Linearizabillity:
A method to specify concurrent
and distributed objects

Concurrent Computation

Objectivism

nat is a concurrent object?

ow do we describe one?
ow do we implement one?
ow do we tell if we’re right?

Objectivism

* What is a concurrent object?
— How do we describe one?

— How do we tell if we’re right?

FIFO Queue: Enqueue Method

| q.enq (@)

FIFO Queue: Dequeue Method

__a.deq() /@]

fonh
&

Lock-Based Queue

capacity = 8

Lock-Based Queue

0] 1 tail

Fields protected by

. 5 4
single shared lock capacity = 8

8

A Lock-Based Queue

class LockBasedQueue[T: ClassTaqg]
(val capacity: Int) extends MyQueue[T] {

private var head, tail: Int = 0
private val items = new Array|[T] (capacity)
private val myLock = new ReentrantLock ()

A Lock-Based Queue

tail

Erivate val myLock = new ReentrantLock ()

Fields protected by
single shared lock

10

Lock-Based Queue

Initially: head = tail tail

head

11

Lock-Based Queue

heag tail

[private var head, tail: Int

Initially head = tail

12

Lock-Based deqg ()

LIRS

Acquire Lock

Implementation: deq ()

def deg() : T = {
myLock.lock ()
try {
i1f (tail == head) {

throw EmptyException
}

val x = items (head % items.length)
head = head + 1
head tail
X ~ . :
} final ly { capacity-1

myLock.unlock ()
}
}

15

Implementation: deq ()

[myLock.lock()

method start

= Acquire lock at

tail

16

Check if Non-Empty

Implementation: deq ()

if (tail == head) {
throw EmptyException

heag tail

If queue empty
throw exception

18

Modify the Queue

head
\ 1

Implementation: deq ()

|

val x = items (head % items.lengthﬂ

head = head + 1

/

Queue not empty?
Remove item and update head

tail

Implementation: deq ()

A

Return result

capacit

tail

Implementation: deq ()

heag tail

finally {
myLock.unlock ()

Release lock no
matter what!

22

Implementation: deq ()

def deg() : T = {
myLock.lock ()
try {
i1f (tail == head) {

throw EmptyException
}
val x = items(head % items.length)
head = head + 1
X
} finally {
myLock.unlock ()

}
}

23

Release the Lock

BF
™

Release the Lock

o=
™

Now consider the following implementation

* The same thing without mutual exclusion

* For simplicity, only two threads
— One thread enq only
— The other deq only

26

Wait-free 2-Thread Queue

0] 1 tail
head

capacity = 8

27

Wait-free 2-Thread Queue

head
tail

“& @ﬁ

28

Wait-free 2-Thread Queue

head]
\0 1 tail

é reSUlt:’i; queue[tail] = z
— 7
o
° o)
I‘!'ll 6 3 lI‘P'I
4 Z

29

Wait-free 2-Thread Queue

head

tail

30

class LockFreeQueue[T: ClassTag] (val capacity: Int) {

Wait-free 2-Thread Queue

head tail

‘\f

capacity-1

@volatile
private var head, tail: Int = 0
private val items = new Array[T] (capacity)

def eng(x: T): Unit = {
if (tail - head == items.length) throw FullException
items (tail % items.length) = x
tail = tail + 1

}

def deg(): T = {

if (tail == head) throw EmptyException
val x = items(head $ items.length)
head = head + 1

P

31

Wait-free 2-Thread Queue

hea9 tail

‘\f

capacity-1

items (tail % items.length) = x
tail = tail + 1

No lock needed!

val x = items(head $ items.length)
head = head + 1

32

Wait-free 2-Thread Queue

def eng(x: T): Unit = {
if (tail - head == items.length) throw FullException
items (tail % items.length) = x
tail = tail + 1

}

def deg(): T = {
if (tail == head) throw EmptyExceptige
val x = items (head %
head = head + 1

X

}

What is a Concurrent Queue?

* Need a way to specify a concurrent queue object

* Need a way to prove that an algorithm implements
the object’s specification

 Lets talk about object specifications ...

34

Correctness and Progress

* In a concurrent setting, we need to specify both the safety
and the liveness properties of an object
* Need a way to define

— when an implementation is correct
— the conditions under which it guarantees progress

Lets begin with correctness

35

Sequential Objects

* Each object has a state

— Usually given by a set of fields

— Queue example: sequence of items
« Each object has a set of methods

— Only way to manipulate state
— Queue example: enqg and deq methods

36

Sequential Specifications

* If (precondition)
— the object is in such-and-such a state
— before you call the method,
* Then (postcondition, result)
— the method will return a particular value
— or throw a particular exception,
« and (postcondition, state)
— the object will be in some other state
— when the method returns

37

Pre and PostConditions for Dequeue

* Precondition:
— Queue is non-empty

* Postcondition (result):
— Returns first item in queue

» Postcondition (state):
— Removes first item in queue

38

Pre and PostConditions for Dequeue

* Precondition:
— Queue is empty

* Postcondition (result):
— Throws Empty exception

» Postcondition (state):
— Queue state unchanged

39

Why Sequential Specifications Totally Rock

 Interactions among methods captured by side-effects on object state
— State meaningful between method calls

« Documentation size linear in number of methods
— Each method described in isolation

« Can add new methods
— Without changing descriptions of old methods

40

What About Concurrent Specifications ?

e Methods?
« Documentation?
* Adding new methods?

