
Linearizability: 
A method to specify concurrent 

and distributed objects
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Concurrent Computation

memory

object object
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Objectivism

• What is a concurrent object? 
– How do we describe one? 
– How do we implement one? 
– How do we tell if we’re right?
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Objectivism

• What is a concurrent object? 
– How do we describe one? 

– How do we tell if we’re right?
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FIFO Queue: Enqueue Method

q.enq( )
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FIFO Queue: Dequeue Method

q.deq()/
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Lock-Based Queue

head
tail0
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Lock-Based Queue

head
tail0

2

1

5 4

3

capacity = 8
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6

Fields protected by 
single shared lock

yx



class LockBasedQueue[T: ClassTag] 
  (val capacity: Int) extends MyQueue[T] { 
   
  private var head, tail: Int = 0  
  private val items = new Array[T](capacity) 
  private val myLock = new ReentrantLock()

9

     A Lock-Based Queue



class LockBasedQueue[T: ClassTag] 
  (val capacity: Int) extends MyQueue[T] { 
   
  private var head, tail: Int = 0  
  private val items = new Array[T](capacity) 
  private val myLock = new ReentrantLock()
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     A Lock-Based Queue

Fields protected by 
single shared lock
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capacity-1

2

head tail

y z
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Lock-Based Queue

head

tail

0

2

1

5 4

3

Initially: head = tail

7

6



class LockBasedQueue[T: ClassTag] 
  (val capacity: Int) extends MyQueue[T] { 
   
  private var head, tail: Int = 0  
  private val items = new Array[T](capacity) 
  private val myLock = new ReentrantLock()
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Initially head = tail

0 1
capacity-1

2

head tail

y z

Lock-Based Queue
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Lock-Based deq()

head
tail0

2

5 4

7

36

1
yx
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Acquire Lock

head
tail0

2

5 4

7

36

yx

1

Waiting to 
enqueue… 

My turn …
yx



def deq() : T = { 
  myLock.lock() 
  try { 
    if (tail == head) { 
      throw EmptyException 
    } 
    val x = items(head % items.length) 
    head = head + 1 
    x 
  } finally { 
    myLock.unlock() 
  } 
}
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0 1
capacity-1

2

head tail

y z

Implementation: deq()



def deq() : T = { 
  myLock.lock() 
  try { 
    if (tail == head) { 
      throw EmptyException 
    } 
    val x = items(head % items.length) 
    head = head + 1 
    x 
  } finally { 
    myLock.unlock() 
  } 
}
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Acquire lock at 
method start

0 1
capacity-1

2

head tail

y z

Implementation: deq()
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Check if Non-Empty

head
tail0

2

5 4

7

36

1

yx
Waiting to 
enqueue… 

Not 
equal?



def deq() : T = { 
  myLock.lock() 
  try { 
    if (tail == head) { 
      throw EmptyException 
    } 
    val x = items(head % items.length) 
    head = head + 1 
    x 
  } finally { 
    myLock.unlock() 
  } 
}
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If queue empty
throw exception

0 1
capacity-1

2

head tail

y z

Implementation: deq()
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Modify the Queue

head
tail0

2

1

5 4

7

36

head

Waiting to 
enqueue… 

yx



def deq() : T = { 
  myLock.lock() 
  try { 
    if (tail == head) { 
      throw EmptyException 
    } 
    val x = items(head % items.length) 
    head = head + 1 
    x 
  } finally { 
    myLock.unlock() 
  } 
}

20

Queue not empty?
Remove item and update head

Implementation: deq()

0 1
capacity-1

2

head tail

y z



def deq() : T = { 
  myLock.lock() 
  try { 
    if (tail == head) { 
      throw EmptyException 
    } 
    val x = items(head % items.length) 
    head = head + 1 
    x 
  } finally { 
    myLock.unlock() 
  } 
}
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Return result

0 1
capacity-1

2

head tail

y z

Implementation: deq()



def deq() : T = { 
  myLock.lock() 
  try { 
    if (tail == head) { 
      throw EmptyException 
    } 
    val x = items(head % items.length) 
    head = head + 1 
    x 
  } finally { 
    myLock.unlock() 
  } 
}
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Implementation: deq()

Release lock no 
matter what!

