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Abstract 
Refinement mappings are used to prove that a lower-level 
specification correctly implements a higher-level one. We 
consider specifications consisting of a state machine (which 
may be infinite-state) that specifies safety requirements a.nd 
an arbitrary supplementary property that specifies liveness 
requirements. A refinement mapping from a lower-level spec- 
ification S1 to a higher-level one S2 is a mapping from SI’S 

state space to S2’s state space that maps steps of Si’s state 
machine steps to steps of S2)s  state machine and maps be- 
haviors allowed by S1 to behaviors allowed by S2. We show 
that, under reasonable assumptions about the specifications, 
if S1 implements Sa, then by adding auxiliary variables to 
S1 we can guarantee the existence of a refinement mapping. 
This provides a completeness result for a practical hierarclii- 
cal specification method. 

1 Introduction 

1.1 Specifications 
A system may be specified at  many levels of abstraction, from 
a description of its highest-level properties to a description of 
its implementation in terms of microcode and circuitry. We 
address the problem of proving that a lower-level specification 
is a correct implemenlation of a higher-level one. 

Unlike simple programs, which can be specified by in- 
put/output relations, complex systems can be adequately 
specified only by describing the behaviors that they may ex- 
hibit. We consider specification methods in which a behavior 
is represented by a sequence of states and a system is speci- 
fied by a set of permitted behaviors. 

A specification should describe only the erternally visible 
components of a system’s slate. However, it is often help- 
ful to describe its Leliavior in terms of unobservable inteirial 
components. For example, a natural way to specify a queue 
includes a description of the sequence of elements currently 
in the queue, and that sequence is not externally visible. Al- 
though internal components are mentioned, tlie specification 
prescribes the behavior of only the externally visible conipo- 
nents. The system may exhibit the externally visible behav- 
ior 

((eo, e11 e21 . . . )) 

where e, is a state of the exteriially visible coniponent, if 
there exist states yz of the internal coiiiponent such that the 
coiiiplete behavior 

(((eo, Yo), (el, Y l ) ,  (e21 Yz), ’ ’ ’ )) 

is permitted by the specification. (We use (( )) to tlcnote a 
sequence.) 

A specification may allow sleps iii wliicli only tlic int,ei iial 

state component changes-for example, a sequence 

Such internal steps a.re iiot externally visible, so tlie scyueiice 
of external states ((Q, el, el, e l ,  e2, . . .)) slioultl be eqniva.lriil 
to the sequence ((%,el, e2, .  . .)) ol)ta.iiietl by reriioviiig tlie 
“stuttering” steps from el to el .  Let I’((cO,elr.. .)) be tlie 
set of all sequences obtained from ((eo, e l , .  . .)) by repeat- 
ing states and deleling repeated states-t1ia.t is, I,y a.dtliiig 
.and removing stuttering. We consider only specifica.tions i i i  

wliicli a sequence ((eo, e l , .  . .)) is allowecl only if a.ll srqi ic i i~(~ 
in r((eo, el, . . .)) are allowed. Such specifica.tions a.re sa.icl to 
be invariant under stutteiiri.g. 

The behaviors permitted by a. specifica.tioii can be tlc- 
scribed as the set of sequences satisfying a. safeby a.nd a. live- 
ness property [ASSS, Lain7’il. Intuitively, a, sa.fely projwrby 
asserts that something bad does iiot 1ia.ppen a.nd a liveliess 
property asserts that sonietliing good does cventua.lly 1ia.p- 
pen. In specifying a. queue, the safety property iiiiglit as- 
sert that the sequence of elenients removed froiii the q w u e  
is an initial prefix of the sequence of elements a.tldcd to llie 
queue. The liveness property might assert that a.11 opera.tioii 
of putting an element into the queue is eventually coiiiplet,etl 
if the queue is not full, a.nd a.n opera.tioii of renioviiig a.u el- 
ement from the queue is eventually conipletetl if tlie qurue 
is not empty. (What operations are iii progress aiitl w11a.t. 
elements they are a.dding to or have removed from {,lie queue 
would be described by tlie externally visible state.) 

We are concerned with specilica,t.ions in wliicli tlie sal’ety 
property is describecl by ail “abstract” nondeterniinistic pro- 
gram; a behavior sa,lisfies the property if it can be general,etl 
by the program. Liveliess conditiolis a,re descriLed eitlicr 
directly by writing a,xioms or indirectly by placiiig fairness 
conslrainls on tlie abstra.ct prograni. In a specifica.tion of 
a queue, the program describes the secpencc of a,ctions by 
which an eleinent is added to or removed froill the seqiieiice 
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of queuecl elemelits, ensuring the safety property t1ia.t the 
correct elements are reinovecl from the queue. Adclitioiial 
fairness coilstrailits assert that certain actions must eventu- 
ally occur, eiisuring tlie liveliess property that opera.tions that 
sliorilcl coinplete eveiitua.lly do complete. 

Ma,uy proposed specifica.tion methods involve writing pro- 
grams and fa.irness conditions in this way [LS84, La.m83, 
LT871. (Some methods do not consider liveness a t  all and 
just  specify sa,fety properties with programs.) 

To describe specifications f o n d l y ,  we represent a program 
by a. state macbine (whose set of states inay be infinite) a,nd 
we represent tlie fairness coiistra.ints by an arbitrary supple- 
i i i e i i h y  condition. For our results, it does not inatter if the 
supplementa.ry condition specifies a liveness property. 

1.2 Proving That One Specification Im- 
plements Another 

A specificat,ion S1 iinplemnents a specification S z  if every ex- 
ternally visible behavior allowed by Si  is also allowed by S a .  
To prove that S1 imple~nents S z ,  it suffices to prove that if 
S1 allows the behavior 

where the z;  are internal states, then there exist iiiternal 
sta.tes y, such that S z  allows 

(((eo, Yo), ( e l ,  Y l ) ,  (e2,! /2) ,  . . . )) 
In general, each y, can depend upon tlie entire sequence 
(((eo, zo), ( e l ,  z l ) ,  (ez, z z ) ,  . . .)), and proving the existence of 
the y; may be quite difficult. The proof is easier if each 
y; depends only upon e; ancl z;, so there exists a function 
f such that (e;,y;) = f ( e ; , z , ) .  The proof becomes easier 
still if f maps steps of SI’S state ma.cliine into (possibly 
stuttering) steps of Sz’s state machine. In this ca.se, verify- 
ing that ( ( f ( e 0 ,  zO) , f ( e l , z1 ) ,  f ( e 2 , z Z ) ,  . . .}) satisfies the safety 
property of S z  involves rea3oiiiiig about states and pairs of 
states, not about sequences. Such a inqlping f is called a 
~efiiienieiat mapping. 

In the example of a queue, the internal state y; of specifica- 
tion S z  might describe the sequence of elements currently in 
the queue, and tlie internal state z; of specification Si might 
describe the contents of an array that implemeiits the queue. 
To prove that S1 iinpleinents S z ,  one would construct a re- 
finement impping f such that f ( e ; ,  2;) = (e , ,  y;), where y; 
describes tlie state of tlie queue that is represented by the 
contents of tlie a.rray described by state z;. 

Several methods for proving tliat one specification iinple- 
ments a,notlier are based upon finding a refinement niap 
ping (LSM, Lain831. In practice, if Si iinpleineiits S a ,  then 
these methods usually can prove that tlie iniplemeiita.tio~i is 
correct~--usually, but not always. The metJiods fa.il i f  tlie 
refinement niapping does not exist. Three reasons why tlie 
niapping might not exist are: 

S z  may specify an iuternal state with “historical illror- 
For example, suppose S2 mation” not ueetied by S I .  

requires that the systein display any arbitrary nuniber 
of least-significant bits of a clocli, so its internal state 
iiicludes an unbounded clock value. This specification is 
iinpleinentecl by a lower-level specification S1 that alter- 
nately displays zeio ancl one, with no internal state. A 
iefineinent mapping does iiot exist because there is no 
way to  define tlie iiiteriial state of tlie clock as a function 
of its low-ordei bit. 