41

Methods Take Time

42

Methods Take Time

Invocation
12:00
le(e] |

"

T

Methods Take Time

Invocation
12:00
le(e] |

Co,
Method call
44

Methods Take Time

Invocation
12:00
le[e|e]

Co,
Method call
45

Methods Take Time

iInvocation response
12:00 12:01
o[e|e)]
<

¥ &==p *
e —

Sequential vs Concurrent

« Sequential
— Methods take time? Who knew?

« Concurrent
— Method call is not an event
— Method call is a sequence of interval events.

47

Concurrent Methods Take Overlapping Time

T

48

Concurrent Methods Take Overlapping Time

7>
Method call

T

Concurrent Methods Take Overlapping Time

Method call

75>

50

Concurrent Methods Take Overlapping Time

Z v

Method call Method call
7> ¥,

Method call
<

time

51

Sequential vs Concurrent

* Sequential:
— Object needs meaningful state only between method calls

 Concurrent

— Because method calls overlap,
object might never be between method calls

52

Sequential vs Concurrent

* Sequential:
— Each method described in isolation

 Concurrent

— Must characterize all possible interactions with concurrent calls
« What if two eng () calls overlap?

« Two deq () calls? eng() and deq()? ...

53

Sequential vs Concurrent

* Sequential:
— Can add new methods without affecting older methods

» Concurrent:
— Everything can potentially interact with everything else

54

Sequential vs Concurrent

« Sequential:
— Can add new methods without affecting older methods

» Concurrent:
— Everything can potentially interact with everytk{ng else

95

The Big Question

* What does it mean for a concurrent object to be correct?
— What is a concurrent FIFO queue?
— FIFO means strict temporal order
— Concurrent means ambiguous temporal order

56

Intuitively...

def deg() : T = {
myLock.lock ()
try {
i1f (tail == head) {

throw EmptyException
}

val x = items (head % items.length)
head = head + 1
X

} finally {

myLock.unlock ()
}

o7

Intuitively...

[myLock.lock()

[myLock.unlock()

All qgueue modifications
are mutually exclusive

58

TTTIT. I
Lets capture the idea of describing
the concurrent via the sequential

ock () I-deq unlock ()
g.enq de%

lock() ©Ndiunlock() | ()
: ; i . | Behavior is
“Sequential”

Linearizability

e Each method should

— “take effect”
— Instantaneously
— Between invocation and response events

* Object is correct if this “sequential” behavior is correct

* Any such concurrent object is

— Linearizable™

60

Is it really about the object?

« Each method should

— “take effect”
— Instantaneously
— Between invocation and response events

* Sounds like a property of an execution...

* Alinearizable object: one all of whose possible
executions are linearizable

61

Proving execution linearizable

* |dentify “linearization points”
— Between invocation and response events
— Correspond to the effect of the call
— “Justify” the whole execution

* Multiple ways to identify linearization points exist

* If none found, execution is non-linearizable

62

Example

63

Example

64

Example

65

Example

66

Example

67

q.en|(y)

q.en|(y)

Example

69

Example

70

Example

71

Example

72

Example

73

Example

74

Example

76

Example

77

Example

78

Example

81

Example

Example

83

Example

84

Comme ci
Comme ¢a

Read/Write Register Example

=) &y
—_—

86

Read/Write Register Example

write(1) already
happened

87

Read/Write Register Example

write(1) already
happened

88

Read/Write Register Example

write(1) already
happened

89

Read/Write Register Example

write(1) already
happened

90

Read/Write Register Example

write(1) already
happened

91

Read/Write Register Example

write(1) already
happened

92

Read/Write Register Example

i
—

93

Read/Write Register Example

e
—

94

Read/Write Register Example

Talking About Executions

* Why?
— Can’t we specify the linearization point of each operation without
describing an execution?

