The Existence of Refinement Mappings

Martin Abadi and Leslie Lamport
Digital Equipment Corporation
Systems Research Center

Abstract

Refinement mappings are used to prove that a lower-level
specification correctly implements a higher-level one. We
consider specifications consisting of a state machine (which
may be infinite-state) that specifies safety requirements and
an arbitrary supplementary property that specifies liveness
requirements. A refinement mapping from a lower-level spec-
ification S; to a higher-level one Sz is a mapping from S1’s
state space to S2’s state space that maps steps of S1’s state
machine steps to steps of Sg’s state machine and maps be-
haviors allowed by S; to behaviors allowed by Sz. We show
that, under reasonable assumptions about the specifications,
if S; implements Sz, then by adding auxiliary variables to
S; we can guarantee the existence of a refinement mapping.
This provides a completeness result for a practical hierarchi-
cal specification method.

1 Introduction

1.1 Specifications

A system may be specified at many levels of abstraction, from
a description of its highest-level properties to a description of
its implementation in terms of microcode and circuitry. We
address the problem of proving that a lower-level specification
is a correct implementation of a higher-level one.

Unlike simple programs, which can be specified by in-
put/output relations, complex systems can be adequately
specified only by describing the behaviors that they may ex-
hibit. We consider specification methods in which a behavior
is represented by a sequence of states and a system is speci-
fied by a set of permitted behaviors.

A specification should describe only the externally visible
components of a system’s state. However, it is often help-
ful to describe its behavior in terms of unobservable internal
components. For example, a natural way to specify a queue
includes a description of the sequence of elements currently
in the queue, and that sequence is not externally visible. Al-
though internal components are mentioned, the specification
prescribes the behavior of only the externally visible compo-
nents. The system may exhibit the externally visible behav-
ior

«eﬂy €1y €25 + - »

CH2608-8/88/0000/0165$01.00 © 1988 IEEE

where ¢; is a state of the externally visible component, if
there exist states y; of the internal component such that the
complete behavior

{((eo, 50}, (e1,91), (e2,92), --- )

is permitted by the specification. (We use {{ )} to denote a
sequence.)

A specification may allow steps in which only the internal
state component changes—for example, a sequence

{(eas ¥0), (e1,91), (Cl,yi)a (el,y{')a (e2,92)s -+ )

Such internal steps are not externally visible, so the sequence
of external states {(eo, €1, €5, €5, €, ...)) should be equivalent
to the sequence ({ey,e1,€z,...)) obtained by removing the
“stuttering” steps from e; to e;. Let I'{{co, e1,...)) be the
set of all sequences obtained from ({eg,ey,...)) by repeat-
ing states and deleling repeated states—that is, by adding
and removing stuttering. We consider only specifications in
which a sequence {{eg, e1,-..)} is allowed only if all sequences
in T'{{eo, €1, .. .)) are allowed. Such specifications are said to
be invariant under stuttering.

The behaviors permitted by a specification can be de-
scribed as the set of sequences satislying a safely and a live-
ness property [AS86, Lam77]. Intuitively, a safely property
asserts that something bad does not happen and a liveness
property asserts that something good does eventually hap-
pen. In specifying a queue, the safely property might as-
sert that the sequence of elements removed [rom the queue
is an initial prefix of the sequence of elements added to the
queue. The liveness property might assert that an operation
of putting an element into the queue is eventually completed
if the queue is not full, and an operation of removing an el-
ement from the queue is eventually completed if the queue
is not empty. (What operations are in progress and what
elements they are adding to or have removed [rom the queue
would be described by the externally visible state.)

We are concerned with specifications in which the salely
property is described by an “abstract” nondeterministic pro-
grany; a behavior satisfies the property if it can be generated
by the program. Liveness conditions are described either
directly by writing axioms or indirectly by placing lairness
constraints on the abstract program. In a specification of
a queue, the program describes the sequence of actions by
which an element is added to or removed from the sequence



of queued elements, ensuring the safety property that the
correct elements are removed from the queue. Additional
fairness constraints assert that certain actions must eventu-
ally occur, ensuring the liveness property that operations that
should complete eventually do complete.

Mauy proposed specification methods involve writing pro-
grams and [airness conditions in this way [LS84, Lam83,
LT87]. (Some methods do not consider liveness at all and
just specify safety properties with programs.)

To describe specifications formally, we represent a program
by a state machine {(whose set of states may be infinite) and
we represent the fairness constraints by an arbitrary supple-
mentary condition. For our results, it does not matter if the
supplementary condition specifies a liveness property.

1.2 Proving That One Specification Im-
plements Another

A specification Sy implements a specification Sz if every ex-
ternally visible behavior allowed by Sy is also allowed by Sa.
To prove that S; implements Sz, it suffices to prove that if
S; allows the belhavior

(e 20), (e1,21), (e2,22), ... )

where the z; are internal states, then there exist internal
states y; such that Sy allows

(((eo,y(,), (Ghyl)y (627y2)1 ))

In general, each y; can depend upon the entire sequence
{{(e0, 20), (€1, 21), (€2, 22), .. .)), and proving the existence of
the y; may be quite difficult. The proof is easier if each
y; depends only upon ¢; and z;, so there exisls a function
f such that (e;,y;) = f(ei,z). The proof becomes easier
still if f maps steps of Sy’s state machine into (possibly
stuttering) steps of S3’s state machine. In this case, verify-
ing that {(f(eo, z0), f(e1,21), f(e2, 22), . . . }) satisfies the safety
property of Sy involves reasoning about states and pairs of
states, not about sequences. Such a mapping f is called a
refinement mapping.

In the example of a queue, the internal state y; of specifica-
tion Sz might describe the sequence of elements currently in
the queue, and the internal state z; of specification S; might
describe the contents of an array that implements the queue.
To prove that S; implements Sy, one would construct a re-
finement mapping f such that f(e;, ) = (e, y:), where y;
describes the state of the queue that is represented by the
contents of the array described by state z;.

Several methods for proving that one specification imple-
ments another are based upon finding a refinement map-
ping [LS84, Lam83]. In practice, if 81 implements Sz, then
these methods usually can prove that the implementation is
correct—usually, but not always. The methods fail if the
refinement mapping does not exist. Three reasons why the
mapping might not exist are:

e Sz may specily an internal state with “historical infor-
mation” not needed by S;. For example, suppose Sz

requires that the system display any arbitrary number
of least-significant bits of a clock, so its internal state
includes an unbounded clock value. This specification is
implemented by a lower-level specification Sy that alter-
nately displays zero and one, with no internal state. A
refinement mapping does not exist because there is no
way to define the internal state of the clock as a function
of its low-order bit.

