
Linearizability:
A method to specify concurrent

and distributed objects

2

Concurrent Computation

memory

object object

3

Objectivism

• What is a concurrent object?
– How do we describe one?
– How do we implement one?
– How do we tell if we’re right?

4

Objectivism

• What is a concurrent object?
– How do we describe one?

– How do we tell if we’re right?

5

FIFO Queue: Enqueue Method

q.enq()

6

FIFO Queue: Dequeue Method

q.deq()/

7

Lock-Based Queue

head
tail0

2

1

5 4

3

yx

capacity = 8

7

6

8

Lock-Based Queue

head
tail0

2

1

5 4

3

capacity = 8

7

6

Fields protected by
single shared lock

yx

class LockBasedQueue[T: ClassTag]
 (val capacity: Int) extends MyQueue[T] {

 private var head, tail: Int = 0
 private val items = new Array[T](capacity)
 private val myLock = new ReentrantLock()

9

 A Lock-Based Queue

class LockBasedQueue[T: ClassTag]
 (val capacity: Int) extends MyQueue[T] {

 private var head, tail: Int = 0
 private val items = new Array[T](capacity)
 private val myLock = new ReentrantLock()

10

 A Lock-Based Queue

Fields protected by
single shared lock

0 1
capacity-1

2

head tail

y z

11

Lock-Based Queue

head

tail

0

2

1

5 4

3

Initially: head = tail

7

6

class LockBasedQueue[T: ClassTag]
 (val capacity: Int) extends MyQueue[T] {

 private var head, tail: Int = 0
 private val items = new Array[T](capacity)
 private val myLock = new ReentrantLock()

12

Initially head = tail

0 1
capacity-1

2

head tail

y z

Lock-Based Queue

13

Lock-Based deq()

head
tail0

2

5 4

7

36

1
yx

14

Acquire Lock

head
tail0

2

5 4

7

36

yx

1

Waiting to
enqueue…

My turn …
yx

def deq() : T = {
 myLock.lock()
 try {
 if (tail == head) {
 throw EmptyException
 }
 val x = items(head % items.length)
 head = head + 1
 x
 } finally {
 myLock.unlock()
 }
}

15

0 1
capacity-1

2

head tail

y z

Implementation: deq()

def deq() : T = {
 myLock.lock()
 try {
 if (tail == head) {
 throw EmptyException
 }
 val x = items(head % items.length)
 head = head + 1
 x
 } finally {
 myLock.unlock()
 }
}

16

Acquire lock at
method start

0 1
capacity-1

2

head tail

y z

Implementation: deq()

17

Check if Non-Empty

head
tail0

2

5 4

7

36

1

yx
Waiting to
enqueue…

Not
equal?

def deq() : T = {
 myLock.lock()
 try {
 if (tail == head) {
 throw EmptyException
 }
 val x = items(head % items.length)
 head = head + 1
 x
 } finally {
 myLock.unlock()
 }
}

18

If queue empty
throw exception

0 1
capacity-1

2

head tail

y z

Implementation: deq()

19

Modify the Queue

head
tail0

2

1

5 4

7

36

head

Waiting to
enqueue…

yx

def deq() : T = {
 myLock.lock()
 try {
 if (tail == head) {
 throw EmptyException
 }
 val x = items(head % items.length)
 head = head + 1
 x
 } finally {
 myLock.unlock()
 }
}

20

Queue not empty?
Remove item and update head

Implementation: deq()

0 1
capacity-1

2

head tail

y z

def deq() : T = {
 myLock.lock()
 try {
 if (tail == head) {
 throw EmptyException
 }
 val x = items(head % items.length)
 head = head + 1
 x
 } finally {
 myLock.unlock()
 }
}

21

Return result

0 1
capacity-1

2

head tail

y z

Implementation: deq()

def deq() : T = {
 myLock.lock()
 try {
 if (tail == head) {
 throw EmptyException
 }
 val x = items(head % items.length)
 head = head + 1
 x
 } finally {
 myLock.unlock()
 }
}

22

Implementation: deq()

Release lock no
matter what!

0 1
capacity-1

2

head tail

y z

def deq() : T = {
 myLock.lock()
 try {
 if (tail == head) {
 throw EmptyException
 }
 val x = items(head % items.length)
 head = head + 1
 x
 } finally {
 myLock.unlock()
 }
}

23

Should be correct because

modifications are mutually exclusive…

Implementation: deq()

24

Release the Lock
tail0

2

1

5 4

7

36

y

x

head

Waiting…

25

Release the Lock
tail0

2

1

5 4

7

36

y

x

head

My turn!