S z  rimy specify t1ia.t a. iioiideteriiiiiiistic clioice is ma.tle 
b e h e  it has to be. For exainple, consider two specifi- 
ca,tions S1 a.nd S z  for a. systein t1ia.t displays ten noii- 
deterministica.lly chosen values in sequelice. Suppose S z  
requires that a.11 values be chosen before any is clisphyed, 
wliile S1 requires each value to be chosen as it is dis- 
played. Both specifica,f,ioiis describe the sa.iiie externally 
visible behaviors, so ea.cli implements the other. How- 
ever, Sa requires tlie internal sta.te to cont.a,in all ten 
values before any is displayed, while S i  does not specify 
any interrial state, so no refinement. ~na.pping is possible. 

For example, let S1 
arid S z  both specify clocks in wl~icli liours a.nd niinutes 
are externally visible a d  seconds are inter id .  Suppose 
that in S2 each step increiiients tlie clock by one sec- 
ond, wliile in S1 ea,cli step increiiients the clocli by ten 
seconds. Both specifica,tions allow tlie saine externa.lly 
visible behaviors. A complete behvior ((so, sl, sz, . . .)) 
specified by S i  may produce a,n exlernally visible cliange 
every six steps. For m y  iiia.pping f ,  tlie sequence 
( ( f ( e o ) ,  f ( s l ) ,  f ( s z ) ,  . . .)) may also produce a.ii externally 
visilde clia.nge every six steps. This is not a.llowetl by 
S a ,  wliicli requires fifty-nine internal steps for every ex- 
teriially visible one. Hence, no refineinelit, niappirig ca.n 
prove that Si  implemeiits S z .  

S2 may “run slower” t1ia.n S I .  

If a, refinement ma.pping does not exist, it call often be 
made to exist by a.dding nnzi1iai.y .un~riuDles to the lower-level 
specification. An a.uxilia.ry varia,ble is ail iiiternal sta.te coiii- 
ponent that is added to a specification without affecting the 
%xterna,lly visible behavior. The t h e  situations describctl 

a.buve in wliicli refinement mappings caanot be found are 
handled as follows: 

Ilistorica.1 information niissiiig From tlie iiileriial state 
specified by S1 can be provided by adding a hisfory 
vwinble--a well-liliowli forin of auxiliary variable t1ia.t 
merely records past actions [Owi75]. 

If S2 requires that a iioiideteriiiiiiisbic clioice be imde be- 
fore it lias to be, then S1 call be iiiodified so the clioice is 
made sooner by addiug a prophecy uarinble. A propliecy 
variable is a new forin or auxiliary variable that is the 
mirror iina.ge of a history varia.ble-its forma.l definition 
is almost tlie sa.ine as the definition of a liistory va,ri- 
able wit.11 pa.st a d  future iiitercliaiiged, but there is  an 
asyinmetry due to b e h i o r s  Iia.viiig a. l>eginiiing h i t .  iiot 
necessarily an end. 
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If Sz runs slower than S i ,  then an auxiliary variable 
must be added to  S1 to  slow it down. We will define 
prophecy variables in such a way that they can perform 
this slowing. 

Our main result states that, under three hypotheses about 
the specifications, if Si  implements Sz then one can add 
auxiliary history and pro hecy variables to  S1 t o  form an 
equivalent specification SFp and find a refinement mapping 
from Sy to Sz. The three hypotheses, and their intuitive 
meanings, are: 

is machine closed. Machine closure means that the sup- 
plementary property (the one normally used to specify 
liveness requirements) does not specify any safety prop- 
erty not already specified by the state machine. In other 
words, the state machine does as much of the specifying 
as possible. 

has finite invisible nondeterininisnr. This denotes that,  
given any finite portion of an externally visible behavior 
allowed by S a ,  there are only a finite number of possible 
choices for its internal state component. 

is internally continuous. A specification is internally con- 
tinuous if we can show that it does not allow a partic- 
ular complete behavior by examining the behavior's ex- 
ternally visible part (which may be infinite) and some 
finite portion of the complete behavior. 

We will show by examples why these three hypotheses are 
needed. 

We will prove that any safety property has a specification 
with finite invisible nondeterminism, any specification of a 
safety property is internally continuous, and any property has 
a machine-closed specification. Thcrefore, our result implies 
that if the specifications are written properly and Sz specifies 
only a safety property then one can ensure that a refinement 
mapping exists. We will also show that, even when Sz is not 
internally continuous, a refinement mapping exists to show 
that S1 satisfies the safety property specified by Sa. There- 
fore, by writing specifications properly, refinement mappings 
can always be used to prove the safety property of a specifica- 
tion if not its liveness property. We do not know if anything 
can be said about proving arbitrary liveness properties. 

In this paper, proofs are just sketched. Detailed proofs as 
well as some additional discussion can be found in [ALSS]. 

2 Preliminaries 

2.1 Sequences 
We now define some useful notations for sequences. In these 
definitions, U denotes tlie sequence ((so, s1 , sz, . . .)) and T de- 
notes the sequence ((to, t l ,  tz ,  . . .)). These sequences may be 
finite or infinite. If U is finite, we let ]loll denote its length and 
last(a) denote its last element, so II((so,. . . ,s,,-~))ll = m and 
las t ( ( ( so ,  . . . , s ~ - ~ ) ) )  = S,-l. An infinite sequence is said to 

be terminating if it is of the forni ((so, sl, . . . , s,,, s,, s,,, . . .))- 
in other words, if it reaches a final state that it iepeats for- 
ever. 

As usual, a mapping on elements is extended to a map- 
ping on sequences of elements by defining g(o )  to equal 
( ( g ( s o ) , g ( s l ) ,  . . .)), ancl to a mapping 011 sets of elemelits 1,y 
defiiiing g ( S )  to equal { g ( s )  : s E S}. 

The sequence a is said to be stutfer-jree i f ,  foi each i ,  ei- 
ther s, # s,+1 or the sequelice is infinite and s, = s3 for all 
j 2 i. Thus, a nonteiminating sequence is stutter-free iIf (if 
and only i f )  it never stutters, ancl a teriiiinatitig sequeiice is 
stutter-free iff it stutters ouly after reaching its final state. 
We defiue ha to be the stutter-flee sequence obtained by  re- 
placing every maximal finite sul>sequeiice s,, s,+I, . . . , s3 of 
identical elements with the siugle element s,. For example, 

We define a = T to n1ea.n that bo = 117, aut1 we tlefiiie I'a to 
be the set { T  : T N o}. If S is a set ol sequetices, l'(S) is 
the set { r a  : a E S}. A set of sequences S is closcd urtdcr 
stuttering if S = I'(S). Thus, S is closed untlcr stuttering if f  
for every pair of sequences o, T with g N T ,  if U E P then 
T E P .  

We use "." to denote concatenation of sequences--tliat is, i f  
lloll = m, then o . T = ((SO,. . . , s ~ ~ - ~ ,  to ,  t l , .  . .)). If lloll 2 i n ,  

we let oln, denote ((so, si , .  . . , ~ , ~ - 1 ) ) .  

For any set E, let E" denok the set of all inlinibe seclumces 
of elemelits in E. A n  infinite sequelice ((go, aI ,a2 ,  . . .)) of 
sequences i n  C" is said to corioerge to the sequelice a i l l  E" 
iff for all 71% 2 O there exists a.n n >_ O such that cr;J,,, = CTJ,,, 

for all i 2 n. In this case, we define linia, to be a. l'liis 
definition of convergence gives rise to a topology on E"'. We 
now recall some other defiiiitiotis. 

Let o be an element in E" and let ,S be a sul>set of Ew. We 
say that U is a liiriit yoirit of S ili" there exist eleirieiits o, i i i  

S such that lima; = o. The set S is closed iff S roiita.ius a.ll 
its limit poiiits. Tlie closiire of S, tleiiokd 3, coiisisbs of a.11 
limit points of S; it is tlie smallest closed sct cout.aitiiirg ,S'. 