S2 may specily that a nondeterministic choice is made
before it has to be. For example, consider two specifi-
cations 83 and Sz for a system that displays ten non-
deterministically chiosen values in sequence. Suppose Sg
requires that all values be chosen before any is displayed,
while S; requires each value to be chosen as it is dis-
played. Both specifications describe the same externally
visible behaviors, so each implements the other. Ilow-
ever, Sy requires the internal state to contain all ten
values before any is displayed, while Sy does not specify
any internal state, so no refinement mapping is possible.

S2 may “run slower” than S;. TFor example, let S,
and Sz both specify clocks in which hours and minutes
are externally visible and seconds are internal. Suppose
that in Sz each step increments the clock by one sec-
ond, while in S; each step increments the clock by ten
seconds. Both specifications allow the same externally
visible behaviors. A complete behavior {(so, s1,52,...))
specified by S1 may produce an externally visible change
every six steps. For any mapping f, the sequence
{(f(s0), f(51), f(s2), . .)) may also produce an externally
visible change every six steps. This is not allowed by
S, which requires fifty-nine internal steps for every ex-
ternally visible one. Hence, no refinement mapping can
prove that Sy implements Sa. ‘

If a refinement mapping does not exist, it can often be
made to exist by adding auziliary variables to the lower-level
specification. An auxiliary variable is an internal state com-
ponent that is added to a specification without affecting the
xternally visible behavior. The three situations described
abuve in which refinement mappings cannot be found are
handled as follows:

o Historical information missing from the internal state
specified by S1 can be provided by adding a history
variable—a well-known form of auxiliary variable that
merely records past actions [Owi75].

If S3 requires that a nondeterministic choice be made be-
fore it has to be, then S; can be modified so the choice is
made sooner by adding a prophecy variable. A prophecy
variable is a new form of auxiliary variable that is the
mirror image of a history variable—its formal definition
is alinost the same as the definition of a history vari-
able with past and {uture interchanged, but there is an
asymmelry due to behaviors having a beginning but not
necessarily an end.



o If S2 runs slower than Si, then an auxiliary variable
must be added to S; to slow it down. We will define
prophecy variables in such a way that they can perform
this slowing.

Our main result states that, under three hypotheses about
the specifications, if Sy implements Sy then one can add
auxiliary history and proghecy variables to S; to form an

. h . p .
equivalent specification S~ and find a refinement mapping
from Sll]p to Sz. The three hypotheses, and their intuitive
meanings, are:

S; is machine closed. Machine closure means that the sup-
plementary property (the one normally used to specify
liveness requirements) does not specify any safety prop-
erty not already specified by the state machine. In other
words, the state machine does as much of the specifying
as possible.

Sy has finite invisible nondeterminism. This denotes that,
given any finite portion of an externally visible behavior
allowed by S2, there are only a finite number of possible
choices for ils internal state component.

Sy is internally continuous. A specification is internally con-
tinuous if we can show that it does not allow a partic-
ular complete behavior by examining the behavior’s ex-
ternally visible part (which may be infinite) and some
finite portion of the complete behavior.

We will show by examples why these three hypotheses are
needed.

We will prove that any safety property has a specification
with finite invisible nondeterminism, any specification of a
safety property is internally continuous, and any property has
a machine-closed specification. Therefore, our result implies
that if the specifications are written properly and Sz specifies
only a safety property then one can ensure that a refinement
mapping exists. We will also show that, even when Sz is not
internally continuous, a refinement mapping exists to show
that S; satisfies the safety property specified by S2. There-
fore, by writing specifications properly, refinement mappings
can always be used to prove the safety property of a specifica-
tion if not its diveness property. We do not know if anything
can be said about proving arbitrary liveness properties.

In this paper, proofs are just sketched. Detailed proofs as
well as some additional discussion can be found in [AL8S].

2 Preliminaries

2.1 Sequences

We now define some useful notations for sequences. In these
definitions, o denotes the sequence ((sg, 51, 52,...)) and 7 de-
notes the sequence {(to,t1,%2,...)). These sequences may be
finite or infinite. If ¢ is finite, we let ||} denote its length and
last(c’) denote its last element, so ||{(so, . - ., $m—1))[| = m and
last({{Soy -+ - » Sm—1)})) = Sm—1. An infinite sequence is said to

167

be terminating if it is of the form {(so, 81, - ., Suy Sn, s . )—
in other words, if it reaches a final state that it repeats for-
ever.

As usual, a mapping on elements is extended to a map-
ping on sequences of elements by defining g(o) to equal
{(g(s0), g(s1), - - -)), and to a mapping on sets of elements by
defining g(S) to equal {g(s) : s € S}.

The sequence ¢ is said to be stutter-free if, for each i, ei-
ther s; # si41 or the sequence is infinite and s; = s; for all
j > 1. Thus, a nonterminating sequence is stutter-free il (if
and only if) it never stutters, and a terminating sequence is
stutter-free iff it stutters only after reaching its final state.
We define fio to be the stulter-free sequence obtained by re-
placing every maximal finite subsequence s;, siy1,...,8; of
identical elements with the single element s;. For example,

1((0,1,1,2,2,2,3,3,3,3,4...) (0,1,2,3,4,...))

We define o ~ 7 to mean that jo = fr, and we dcfine I'c to
be the set {7 : 7 ~ ¢}. I S is a set ol sequences, I'(S) is
the set {I'o : 0 € S}. A set of sequences S is closcd under
stuttering if S = T'(S). Thus, S is closed under stuttering iff
for every pair of sequences o, 7 with o >~ 7, if ¢ € P then
T€EP.

We use “-” to denote concatenation of sequences—that is, if
llell = m, then o - 7 = {{(s0,...,Sm—1,t0,t15...)). I |lo]| = m,
we let o], denote {(so,s1,...,$

For any set ¥, let £ denote the set of all infinite sequences
of elements in £. An infinite sequence {(gp, 7y, 03,...)) of
sequences in L¢ is said to converge to the sequence o in ¢
iff for all m > 0 there exists an n > 0 such that ¢;},, = o},
for all ¢ > n. In this case, we define limo; to be o. This
definition of convergence gives rise to a topology on £¥. We
now recall some other definitions.

Let o be an element in £ and let S be a subset of £¥. We
say that o is a limit point of S ifl there exist elements o; in
S such that limo; = 0. The set S is closed iff S contains all
its limit points. The closure of S, denoled S, consists of all
limit points of S; il is the smallest closed set coutaining S.

m—1//-

2.2 Properties

We can only say that one specification implements another if
we are given a correspondence between the externally visible
states of the two specifications.
that the initial value of a particular register is the integer —3
and Sp asserts that the register’s initial value is the sequence
of bits 1111100, then we can’t say whether or not S; nmple-
ments Sz without knowing how to interpret a sequence of
bits as an integer. In general, to decide if Sy implements Sz,
we must know how to interpret aun externally visible state of
S; as an externally visible state of S3. Given such an iuter-
pretation, we can translate Sq into a specification with the
same set of externally visible states as Sa. Thus, there is no

“or example, i[ Sy asserts

loss of generality in requiring that S; and Sz have the same
set, of externally visible states.

