
The Existence of Refinement Mappings

Martin Abadi arid Leslie Lamport
Digital Equipment Corporation

Systems Research Center

Abstract
Refinement mappings are used to prove that a lower-level
specification correctly implements a higher-level one. We
consider specifications consisting of a state machine (which
may be infinite-state) that specifies safety requirements a.nd
an arbitrary supplementary property that specifies liveness
requirements. A refinement mapping from a lower-level spec-
ification S1 to a higher-level one S2 is a mapping from SI’S

state space to S2’s state space that maps steps of Si’s state
machine steps to steps of S2)s state machine and maps be-
haviors allowed by S1 to behaviors allowed by S2. We show
that, under reasonable assumptions about the specifications,
if S1 implements Sa, then by adding auxiliary variables to
S1 we can guarantee the existence of a refinement mapping.
This provides a completeness result for a practical hierarclii-
cal specification method.

1 Introduction

1.1 Specifications
A system may be specified at many levels of abstraction, from
a description of its highest-level properties to a description of
its implementation in terms of microcode and circuitry. We
address the problem of proving that a lower-level specification
is a correct implemenlation of a higher-level one.

Unlike simple programs, which can be specified by in-
put/output relations, complex systems can be adequately
specified only by describing the behaviors that they may ex-
hibit. We consider specification methods in which a behavior
is represented by a sequence of states and a system is speci-
fied by a set of permitted behaviors.

A specification should describe only the erternally visible
components of a system’s slate. However, it is often help-
ful to describe its Leliavior in terms of unobservable inteirial
components. For example, a natural way to specify a queue
includes a description of the sequence of elements currently
in the queue, and that sequence is not externally visible. Al-
though internal components are mentioned, tlie specification
prescribes the behavior of only the externally visible conipo-
nents. The system may exhibit the externally visible behav-
ior

((eo, e11 e21 . . .))

where e, is a state of the exteriially visible coniponent, if
there exist states yz of the internal coiiiponent such that the
coiiiplete behavior

(((eo, Yo), (el, Y l) , (e21 Yz), ’ ’ ’))

is permitted by the specification. (We use (()) to tlcnote a
sequence.)

A specification may allow sleps iii wliicli only tlic int,ei iial

state component changes-for example, a sequence

Such internal steps a.re iiot externally visible, so tlie scyueiice
of external states ((Q, el, el, e l , e2, . . .)) slioultl be eqniva.lriil
to the sequence ((%,el, e2, . . .)) ol)ta.iiietl by reriioviiig tlie
“stuttering” steps from el to el . Let I’((cO,elr.. .)) be tlie
set of all sequences obtained from ((eo, e l , . . .)) by repeat-
ing states and deleling repeated states-t1ia.t is, I,y a.dtliiig
.and removing stuttering. We consider only specifica.tions i i i

wliicli a sequence ((eo, e l , . . .)) is allowecl only if a.ll srqi ic i i~(~
in r((eo, el, . . .)) are allowed. Such specifica.tions a.re sa.icl to
be invariant under stutteiiri.g.

The behaviors permitted by a. specifica.tioii can be tlc-
scribed as the set of sequences satisfying a. safeby a.nd a. live-
ness property [ASSS, Lain7’il. Intuitively, a, sa.fely projwrby
asserts that something bad does iiot 1ia.ppen a.nd a liveliess
property asserts that sonietliing good does cventua.lly 1ia.p-
pen. In specifying a. queue, the safety property iiiiglit as-
sert that the sequence of elenients removed froiii the q w u e
is an initial prefix of the sequence of elements a.tldcd to llie
queue. The liveness property might assert that a.11 opera.tioii
of putting an element into the queue is eventually coiiiplet,etl
if the queue is not full, a.nd a.n opera.tioii of renioviiig a.u el-
ement from the queue is eventually conipletetl if tlie qurue
is not empty. (What operations are iii progress aiitl w11a.t.
elements they are a.dding to or have removed from {,lie queue
would be described by tlie externally visible state.)

We are concerned with specilica,t.ions in wliicli tlie sal’ety
property is describecl by ail “abstract” nondeterniinistic pro-
gram; a behavior sa,lisfies the property if it can be general,etl
by the program. Liveliess conditiolis a,re descriLed eitlicr
directly by writing a,xioms or indirectly by placiiig fairness
conslrainls on tlie abstra.ct prograni. In a specifica.tion of
a queue, the program describes the secpencc of a,ctions by
which an eleinent is added to or removed froill the seqiieiice

165 CH2608-8/88/0000/0165$01.CM 0 1988 IEEE

of queuecl elemelits, ensuring the safety property t1ia.t the
correct elements are reinovecl from the queue. Adclitioiial
fairness coilstrailits assert that certain actions must eventu-
ally occur, eiisuring tlie liveliess property that opera.tions that
sliorilcl coinplete eveiitua.lly do complete.