26

Now consider the following implementation

• The same thing without mutual exclusion
• For simplicity, only two threads

– One thread enq only
– The other deq only

27

Wait-free 2-Thread Queue

head
tail0

2

1

5 4

7

36

yx

capacity = 8

28

tail0

2

5 4

7

36

yx

1

enq(z)
deq()

z

head

Wait-free 2-Thread Queue

29

head
tail0

2

5 4

7

36

y
1

queue[tail] = zresult = x

z

x

Wait-free 2-Thread Queue

30

tail0

2

5 4

7

36

y
1

tail++
head++

z

head

x

Wait-free 2-Thread Queue

class LockFreeQueue[T: ClassTag](val capacity: Int) {

 @volatile
 private var head, tail: Int = 0
 private val items = new Array[T](capacity)

 def enq(x: T): Unit = {
 if (tail - head == items.length) throw FullException
 items(tail % items.length) = x
 tail = tail + 1
 }

 def deq(): T = {
 if (tail == head) throw EmptyException
 val x = items(head % items.length)
 head = head + 1
 x
 }
}

31

0 1
capacity-1

2

head tail

y z

Wait-free 2-Thread Queue

class LockFreeQueue[T: ClassTag](val capacity: Int) {

 @volatile
 private var head, tail: Int = 0
 private val items = new Array[T](capacity)

 def enq(x: T): Unit = {
 if (tail - head == items.length) throw FullException
 items(tail % items.length) = x
 tail = tail + 1
 }

 def deq(): T = {
 if (tail == head) throw EmptyException
 val x = items(head % items.length)
 head = head + 1
 x
 }
}

32

No lock needed!

Wait-free 2-Thread Queue
0 1

capacity-1
2

head tail

y z

class LockFreeQueue[T: ClassTag](val capacity: Int) {

 @volatile
 private var head, tail: Int = 0
 private val items = new Array[T](capacity)

 def enq(x: T): Unit = {
 if (tail - head == items.length) throw FullException
 items(tail % items.length) = x
 tail = tail + 1
 }

 def deq(): T = {
 if (tail == head) throw EmptyException
 val x = items(head % items.length)
 head = head + 1
 x
 }
}

33

How do we define “correct” when

modifications are not mutually exclusive?

Wait-free 2-Thread Queue

34

What is a Concurrent Queue?

• Need a way to specify a concurrent queue object

• Need a way to prove that an algorithm implements
the object’s specification

• Lets talk about object specifications …

Correctness and Progress

• In a concurrent setting, we need to specify both the safety
and the liveness properties of an object

• Need a way to define
– when an implementation is correct
– the conditions under which it guarantees progress

35

Lets begin with correctness

36

Sequential Objects

• Each object has a state
– Usually given by a set of fields
– Queue example: sequence of items

• Each object has a set of methods
– Only way to manipulate state
– Queue example: enq and deq methods

37

Sequential Specifications
• If (precondition)

– the object is in such-and-such a state
– before you call the method,

• Then (postcondition, result)
– the method will return a particular value
– or throw a particular exception,

• and (postcondition, state)
– the object will be in some other state
– when the method returns

38

Pre and PostConditions for Dequeue

• Precondition:
– Queue is non-empty

• Postcondition (result):
– Returns first item in queue

• Postcondition (state):
– Removes first item in queue

39

Pre and PostConditions for Dequeue

• Precondition:
– Queue is empty

• Postcondition (result):
– Throws Empty exception

• Postcondition (state):
– Queue state unchanged

40

Why Sequential Specifications Totally Rock

• Interactions among methods captured by side-effects on object state
– State meaningful between method calls

• Documentation size linear in number of methods
– Each method described in isolation

• Can add new methods
– Without changing descriptions of old methods

41

What About Concurrent Specifications ?

• Methods?
• Documentation?
• Adding new methods?

42

Methods Take Time

timetime

43

Methods Take Time

time

invocation
12:00

q.enq(...)

time

44

Methods Take Time

time

Method call

invocation
12:00

time

q.enq(...)

invocation
12:00

45

Methods Take Time

time

Method call

time

q.enq(...)

46

Methods Take Time

time

Method call

invocation
12:00

time

void

response
12:01

q.enq(...)