We therefore assume that all specifications under consider-
ation have the same fixed set Lf of externally visible stales.



A state space I is a subset of Xg x £ for some set L of in-
ternal states. We let IIg be the obvious projection mapping
from g x I; onto . The set T itself is considered to be
a state space for which Il is the identity mapping.

If & is a state space, then a X-behavior is an element of
Z¥. A Lg-behavior is called an externally visible behavior. A
T-property P is a set of -behaviors that is closed under stut-
tering. A Lg-property is called an externally visible property.
If P is a E-property, then IIg(P) is a set of externally visible
behaviors but is not necessarily an externally visible property
because it need not be closed under stuttering. The exter-
nally visible property induced by a Z-property P is defined
to be the set I'(Ilg(P)).

If £ is clear from context or is irrelevant, we use the terms
behavior and property instead of E-behavior and X-property.
We sometimes add the adjective “complete”, as in “complete
behavior”, to distinguish behaviors and properties from ex-
ternally visible behaviors and properties.

A property P that is closed (P = P) is called a safety
property. Intuitively, a safety property is one asserting that
something bad does not happen. To see that our formal
definition of a safety property as a closed set captures this
intuitive meaning, observe that if something bad happens,
then it must happen within some finite period of time. Thus,
P is a safety property iff, for any sequence ¢ not in P, one
can tell that ¢ is not in P by looking at some finite prefix
a{; of o. In other words, o € P iff there exists an ¢ such that
for all 7 if 7|; = o|; then 7 ¢ P. Hence, o € P iff for all ¢
there exists a 7; € P such that 7;|; = ofi. But lim~ = o,
which implies that ¢ € P; thus, o € P iff o € P. Therefore,
P satisfies the intuitive definition of a safety property only if
P=P.

Even though we do not use the formal definition, it is in-
teresting to note that a L-property L can be defined to be
a liveness property iff it is dense in £“—in other words, if
L = £¥. This means that L is a liveness property iff any fi-
nite sequence of elements in ¥ can be extended to a behavior
in L. In a topological space, every set can be written as the
intersection of a closed set and a dense set, so any property
P can be written as M N L, where M is a safety property and
L is a liveness property. Moreover, M can be taken to be P.

2.3 Specifications

A state machine is a triple (X, F, N) where

e ¥ is a state space. (Recall that this means ¥ C Lg x X
for some set Iy of internal states.)

o F, the set of initial states, is a subset of E.

o N, the neat-state relation, is a subset of ExX. (Elements
of N are denoted by pairs of states enclosed in angle
brackets, like (s, ).)

The (complete) property generated by a state machine
(%, F,N) consists of all infinite sequences {(so, 51,...)) such
that so € F and, for all 7 > 0, either (s;,s;41) € N or

3; = 8i41. This set is closed under stuttering, so it is a
L-property. The externally visible property generated by a
state machine is the externally visible property induced by
its complete property.

We now show that the complete property P generated by a
state machine is a safety property. This requires proving that
if limo; = ¢ and each o; € P, then ¢ € P. For any behavior
7 = {{s0,81,...)) and any j > 0, let 7/ be the terminating
behavior ({so,$1,...,3;,8j,8j,...)). Then 7 is in P iff each
79 is in P. Since limo; = g, each ¢’ equals (g;)’ for some s.
Since each o; is in P, each (g;)? is in P, which implies that
o is also in P. Hence, P is closed, so the complete property
generated by a state machine is a safety property. However,
we will show in Section 3 that its externally visible property
need not be a safety property.

A state machine (I, F, N) is a familiar type of nondeter-
ministic automaton, where F is the set of starting states and
N describes the possible state transitions. (However, remem-
ber that X may be an infinite set.) The set of sequences gen-
erated (or accepted) by such an automaton is usually defined
to be the set A of all sequences starting with a state in F' and
progressing by making transitions allowed by N. However,
we also allow stuttering transitions, so we have defined the
property generated by the state machine to be I'(A) together
with all terminating sequences obtained from finite prefixes
of behaviors in I'(A) by infinite stuttering.

A specification S is a four-tuple (X,F,N,L), where
(X,F,N) is a state machine and L is a ¥-property, called
the supplementary property of the specification. The prop-
erty M generated by the state machine (X, F, N) is called the
machine property of S. The (complete) property defined by
S is defined to be M N L, and the ezternally visible property
defined by S is defined to be I'(IIg(M N L)), the externally
visible property induced by M N L.

State machines are easier to work with than arbitrary sets
of sequences, so one would like to specily a property purely
in terms of state machines. However, the complete property
generated by a state machine is a safety property. The sup-
plementary property of a specification is needed to introduce
liveness requirements. However, if we were to place no ad-
ditional requirement on our specifications, we could use the
supplementary property to do all the specifying. To see why
this leads to trouble, let Sz be a specification consisting of
any arbitrary state machine that generates an externally vis-
ible safety property O together with the trivial supplemen-
tary property that contains all behaviors. Define S; to be
the specification with state space Lr whose state machine
is the trivial one that generates all Lg-behaviors and whose
supplementary property is O. Obviously 81 implements Sa.
The existence of a refinement mapping from Sy to Sz im-
plies that S1’s state machine implements S2’s state machine.
However, S1 has the trivial state machine and no internal
state. Auxiliary variables are added to a specification’s state
machine without affecting or being affected by the supple-
mentary property. (This is what makes the addition of aux-
iliary variables practical.) No sound method of adding auxil-
iary variables can transform the trivial mmachine into one that



implements a completely arbitrary state machine. Therefore,
we need some constraint on the supplementary property.

In practice, we specify a desired property P by writing P
as the intersection M N L of a safety property M and a live-
ness property L. We try to construct L so that it does not
specify any safety property, meaning that it does not rule out
any finite behavior. More precisely, we try to choose L to be
a liveness property such that any finite sequence of states
generated by the state machine is the prefix of a behavior in
P. For our results, it is not necessary that L be a liveness
property; we need only require that L does not specify any
safety property not implied by M. To express this require-
ment formally, we say that a specification S having machine
property M and supplementary property L is machine closed
fftM=MnL.

The following lemma implies that, for a machine-closed
specification, we can ignore the supplementary property and
consider only the state machine when we are interested in
finite portions of behaviors.

Lemma 1 If M = P, then every prefiz of a behavior in M
1s the prefiz of a behavior in P.