2.2 Properties 
We can only sa.y that one specifica.tion iiiip1c"wts aiiot1ic.r if  
we are given a. correspontlcnce bet.wt.eii the extcriially visilde 
states of the two specifica.tions. For esainple, if Sz asserts 
that the initial value of a. pa.rticular register is tlie iiit,rgcr - 3  
and S1 asserts t1ia.t tlie regisber's iiiit,ial d u e  is tlic seclueiicr 
of bits 1111100, then we ca.n't sa.y whether or iiot SI iiiiple- 
nients Sa without knowing how to intcrpwt a sccliic~iicc~ of 
bits as an integer. In general, to decide if Si iiiiplciiieiits Sz, 
we must know how to interpret a.ri esteriia.lly visilh s t a k  of 
S1 as an externally visible s h t e  of Sz. Giveii sucli an iiiler- 
pretation, we can translate S1 int,o a. specification with t,lie 
same set of externally visible states as S I .  TIius, t h e  is 110 

loss of generality in requiring that S1 a . 1 ~ 1  Sz liave the same 
set of externally visible states. 

We therefore assume that all specificatioiis uiitler consitler- 
ation have the same fixed set C E  of estertially visiljle stales. 
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A state space C is a subset of C E  x C I  for some set C I  of in- 
ternal states. We let n~ be tlie obvious projection mapping 
from C E  x CI onto C E .  The set C E  itself is considered to  be 
a state space for which IIE is the identity mapping. 

If C is a state space, then a C-behavior is an element of 
E". A CE-behavior is called an externally visible behavior. A 
C-property P is a set of C-behaviors that is closed under stut- 
tering. A CE-property is called an externally visible property. 
If P is a E-property, then IIE(P) is a set of externally visible 
behaviors but is not necessarily an externally visible property 
because it need not be closed under stuttering. The exter- 
nally visible property induced by a C-property P is defined 
to be the set I '(n~(p)). 

If C is clear from context or is irrelevant, we use the terms 
behavior and property instead of C-behavior and C-property. 
We sometimes add tlie adjective "complete", as in "complete 
behavior", to distinguish behaviors and properties from ex- 
ternally visible behaviors and properties. 

A property P that is closed ( P  = P )  is called a safety 
property. Intuitively, a safety property is one asserting that 
something bad does not happen. To see that our formal 
definition of a safety property as a closed set captures this 
intuitive meaning, observe that if something bad happens, 
then it must happen within some finite period of time. Thus, 
P is a saiety property iff, for any sequence a not in P ,  one 
can tell that a is not in I-' by looking at  some finite prefix 
aiI of a. In other words, a @ P iff there exists an z such that 
for all T if 71, = al. then T @ P. Hence, a E P iff for all z 
there exists a T, E P such that ~ , 1 ,  = 01,. But l imq = a, 
whjch implies that a E P; thus, a E P iff o E B. Therefore, 
P satisfies the intuitive definition of a safety property only if 
P = P.  

Even though we do not use the formal definition, it is in- 
teresting to note that a C-property L can be defined to be 
a liveness property iff it is dense in E"-in other words, if 
L = E". Tliis means that L is a liveness property iff any fi- 
nite sequence of elements in C can be extended to a behavior 
in L. In a topological space, every set can be written as the 
intersection of a closed set and a dense set, so any property 
P can be wiitteii as Aln L ,  where M is a safety property and 
L is a liveness property. Moreovei, M can be taken to be Ti. 

- 

2.3 Specifications 
A state machine is a triple (C, F, N )  where 

C is a state space. (Recall that this means C C_ C E  x C I  
for some set C I  of internal states.) 

0 F ,  the set of initial states, is a subset of C. 

N ,  the next-state relation, is a subset of CXC. (Elements 
of N are denoted by pairs of states enclosed in angle 
brackets, like (s, t ) . )  

The (complete) property generated by a state machine 
(E, F, N )  consists of all infinite sequences ((so, SI,. . .)) such 
that so E F and, for all i 2 0, either (s,,s,+l) E N or 

s, = s , + ~ .  This set is closed under stuttering, so it is a 
C-property. The externally visible property generated by a 
state machine is the externally visible property induced by 
its complete property. 

We now show that the complete property P generated by a 
state machine is a safety property. This requires proving that 
if lima, = a and each a, E P ,  then a E P. For any behavior 
T = ((s",s~, . . .)) and any j 2 0, let TI be the teriniiiating 
behavior ((so,sl,. . . , sJ , s , ,  s,, . . .)). Then T is in P iff each 
TJ  is in P .  Since limo, = a, each 01 equals (a,)' for some i .  
Since each a, is in P ,  each (a,)J is in P ,  which implies that 
a is also in P. Hence, P is closed, so the complete property 
generated by a state machine is a safety property. However, 
we will show in Section 3 that its externally visible property 
need not be a safety property. 

A state machine (E, F, N )  is a familiar type of nondeter- 
ministic automaton, where F is the set of starting states a i d  
N describes the possible state transitions. (However, remem- 
ber tliat C may be an infinite set.) The set of sequences gen- 
erated (or accepted) by such an automaton is usually defined 
to be the set A of all sequences starting with a state in F and 
progressing by making transitions allowed by N .  However, 
we also allow stuttering transitions, so we have defined tlie 
property generated by tlie state niachine to be r ( A )  together 
with all terminating sequences obtained from finite prefixes 
of behaviors in r ( A )  by infinite stuttering. 

A specification S is a four-tuple (C, F, N , L ) ,  where 
(E, F, N )  is a state machine ancl L is a C-property, called 
the supplementary property of the specification. The prop- 
erty M generated by the state machine (E, F, N )  is called the 
machine property of S .  The (complete) property defined by 
S is defined to be A1 n L ,  and the externally visible property 
defined by S is defined to be r ( n E ( M  n L ) ) ,  the externally 
visible property induced by M n L. 

State machines are easier to work with tliaii arbitrary sets 
of sequences, so one would like to specify a property purely 
in terms of state machines. However, the complete property 
generated by a state niacliiiie is a safety property. The sup- 
plementary property of a specification is needed to introduce 
liveness requirements. However, if we were to place no ad- 
ditional requirement on our specifications, we could use the 
Supplementary property to do all the specifying. To see why 
this leads to trouble, let S2 be a specification consisting of 
any arbitrary state machine that generates an externally vis- 
ible safety property 0 together with the trivial supplemen- 
tary property that contains all behaviors. Define S1 to be 
the specification with state space C E  whose state inachine 
is the trivial one that generates all CE-behaviors and wliose 
supplenientary property is 0. Obviously SI implements Sa. 
The existence of a refinement mapping from SI to Sz ini- 
plies that Si's state machine implements Sz's state machine. 
However, S1 has the trivial state inachine and no inteinal 
state. Auxiliary variables are added to a specification's state 
machine without affecting or being affected by the supple- 
mentary property. (Tliis is what makes tlie addition of aux- 
iliary variables practical.) No souncl method of adding auxil- 
iary variables can transform the trivial macliine into one that 
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implements a completely arbitrary state machine. Therefore, 
we need some constraint on the supplementary property. 

In practice, we specify a desired property P by writing P 
as the intersection M n L of a safety property M and a live- 
ness property L. We try to construct L so that it does not 
specify any safety property, meaning that it does not rule out 
any finite behavior. More precisely, we try to choose L to be 
a liveness property such that any finite sequence of states 
generated by the state machine is the prefix of a behavior in 
P. For our results, it is not necessary that L be a liveness 
property; we need only require that L does not specify any 
safety property not implied by M .  To express this require- 
ment formally, we say that a specification S having machine 
property M and supplementary property L is machine closed 
i f f M = T i i T .  

The following lemma implies that, for a machine-closed 
specification, we can ignore the supplementary property and 
consider only the state machine when we are interested in 
finite portions of behaviors. 

L e m m a  1 If M = B, then every prefiz of a behavior in M 
is the prefiz of a behavior in P.  

Proof  Given U E M and m > 0, we must find 7 E P with 
o l m  = 71,. Choose ai E P with limoi = U ,  choose 11 such 
that oilm = olm for all i 2 11, and’let 7 = on. 1 

The converse of this lemma is also true, but we will not 
need it. 

2.4 Refinement Mappings 
A specification S1 implements a specification S2 ilf the ex- 
ternally visible property induced by S1 is a subset of the ex- 
ternally visible property induced by S a .  In other words, S1 
implements S p  iff every externally visible behavior allowed 
by S1 is also allowed by Sa. 