0 1
capacity-1

2

head tail

y z



def deq() : T = { 
  myLock.lock() 
  try { 
    if (tail == head) { 
      throw EmptyException 
    } 
    val x = items(head % items.length) 
    head = head + 1 
    x 
  } finally { 
    myLock.unlock() 
  } 
}

23

Should be correct because

modifications are mutually exclusive…

Implementation: deq()
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Release the Lock
tail0

2

1

5 4

7

36

y

x

head

Waiting…
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Release the Lock
tail0

2

1

5 4

7

36

y

x

head

My turn!
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Now consider the following implementation

• The same thing without mutual exclusion 
• For simplicity, only two threads  

– One thread enq only 
– The other deq only
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Wait-free 2-Thread Queue

head
tail0

2

1

5 4

7

36

yx

capacity = 8
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tail0

2

5 4

7

36

yx

1

enq(z)
deq()

z

head

Wait-free 2-Thread Queue
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head
tail0

2

5 4

7

36

y
1

queue[tail] = zresult = x

z

x

Wait-free 2-Thread Queue
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tail0

2

5 4

7

36

y
1

tail++
head++ 

z

head

x

Wait-free 2-Thread Queue



class LockFreeQueue[T: ClassTag](val capacity: Int) { 

  @volatile 
  private var head, tail: Int = 0 
  private val items = new Array[T](capacity) 

  def enq(x: T): Unit = { 
    if (tail - head == items.length) throw FullException 
    items(tail % items.length) = x 
    tail = tail + 1 
  } 

  def deq(): T = { 
    if (tail == head) throw EmptyException 
    val x = items(head % items.length) 
    head = head + 1 
    x 
  } 
}
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0 1
capacity-1

2

head tail

y z

Wait-free 2-Thread Queue



class LockFreeQueue[T: ClassTag](val capacity: Int) { 

  @volatile 
  private var head, tail: Int = 0 
  private val items = new Array[T](capacity) 

  def enq(x: T): Unit = { 
    if (tail - head == items.length) throw FullException 
    items(tail % items.length) = x 
    tail = tail + 1 
  } 

  def deq(): T = { 
    if (tail == head) throw EmptyException 
    val x = items(head % items.length) 
    head = head + 1 
    x 
  } 
}
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No lock needed!

Wait-free 2-Thread Queue
0 1

capacity-1
2

head tail

y z



class LockFreeQueue[T: ClassTag](val capacity: Int) { 

  @volatile 
  private var head, tail: Int = 0 
  private val items = new Array[T](capacity) 

  def enq(x: T): Unit = { 
    if (tail - head == items.length) throw FullException 
    items(tail % items.length) = x 
    tail = tail + 1 
  } 

  def deq(): T = { 
    if (tail == head) throw EmptyException 
    val x = items(head % items.length) 
    head = head + 1 
    x 
  } 
}
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How do we define “correct” when 

modifications are not mutually exclusive? 

Wait-free 2-Thread Queue
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What is a Concurrent Queue? 

• Need a way to specify a concurrent queue object 

• Need a way to prove that an algorithm implements  
the object’s specification 

• Lets talk about object specifications …



Correctness and Progress

• In a concurrent setting, we need to specify both the safety 
and the liveness properties of an object 

• Need a way to define  
– when an implementation is correct 
– the conditions under which it guarantees progress
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Lets begin with correctness
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Sequential Objects

• Each object has a state 
– Usually given by a set of fields 
– Queue example: sequence of items 

• Each object has a set of methods 
– Only way to manipulate state 
– Queue example: enq and deq methods
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Sequential Specifications
• If (precondition)  

– the object is in such-and-such a state 
– before you call the method, 

• Then (postcondition, result) 
– the method will return a particular value 
– or throw a particular exception, 

• and (postcondition, state) 
– the object will be in some other state 
– when the method returns 
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Pre and PostConditions for Dequeue

• Precondition: 
– Queue is non-empty 

• Postcondition (result): 
– Returns first item in queue 

• Postcondition (state): 
– Removes first item in queue
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Pre and PostConditions for Dequeue

• Precondition: 
– Queue is empty 

• Postcondition (result): 
– Throws Empty exception 

• Postcondition (state): 
– Queue state unchanged
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Why Sequential Specifications Totally Rock

• Interactions among methods captured by side-effects on object state 
– State meaningful between method calls 

• Documentation size linear in number of methods 
– Each method described in isolation 

• Can add new methods 
– Without changing descriptions of old methods
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What About Concurrent Specifications ?