Proof Given 0 € M and m > 0, we must find 7 € P with
O|m = T|m- Choose o; € P with limo; = o, choose n such
that o, = o} for all i > n, and'let 7 = 0y, I

The converse of this lemma is also true, but we will not
need it.

2.4 Refinement Mappings

A specification S; implements a specification Sy iff the ex-
ternally visible property induced by S; is a subset of the ex-
ternally visible property induced by Sz. In other words, S;
implements Sz iff every externally visible behavior allowed
by Sy is also allowed by Sj.

A refinement mapping from a specification S;
(X4, F1, My, Ly) to a specification Sz = (3, I%, Nz, L) is a
mapping f : ¥; — X3 such that

Rl. For all s € Ey: Ilg(f(s)) = lg(s). (f preserves the
externally visible state component.)

R2.
R3.

f(F1) C F3. (f takes initial states into initial states.)

If (s,t) € Ny then (f(s), f(t)) € Noor f(s) = f(t). (A
state transition allowed by N; is mapped by f into a
[possibly stuttering] transition allowed by Nj.)

f(Py) C L,, where P, is the property defined by S;. (f
maps behaviors allowed by S into behaviors that satis{y
S2’s supplementary property.)

R4.

Conditions R1-R3 are local, meaning that they can be
checked by reasoning about states or pairs of states rather
than about behaviors. Condition R4 is not local, but check-
ing it is simplified by the fact that f is not an arbitrary
mapping on sequences, but is obtained from a mapping on
states. Thus, one can apply local methods like well-founded
induction to prove R4.

Proposition 1 If there exists a refinement mapping from Sy
to Sz, then Sy implements Sz.

Proof Fori = 1,2, let S; = (I;, F;, NV, L;), let M; be the
machine property of S;, and let f be a refinement mapping
from S; to S3. Conditions R2 and R3 imply that f(M;) C
M3, and R4 then implies f(M; N L) € M, N L,. Condition
R1 implies that IIg(M; N L,) C He(My N Ly). A

3 Finite Invisible Nondeterminism

The machine property M of a specification is a safety prop-
erty. However, the property that is really being specified
by the specification’s state machine is the externally visible
property I'(IIg(M)) induced by M. The following example
shows that this externally visible property is not necessarily
a safety property.

Let £g be the set N of natural numbers, and defline the
state machine (I, F, N) by:

o X equals Xg x N.
o F equals {(0,0)}.
e N is the union of the following two sets:

- {«an)v(lv”)) ne N}»
= {{(m,n+1),(m+1,n)) : m,n € N}.

A stutter-free behavior of this machine starts in state (0,0),
goes to state (1,n) for some arbitrary n > 0, then goes
through the sequence of states (2,n — 1), (3,n —2), ...,
(n — ¢+ 1,2) for some 7 > 0, and terminates (stutters for-
ever) in the state (n —1 +1,¢).

The set of externally visible behaviors induced by this
state machine consists of all sequences obtainable by stulter-
ing from a sequence o, of the form {{0,1,2,...,n,n,n,...).
This set is not closed, because limo, = {(0,1,2,3,..")), and
{(0,1,2,3,...)) is not in the set. The externally visible prop-
erty specified by the state machine is the conjunction of two
properties:

1. The set of all behaviors that start in stale 0 and change
state only by adding 1 to the previous state.

2. The set of terminating behaviors.

The first property is a safety property, but the second is a
liveness property; their intersection is neither a safety nor a
liveness property.

The purpose of a specification is to specify an externally
visible property. We feel that the externally visible property
specified by state machine should be a safely property, so we
want to restrict the class of allowed state machines.

The reason the externally visible property defined by Lhe
state machine in our example is not a safety property can
be traced to the existence of infinitely many state transi-
tions {(0,0),(1,n)) that correspond to the same externally
visible transition (0,1). It is this type of infinite invisible



nondeterminism that allows the introduction of liveness into
the externally visible property of a state machine. To ensure
that a state machine specifies only safety properties, we must
restrict it to having finite invisible nondeterminism.

Instead of defining the concept of finite invisible nondeter-
minism for a state machine, it is more general to define it for
a property. A state machine is defined to have finite invisible
nondeterminism iff the property it generates does.

Definition 1 Let P be a property and O its induced exter-
nally visible property. We say that P is fin (for finitely in-
visibly nondeterministic) iff for all n € O and alln > 0 the
set

{b(oln) : (m>0) A (o € P) A (TTg(b(o|m)) ~ 9l)}

is finite. (In other words, every finite prefix 3|, of a behavior
7 in O is the externally visible part of only finitely many finite
stutter-free prefixes b(o|,,) of behaviors in P.) We say thal a
specification is fin iff the complete property of the specification

is fin.

If a property A is fin then every stronger property P is also
fin. (Property P is stronger than property M iff P C M.) In
our main result, instead of requiring that the state machine
of Sz is fin, we make the weaker assumption that Sz is fin.
This is strictly weaker only if Sz is not machine closed, since
a machine-closed specification is fin ifl its state machine is
fin.

The following proposition asserts that the externally visible
property of a fin state machine is a safety property. It is a
simple corollary of the subsequent lemma, which will be used
later as well.

Proposition 2 If a safety property P is fin, then the exter-
nally visible property I'(g(P)) that it induces is also a safety
properly.

Lemma 2 (Closure and nondeterminism) Let property
P be fin and let O be the externally visible property that it
induces. If § is a limit point of O then lhere is a limit point
p of P sucl. that llg(p) ~ 6.

Proof Let O, equal {§(o],) : (m > 0) A (¢ € P) A
(Ilg(h{oln)) ~ 6l.)}. Since P is fin, the set O, is finite.
The definitions of § and O imply that ©, is nonempty. Let
o =X 7 denote that ¢ is a prefix of 7. For all n and all
8 € 0,4 there exists € O, such that & < 0. Konig’s
Lemma [KnuT73, pages 381-383] then implies that there is an
infinite sequence p; < p, = p3 X ... with each p; € ©;. Ex-
tend the length of the p; by stuttering if necessary so they
keep getting longer, extend each p; to a behavior p} € P, and
let p=limp!. §

For a state machine to be fin, it may not make an infi-
nite nondeterministic choice unless all but a finite part of
that choice is immediately revealed in the externally visible
state. We can weaken our definition by requiring only that

170

the choice eventually be revealed. Formally, this means defin-
ing a property P with induced externally visible propertv O
to be fin iff for every 7 in O and n > 0 there exists an n’ > =
such that the set

{§(olm) : (m>0) A (0 € P) A (Lp(h(olm)) = nla)
A 3" (g (b(olm)) = nle)}

is finite. However, using this weaker definition of finite invis-
ible nondeterminism would require somewhat more powerful
prophecy variables and would complicate our proofs, so we
will stick with our original definition.