A refinement mapping from a specification S1 = 
(Cl, F,, N,, L,) to a specification S p  = (Ez, Fz, N2, L z )  is a 
mapping f : C1 + Cz such that 

R1. For all s E C1: II,(f(s)) = II,(s). (f preserves the 
externally visible state component.) 

R2. f (F1)  C F.. (f takes initial states into initial states.) 

R3. If ( s , t )  E Nl then ( f ( s ) , f ( t ) )  E Nz or f ( s )  = f ( t ) .  (A 
state transition allowed by Nl is mapped by f into a 
[possibly stuttering] transition allowed by N z . )  

R4. f(Pl) C_ Lz,  where PI is the property defined by SI.  (f 
maps behaviors allowed by S1 into behaviors that satisfy 
Sp’s supplementary property.) 

Conditions Rl-R3 are local, meaning tha.t they can be 
checked by reasoning about states or pairs of states rather 
than about behaviors. Condition R4 is not local, but check- 
ing it is simplified by the fact that f is not an arbitrary 
mapping on sequences, but is obtained from a mapping on 
states. Thus, one can apply local methods like well-founded 
induction to prove R4. 

Proposi t ion 1 If there exists a refinement inapping fi’orn S1 
to S p ,  then S1 implements S p .  

Proof  For i = 1,2, let Si = (EI, F,, N,,  LI), let AII be the 
machine property of Si, and let f be a refinement mapping 
from S1 to  S p .  Conditions R2 and R3 iniply that f(M1) C_ 
M,, and R4 then implies f(Ml f l  L,) AI, n L2. Condition 
R1 implies that I I E ( M ~  n LI) C IIE(Mz n L2). I 

3 Finite Invisible Nondeterminism 
The machine property M of a specification is a safety prop- 
erty. However, tlie property that is really beiiig specified 
by the specification’s state macliine is the externally visible 
property r ( I I E ( M ) )  induced by M .  The following exaiiiple 
shows that this exteriially visible property is not necessarily 
a safety property. 

Let C E  be llie set N of natural nunhers, and define the 
state machine (E, F, N )  by: 

0 C equals C E  x N. 

0 F equals {(O,O)}. 

0 N is tlie union ol the following two sets: 

- { ( ( O , O ) , ( L T ~ ) )  : 12 E N I ,  
- { ( ( T 7 1 , T ~ + l ) , ( 7 I ~ + 1 , ~ ~ ) ) : T l l , l ?  E N } .  

A slutter-free beliavior of tliis machine starts i i i  state (O,O), 
gdes to state (1,n) for some arlitrary 11 2 0, then goes 
througli the sequence of states ( 2 , ~  - l ) ,  ( 3 , n  - 2), . . . , 
(TZ - z + 1 , i )  for some i 2 0, and terniinat.cs (slutleis [or- 
ever) in the state (11 - i + 1,~). 

The se1 of externally visible beliaviors induced by this 
state macliine consists of all sequences obtainable by stutter- 
ing froin a sequence on of the foiiii ((0,1,2,. . . , i f ,  i z , ~ ,  . . .)). 
This set is not closed, because limo, = ( (0 ,1 ,2 ,3 , .  . .)), and 
((0,1,2,3,. . .)) is iiot in tlie set. The cxternally visible 1x011- 
erty specified by tlie state macliiiie is the coiijunction of lwo 
properties: 

1. The set ol all behaviors that start in state 0 and cliange 
state only by adding 1 to the previous state. 

2. The set of terminating behaviors. 

The first property is a safety properly, 1x11 the second is a 
liveness property; their intersection is neither a safety nor a 
liveness property. 

The purpose of a specification is to specify an  exteinally 
visible property. We feel that the externally visible property 
specified by state machine should be a safely property, so we 
want to restrict the class of allowed state niacliines. 

The reason the externally visible property defined by llie 
state machine in our example is not a safety property can 
be traced to  the existence of infinitely niany state transi- 
tions ((O,O), (I,??)) that correspond to the sanie externally 
visible transition (0,l) .  It is this type of infinite invisible 
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tio~ideter~iiitiism that allows the introduction of liveness into 
the externally visible property of a state machine. To ensure 
that a state machine specifies only safety properties, we must 
restrict it to having finite invisible noncleterniinism. 

Instead of defining the concept of fitiite invisible nondeter- 
niinisiii for a state machine, it is more general to define it for 
a property. A state niacliine is defined to have f i d e  invisible 
tioiidetertiiiiiistii iK tlie property it generates does. 

Definition 1 Let P be a property arid 0 i t s  induced exter- 
nally visible property. W e  say  that  P is fin (for finitely in- 
visibly nondeterministic) i f i f o r  all 7 E 0 and all n > 0 the 
set 

{h(U17r2) : (171 > 0) A (U E P )  A ( H E ( ~ ( u L ) )  11 d7J 
is f inite.  ( I n  other words, every finite prefix ill,, of a behavior 
I /  in 0 is tlie externally visible part of ouly fiiiitely many finite 
stutter-free prefixes ~ ( u I , , , )  of behaviors in P.) W e  s a y  that a 
specificatiori isfiu i .  the complete propei.ty of the specification 
is j i i i .  

If a propel ty A l  is fin then every stionger property P is also 
fin. (Property P is stlotiger than ptolwrty Af iff P M . )  In 
our main result, instead of requiring that the state tnacliitie 
of Sz is fin, we make tlie weaker assuniption that S2 is fin. 
This is stiictly wealter only if Sz is not machine closed, since 
a machine-closed specification is fin iK its state niacliine is 
fin. 

The following pi oposition asserts that tlie exterually visible 
property of a fin state machine is a safety property. It is a 
simple corollai y of tlie subsequent lemma, wliicli will be used 
later as well. 

Proposi t ion 2 Zj a sa je fy  property P 7s $ 1 1 ,  then the exfer-  
iially iiisiblc p m p e r f y  I'(lTE(P)) f h a i  ?i ruduccs rs also a safety 
y r o p  1.1 y . 

Lemma 2 (Closure aiid i ioiideterminism) Let  property 
P be jiii and let 0 be the exter-iially visible prope,rty that it 
induces. If 6 is a liniit point of 0 then there is  a limit point 
p of P sucl. that IIE(p) 2: 6.  

Proof  Lct @,, equal {k(aln) : (ni > 0) A (U E P )  A 
(HE(h(oIrn)) Y & I 7 , ) } .  Since P is fin, the set 0, is finite. 
The definitioiis of 6 and 0 imply that e,, is noiiempty. Let 
o 5 T denote I1ia.t U is a. prefix of 7.  For all 11 a.nrl all 
0 E 07L+1 there exists 0' E 0, sucli that 0' 5 0. Konig's 
Leinilla [I<uu73, pages 381-3s3] then implies that there is an 
infinite sequence pl 5 pz 5 p3 5 . . . with ea.cli p i  E 0,. Ex- 
tend the length of the p, by stuttering if necessary so they 
keep getting longer, extend each p i  to a behavior p: E P ,  and 

the choice eventually be revealed. Fornmlly, this iiiea.ns defin- 
ing a property P witli induced externally visible propertv 0 
to be fin iff for every 7 in 0 and 11 2 0 there exists an 1,' 2 9: 

such that tlie set 

is finite. However, using this weaker definition of finite invis- 
ible nondeterminisin would require sornewlmt more powerful 
prophecy variables and would complicate our proofs, so we 
will stick with our origina.1 definition. 

4 Safety Properties 
Alpern and Schneider [ASS71 and otliers have observed i n  tlie 
finite-state case that there is a correspondence between state 
niacliines and externally visible safety properties. We extend 
their results to tlie infinite-state case for state machines with 
finite invisible iioridetertiiiiiistii. We also prove a result that 
allows us to apply our coinpleteness tlieoreni to safety prop- 
erties even when tlie iuternal continuity hypotliesis is not 
satisfied. 

Proposition 2 implies tliat the externally visible property 
geiieratecl by a fin state machine is a safety property. We 
now prove tlie converse. 