47

Sequential vs Concurrent

• Sequential
– Methods take time? Who knew?

• Concurrent
– Method call is not an event
– Method call is a sequence of interval events.

48

time

Concurrent Methods Take Overlapping Time

time

49

time

Concurrent Methods Take Overlapping Time

time

Method call

50

time

Concurrent Methods Take Overlapping Time

time

Method call

Method call

51

time

Concurrent Methods Take Overlapping Time

time

Method call Method call

Method call

52

Sequential vs Concurrent

• Sequential:
– Object needs meaningful state only between method calls

• Concurrent
– Because method calls overlap,

object might never be between method calls

53

Sequential vs Concurrent

• Sequential:
– Each method described in isolation

• Concurrent
– Must characterize all possible interactions with concurrent calls

• What if two enq() calls overlap?
• Two deq() calls? enq() and deq()? …

54

Sequential vs Concurrent

• Sequential:
– Can add new methods without affecting older methods

• Concurrent:
– Everything can potentially interact with everything else

55

Sequential vs Concurrent

• Sequential:
– Can add new methods without affecting older methods

• Concurrent:
– Everything can potentially interact with everything else

Panic!

56

The Big Question

• What does it mean for a concurrent object to be correct?
– What is a concurrent FIFO queue?
– FIFO means strict temporal order
– Concurrent means ambiguous temporal order

57

Intuitively…
def deq() : T = {
 myLock.lock()
 try {
 if (tail == head) {
 throw EmptyException
 }
 val x = items(head % items.length)
 head = head + 1
 x
 } finally {
 myLock.unlock()
 }
}

def deq() : T = {
 myLock.lock()
 try {
 if (tail == head) {
 throw EmptyException
 }
 val x = items(head % items.length)
 head = head + 1
 x
 } finally {
 myLock.unlock()
 }
}

58

Intuitively…

All queue modifications
are mutually exclusive

59

time

Intuitively

q.deq

q.enq

 enq deq

 lock() unlock()

lock() unlock()
Behavior is
“Sequential”

enq

deq

Lets capture the idea of describing
the concurrent via the sequential

60

Linearizability

• Each method should
– “take effect”
– Instantaneously
– Between invocation and response events

• Object is correct if this “sequential” behavior is correct

• Any such concurrent object is
– Linearizable™

61

Is it really about the object?

• Each method should
– “take effect”
– Instantaneously
– Between invocation and response events

• Sounds like a property of an execution…

• A linearizable object: one all of whose possible
executions are linearizable

62

Proving execution linearizable

• Identify “linearization points”
– Between invocation and response events
– Correspond to the effect of the call
– “Justify” the whole execution

• Multiple ways to identify linearization points exist

• If none found, execution is non-linearizable

63

Example

timetime

64

Example

time

q.enq(x)

time

65

Example

time

q.enq(x)

q.enq(y)

time

66

Example

time

q.enq(x)

q.enq(y) q.deq(x)

time

67

Example

time

q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)

time

68

Example

time

q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)

linearizableq.enq(x)

q.enq(y) q.deq(x)

q.deq(y)

time

69

Example

time

q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)

Valid?q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)

time

70

Example

time

71

Example

time

q.enq(x)

72

Example

time

q.enq(x) q.deq(y)

73

Example

time

q.enq(x)

q.enq(y)

q.deq(y)

74

Example

time

q.enq(x)

q.enq(y)

q.deq(y)q.enq(x)

q.enq(y)

75

Example

time

q.enq(x)

q.enq(y)

q.deq(y)q.enq(x)

q.enq(y)

not linearizable

76

Example

timetime

77

Example

time

q.enq(x)

time

78

Example

time

q.enq(x)

q.deq(x)

time

79

Example

time

q.enq(x)

q.deq(x)

q.enq(x)

q.deq(x)

time

80

Example

time

q.enq(x)

q.deq(x)

q.enq(x)

q.deq(x)

linearizable

time

81

Example

time

q.enq(x)

time

82

Example

time

q.enq(x)

q.enq(y)

time

83

Example

time

q.enq(x)

q.enq(y)

q.deq(y)

time

84

Example

time

q.enq(x)

q.enq(y)

q.deq(y)

q.deq(x)

time

85

q.enq(x)

q.enq(y)

q.deq(y)

q.deq(x)