4 Safety Properties

Alpern and Schneider {[AS87] and others have observed in the
finite-state case that there is a correspondence between state
machines and externally visible safety properties. We extend
their results to the infinite-state case for state machines with
finite invisible nondeterminism. We also prove a resull that
allows us to apply our completeness theorem to safety prop-
erties even when the internal continuity hypothesis is not
satisfied.

Proposition 2 implies that the externally visible property
generated by a fin state machine is a salety property. We
now prove the converse.

Proposition 3 Every externally visible safety properly can
be generated by a state machine with finite invisible nonde-
terminism.

Proof Given a closed Lg-property O, the required state
machine machine is constructed by defining the set of
states to consist of all pairs (e;, (€0, €1,---,€))) such that
{(eo,€1,...,€)) is a prefix of a sequence in O, delining
the starting states to be ones with internal components
of length one, and defining the next-state relation so the
machine can go from state (e, {(ep,...,€;))) only to state
(eis1, {{€os - - -, €y €41))) for some €;4;.

If specification S3 is not internally continuous, it is possible
for it to be implemented by a specification S; without there
being a refinement mapping {rom S; to Sz. (Internal conti-
nuity will be defined formally in Section 6.) However, since
salety properties are internally continuous, we would expect
to be able to prove that the externally visible machine prop-
erty of Sy implements the externally visible machine property
of S3. Combined with our main theorem, the following result
shows that this is always possible if the state machine of Sy
is machine closed and the machine property of Sy is fin.

Theorem 1 (Separate safety proofs) Let P, = My N L,
and P, = My N Ly, where the L; arve arbitrary properties and
the M; are safety properties; and let O; and OM be the exter-
nally visible properties induced by P; and M;, respectively. If
M, =P, M, is fin, and Oy C O, then oM C oM.




Proof For any set Q of behaviors, ['\Q) C T(Q) and
HE(@) C Hg(Q). From this and the hypothesis that M,
P;, we can prove that OM C O, which implies OY C O,.
The monotonicity of g, T', and closure imply O; € OM, and
Proposition 2 implies that O = OM. 1

5 Auxiliary Variables

Although in practice refinement mappings usually exist, they
do not always exist. To construct a refinement mapping, it
may be necessary to add auxiliary variables. We now for-
mally define two types of auxiliary variables: the well-known
history variable and the new prophecy variable. These aux-
iliary variables are added to a specification’s state machine;
the supplementary property is essentially left unchanged.

5.1 History Variables

Adding a history variable means augmenting the state space
with an additional component £y and modifying the state
machine in such a way that this additional component records
past information but does not affect the behavior of the
original state components. Formally, a specification sh
(Zh, F*, N* L") is said to be obtained from the specification
S = (X, F, N, L) by adding a history variable iff the following
five conditions are satisfied. In these conditions, we identify
(Bg x 1) x Ty with g x (£7 x Z) (so HI implies that L*
is a state space), and we let Iljy) be the obvious projection
mapping from ¥ x ¥y onto L. (In the intuitive explana-
tion, we say that a L*-behavior ¢ simulates the X-behavior

g (0).)
HI.

Th C ¥ x By for some set Ty.

H2. H[H](F") = F. (A state in X is an initial state of S iff it

is the first component of an initial state of S™.)

H3. If {(s, k), (s', k")) € N" then (s,s') € N or s = &'. (Every
step of S1’s state machine simulates a [possibly stutter-

ing] step of S’s state machine.)

H4. If {s,5') € N and (s,h) € £" then there exists k' € y
such that ((s,h),(s',#’)) € N*. (From any state, Shog
state machine can simulate any possible step of S’s state

machine.)

H5. LF = H[—Hl](L). (A TP-behavior is in L iff the ¥-behavior

that it simulates is in L.)

The following result shows that adding a history variable
leaves an implementation essentially unchanged.

Proposition 4 (Soundness of history variables) If S*
is obtained from S by adding a history variable, then the two
specifications define the same externally visible property.

Proof Let M and M" be the specifications’ machine prop-
erties, P and P" their complete properties, and O and O*

171

the induced externally visible properties. Conditions II2
and I3 imply H[H](Mh) C M and condition H5 implies
H[H](P") C P, proving that O* € 0. To prove O C O,
we must show that P C TI[H](P"), which is doue by using
H2-114 to construct {rom any sequence {(sg, s1,...)) € P a se-
quence {{(So, ko), (51, h1),...)) € M*, and using H5 to show
that this sequence is also in L. 1

5.2 Simple Prophecy Variables

A prophecy variable is the dual of a history variable; its def-
inition is almost that of a history variable with time running
backwards. Intuitively, whereas a history variable records
past behavior, a prophecy variable guesses future behavior.
Using notation similar to that used in defining history vari-
ables, we define a specification SP = (Z?, ', NP LP) Lo be
obtained from S = (X, F,N, L) by adding a prophecy variable
iff the following conditions are satisfied. (Conditions 2’ and
P4’ will be replaced in Section 5.3.)

Pl. ¥? C ¥ x Ip for some set Tp.

P2, F? = H['P‘](F). (This is the expected correspondence
between the initial states of the two specifications.)

P3. If ((s,p),(s',p')) € NP then (s,s') € Nor s = &' (Every

step of SP’s state machine simulates a [possibly stutter-
ing] step of S’s state machine.)

. If {s,s") € N and (s',p') € E? then there exists p € Zp
such that {(s,p),(¢,p')) € N?. (From every state in
Y7, the state machine of SP can take a backwards step
that simulates any possible backwards step of S’s state
machine. This is the time-reversed version of condition

H4.)

P5. LP = H[-,,’)(L). (The supplementary property ol SP is the
set of behaviors that simulate behaviors in the supple-

mentary property of S.)

P6. For all s € ¥ the set IIFIJI](") is finite and nonempty. (To
every state of S there corresponds sone nonzero finite

number of states of SP.)

Condition P6 is the only one not corresponding to any condi-
tion for history variables. It is needed hecause time reversal
is asymmetric—all behaviors have initial states but only ter-
minating behaviors have final states. The second example
below indicates why it is needed.

We now give two examples to illustrate the definition of
prophecy variables. We mention only the state machines;
the supplementary property can be taken to be the trivial
one containing all behaviors.

For our first exainple, we take a state machine that non-
deterministically generates an integer between 0 and 9. The
machine counts up by one until it either decides to stop or
else reaches 9, at which point it stutters forever. The set g
of externally visible stales is the set N of natural numbers,
and the internal state component is a Boolean that becomes



true when the final value is reached. (The Boolean values are
written t and f.)

o ¥ =Nx {t,f}.

o F={(0,f)}.

e N is the union of the following two sets:
= {{t - 1,£),(5£)) : 0 < i < 10},
- {((i7f)a(i7t)) 1€ N}

The set of stutter-free behaviors generated by this state ma-
chine consists of all sequences of the forms

€0, £),(1,£),..., (n,1),(n, £), (n, £), (, 1), )

and
{0,£),(1,£),...,(n,f), (n, 1), (n,£),...))
with 0 < n < 10.