* Not Always
— In some cases, linearization point depends on the execution

96

Formal Model of Executions

» Define precisely what we mean
— Ambiguity is bad when intuition is weak

* Allow reasoning
— Formal

— But mostly informal
* In the long run, actually more important

97

Split Method Calls into Two Events

 Invocation
— method name & args
—q.enq(x)

* Response
— result or exception
—g.enqg(x) returns void
—q.deq() returns x
—g.deq() throws empty

98

Invocation Notation

A g.enq(x)

99

Invocation Notation

Bq.enq(x)

thread

100

Invocation Notation

B qwﬂ

thread method

101

Invocation Notation

102

Invocation Notation

thread method

object arguments

103

Response Notation

A q: void

104

Response Notation

Eq: void

thread

105

Response Notation

E q: void
N\

thread result

106

Response Notation

q: void

R

thread result

object

107

Response Notation

‘void

result

object

108

Response Notation

object

109

History - Describing an Execution

L

I
Wwowopp P
Q Q0 '0QQQ

.enq(3)
:void
.enq(5)
.enq(4)
:void
.deq()

Sequence of

invocations and

responses

110

Definition

* Invocation & response match if

Thread Object names agree

Nnames agree
QfA q.enq(3)
Method call

Alqlvoid

HH

111

Object Projections

|
W wwowp P
u-ﬁu-Q"U"du-Q-Q

.enq(3)
:void
.enq(4)
:void
.deq ()

112

Object Projections

A g.eng(3)
A q:void

H|q =

B deqg ()
B 3

g.
qg.

113

Thread Projections

|
W wwowp P
u-ﬁu-Q"U"du-Q-Q

.enq(3)
:void
.enq(4)
:void
.deq ()

114

Thread Projections

115

Complete Subhistory

.enq(3)

.deq()

A q
A q:
A q.
B p.
B p:
B q
B q:

An invocation is
pending if it has no
matching response

116

Complete Subhistory

.enq(3)
:void

.enqg
:void

:deq() May or may not have
3 taken effect

L

I
W woo»
QQ 00 QK Q

117

Complete Subhistory

q.enq(3)
:void

.enqg
:void

:geq () discard pending
: Invocations

L

I
Wwoo»
Q Q 0o

118

Complete Subhistory

.enq(3)
:void

o P
Q Q

.enq(4)
:void
.deq()

Complete(H) =

owww
QQ o'

119

o W owwp P
Q Q Q0o QQ

Sequential Histories

.enq(3)
:void
.enq(4)
:void
.deq ()

:enqg (5)

120

Sequential Histories

S W wWww w)
Q Q Q "0 '"l.q .9

.eng (3) match
:void
.enq

:void
.deq ()

: 3

:enqg (5)

121

Sequential Histories

.enq(3)
:void

match

.enqg match
:void

Yo wWw W)
Q .Q .l "la Q9

.deq ()

:enqg (5)

122

Sequential Histories

.enq(3)
:void

match

.enqg match
:void

match

wiw oo of >

.deq ()

Q| Q|0 T|Q Q

:enqg (5)

123

Sequential Histories

match

match

match

Final pending
invocation OK

124

Sequential Histories

i oo of >

Final pending
invocation OK

125

o wWwwmp

Well-Formed Histories

Q Q Q00 Q

.enqg(3)
.enq(4)
:void
.deq ()
:voilid

126

Per-thread projections

o wWwwmp

Well-Formed Histories

_ B p.enqg(4)
sequential H|B= B p:ZOid
q.enq(3) o 3.geal
p.enqg(4) q:
p:void
q.deq()
q:void
q:3

127

Per-thread projections

o wWwwmp

Well-Formed Histories

_ B p.enqg(4)
sequential H|B= B p:ZOid
q.enq(3) 5 -geal
p.enqg(4) q:
p:void
q.deq()
q:void 3
q:3 H|A= A g.enqg(3)

A q:void

128

Threads see the same
thing in both

Equivalent Histories

H|A
H|B

G|A
G|B

o wwwp
Q«Q Q00 Q

.enqg(3)
.enq(4)
:void
.deq()
:void

: 3

Wwowowp P
Q Q 'O QQ

.enqg(3)
:void
.enq(4)
:void
.deq()

: 3

129

Sequential Specifications

* A sequential specification is some way of telling whether a
— Single-thread, single-object history
— Is legal

* For example:

— Pre and post-conditions
— But plenty of other techniques exist ...

130

Legal Histories

* A sequential (multi-object) history H is legal if
— For every object x
— H|x is in the sequential spec for x
— Not talking about threads now!