Comme ci Example

time

Comme ça multiple orders OK
linearizable

86

Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(0)

87

Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(0)

write(1) already
happened

88

Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(0)write(1)

write(1) already
happened

89

Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(0)write(1)

write(1) already
happened

not linearizable

90

Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(1)

write(1) already
happened

91

Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(1)write(1)

write(2)

write(1) already
happened

92

Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(1)write(1)

write(2)

not linearizable

write(1) already
happened

93

Read/Write Register Example

time

write(0)

write(1)

write(2)

time

read(1)

94

Read/Write Register Example

time

write(0)

write(1)

write(2)

time

read(1)write(1)

write(2)

95

Read/Write Register Example

time

write(0)

write(1)

write(2)

time

read(1)write(1)

write(2)

linearizable

96

Talking About Executions

• Why?
– Can’t we specify the linearization point of each operation without

describing an execution?
• Not Always

– In some cases, linearization point depends on the execution

97

Formal Model of Executions

• Define precisely what we mean
– Ambiguity is bad when intuition is weak

• Allow reasoning
– Formal
– But mostly informal

• In the long run, actually more important

98

Split Method Calls into Two Events

• Invocation
– method name & args
– q.enq(x)

• Response
– result or exception
– q.enq(x) returns void
– q.deq() returns x
– q.deq() throws empty

99

Invocation Notation

A q.enq(x)

100

Invocation Notation

A q.enq(x)

thread

101

Invocation Notation

A q.enq(x)

thread method

102

Invocation Notation

A q.enq(x)

thread

object

method

103

Invocation Notation

A q.enq(x)

thread

object arguments

method

104

Response Notation

A q: void

105

Response Notation

A q: void

thread

106

Response Notation

A q: void

resultthread

107

Response Notation

A q: void

object

resultthread

108

Response Notation

A q: void

thread

object

resultMeth
od is

 im
plic

it

109

Response Notation

A q: empty()

object

Meth
od is

 im
plic

it

exceptionthread

110

History - Describing an Execution

A q.enq(3)
A q:void
A q.enq(5)
B p.enq(4)
B p:void
B q.deq()
B q:3 Sequence of

invocations and
responses

H =

111

Definition

• Invocation & response match if

A q.enq(3)

A q:void

Thread
names agree

Object names agree

Method call

112

Object Projections

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3

H =

113

Object Projections

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3

H|q =

114

Thread Projections

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3

H =

115

Thread Projections

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3

H|B =

116

Complete Subhistory

A q.enq(3)
A q:void
A q.enq(5)
B p.enq(4)
B p:void
B q.deq()
B q:3

H =

An invocation is
pending if it has no
matching response

117

Complete Subhistory

A q.enq(3)
A q:void
A q.enq(5)
B p.enq(4)
B p:void
B q.deq()
B q:3

May or may not have
taken effect

H =

118

Complete Subhistory

A q.enq(3)
A q:void
A q.enq(5)
B p.enq(4)
B p:void
B q.deq()
B q:3

discard pending
invocations

H =

119

Complete Subhistory

A q.enq(3)
A q:void

B p.enq(4)
B p:void
B q.deq()
B q:3

Complete(H) =

120

Sequential Histories

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3
A q:enq(5)

121

Sequential Histories

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3
A q:enq(5)

match

122

Sequential Histories

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3
A q:enq(5)

match

match

123

Sequential Histories

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3
A q:enq(5)

match

match

match

124

Sequential Histories

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3
A q:enq(5)

match

match

match

Final pending
invocation OK

125

Sequential Histories

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3
A q:enq(5)

match

match

match

Final pending
invocation OK

Method calls of different

threads do not interleave

126

Well-Formed Histories

H=

A q.enq(3)
B p.enq(4)
B p:void
B q.deq()
A q:void
B q:3

127

Well-Formed Histories

H=

A q.enq(3)
B p.enq(4)
B p:void
B q.deq()
A q:void
B q:3

H|B=
B p.enq(4)
B p:void
B q.deq()
B q:3

Per-thread projections
sequential

128

Well-Formed Histories

H=

A q.enq(3)
B p.enq(4)
B p:void
B q.deq()
A q:void
B q:3

H|B=
B p.enq(4)
B p:void
B q.deq()
B q:3

A q.enq(3)
A q:voidH|A=

Per-thread projections
sequential

129

Equivalent Histories

H=

A q.enq(3)
B p.enq(4)
B p:void
B q.deq()
A q:void
B q:3

Threads see the same
thing in both

A q.enq(3)
A q:void
B p.enq(4)
B p:void
B q.deq()
B q:3

G=

H|A = G|A
H|B = G|B

130

Sequential Specifications

• A sequential specification is some way of telling whether a
– Single-thread, single-object history
– Is legal

• For example:
– Pre and post-conditions
– But plenty of other techniques exist …

131

Legal Histories

• A sequential (multi-object) history H is legal if
– For every object x
– H|x is in the sequential spec for x
– Not talking about threads now!