We now add a prophecy variable whose value is a natural
number. This variable “predicts” how many more nonstut-
tering steps the state machine will take at most. The precise
definition of the new state machine is:

o X7 is the union of the following two sets:

— {(i,£,7): 0 <4, 0<j, and i +j < 10},
- {(i,8,0): 0 < i < 10}.

o P ={(0,f,j) € T}
e N? is the union of the following two sets:

- {((l -Lf,5+ 1)7(17f7])) € X x EP},
- {{(,1,0), (,t,0)) € £ x Z}.

The reader can check that the conditions P1-P4’ and P6
given above are satisfied. (Condition P5 is satisfied if L and
LP are the trivial properties that contain all behaviors.) Ob-
serve that although condition P4 is satisfied, condition H4 is
not. The state machine can take a backwards step from the
state (6,f,0) but not a forward step.

The state machine (Z7, F?, N?) is deterministic. The only
stutter-free behaviors starting from the state (0,f,n) are of
the forms

{(0,f,n),(1,f,n = 1),...,(n,f,0),(n,t,0),(n,t,0),...))
and
{(0,f,n),(1,f,n—1),...,(,f,n — ), (5,f,n —7),...))

with 0 < 7 < n. The set of externally visible behaviors
generated by the two state machines is the same; the stutter-
free behaviors have the form ({0,1,...,n,n,n,...)) for some
n less than 10. State machine (I, F, N) decides nondeter-
ministically when it is going to stop counting, while in state
machine (X7, F?, N?) this choice is made by the initial value
of the prophecy variable.

172

As our second example, replace “10” by “oo” in the def-
initions of the two state machines. Conditions P1-P4’ still
hold, but P6 does not; for each state (7,f) of ¥ there are an
infinite number of states (¢,f,7) in XP. The externally visi-
ble stutter-free behaviors of (X7, P, N?) consist of sequences
of the form {(0,1,...,n,n,n,...) for any natural number n.
The state machine (X, F,N) generates all these behaviors
plus the additional behavior {{0,1,2,3,...)) that never termi-
nates. Because the finiteness condition P6 is not satisfied,
adding the auxiliary variable changed the specification by
ruling out this nonterminating behavior—effectively adding
a liveness condition.

We can use our last example to indicate why we need the
hypothesis of finite invisible nondeterminism for our com-
pleteness result. Let S2 be the specification consisting of the
state machine (X7, F?, N?) we just constructed (the one with
“10” replaced by “00”) and the trivial supplementary prop-
erty containing all P-behaviors. Let Sy be the specification
with state machine (X, F,N) and supplementary property
L consisting of all terminating behaviors. Both specifica-
tions define the same set of externally visible behaviors—
all behaviors obtainable by stuttering from ones of the form
(0,1,...,n,n,n)). To construct a refinement mapping, we
would have to add to Sy a prophecy variable that “guesses”
the value of the last component of a state of £?. However, no
such prophecy variable can be constructed that satisfies PG,
since for any starting state of Sy there are an infinite number
of corresponding starting states of Sa.

The complete property P, defined by this specification S
is a safety property, and we will see that this implies that S is
internally continuous. Moreover, specification Sy is machine
closed. Nevertheless, adding auxiliary variables to S1 will
not allow us to construct a refinement mapping to prove that
it implements S3. Our completeness theorem does not apply
because P, is not fin.

In this example, the prophecy variable we wanted to add
would not satisfy P6. However, the supplementary property
happened to ensure that adding the prophecy variable did not
change the externally visible behavior. If we were to replace
PG by the weaker requirement that SP have the same exter-
nally visible property as S, then we could find a refinement
mapping. However, this requirement is precisely what we had
to prove in the first place—namely, that S; implements Sj.

5.3 Prophecy Variables That Add Stut-
tering

We now generalize our definition of a prophecy variable to
allow it to introduce stuttering. Condition P2’ asserts that a
state (s, p) € ¥? is an initial state of SP’s state machine iff s is
an initial state of S’s state machine. We relax this condition
by requiring only that such a state (s, p) be reachable from an
initial state by steps that simulate stuttering steps. Formally,
we replace P2’ by:

P2. (a) H(p](Fp) CF.



(b) Forall (s,p) € H‘P’](F) there exist po, p1y ..., Pn = p
such that (s,pog € F?P and, for 0 < ¢ < n,
((37112'): (5>Pi+l)> € N?.

Similarly, we relax condition P4’ by allowing SP’s state
machine to simulate the step in S’s state machine froni state
s to state s’ by a sequence of n + 1 steps, the last n of which
simulate stuttering steps. The precise condition that replaces
P4’ is:

P4. If (s,¢') € N and (&', p') € X? then there exist p, pj, .. .,
Pty Py = P such that ((s,p), (s, p})) € NP and, for
0<i<n, {(¢,p),(s',ply,)) € NP

As with history variables, the addition of prophecy vari-
ables leaves an implementation essentially unchanged.

Proposition 5 (Soundness of prophecy variables) If
SP is oblained from S by adding a prophecy variable, then the
two specifications define the same externally visible property.

Proof Let M and MP be the specifications’ machine prop-
erties, P and P? their complete properties, and O and O? the
induced externally-visible properties. The proof that O” C O
is identical to the proof of the corresponding condition for his-
tory variables in Proposition 4. To prove that O C OP, we
must prove that P C iy (P?). Given o = ((s0,51,...)) € P,
we find 7 € PP with ljpy(7) = o as follows. Definc a
graph whose set of nodes is ¥? x N with an edge between
((siyp),1) and {(s;,p'), 14+ 1) iff (5, p) = (si41, ) or there ex-
ist po, 1y ..., pn = p' € Ep such that ((s;,p), (siy1,p0)) € N?
and, for all 0 < k& < n, {(si1,Pk)s (Si41, Pe41)) € NP The
subgraph reachable from nodes of the form ((so,p),0) is
acyclic, and PG implies that it has finite branching and a
finite set of sources. An induction proof based on P4 implies
that for all n > 0 and all (s,,p,) € EP there exist elements
Doy -+ +y Puot in Ep such that {{(s0,0),0),- -+, ((Sr,0n), 1))
is a path in this graph. Kénig's Lemma implies the exis-
tence of an infinite path {{((so, po), 0), ((s1,p1),1),...)}. Let
p = {(s0, o), (31,p2), . ..)), and construct 7 from p by using
the definition of the graph to fill in the internal steps of SP
between each (s;,p;) and (s;41,pis1), and using P2 to fill in
the steps at the beginning. The construction guarantees that
7 € MP, and P5 implies that 7 € L?. §

6 Internal Continuity

We now define internal continuity, which appears in our third
hypothesis. But first, we give an example that indicates why
the hypothesis is needed for our completeness theorem.