Proposit ioii  3 Every exteriially visible sa j e f y  prolier./y can 
be generated by  a state niachirie with f inite invisible iioiide- 
ter ini t i ism 

Proof  Given a closed CE-property 0, the required state 
niacliine machine is constructed by defining tlie set of 
states to consist of all pairs ( c i ,  ((e", e l , .  . . , e i ) ) )  sucli tliat 
((eo,el , .  . . , e , ) )  is a prefix of a, sequence in 0, deh ing  
tlie starting states to be ones with ititernal coiiiponeiits 
of length one, a.nd defining the iiext-state relatioil so the 
iiia,cliine ca,n go from state (e,, ( ( eo , .  . . , e , ) ) )  only to state 
(e i+i ,  ((eo,. . . ,ei, € ,+I)))  for Some € , + I .  I 

If specification Sz is not interiially continuous, it is possible 
for it to be implenientecl by a specification SI witliout h e r e  
being a refinement ma.ppiiig from SI to S z .  (Internal conti- 
nuity will be defined formally in Section 6.) However, since 
safety properties are internally contiiiuous, we would expect 
to be able to prove tliat the externally visible nia,cliiue p r o p  
erty of S1 implcments the exteriially visible iiiacliiiie property 
of Sz. Combined with our main tlieoreni, tlie followi~ig result 
shows that this is always possible if the state iiia.cl~ine of S1 
is machine closed and the nia,cliine property of Sz is fin. 

let p = lini>i. I 
Theoreii? 1 (Sepa ra t e  safety proofs) Lct PI = MI n Ll 
a,nd PZ = Mz n L z ,  w k r e  tlie Li are arbitrary properties arid 
the A[; are safety properties; arid let 0; arid OM be /he  ester- 
nally visible properties induced by  Pi and Mi ,  respectively. If 
MI = F,  A42 is  f i i i ,  aiid 0, c 0 2 ,  tlieii Ot' c O y .  

For a state iiiacliiiie to be fin, it may not nialte an infi- 
nite nondeiemiinistic choice unless all but a finite pa.rt of 
that choice is immediately revealed in tlie externally visible 
state. We can weaken our definition by requiring only tliat 
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Proof For any set Q of behaviors, r(g) r(Q) and the induced externally visible piopeities. Conditions 112 
nE(Q 5 ~ E ( Q ) .  Fronl this and the hypothesis that hfl = and I13 imply I l [ ~ l ( h f ” )  C hf and coiiditioii 115 iinplies 
Pl, we can prove that OC4 C_ n, which implies O y  E &. 11[~l(P~) C P ,  I)roving that O’L C 0. To 1)rove 0 C O“, 
The inonotoiiicity of nE, r,%d closure imply & & v, and we n n ~ t  Show that p &i](ph) ,  WlliCh is t h e  I)Y USiW 
Proposition 2 implies that 0,” = O r .  I 112-114 to construct from ally sequence ((so, sl,. . .)) E I’ a se- 

quence (((so, / i o ) ,  (sir Ill), . . .)) E A i ” ,  and using I15 to sliow 
that this sequence is also in L’L. I 

- 

5 Auxiliary Variables 
Altl~ougl~ in practice refinement mappings usually exist , they 
do not always exist. To construct a refinement mapping, it 
may be necessary to add auxiliary variables. We now for- 
mally define two types of auxiliary variables: tlie well-known 
history variable and the new prophecy variable. These aux- 
iliary variables are added to a specification’s state machine; 
the supplementary property is essentially left unchanged. 

5.1 History Variables 
Adding a history variable means augmenting tlie state space 
with an additional component C H  and modifying the state 
machine in such a way that this additional compo~ient records 
past information but does not affect the behavior of the 
original state components. Formally, a specification S” = 
(E”, F“, N “ ,  L”) is said to  be obtained fi.orn the specification 
S = (E, F, N ,  L )  by adding a history variable iff the followiiig 
five conditions are satisfied. In these conditions, we identify 
(C, x C,) x C H  with C E  x (E, x EH) (so HI  implies that Eh 
is a state space), and we let be the obvious projection 
mapping from C x C H  onto C. (In the intuitive explana- 
tion, we say that a C”-behavior U siiiiulates tlie C-behavior 
n[Hl(u).) 

H1. C” C C x C H  for some set C H .  

H2. n [ ~ l ( F ” )  = F.  (A state in C is an iiiitial state of S iff it 
is the first component of an initial state of s”.) 

H3. If ((s, I i ) ,  (s’, h‘)) E N” then (s, 5’) E N or s = s’. (Every 
step of S”’s state machine simulates a [possibly stutter- 
ing] step of s’s state machine.) 

H4. If (s, s‘) E N and (s, h )  E C” then there exists h’ E EH 
such that ((s, h ) ,  (s’, h’)) E N ” .  (From any state, S’”s 
state machine can simulate any possible step of S’s state 
machine. ) 

H5. L” = II&(L). ( A  C“-behavior is in Lh iff the C-behavior 
that it simulates is in L.) 

The following result shows that adding a history variable 
leaves an implementation essentially unchanged. 

Proposition 4 (Soundness of history variables) l j  S” 
is obtained froin S by  adding a history variable, [hen the two 
specifications define the same externally visible property. 

Proof Let M and M” be the specifications’ niacliine p rop  
erties, P and Ph their complete properties, and O and Oh 

5.2 Simple Prophecy Variables 
A prophecy va.riable is the dual of a history variable; i1.s clef- 
inition is alinost t1ia.t of a. history va.ria.ble with time running 
bnckwa.rds. Intuitively, whereas a. liistory varialde rc~ortls 
p a t  behavior, a prophecy va,ria.ble giicsses lutrirc I,elia.vior. 
Using nota.tion si1nila.r t.o t.1ia.t used i n  tlrfiiiing Iiistouy va.ri- 
a.bles, we tlefine a. specification S P  = (SP, FP, NI’, LI’) 1.0 be 
obtained jrona S = (Cl I;, N ,  L )  by adrlitig a prophwy r~rtt~inble 
iff the following conditions a.re sa.tisfied. (C:oiiclit,ions 1’2’ a.iicl 
P4’ will be repla.ced in Section 5 .3 . )  

PI. CP C C x C p  for some set C p .  

P2’. FP = lIGl(F‘). (This is the expected correspontlenre 
between tlie initial states of tlie two specificat,ions.) 

P3. I f ( (~ ,p ) , (~ ’ ,p ’ ) )  E NP then (s,s’) E N 01’ s = S’. (ICvc~y 
step of SP’s state ma.chine siiiinla.tes a [possiiLly stu(.ter- 
iiig] step of S’s sta.te ina.cliine.) 

P4‘. If (s,s’) E N a.nd ( s ’ , J )  E Cl’ then there exists 1) E C p  
such that ( ( s , p ) , ( d , p ’ ) )  E Np. (l+o~n every sta.t.e in 
CP, the state ma.cliirie of SI’ can ta.lie a, Ixdwartls ski)  
that siniulates any possilde backwa.rtls slep of S’s st.at,e 
machine. This is tlie time-reversed vcrsion ol‘ condition 
H4.) 

P5. LP = IIg1(L). (The suppIement.ary prol)ert,y or SI’ is tIie 
set of behaviors that siinulate beliaviors ill the supple- 
mentary property of s.) 

PF. For all s E C the set II&(s) is finite a.nd Iionenipty. (To 
every state of S there corresponds some nonzero finite 
number of states of S*.) 

Coiiditioii P6 is the only one not correspolitli~ig to any concli- 
tion for history variables. It is lieetled IIecaLrse tinie reversal 
is asy~iinmetric-all beliaviors liave initial states b r ~ t  oiily ter- 
mimting behaviors liave final sta.t.es. l‘lie second exa.iiiple 
below indicates why it is Iieedetl. 

We iiow give two exainples to illustrate tlie tlefiiiition of 
prophecy variables. We mention only the stat.e Iiia,rhiiim; 
the suppleiiieiitary property can be takeli to be tlie trivia.1 
one coiitaiiiing a,ll behaviors. 

For our first example, we take a. sta1.e iiiacliiiie t1ia.b IIOII- 

deterniiiiistically generates an integer between 0 and 9. Tlie 
inacliine couiits up by one until it either drcitles to sbop or 
else reaches 9, at wliicli poiiit it stutters forever. 'rile set C E  
of ext,ernally visible states is the set N of natural nunil,ers, 
and tlie iiiteriial sta.te component is a 13ooIea.ii t1ia.t Ixxoiiies 
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true when the final value is reached. (The Boolean values are 
written t and f.) 

