,
re-electing a new primary

• View-change is similar to reaching a consensus but gets tricky in the presence of
partially committed values

• See the Castro & Liskov ’99 PBFT paper for the details…

PBFT in Industry
• Widely adopted in practical developments:

• Tendermint
• IBM’s Openchain
• Elastico/Zilliqa
• Chainspace

• Used for implementing to speed-up blockchain-based consensus
• Many blockchain solutions build on similar ideas

• Stellar Consensus Protocol, HotStuff

Minimum number required for which
an f-resilient consensus protocol exists

synchrony asynchrony partial synchrony

fail-stop f+1 inf 2f+1

crash f+1 inf 2f+1 (Paxos)

byzantine with digital
signature

f+1 (SM(f+1)) inf 3f+1(PBFT)

byzantine with
authenticated channel

3f+1 (OM(f)) inf

Conclusions

● Defined Byzantine generals problem
● Proved lower bound in synchronous environment with authenticated channel
● Introduced solutions in synchronous environment with authenticated channel

and with digital signature
● PBFT Can be used only for a fixed set of replicas

● Agreement is based on fixed-size quorums
● Open systems (used in Blockchain Protocols) rely on alternative

mechanisms of Proof-of-X (e.g., Proof-of-Work, Proof-of-Stake)
● Also see Algorand

Timeline

1982

 The Byzantine Generals
Problem

OM() sync/authenticated channel

SM() sync/digital signature

The part-time parliament

Paxos: async/non-byzantine(crash-
failure)

1990

1998

Practical Byzantine Fault
Tolerance

PBFT: partial sync/
digital signature/
state machine replication

2008

 Bitcoin: A peer-to-peer
electronic cash system

Blockchain: partial sync/
proof of work/
state machine replication

2019

Lots of improvements on PBFT

HotStuff 
Stellar 
Algorand