• Methods?  
• Documentation? 
• Adding new methods? 
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Methods Take Time

timetime
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Methods Take Time

time

invocation 
12:00

q.enq(...)

time
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Methods Take Time

time

Method call

invocation 
12:00

time

q.enq(...)



invocation 
12:00

45

Methods Take Time

time

Method call

time

q.enq(...)
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Methods Take Time

time

Method call

invocation 
12:00

time

void

response 
12:01

q.enq(...)



47

Sequential vs Concurrent

• Sequential 
– Methods take time? Who knew? 

• Concurrent 
– Method call is not an event 
– Method call is a sequence of interval events.
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time

Concurrent Methods Take Overlapping Time

time
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time

Concurrent Methods Take Overlapping Time

time

Method call
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time

Concurrent Methods Take Overlapping Time

time

Method call

Method call
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time

Concurrent Methods Take Overlapping Time

time

Method call Method call

Method call
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Sequential vs Concurrent

• Sequential: 
– Object needs meaningful state only between method calls 

• Concurrent 
– Because method calls overlap,  

object might never be between method calls
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Sequential vs Concurrent

• Sequential: 
– Each method described in isolation 

• Concurrent 
– Must characterize all possible interactions with concurrent calls  

• What if two enq() calls overlap? 
• Two deq() calls? enq() and deq()? …
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Sequential vs Concurrent

• Sequential: 
– Can add new methods without affecting older methods 

• Concurrent: 
– Everything can potentially interact with everything else
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Sequential vs Concurrent

• Sequential: 
– Can add new methods without affecting older methods 

• Concurrent: 
– Everything can potentially interact with everything else

Panic!
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The Big Question

• What does it mean for a concurrent object to be correct? 
– What is a concurrent FIFO queue? 
– FIFO means strict temporal order 
– Concurrent means ambiguous temporal order
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Intuitively…
def deq() : T = { 
  myLock.lock() 
  try { 
    if (tail == head) { 
      throw EmptyException 
    } 
    val x = items(head % items.length) 
    head = head + 1 
    x 
  } finally { 
    myLock.unlock() 
  } 
}



def deq() : T = { 
  myLock.lock() 
  try { 
    if (tail == head) { 
      throw EmptyException 
    } 
    val x = items(head % items.length) 
    head = head + 1 
    x 
  } finally { 
    myLock.unlock() 
  } 
}
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Intuitively…

All queue modifications 
are mutually exclusive



59

time

Intuitively

q.deq

q.enq

 enq  deq

   lock() unlock()

lock() unlock()
Behavior is 
“Sequential”

enq

deq

Lets capture the idea of describing 
the concurrent via the sequential 
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Linearizability

• Each method should 
– “take effect” 
– Instantaneously 
– Between invocation and response events 

• Object is correct if this “sequential” behavior is correct 

• Any such concurrent object is 
– Linearizable™
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Is it really about the object?

• Each method should 
– “take effect” 
– Instantaneously 
– Between invocation and response events 

• Sounds like a property of an execution… 

• A linearizable object: one all of whose possible 
executions are linearizable
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Proving execution linearizable

• Identify “linearization points” 
– Between invocation and response events 
– Correspond to the effect of the call 
– “Justify” the whole execution 

• Multiple ways to identify linearization points exist 

• If none found, execution is non-linearizable
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Example

timetime
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Example

time

q.enq(x)

time
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Example

time

q.enq(x)

q.enq(y)

time
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Example

time

q.enq(x)

q.enq(y) q.deq(x)

time



67

Example

time

q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)

time
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Example

time

q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)

linearizableq.enq(x)

q.enq(y) q.deq(x)

q.deq(y)

time
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Example

time

q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)

Valid?q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)

time
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Example

time
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Example

time

q.enq(x)
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Example

time

q.enq(x) q.deq(y)
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Example

time

q.enq(x)

q.enq(y)

q.deq(y)
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Example

time

q.enq(x)

q.enq(y)

q.deq(y)q.enq(x)

q.enq(y)
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Example

time

q.enq(x)

q.enq(y)

q.deq(y)q.enq(x)

q.enq(y)

not linearizable
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Example

timetime
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Example

time

q.enq(x)

time
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Example

time

q.enq(x)

q.deq(x)

time



79

Example

time

q.enq(x)

q.deq(x)

q.enq(x)

q.deq(x)

time
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Example

time

q.enq(x)

q.deq(x)

q.enq(x)

q.deq(x)

linearizable

time
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Example

time

q.enq(x)

time
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Example

time

q.enq(x)

q.enq(y)

time
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Example

time

q.enq(x)

q.enq(y)

q.deq(y)

time
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Example

time

q.enq(x)

q.enq(y)

q.deq(y)

q.deq(x)

time
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q.enq(x)

q.enq(y)

q.deq(y)

q.deq(x)