C = N x {t,f}.  

F = {(O,f)}. 

N is tlie union of tlie following two sets: 

- ( ( ( 2  - l , f ) , ( i , f ) )  : 0 < i < lo}, 

- {( ( i , f ) , ( i , t ) )  : i E N}. 

Tlie set of stutter-free behaviors generated by this state ma- 
chine consists of all sequences of the forms 

(((O,f),(17f),*. . , (7z , f ) , (n , t ) , (?~ , t ) , (n , t ) , .  ..)) 

(((O,f) ,(Lf), . .  . , ( 7 ~ , f ) , ( n , f ) , ( n , f ) , . ’ . ) )  
and 

with 0 5 n < 10. 
We now add a prophecy variable whose value is a natural 

number. This variable “predicts” how many more nonslut- 
tering steps tlie state machine will take at most. The precise 
definition of the new state macliine is: 

CY is tlie uiiion of tlie followiiig two sets: 

- {( i , f , j )  : O 5 i, O 5 j, and i + j < IO}, 
- {(i,t,O) : 0 5 i < lo}. 

Fp = {(O,f, j)  E E”}. 

NP is the union of the following two sets: 

- ( ( ( 2  - l , f , j  + l ) , ( i , f , j ) )  E EP x CP},  
- {((i,f,O),(i,t,O)) E cp x CP}. 

The reader can check that the conclitions Pl-P4’ and PG 
given above are satisfied. (Condition P5 is satisfied if L and 
LP are tlie trivial properties that contain all behaviors.) Ob- 
serve that although condition P4 is satisfied, condition I14 is 
not. The state niachine can take a backwards step from the 
state ( 6 ,  f ,  0) but not a forward step. 

The state machine (CP, FP, N p )  is deterministic. The only 
stutter-free behaviors starting from the state (0, f ,  n) are of 
the forms 

(((O,f,n),( l ,f ,n - I ) , .  .. , ( i , f , n  - i ) , ( i , f , n  - z),. . .)) 

with 0 5 i 5 11. Tlie set of externally visible behaviors 
generated by the two state machines is the same; the stutter- 
free behaviors have tlie form ((0,1,. . . , n , n , n , .  . .)) for some 
n less than 10. State machine (E, F, N )  decides nondeter- 
ministically when it is going to stop counting, while in state 
machine (CP, FP, NP) this choice is made by the initial value 
of the prophecy variable. 

As our second exa,mple, replace “IO” by “00” in the clef- 
initions of the two state macliines. Conditions Pl-P4’ still 
hold, but PG does not; for each state ( i , f )  of C there are an 
infinite number of states ( z , f , j )  i n  CP. Tlie externally visi- 
ble stutter-free behaviors of (CP, Fp, Np)  consist of sequences 
of the form ((0,1,. . . , n, n ,  7 1 , .  . .)) for any natural number 11. 

The stat,e machine (E, F, N )  generates all these behaviors 
plus the a.dditiona1 behavior ((0, 1,2,3, .  . .)) tlia,t never termi- 
nates. Because the finiteness condition PG is not satisfied, 
adding the auxiliary variable c1ia.nged the specification by 
ruling out this nontermina.ting beha.vior-eflectively adcling 
a liveness condition. 

We can use our last example to inclica.te why we need tlie 
hypothesis of finite invisible nondeterminism for our coin- 
pleteness result. Let Sa be the specification consisting of the 
state macliine (CP, FP, NP) we just constructed (tlie one with 
“10” replaced by “CO”) and the trivia.1 supplementary p rop  
erty containing all CP-behaviors. Let S1 be the specification 
with state machine (E, F, N )  a i d  supplementa.ry property 
L consisting of all terminating behaviors. Both specifica- 
tions define the same set of externally visible beliaviors- 
all behaviors obtainable by stuttering from ones of the form 
((0,1,. . . , n, n,n) ) .  To construct a refinemelit mapping, we 
would have to add to S1 a prophecy variable that “guesses” 
the value of the last component of a state of CP. However, no 
such prophecy variable can be constructed that satisfies PG, 
since for any starting state of Si there are an infinite nuiiiber 
of corresponding sta.rting sta.tes of S2. 

The complete property Pz defined by this specification S2 
is a safety property, and we will see that this implies that S2 is 
internally continuous. Moreover, specification S1 is ma.chine 
closed. Nevertheless, adding auxiliary variables to S1 will 
not allow us to construct a refinement mapping to prove that 
it implements S2. Our completeness theorem does not apply 
because Pz is not fin. 

In this example, the prophecy variable we wa,nted to add 
would not satisfy PG. However, the supplementary property 
1ia.ppenecl to ensure that adding the prophecy variable clicl not 
change the externally visible behavior. If we were to repla,ce 
PG by the weaker requirement that SP have the same exter- 
nally visible property ils S, then we could find a refinenient 
mapping. However, this requirement is precisely what we had 
to prove in tlie first place-na.niely, that S1 iniplenients S z .  

5.3 Prophecy Variables That Add Stut- 
tering 

We now generalize our definition of a prophecy variable to 
allow it to introduce stuttering. Condition P2’ asserts that a 
state ( s , p )  E C p  is an initial state of Sp’s state machine iff s is 
an initial state of S’s state machine. We relax this condition 
by requiring only that such a state ( s , p )  be reachable from an 
initial state by steps that simulate stuttering steps. Formally, 
we replace P2‘ by: 
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(b) For all ( 5 , p )  E I I G ( F )  there exist p o , p ~ ,  . . . ,pn = p 
such that ( s , p o )  E FP and, for O 5 z < n, 
( ( ~ , P ~ ) , ( ~ , Z A + I ) )  E N P .  

Similarly, we ielax condition P4’ by allowing SP’s state 
machine to simulate the step in S’s state niacliinc froni state 
s to state 5‘ by a sequence of 1% + 1 steps, the last 72 of wliicli 
simulate stuttering steps. The precise coudition that replaces 
P4’ is: 

P4. If (s, s’) E N and (s’, p’) E CP then there exist p ,  p:, . . . , 
pL-l, pi, = ]’I sucli tliat ((Lq,p),(s’,ph)) E NP aiirl. for 
0 I2 < 72% ( ( ~ ’ , P ; ) , ( S ’ , P : + ~ ) )  E N P .  

As with history variables, the additioii of piopliecy vari- 
ables leavcs ail iinl)lerneiitatioii essentially unclianged. 

Proposition 5 (Soundness of prophecy variables) If 
S P  25 obtained froin S by nddzng (I prophecy variable, t / 1 ~ 7 1  the 
two s p e c i ~ c a t i o t ~ s  define the s m i e  e.uter-ria1ly aini6lc pialierty. 

Proof Let 111 aiid I M P  be the specifica.tions’ niacliiiie p r o p  
erties, P  and PP tlieir complete propcrties, and  0 a.nd 0’’ tlie 
iiiduced externally-visible properties. ‘I‘hc proof that 0” C 0 
is identical to tlie proof of the corresponding condition for liis- 
tory variables ill Proposition 4.  To prove that 0 C: Ol’, we 
must prove that P C_ I I [p](PP) .  Giveii cr = ((so, SI,. . .)) E P ,  
we find T E Pt’ with l l ~ q ( ~ )  N cr as follows. Define a 
grapli whose set of nodes is EP x N wit,li a.11 cdge betweeii 
( ( s j , p ) , i )  aiid ( ( sJ ,p’ ) , i+1)  iff ( s , , p )  = (sl+l,p‘) or tliereex- 
ist po,pI, . . . ,pn = p’ E C p  such t1ia.t ( ( 5 i , p ) ,  (s,+l, p o ) )  E Nl’ 

and, for all 0 5 k < i t ,  ( ( 5 j + I , z ~ k ) , ( s ~ + 1 , ~ ~ + 1 ) )  E N P .  Tlir 
subgra.pli reac1ia.ble froni nodes of tlic forin ((so,&)), 0) is 
acyclic, and 1’6 implies that it has finik brmclling a.iitl a 
finite set of sources. An iiiductioii proof ba.sed 011 P4 iiiiplies 
t1ia.t for all n 2 0 a i d  all ( 5 , , 1 1 , ~ )  E CP there exist cleiiients 
po ,  . . . , pn-l in C p  sucli tliat ( ( ( ( so ,po) ,O) ,  . . . , ((sn,p,),n))) 
is a path in this gra.pli. Konig’s Lemma implies tlie exis- 
tence of a.n infinite path ( ( ( (so,po) ,  0), ( ( S l , l ) l ) ,  I ) ,  . . .)). Let 
p = ( ( ( so ,po) ,  (s1,p2), . . .)), aiid coiistruct T from p by using 
the definition of tlie gra.ph to fill in the internal steps of Sp 
between each (sl ,pi)  and (s,+1, pc+l), and using P2 t80 fill in 
the steps at tlie beginning. The construction guarantees that 
T E AP, and P5 iinplies that T E LP. I 

6 Internal Continuity 
We now define internal continuity, which appears in our tliird 
hypothesis. But first, we give an example that iiidicates why 
tlie hypothesis is needed for our completeness theorem. 