Let Xg N, let 5; be the terminating sequence
(0,1,...,7,4,%,...)), and let 5 be the nonterminating se-
quence {{0,1,2,...)). Let {{eg, €1, ...)} x z denote the sequence
{(ea, ), (e1,2),...)). We construct a specification Sz that de-
fines the property whose stutter-free sequences consist of all
sequences 7; X t together with the sequence 7 x f. Formally,
Sz = (I3, F3, Na, L), where

173

o ¥y = Nx{t,f}. (The internal component is a Boolcan.)

I = {(0,t),(0,f)}. (Behaviors start with their visible
components equal to 0.)

Ny = {{(4,0),(i + 1,0)}}. (The external component. is
incremented by 1 and the internal component remains
constant.)

L, consists of all behaviors cxeept ones of the lorm o x f
with ¢ terminating and ¢ x t with o nonterminating.

The externally visible property O, defined by Sa consists of
the behaviors 5;, the behavior 7, and all behaviors obtained
from them by stuttering. Specification S is fin and machine
closed.

The externally visible property O, is also defined by the

simpler specification S1 = (¥, 1, Ny, Ly), where
e ¥, = Xp = N. (There is no internal component.)
o [ = {0}. (All behaviors start at 0.)
o Ny = {{1,7+ 1)}. (The state is incremented by 1.)
o Ly = XY (the trivial property that allows all behaviors).

Obviously, Sy tmplements Sz, Let S = (7, 17, N7, 1Y)
be any specification obtained from S1 by adding a prophecy
variable. We now show that there does not exist a refinement
mapping from S¥ to Sz; in fact there docs not exist any
mapping from £ to £, that proves that S} implements 5.

Let PP be the property defined by S§. We show by contra-
diction that there does not exist any mapping [ : 8% — X,
such that (i) Hg(f(Z,p)) = ¢ and (i) f(PF) C ;. For cach
i let 9 € PP be a behavior with Hpy(y)) = 1. Morcover, 5
implies that we can choose 7! to have no repeated nonfinal
states, meaning that for j <7 and & > 1, there is no segment,
{Gpih Gop2), -, Gope))) of i with i = pr. By (i), we
then have that for every 7 and m with ¢ < m there is an {
such that Ig(n),]) = 7ilip1. Moreover, PG and the absence
of repeated nonfinal states imply thal for cach i there is an
integer m(#) > ¢ such that | < x(¢) for all such m. We can
choose 7 so that 7(i + 1) > x(¢) for all .

For any n, the set {#)lspn} is finite (by P6). Therefore,
we can inductively construct the sequence 8, of length ()
such that 0, is a prefix of infinitely many of the #} and is
also a prefix of 8,1,. Let 7’ = lim 0,; then L(y') ~ 7. Since
each 0, is a prefix of sone 7}, clearly 7' is in the machine
property of 7. Property P'5 then implies that o' € PP. By
definition of 7/, assumption (ii) implics that. f(y!) =~ #; x t,
which implies that f(3') >~ 5 x t. We then have ¢’ € P! and
f(n") & Pz, which contradicts assumption (ii).

This proof can be extended to the case where Sy is replaced
by any specification Slf obtained from it b¥ adding a history
variable. We just replace 9 with any behavior allowed by Sll"
that simulates it, and replace ; with an initial prefix of this
new 7. Thus, first adding a history variable still does not
allow one to construct the refinement mapping.



The problem with specification Sz is that 5 x t is not in P,
even though ITg(nxt) is in O, and any finite portion of 7 xt is
the same as the corresponding portion of some behavior 7; xt
in P,. The sequence 5 x t is not in P, even though we cannot
tell that it isn’t by looking either at its externally visible
component or at any finite part of the complete behavior.
To rule out this possibility, we must add to our completeness
theorem the hypothesis that P is internally continuous.

Definition 2 A X-property P with induced externally visible
property O is internally continuous tff; for any E-behavior o,
if llg(o) € O and 0 € P, then 0 € P. A specification is
internally continuous iff the (complete) property it defines is
internally continuous.

Suppose P = M N L and M = P. Then limo; = o for
g; € Pilf 0 € M. 1t follows [romn this that, lor a machine-
closed specification, internal continuity is equivalent to the
condition that a complete behavior is allowed iff it is gener-
ated by the state machine and its externally visible compo-
nent is allowed. In particular, safety properties are internally
continuous.

Since the machine property M is closed, il limo; = o for
oi € MNL,then o € Liff o € M N L. This implies that if L
is internally continuous, then M N L is internally continuous.
Hence, for any specification, il the supplementary property
is internally continuous, then the specification is internally
continuous. The converse is not true, since il M is the empty
property, then M N L is internally continuous for any L.

Any specification can be made internally continuous by
adding to L all sequences ¢ in M such that Iiz(o) € O.
Expanding L in this way obviously adds no new externally
visible behaviors, so the resulting specification is equivalent
to the original one. The expansion could introduce infinite
internal nondeterminism, but not if M is fin.

7 Completeness Results
We can now prove our main result.

Theorem 2 (Completeness) If the machine-closed speci-
fication S1 implements the internally continuous, fin specifi-
cation Sg, then theve is a spccification Sll‘ oblained from Sy
by adding a history variable and a specification Sl]lp obtained
from S® by adding a prophcey variable such that there evists
a refinement mapping from S‘llp to Ss.

Proof lor ¢ = 1,2, let S; = (¥;, F;, N;, L;), and let P; be
the complete property of Sj. Define S& = (Tk, ki NE L),
where: L7 is the sel of pairs (s,h) such that A is a finite
prefix of a behavior in Py ending in s; Ft is the set of states
with ||&]] = 1; {(s,h), (s, 1)) € N it &' = h {(s')); and L}
is determined by H5. Conditions H2 and H4 follow from the
machine closure of S7 and Lemma 1, and the other conditions
are proved using only the definition of SY. Define Slllp =
(S Fhe NP L) where: S is the set of triples (s, h,p)

such that p is an initial prefix of a stutter-free behavior in

174

P, such that p has the same externally visible behavior as
h; FI® is the set of states with (s,h) € F* and |p|| = I;
((sy hyp), (s', 1, p")) € N ifl either (a) p' = p- ({last(p")))
and either ((s,h), (s, h')) € NP or (s,h) = (s, 1), or (b) p' =
p and ((s,h), (s, /') € N} and LY is determined by P5.
Conditions P1-P5 follow from the definition of Sllm, and the
proof of P6 requires also the hypotheses that S implements
Sz and that Sz is fin. Define f : El;p — X3 by f((s,h,p)) =
last(p). Then R1-R3 follow {from the delinition of Slllp and
R4 follows [rom the hypotheses that S; implements Sg and
S is internally continuous. il

The converse of this completeness theorem is not true. For
instance, no matter how pathological a specification is, we
can use the identity refinement mapping to prove that it im-
plements itself.