Comme ci Example

time

Comme ça multiple orders OK
linearizable
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Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(0)
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Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(0)

write(1) already 
happened
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Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(0)write(1)

write(1) already 
happened
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Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(0)write(1)

write(1) already 
happened

not linearizable



90

Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(1)

write(1) already 
happened
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Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(1)write(1)

write(2)

write(1) already 
happened
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Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(1)write(1)

write(2)

not linearizable

write(1) already 
happened
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Read/Write Register Example

time

write(0)

write(1)

write(2)

time

read(1)
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Read/Write Register Example

time

write(0)

write(1)

write(2)

time

read(1)write(1)

write(2)
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Read/Write Register Example

time

write(0)

write(1)

write(2)

time

read(1)write(1)

write(2)

linearizable
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Talking About Executions

• Why? 
– Can’t we specify the linearization point of each operation without 

describing an execution? 
• Not Always 

– In some cases, linearization point depends on the execution
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Formal Model of Executions

• Define precisely what we mean 
– Ambiguity is bad when intuition is weak 

• Allow reasoning 
– Formal 
– But mostly informal 

• In the long run, actually more important
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Split Method Calls into Two Events

• Invocation 
– method name & args 
– q.enq(x) 

• Response 
– result or exception 
– q.enq(x) returns void 
– q.deq()  returns x 
– q.deq()   throws  empty
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Invocation Notation

A q.enq(x)
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Invocation Notation

A q.enq(x)

thread
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Invocation Notation

A q.enq(x)

thread method
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Invocation Notation

A q.enq(x)

thread

object

method
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Invocation Notation

A q.enq(x)

thread

object arguments

method
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Response Notation

A q: void
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Response Notation

A q: void

thread
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Response Notation

A q: void

resultthread
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Response Notation

A q: void

object

resultthread
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Response Notation

A q: void

thread

object

resultMeth
od is

 im
plic

it
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Response Notation

A q: empty()

object

Meth
od is

 im
plic

it

exceptionthread
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History - Describing an Execution

A q.enq(3)
A q:void
A q.enq(5)
B p.enq(4)
B p:void
B q.deq()
B q:3 Sequence of 

invocations and 
responses

H =
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Definition

• Invocation & response match if

A q.enq(3)

A q:void

Thread 
names agree

Object names agree

Method call
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Object Projections

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3

H =
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Object Projections

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3

H|q =
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Thread Projections

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3

H =
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Thread Projections

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3

H|B =
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Complete Subhistory

A q.enq(3)
A q:void
A q.enq(5)
B p.enq(4)
B p:void
B q.deq()
B q:3

H =

An invocation is 
pending if it has no 
matching response
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Complete Subhistory

A q.enq(3)
A q:void
A q.enq(5)
B p.enq(4)
B p:void
B q.deq()
B q:3

May or may not have 
taken effect

H =
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Complete Subhistory

A q.enq(3)
A q:void
A q.enq(5)
B p.enq(4)
B p:void
B q.deq()
B q:3

discard pending 
invocations

H =
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Complete Subhistory

A q.enq(3)
A q:void
 
B p.enq(4)
B p:void
B q.deq()
B q:3

Complete(H) =
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Sequential Histories

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3
A q:enq(5)
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Sequential Histories

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3
A q:enq(5)

match
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Sequential Histories

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3
A q:enq(5)

match

match
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Sequential Histories

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3
A q:enq(5)

match

match

match
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Sequential Histories

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3
A q:enq(5)

match

match

match

Final pending 
invocation OK
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Sequential Histories

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3
A q:enq(5)

match

match

match

Final pending 
invocation OK

Method calls of different 

threads do not interleave
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Well-Formed Histories

H=

A q.enq(3)
B p.enq(4)
B p:void
B q.deq()
A q:void 
B q:3
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Well-Formed Histories