Let C E  = N, let 7% be the terminating sequence 
((0,1,. . . , i, i , i , .  . .)), and let 71 be the nonteriiiiiiating se- 
quence ((0,1,2,. . .)). Let ((eo, e l , .  . .)) x x denote the sequence 
(((eo, z), (el, x), . . .)). We construct a specification Sz that de- 
fines the property whose stutter-free sequences consist of all 
sequences qz x t together with the sequence 71 x f .  Formally, 
S2 = (Ez, Fz, N 2 ,  L 2 ) ,  where 

C2 = N x {t, f} .  (The iiiteriial compoueiil is a. 1Joolcaii.) 

Pz = ((0, t ) ,  (O,f)}. (Beliauiors start with thrir visiI,Ic 
coniponents equal to 0.) 

Nz = { ( ( z , b ) , ( i  + l , b ) ) } .  (‘lh external coliipoiiriib is 
increinented by I a.nd tlie iiit.ernal coinpoiirnt. rriiiaiiis 
coilstant .) 

L2 consists of all I~ehaviors c.rcrpf oiies of tlic forin U x f 
with U teriiiinating a.iltl c x t with cr iioiit[,riiiiiia.l,iiig. 

r x  Ilie externally visible 1wq)ert.y 02 defiiied by S z  ronsists o f  
tlie behaviors rjt, tlie 1)rhavior 1 1 ,  aiicl all Iirliaviors ol)taincvl 
froiii tliciii by stuttering. Spccificabion Sa is f i i i  aii t l  i i i d i i i i r  

closed. 
l l i e  cxteriially visiblc property 0, is also tlcliiicd 1,y t l i r  

simpler specilicatioii SI = ( X i ,  F1. A’,, L I ) ,  wlicrr 

Cl = C E  = N. (There is no iiiternal coinpoiiriit.) 

N I  = { ( i , i  + I )} .  (Tlir state is iiicrriii(vik:tI I)y I . )  

L1 = E? (the t.rivial pro1)crty tliat a.lIow all Ix4i;tviors). 

OI,viousIy, SI iinl)Ieiiiciits ~ p .  I,rI, S y  = (Yy,  /,’:, K/, /,:) 
be a n y  specilicat,ioii obtaiiied froin S1 by adding a ~ ) i ~ o p l i c ~ ~ y  
variaMe. We now show tlint I,l~crr does not csist a rdilirili(\lii 
iiiappiiig rrom Sf t,o Sz; i n  fktct tlirrc. tIocs L I ~ I .  c,xisl ~IIIJT 

niapping froni E; t,o X 2  tIiat proves t h a t  S y  iiiipIciiicwt,s sa,  
Let 1’: be t,Iic propcrty t I c l i i i c ~ I  by S y .  \Vc> slioiv I)y c.oii~ [‘a- 

tlict.ioii that tliere does 1101 exist. any  iiiiipping ,I : Xy + Y 2  
sricli that ( i )  I I E ( j ’ ( i , p ) )  = i a i i d  ( i i )  j‘( /):) C I t 2 .  I b i .  rilcIi 
i let 11: E 1’: be a, behavior wit11 lI[pj(?/i) N ?jt. kIorc~)vor,  1’5 
implies that we ca.n choosc 71: to Iiave i i o  w p r a t ( d  nonfinal 
stat.es, inea.iiiiig t1ia.t for j < i and X.  > I, tlierr is iio s r g i i i e ~ i ~ .  
( ( ( j , n ) ,  (.i,n), . . . , ( 3 , p k ) ) )  of 71: w i l h  1’1 = i l k .  By (i), WP 
then have t1la.t for every i a. id  ? t i  wit,li i < 71) t.licrc i s  a i i  1 
such that 1lE(i/;,II) N ~ / ~ l i + ~ .  Moreover, 1% a n d  the aI,seiice 
of repeated nonfinal s t a h  imply t.lia,t for (’ilcli i t.licrr is a i l  

integer ~ ( i )  > i such b1ia.t 1 5 r ( i )  for all such 7 ) ) .  \k call 

choose T so that ~ ( i  + 1) 2 ~ ( i )  fool. a l l  i .  
For ally 7 1 ,  tlie set is hi(.(. (hy 1%). ’ l ’ l i r r d o i ~ ,  

we caii iiiductively construct the scqueiicc O,, of lciigtl~ r (  7 ) )  

sucli that 0,  is a prefix of ii~liuibely n i a ~ ~ y  of tlic 71,; a11t1 is 
also a prefix of O,,,,. Let 7’ = liiiiOt,; t l icm lI,c(?/‘) N 7 1 .  Siiicv 
each O,, is a. prefix of some TI:, clearly 7)’ is iii l.lir iiia.cliitir 

property of ST. Properly 1’5 t h  iniplies t.lial 111 E jlf. By 
definition of I ) : ,  assumption (ii) implies tha.(. /(?/:) N 71, x t, 
which implies that f ($)  21 71 x t .  We thew Iia.ve 0’ E 1’; a i i t l  
f ( I / ’ )  6 P2,  wliich contradicts assuiiiptioii (ii). 

This proof can be estendetl to tlie ca.sc wlirrr S1 i s  rrplactyl 
by any specificatiou S! oI)taiiied froiii it 117 adtliiig a Iiistoiy 
variable. We just replace 71 with a.uy I)eIiavior aIIoivetI ~,y S! 
that simulates it, and replace I ) ;  with ail iiiitial pIefix of this 
new 9 .  Thus, first adding a Iiistory varialh still docs liot 

allow one to construct tlic refinemelit nia.ppiiig. 

= { O } .  (All bcliaviors st.art at. 0.) 
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Tlie probleni will1 specification Sz is that 71 x t is not in Pz 
even though 1 1 ~ ( q  x t )  is in 0 2  ancl aiiy finite portion of q x t is 
the same as the corresponding portion of some behavior lit x t 
in P2. The sequence 11 x t is not in P2 even thougli we ca.niiol 
tell that it isn’t by loolting either at its externally visible 
component or at a.ny finite pa.rt of tlie complete behavior. 
To rule out t.his possibility, we must a.tltl to o w  conipleteness 
tlieorerii tlie liypotliesis that Pz is iiitei-iially continuous. 

Definition 2 A C-pl-operty P with iiiduced exlcriially visible 
propeity 0 i s  interiially continuous iff, jor  aiiy E-behavior U, 

if HE(.) E 0 aiid U E P, then U E 1’. A specificatioii is  
iialeriially coiifaiiuous iff the (complete) property it defines is 
iiiteriially continuous. 

Suppose I-’ = A i  fl L a d  M = P.  Then limo; = U for 
U, E P iff g E A l .  11 follows froin this tliat, for a. iiia.cliiiie- 
closed specification, interna.1 continuity is equivalent to the 
condition that a complete behavior is allowed iff it is gener- 
ated by the s h t e  ina.chine ailcl its extermlly visible compo- 
nent is allowed. In particular, safety properties are internally 
coiitiiiuous. 

Since the iiiacliine property Af is closed, if  lini gj = U for 
ut E A,! n L ,  tlieii U E L iff  U E A n  I,. This iniplies that if I, 
is iiiternally continuous, then Af  n L is internally continuous. 
Hence, for a.ny specification, if the suppleinentary pro1iert.y 
is interiially continuous, tlien the specification is illternally 
continuous. The converse is iiot true, since if  A i  is llie eniply 
property, then 113 n L is iiiternally continuous for a,ny L. 