131

Precedence

: ?:2?:14) A method call precedes
' \ another if response event
precedes invocation event

Non-Precedence

B p.eng(4)
B p.void Some method calls
overlap one another

<Vlethod call
133

Notation

» Given
— History H
— method executions mzand m,in H

- We say my=>, m,, if
— m, precedes m,

 Relation my=>,m,is a m«ﬁ»
— Partial order
— Total order if H is sequential

134

Linearizability

» History H is linearizable if it can be extended to G by
— Appending zero or more responses to pending invocations
— Discarding other pending invocations

* So that G is equivalent to
— Legal sequential history S
— wWhere 25 C =g

135

Remarks

* Some pending invocations
— Took effect, so keep them
— Discard the rest

 Condition =g C =4
— Means that S respects “real-time order” of G

136

Ensuring =5 C2¢

{a—2>c,b2>c}
{a2b,a—>c,b>c}

137

Example

A g.enqg(3)

_ 0
<B q.enq(4)> <B q.deq(4)> B g.enq(6) |[||]

138

Example

A g.eng(3)
& g.eng \Iomplete this

pending
invocation

v w— 1
) iy

B g.enq(6) |]]

Example

A g.eng(3)
[- q--—&:omplete this

pending
invocation

[A q:void

<B q-enq(4)> <B q.deq(4)>

Example

A g.enqg(3)

discard this one

ﬁ q. vo:.d_]
<B q-enq(4)> <B q.deq(4)>

Example

A g.enqg(3)

A q:void

S YT ——
> >

Example

A g.enqg(3)

A q:void

S YT ——
> ma)>
e —

Example

A g.enqg(3)

A g.enq(3)
A q:void

A q:void

S YT ——
> ma)>
e —

Example

Equivalent sequential history

A g.enqg(3) \(r)
A

q.enq(3)
A q:void

Why Does Composability Matter?

* Modularity
« Can prove linearizability of objects in isolation
« Can compose independently-implemented objects
* A history of two linearizable objects is linearizable

146

Reasoning About Linearizability:
Locking

head
‘\o
def deq () : T = { capacity-1
myLock.lock ()
try {
i1f (tail == head) {

throw EmptyException
}

val x = items (head % items.length)
head = head + 1
X

} finally {

myLock.unlock ()
}
}

147

tail

Reasoning About Linearizability:
Locking

[myLock.unlock(.E

Linearization points
are when locks are
released

148

tail

More Reasoning: Walit-free

head tail

class LockFreeQueue[T: ClassTag] (val capacity: Int) { N

capacity-1

@volatile
private var head, tail: Int = 0
private val items = new Array[T] (capacity)

def eng(x: T): Unit = {
if (tail - head == items.length) throw FullException
items (tail % items.length) = x
tail = tail + 1

}

def deg(): T = {

if (tail == head) throw EmptyException
val x = items(head $ items.length)
head = head + 1

P

149

More Reasoning: Walit-free

Linearization order is order head
and tail fields modified
tail = tail + 1

head = head + 1

150

Strategy

* |dentify one atomic step where method “happens”
— Critical section
— Machine instruction

* Doesn't always work
— Might need to define several different steps for a given method

151

Linearizability: Summary

* Powerful specification tool for shared objects
* Allows us to capture the notion of objects being "atomic”
* Don’t leave home without it

152

Alternative: Sequential Consistency

» History H is Sequentially Consistent if it can be
extended to G by

— Appending zero or more responses to pending invocations
— Discarding other pending invocations

* So that G is equivalent to a Differs from

— Legal sequential history S i
_ <_/ linearizability

153

Sequential Consistency

* No need to preserve real-time order
— Cannot re-order operations done by the same thread

— Can re-order non-overlapping operations done by different
threads

« Often used to describe multiprocessor memory
architectures

154

Example

155

Example

156

Example

157

Example

158

Example

159

Theorem

Sequential Consistency is not composable

162

FIFO Queue Example

= €z

T

163

FIFO Queue Example

rA Ay

T

164

FIFO Queue Example

4)

=

_ /
N—

History H

T

165

Hlp Sequentially Consistent

rA Ay N

T

166

H|g Sequentially Consistent

rA Ay N

T

167

Ordering imposed by p

Ordering imposed by g

<

T

169

Ordering imposed by both

Combining orders

\\enq(y) i p-enq(y) q. deq(X)

Fact

* Most hardware architectures don’t even support
sequential consistency

» Because they think it's too strong
* Here's another story ...

172

Linearizability

* Linearizability

— Operation takes effect instantaneously
between invocation and response

— Uses sequential specification, locality implies composablity

173

SOME RIGHTS RESERVED

?his work is licensed under a Creative Commons Attribution-
ShareAlike 2.5 License.

* You are free:
— to Share — to copy, distribute and transmit the work
— to Remix — to adapt the work

« Under the following conditions:

— Attribution. You must attribute the work to “The Art of Multiprocessor
Programming” (but not in any way that suggests that the authors endorse
you or your use of the work).

— Share Alike. If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same, similar or a compatible
license.

For any reuse or distribution, you must make clear to others the license terms of
this work. The best way to do this is with a link to

— http://creativecommons.org/licenses/by-sa/3.0/.

Any of the above conditions can be waived if you get permission from the
copyright holder.

« Nothing in this license impairs or restricts the author's moral rights.

174

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