H=

A q.enq(3)
B p.enq(4)
B p:void
B q.deq()
A q:void 
B q:3

H|B=
B p.enq(4)
B p:void
B q.deq()
B q:3

Per-thread projections 
sequential



128

Well-Formed Histories

H=

A q.enq(3)
B p.enq(4)
B p:void
B q.deq()
A q:void 
B q:3

H|B=
B p.enq(4)
B p:void
B q.deq()
B q:3

A q.enq(3)
A q:voidH|A=

Per-thread projections 
sequential
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Equivalent Histories

H=

A q.enq(3)
B p.enq(4)
B p:void
B q.deq()
A q:void 
B q:3

Threads see the same 
thing in both

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3

G=

H|A = G|A
H|B = G|B
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Sequential Specifications

• A sequential specification is some way of telling whether a 
– Single-thread, single-object history 
– Is legal 

• For example: 
– Pre and post-conditions 
– But plenty of other techniques exist …
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Legal Histories

• A sequential (multi-object) history H is legal if 
– For every object x 
– H|x is in the sequential spec for x 
– Not talking about threads now!
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Precedence

A q.enq(3)
B p.enq(4)
B p.void 
A q:void
B q.deq()
B q:3

A method call precedes 
another if response event 
precedes invocation event

Method call Method call
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Non-Precedence

A q.enq(3)
B p.enq(4)
B p.void 
B q.deq()
A q:void
B q:3

Some method calls 
overlap one another

Method call

Method call
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Notation

• Given  
– History H 
– method executions m0 and m1 in H 

• We say m0 ➔H m1, if
– m0 precedes m1 

• Relation m0 ➔H m1 is a 
– Partial order  
– Total order if H is sequential

m0 m1
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Linearizability

• History H is linearizable if it can be extended to G by 
– Appending zero or more responses to pending invocations 
– Discarding other pending invocations 

• So that G is equivalent to 
– Legal sequential history S  
– where ➔G ⊂ ➔S
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Remarks

• Some pending invocations 
– Took effect, so keep them 
– Discard the rest 

• Condition ➔G ⊂ ➔S 

– Means that S respects “real-time order” of G
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Ensuring ➔G ⊂ ➔S 

time

a

b

time

➔
G

➔S

c➔G

➔G = {a!c,b!c}

➔S = {a!b,a!c,b!c}

A lim
itation on the 

Choice of S!
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A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
B q:enq(6)

Example

time

B q.enq(4)

A q.enq(3)

B q.deq(4) B q.enq(6)
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Example

Complete this 
pending

invocation

time

B q.enq(4) B q.deq(4) B  q.enq(6)

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
B q:enq(6)

A q.enq(3)
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Example

Complete this 
pending

invocation

time

B q.enq(4) B q.deq(4) B q.enq(6)

A q.enq(3)

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
B q:enq(6)
A q:void
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Example

time

B q.enq(4) B q.deq(4) B q.enq(6)

A q.enq(3)

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
B q:enq(6)
A q:void

discard this one
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Example

time

B q.enq(4) B q.deq(4)

A q.enq(3)

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4

A q:void
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A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
A q:void

Example

time

B q.enq(4) B q.deq(4)

A q.enq(3)
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A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
A q:void

Example

time

B q.enq(4)
B q:void
A q.enq(3)
A q:void
B q.deq()
B q:4

B q.enq(4) B q.deq(4)

A q.enq(3)
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B q.enq(4) B q.deq(4)

A q.enq(3)

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
A q:void

Example

time

B q.enq(4)
B q:void
A q.enq(3)
A q:void
B q.deq()
B q:4

Equivalent sequential history
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Why Does Composability Matter?

• Modularity  
• Can prove linearizability of objects in isolation 
• Can compose independently-implemented objects 

• A history of two linearizable objects is linearizable



def deq() : T = { 
  myLock.lock() 
  try { 
    if (tail == head) { 
      throw EmptyException 
    } 
    val x = items(head % items.length) 
    head = head + 1 
    x 
  } finally { 
    myLock.unlock() 
  } 
}
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Reasoning About  Linearizability: 
Locking 

0 1
capacity-1

2

head tail

y z



def deq() : T = { 
  myLock.lock() 
  try { 
    if (tail == head) { 
      throw EmptyException 
    } 
    val x = items(head % items.length) 
    head = head + 1 
    x 
  } finally { 
    myLock.unlock() 
  } 
}
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Reasoning About  Linearizability: 
Locking 