132

Precedence

A q.enq(3)
B p.enq(4)
B p.void
A q:void
B q.deq()
B q:3

A method call precedes
another if response event
precedes invocation event

Method call Method call

133

Non-Precedence

A q.enq(3)
B p.enq(4)
B p.void
B q.deq()
A q:void
B q:3

Some method calls
overlap one another

Method call

Method call

134

Notation

• Given
– History H
– method executions m0 and m1 in H

• We say m0 ➔H m1, if
– m0 precedes m1

• Relation m0 ➔H m1 is a
– Partial order
– Total order if H is sequential

m0 m1

135

Linearizability

• History H is linearizable if it can be extended to G by
– Appending zero or more responses to pending invocations
– Discarding other pending invocations

• So that G is equivalent to
– Legal sequential history S
– where ➔G ⊂ ➔S

136

Remarks

• Some pending invocations
– Took effect, so keep them
– Discard the rest

• Condition ➔G ⊂ ➔S

– Means that S respects “real-time order” of G

137

Ensuring ➔G ⊂ ➔S

time

a

b

time

➔
G

➔S

c➔G

➔G = {a!c,b!c}

➔S = {a!b,a!c,b!c}

A lim
itation on the

Choice of S!

138

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
B q:enq(6)

Example

time

B q.enq(4)

A q.enq(3)

B q.deq(4) B q.enq(6)

139

Example

Complete this
pending

invocation

time

B q.enq(4) B q.deq(4) B q.enq(6)

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
B q:enq(6)

A q.enq(3)

140

Example

Complete this
pending

invocation

time

B q.enq(4) B q.deq(4) B q.enq(6)

A q.enq(3)

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
B q:enq(6)
A q:void

141

Example

time

B q.enq(4) B q.deq(4) B q.enq(6)

A q.enq(3)

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
B q:enq(6)
A q:void

discard this one

142

Example

time

B q.enq(4) B q.deq(4)

A q.enq(3)

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4

A q:void

143

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
A q:void

Example

time

B q.enq(4) B q.deq(4)

A q.enq(3)

144

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
A q:void

Example

time

B q.enq(4)
B q:void
A q.enq(3)
A q:void
B q.deq()
B q:4

B q.enq(4) B q.deq(4)

A q.enq(3)

145

B q.enq(4) B q.deq(4)

A q.enq(3)

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
A q:void

Example

time

B q.enq(4)
B q:void
A q.enq(3)
A q:void
B q.deq()
B q:4

Equivalent sequential history

146

Why Does Composability Matter?

• Modularity
• Can prove linearizability of objects in isolation
• Can compose independently-implemented objects

• A history of two linearizable objects is linearizable

def deq() : T = {
 myLock.lock()
 try {
 if (tail == head) {
 throw EmptyException
 }
 val x = items(head % items.length)
 head = head + 1
 x
 } finally {
 myLock.unlock()
 }
}

147

Reasoning About Linearizability:
Locking

0 1
capacity-1

2

head tail

y z

def deq() : T = {
 myLock.lock()
 try {
 if (tail == head) {
 throw EmptyException
 }
 val x = items(head % items.length)
 head = head + 1
 x
 } finally {
 myLock.unlock()
 }
}

148

Reasoning About Linearizability:
Locking

Linearization points
are when locks are

released

0 1
capacity-1

2

head tail

y z

class LockFreeQueue[T: ClassTag](val capacity: Int) {

 @volatile
 private var head, tail: Int = 0
 private val items = new Array[T](capacity)

 def enq(x: T): Unit = {
 if (tail - head == items.length) throw FullException
 items(tail % items.length) = x
 tail = tail + 1
 }

 def deq(): T = {
 if (tail == head) throw EmptyException
 val x = items(head % items.length)
 head = head + 1
 x
 }
}