Any specifica.tion can be made internally continuous by 
adding to L all sequences o in A f  such that 11E(a)  E 0. 
Expa.nding L in this way obviously adds no new externally 
visible behaviors, so tlie resulting specificatioii is equivalent 
to the origiiial one. Tlie espaiision could introduce iiifinile 
iiiteriial iioiitlet,eriiiiiiisni, but not if  A! is fin. 

7 Completeness Results 
We can now prove our main result. 

Theorem 2 (Completeness) IJ f h e  iiicrclrii~~e-closed speci- 
fication, S 1 iniplc inc i i  1s t lic iiit cl-iiully C O  i i /  in U ous, ,fin speciji- 
cnlioii S a ,  t h e n  /her is a sptcijicatioii Sk ob/.aiiicd froin SI 
by addii7g n histoi~y ~ ~ n ~ i a b l e  ant1 a specijicatioii Sy obtained 
f r o m  S? by addiirg a pi~ophccy variable sricli that there csisls 
a refiiieriieiit iiiappiiig f ro in  s!” to sa. 
Proof F o r  i = I ,  2, let Si = (E t ,  Ft, N i ,  Lt) ,  and let P, be 
the conipletc property of si. Delilie S? = (E:, P:, N:, L?) ,  
where: Xf is the set of pairs ( s , h )  sucli that h is a finite 
prefix or a bcliavior iii eliding in s; F;’” is the set of states 
with 11/i11 = I ;  ( ( 5 ,  h ) ,  (s’, h’)) E Nt iK Ii’ = / i  ((s‘)); a d  Lf 
is delerniiiied by H5. Coiiditioiis 112 and 114 follow froill llie 
machine closure of SI a,iid Lemiiia. I ,  aiid the otlier conditions 
are proved using only the deiiiiitioii of S y .  1)efiiie Sy = 
(E:“, F?, N?, L?), wliere: E:. is tlie set of triples (s, / i , p )  

sucli tha t  1’ is a.n initial prefix of a stutter-free be1ia.vior in 

P2 sucli that p has the sa.me extcriially visible behvior a.s 
h; r;;““ is the set of states with ( s , h )  E F,” a.nd 11p11 = 1; 
((s, / i , p ) ,  ($’, / i , p ‘ ) )  E N? iff eitlier (a.) p’ = y . ( ( lasf(p’)))  
and either ( ( s , h ) ,  ( s ’ , / i ’ ) )  E N: or (s, h )  = ( S I ,  V ) ,  or (11) 1)’ = 
p antl ((s, h ) ,  (s’, h’)) E N:; and L y  is deterniiiietl by 1’5. 
ConcIitions ~ 1 - 1 ’ 5  follow from tlie clefinition of S ~ P ,  a,ncl tlie 
proof of PG requires also the hypotheses tlmt SI iinplenieiits 
~2 ant1 that SZ is fin. Tlefine j : -+ E Z  by j ( ( s , / z , p ) )  = 
la.d(p).  Then Rl-R3 follow froin the definit3ion of S:1I) a.iitl 
R4 follows froni the hypotheses 1,Iial SI iiiiplements Sz and 
S2 is illternally continuous. 1 

I he converse of this complet,eness theorem is not true. For 
instance, no matter how pathological a specification is, we 
can use the identity refiiiement nia.pping to prove t1ia.t it ini- 
plemen t s itself. 

The hypotheses of tlie internal continuity aatl Gnitc invis- 
ible nondetermiriisni of S2 ca.n be removrtl froni our coni- 
pleteness result by generalizing the clclinition of a propliecy 
va~ria.ble-namely, by relhciiig condition 1% witli the explicit 
requirement t1ia.t the externally visible I,elia.viors of Sp l ie  the 
same a those ol S. This result is proved by defining S? as in  
the proof of Tlieoreni 2, definiiig s!’ so ttiat its states are 
4-tuples (s, h,ii,.) with ( s ,  h )  E Et ,  7 a compIete IieIiavior 
allowed by S a ,  and I I E ( / i )  E 11E(‘r17L), ancl defining the re- 
finement. mapping by Iettiiig i((.~, h ,  i ~ ,  .)) be the lit’’ element 
of r .  Ilowevtrr, tlic condition tliat repla.ces 1’6 asserts tliat 
specification SP iiiipleiiients S, wliicli is precisdy the type of 
condition we arc trying to prove in the first place. This g a -  
eralization of Tlieorem 2 is tliereforc of little practical value, 
so we will not bother to sta.te it antl prove it fornially. 

‘I‘hcre is one simple way to streiigtlien the coinpletcness 
tlieoreni that is of some interest. Tlie specilicatioii S2 is fin 
a,id illternally coiitinuous ill tlie property P2 that it defines is 
f in  and internally continuous. We caii wcakcn the hypothesis 
by rrquiriiig oiily tliat there exist a fin ancl intrrna.lly coil- 
tiiiuous property Pi conta.iiied in P2 t1ia.t iiiclnccs tlie saiiie 
exteriia.lly-visible propcrt,y as P2. Lc:t Sl, be the sl)ecificat<ion 
ol~~aiiictl Iroin S2 Iiy replacing L2 wit.11 Lz n i’;. The correct- 
ness of this result follow~s easily froni ‘I’heoreni 2 by repla.cing 
S2 with S i .  

r 7  

8 Whence and Whither? 
llefiiiciiicut IllilppillgS arc’ iiot iicw. ’I’licy form the basis of 
tlie nielliods advocatecl by La.m nntl S1ianka.r [LS84] a.iitl by 
lis [I,a.inK~], ant l  they arc usctl by 1,yncIi a.nd ‘lut,tle [L‘IW] 
t,o prove tha t  one a.utoniaton iiiiplr~iicnts a,notlier. IIo\vt~vcr, 
none of this work addresses the issue 01 coiiiplet.eness. .Joii- 

sson [JonS’i] did prove a. con~plt~t.encss rcsrill, simi1a.r to ours, 
bnl for a sina1lt.r class of s~)eciiicabioiis. 

Compl& niet,liods for cliccking tha t  a prograiii iinl)lements 
a specifica.tion, without conslriictiiig rrfiiic~riiciit inappings, 
have bern developed. Sonic of I,lie niost geiirral a,re t,Iiosc 
of Alpern and Scluieider [ASS’i], Manna a.ritl Pniirli [M1’87], 
and Vartli [VarS’i]. ’l’lieir nietliotls tlilkr froiii our a~pproa.cli 
in a.1 Icast two important ways: 
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They do not consider behaviors with different amounts 
of “stuttering” to be equivalent, so their definition of 
what const i t 11 t es a correct implement a t  ion is weaker 
than ours. 

Tliey recluire taltiiig tlie negation of specifications. In 
practice, the nega.tion of a specification may be hard to 
construct ancl hard to  uiiderstaiid. 

Because of these differences, the nietliods may not offer prac- 
tical alternatives to tlie use of refiiieiiient ma.ppings for prov- 
ing correctness. 

Our exposition has been purely semantic. We have consid- 
ered specifications, but not the langua.ges in wliicli they are 
expressed. We proved the existence of refinemetit mappings, 
but said nothing about wlietlier they are expressible in any 
language. We do not linow what lariguages can describe the 
necessary auxiliary variables and resulting refinement map- 
pings. 

Our results also raise the question of what properties can 
be described by specificatioiis that are fin aiid internally con- 
tinuous. If the specification language is expressive enougli, 
then all properties can be defined by specifications without 
internal state, wliicli are trivially fiii and interidly continu- 
ous. At t.he other extreme, one can easily invent artificially 
impoverished ianguages that do not allow ally fiii or internally 
contiiiuous specifications. The questiori becomes interesting 
only for interesting specification la,ngua.ges, such as various 
forms of temporal logic. In addition, recall t1ia.t tlie hypotlie- 
ses of our completeness result can be weakeiied by requiring 
only that S z ’ s  complete property be equivalent to a fin and 
internally contiiiuous subproperty. This raises the inore gen- 
eral question of what expressible properties have equivalent 
fin and continuous suliproperties. 
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