Linearization points
are when locks are 

released 

0 1
capacity-1

2

head tail

y z



class LockFreeQueue[T: ClassTag](val capacity: Int) { 

  @volatile 
  private var head, tail: Int = 0 
  private val items = new Array[T](capacity) 

  def enq(x: T): Unit = { 
    if (tail - head == items.length) throw FullException 
    items(tail % items.length) = x 
    tail = tail + 1 
  } 

  def deq(): T = { 
    if (tail == head) throw EmptyException 
    val x = items(head % items.length) 
    head = head + 1 
    x 
  } 
}
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More Reasoning: Wait-free
0 1

capacity-1
2

head tail

y z



class LockFreeQueue[T: ClassTag](val capacity: Int) { 

  @volatile 
  private var head, tail: Int = 0 
  private val items = new Array[T](capacity) 

  def enq(x: T): Unit = { 
    if (tail - head == items.length) throw FullException 
    items(tail % items.length) = x 
    tail = tail + 1 
  } 

  def deq(): T = { 
    if (tail == head) throw EmptyException 
    val x = items(head % items.length) 
    head = head + 1 
    x 
  } 
}
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More Reasoning: Wait-free

Linearization order is order head 
and tail fields modified

Remember that there 

Is only one enqueuer 

and only one dequeuer
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Strategy

• Identify one atomic step where method “happens” 
– Critical section 
– Machine instruction 

• Doesn’t always work 
– Might need to define several different steps for a given method
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Linearizability: Summary

• Powerful specification tool for shared objects 
• Allows us to capture the notion of objects being “atomic” 
• Don’t leave home without it
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Alternative: Sequential Consistency

• History H is Sequentially Consistent if it can be 
extended to G by
– Appending zero or more responses to pending invocations
– Discarding other pending invocations

• So that G is equivalent to a
– Legal sequential history S 
– Where ➔G ⊂ ➔S

  Differs from 
  linearizability
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Sequential Consistency

• No need to preserve real-time order 
– Cannot re-order operations done by the same thread 
– Can re-order non-overlapping operations done by different 

threads 
• Often used to describe multiprocessor memory 

architectures
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Example

time
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Example

time

q.enq(x)
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Example

time

q.enq(x) q.deq(y)
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Example

time

q.enq(x)

q.enq(y)

q.deq(y)
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Example

time

q.enq(x)

q.enq(y)

q.deq(y)q.enq(x)

q.enq(y)
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Example

time

q.enq(x)

q.enq(y)

q.deq(y)q.enq(x)

q.enq(y)

not linearizable
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Example

time

q.enq(x)

q.enq(y)

q.deq(y)q.enq(x)

q.enq(y)

Yet Sequentially 
Consistent
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Theorem

Sequential Consistency is not composable
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FIFO Queue Example

time

p.enq(x) p.deq(y)q.enq(x)

time
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FIFO Queue Example

time

p.enq(x) p.deq(y)q.enq(x)

q.enq(y) q.deq(x)p.enq(y)

time
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FIFO Queue Example

time

p.enq(x) p.deq(y)q.enq(x)

q.enq(y) q.deq(x)p.enq(y)

History H

time
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H|p Sequentially Consistent

time

p.enq(x) p.deq(y)

p.enq(y)

q.enq(x)

q.enq(y) q.deq(x)

time



time
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H|q Sequentially Consistent

time

p.enq(x) p.deq(y)q.enq(x)

q.enq(y) q.deq(x)p.enq(y)
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Ordering imposed by p

time

p.enq(x) p.deq(y)q.enq(x)

q.enq(y) q.deq(x)p.enq(y)

time
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Ordering imposed by q

time

p.enq(x) p.deq(y)q.enq(x)

q.enq(y) q.deq(x)p.enq(y)

time
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p.enq(x)

Ordering imposed by both

time

q.enq(x)

q.enq(y) q.deq(x)

time

p.deq(y)

p.enq(y)
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p.enq(x)

Combining orders

time

q.enq(x)

q.enq(y) q.deq(x)

time

p.deq(y)

p.enq(y)
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Fact

• Most hardware architectures don’t even support 
sequential consistency 

• Because they think it’s too strong 
• Here’s another story …
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Linearizability

• Linearizability 
– Operation takes effect instantaneously  

between invocation and response 
– Uses sequential specification, locality implies composablity
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license. 
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