The hypotheses of the internal continuity and finite invis-
ible nondeterminism of Sy can be removed from our com-
pleteness result by generalizing the definition of a prophecy
variable—namely, by replacing condition PG with the explicit
requirement that the externally visible behaviors of SP be the
same a those of S. This result is proved by defining S} as in
the proof of Theorem 2, defining Sllm so that ils states are
4-tuples (s, h,n,7) with (s,k) € £k, 7 a complete behavior
allowed by Sz, and Ilgz(h) ~ Ig(r],), and defining the re-
finement mapping by letting f((s, k,n,7)) be the n'" element,
of 7. However, the condition that replaces P6 asserts that
specification SP implements S, which is precisely the type of
condition we are trying to prove in the first place. This gen-
eralization of Theorem 2 is therefore of little practical value,
so we will not bother to state it and prove it formally.

There is one simple way to strengthen the completeness
theorem that is of some interest. The specification Sz is fin
and internally continuous iff the property P, that it defines is
fin and internally continuous. We can weaken the hypothesis
by requiring only that there exist a fin and internally con-
tinuous property P, contained in P, that induces the same
externally-visible property as P;. Let 8% be the specification
obtained [rom Sz by replacing L, with Ly N P}, The correct-
ness of this result follows easily from Theorem 2 by replacing
Sy with S5,

8 Whence and Whither?

Refinement mappings are not new. They form the basis of
the methods advocated by Lam and Shankar [LS84] and by
us [Lam83}, and they are used by Lynch and Tuttle {L'187]
to prove that one automaton implements another. [lowever,
none of this work addresses the issue of completeness. Jon-
sson [Jon87] did prove a completeness resull similar to ours,
but for a smaller class of specifications.

Complete methods for checking that a program implements
a specification, without constructing refinement mappings,
have been developed. Some of the most general are those
of Alpern and Schneider [AS87], Manna and Pnueli [MP87],
and Vardi [Var87]. Their methods differ from our approach
in at least two important ways:



e They do not consider behaviors with different amounts
of “stuttering” to be equivalent, so their definition of
what constitutes a correct implementation is weaker
than ours.

o They require taking the negation of specifications. In
practice, the negation of a specification may be hard to
construct and hard to understand.

Because of these differences, the methods may not offer prac-
tical alternatives to the use of refinement mappings for prov-
ing correctness.

Our exposition has been purely semantic. We have consid-
ered specifications, but not the languages in which they are
expressed. We proved the existence of refinement mappings,
but said nothing about whether they are expressible in any
language. We do not know what languages can describe the
necessary auxiliary variables and resulting refinement map-
pings.

Our results also raise the question of what properties can
be described by specifications that are fin and internally con-
tinuous. If the specification language is expressive enough,
then all properties can be defined by specifications without
internal state, which are trivially fin and internally continu-
ous. At the other extreme, one can easily invent artificially
itnpoverished languages that do not allow any fin or internally
continuous specifications. The question becomes interesting
only for interesting specification languages, such as various
forms of temporal logic. In addition, recall that the hypothe-
ses of our completeness result can be weakened by requiring
only that Sg’s complete property be equivalent to a fin and
internally continuous subproperty. This raises the more gen-
eral question of what expressible properties have equivalent
fin and continuous subproperties.

Acknowledgements

The first example we saw that demonstrated the inadequacy
of history variables is due to Herlihy and Wing [HW87]. The
introduction of prophecy variables was based on a suggestion
of Jim Saxe. We also wish to thank Pierre Wolper for making
clear whence our ideas came and Gordon Plotkin for making
clear that whither they will lead is not an easy question, since
he couldn’t answer it on the spot.

References

[AL88] Martin Abadi and Leslie Lamport. The Eristence
of Refinement Mappings. Research Report SRC28,
Digital Equipment Corporation, Systems Research

Center, April 1988.

[AS86] Bowen Alpern and Fred B. Schneider. Recognizing
Safety and Liveness. Technical Report TR86-727,
Department of Computer Science, Cornell Univer-

sity, January 1986.

175

[AS87)

[HWS7]

[Jon87)

[Knu73]

[L.S84]

[Lam?77)

[Lam83]

(LT87]

[MP87]

[OwiT5]

[Var87]

Bowen Alpern and Fred Schneider. Proving boolean
combinations of deterministic properties. In Pro-
ceedings of the Second Sympostum on Logic in Com-
puter Science, pages 131-137, IEEE, June 1987.

M.P. Herlihy and J.M. Wing. Axioms for concurrent
objects. In Proceedings of the Fourfeenth Annual
ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, pages 13-26, ACM,
Munich, January 1987.

Bengt Jonsson. Composilional Verification of Dis-
tributed Systems. PhD thesis, Uppsala University,
1987.

Donald E. Knuth. Fundamental Algorithms. Vol-
ume 1 of The Art of Compuler Programming,
Addison-Wesley, Reading, Massachusetts, second
edition, 1973.

Simon S. Lam and A. Udaya Shankar. Protocol
verification via projections. IEEE Transaclions on
Software Engineering, SE-10(4):325-342, July 1984.

Leslie Lamport. Proving the correctness of multi-
process programs. IEEE Transactions on Software
Engineering, SI5-3(2):125-143, March 1977.

Leslie Lamport.  Specifying concurrent program
modules. ACM Transactions on Programming Lan-
guages and Systems, 5(2):190-222, April 1983.

Nancy Lynch and Mark Tuttle. Hierarchical cor-
rectness prools for distributed algorithms. In Pro-
ceedings of the Sixth Symposium on the Principles of
Distributed Computing, pages 137-151, ACM, Au-
gust 1987.

Zohar Manna and Amir Puueli. Specification and
verification of concurrent programs by V-automata.
In Proceedings of the Fourteenth Symposium on the
Principles of Programming Languages, pages 1-12,
ACM, January 1987.

S. Owicki. Aziomatic Proof Techniques for Parallc
Programs. PhD thesis, Cornell University, August
1975.

Moshe Vardi. Verification of concurrent programs:
the automata-theoretic framework. In Proceedings
of the Second Symposium on Logic in Computer Sci-
ence, pages 167-176, IEEL, June 1987.