149

More Reasoning: Wait-free
0 1

capacity-1
2

head tail

y z

class LockFreeQueue[T: ClassTag](val capacity: Int) {

 @volatile
 private var head, tail: Int = 0
 private val items = new Array[T](capacity)

 def enq(x: T): Unit = {
 if (tail - head == items.length) throw FullException
 items(tail % items.length) = x
 tail = tail + 1
 }

 def deq(): T = {
 if (tail == head) throw EmptyException
 val x = items(head % items.length)
 head = head + 1
 x
 }
}

150

More Reasoning: Wait-free

Linearization order is order head
and tail fields modified

Remember that there

Is only one enqueuer

and only one dequeuer

151

Strategy

• Identify one atomic step where method “happens”
– Critical section
– Machine instruction

• Doesn’t always work
– Might need to define several different steps for a given method

152

Linearizability: Summary

• Powerful specification tool for shared objects
• Allows us to capture the notion of objects being “atomic”
• Don’t leave home without it

153

Alternative: Sequential Consistency

• History H is Sequentially Consistent if it can be
extended to G by
– Appending zero or more responses to pending invocations
– Discarding other pending invocations

• So that G is equivalent to a
– Legal sequential history S
– Where ➔G ⊂ ➔S

 Differs from
 linearizability

154

Sequential Consistency

• No need to preserve real-time order
– Cannot re-order operations done by the same thread
– Can re-order non-overlapping operations done by different

threads
• Often used to describe multiprocessor memory

architectures

155

Example

time

156

Example

time

q.enq(x)

157

Example

time

q.enq(x) q.deq(y)

158

Example

time

q.enq(x)

q.enq(y)

q.deq(y)

159

Example

time

q.enq(x)

q.enq(y)

q.deq(y)q.enq(x)

q.enq(y)

160

Example

time

q.enq(x)

q.enq(y)

q.deq(y)q.enq(x)

q.enq(y)

not linearizable

161

Example

time

q.enq(x)

q.enq(y)

q.deq(y)q.enq(x)

q.enq(y)

Yet Sequentially
Consistent

162

Theorem

Sequential Consistency is not composable

163

FIFO Queue Example

time

p.enq(x) p.deq(y)q.enq(x)

time

164

FIFO Queue Example

time

p.enq(x) p.deq(y)q.enq(x)

q.enq(y) q.deq(x)p.enq(y)

time

165

FIFO Queue Example

time

p.enq(x) p.deq(y)q.enq(x)

q.enq(y) q.deq(x)p.enq(y)

History H

time

166

H|p Sequentially Consistent

time

p.enq(x) p.deq(y)

p.enq(y)

q.enq(x)

q.enq(y) q.deq(x)

time

time

167

H|q Sequentially Consistent

time

p.enq(x) p.deq(y)q.enq(x)

q.enq(y) q.deq(x)p.enq(y)

168

Ordering imposed by p

time

p.enq(x) p.deq(y)q.enq(x)

q.enq(y) q.deq(x)p.enq(y)

time

169

Ordering imposed by q

time

p.enq(x) p.deq(y)q.enq(x)

q.enq(y) q.deq(x)p.enq(y)

time

170

p.enq(x)

Ordering imposed by both

time

q.enq(x)

q.enq(y) q.deq(x)

time

p.deq(y)

p.enq(y)

171

p.enq(x)

Combining orders

time

q.enq(x)

q.enq(y) q.deq(x)

time

p.deq(y)

p.enq(y)

172

Fact

• Most hardware architectures don’t even support
sequential consistency

• Because they think it’s too strong
• Here’s another story …

173

Linearizability

• Linearizability
– Operation takes effect instantaneously

between invocation and response
– Uses sequential specification, locality implies composablity

174

This work is licensed under a Creative Commons Attribution-
ShareAlike 2.5 License.

• You are free:
– to Share — to copy, distribute and transmit the work
– to Remix — to adapt the work

• Under the following conditions:
– Attribution. You must attribute the work to “The Art of Multiprocessor

Programming” (but not in any way that suggests that the authors endorse
you or your use of the work).

– Share Alike. If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same, similar or a compatible
license.

• For any reuse or distribution, you must make clear to others the license terms of
this work. The best way to do this is with a link to

– http://creativecommons.org/licenses/by-sa/3.0/.
• Any of the above conditions can be waived if you get permission from the

copyright holder.
• Nothing in this license impairs or restricts the author's moral rights.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