Ma,uy proposed specifica.tion methods involve writing pro-
grams and fa.irness conditions in this way [LS84, La.m83,
LT871. (Some methods do not consider liveness a t all and
just specify sa,fety properties with programs.)

To describe specifications f o n d l y , we represent a program
by a. state macbine (whose set of states inay be infinite) a,nd
we represent tlie fairness coiistra.ints by an arbitrary supple-
i i i e i i h y condition. For our results, it does not inatter if the
supplementa.ry condition specifies a liveness property.

1.2 Proving That One Specification Im-
plements Another

A specificat,ion S1 iinplemnents a specification S z if every ex-
ternally visible behavior allowed by Si is also allowed by S a .
To prove that S1 imple~nents S z , it suffices to prove that if
S1 allows the behavior

where the z; are internal states, then there exist iiiternal
sta.tes y, such that S z allows

(((eo, Yo), (e l , Y l) , (e2,! /2) , . . .))
In general, each y, can depend upon tlie entire sequence
(((eo, zo), (e l , z l) , (ez, z z) , . . .)), and proving the existence of
the y; may be quite difficult. The proof is easier if each
y; depends only upon e; ancl z;, so there exists a function
f such that (e;,y;) = f (e ; , z ,) . The proof becomes easier
still if f maps steps of SI’S state ma.cliine into (possibly
stuttering) steps of Sz’s state machine. In this ca.se, verify-
ing that ((f (e 0 , zO) , f (e l , z1) , f (e 2 , z Z) , . . .}) satisfies the safety
property of S z involves rea3oiiiiig about states and pairs of
states, not about sequences. Such a inqlping f is called a
~efiiienieiat mapping.

In the example of a queue, the internal state y; of specifica-
tion S z might describe the sequence of elements currently in
the queue, and tlie internal state z; of specification Si might
describe the contents of an array that implemeiits the queue.
To prove that S1 iinpleinents S z , one would construct a re-
finement impping f such that f (e ; , 2;) = (e , , y;), where y;
describes tlie state of tlie queue that is represented by the
contents of tlie a.rray described by state z;.

Several methods for proving tliat one specification iinple-
ments a,notlier are based upon finding a refinement niap
ping (LSM, Lain831. In practice, if Si iinpleineiits S a , then
these methods usually can prove that tlie iniplemeiita.tio~i is
correct~--usually, but not always. The metJiods fa.il i f tlie
refinement niapping does not exist. Three reasons why tlie
niapping might not exist are:

S z may specify an iuternal state with “historical illror-
For example, suppose S2 mation” not ueetied by S I .

requires that the systein display any arbitrary nuniber
of least-significant bits of a clocli, so its internal state
iiicludes an unbounded clock value. This specification is
iinpleinentecl by a lower-level specification S1 that alter-
nately displays zeio ancl one, with no internal state. A
iefineinent mapping does iiot exist because there is no
way to define tlie iiiteriial state of tlie clock as a function
of its low-ordei bit.

S z rimy specify t1ia.t a. iioiideteriiiiiiistic clioice is ma.tle
b e h e it has to be. For exainple, consider two specifi-
ca,tions S1 a.nd S z for a. systein t1ia.t displays ten noii-
deterministica.lly chosen values in sequelice. Suppose S z
requires that a.11 values be chosen before any is clisphyed,
wliile S1 requires each value to be chosen as it is dis-
played. Both specifica,f,ioiis describe the sa.iiie externally
visible behaviors, so ea.cli implements the other. How-
ever, Sa requires tlie internal sta.te to cont.a,in all ten
values before any is displayed, while S i does not specify
any interrial state, so no refinement. ~na.pping is possible.

For example, let S1
arid S z both specify clocks in wl~icli liours a.nd niinutes
are externally visible a d seconds are inter id . Suppose
that in S2 each step increiiients tlie clock by one sec-
ond, wliile in S1 ea,cli step increiiients the clocli by ten
seconds. Both specifica,tions allow tlie saine externa.lly
visible behaviors. A complete behvior ((so, sl, sz, . . .))
specified by S i may produce a,n exlernally visible cliange
every six steps. For m y iiia.pping f , tlie sequence
((f (e o) , f (s l) , f (s z) , . . .)) may also produce a.ii externally
visilde clia.nge every six steps. This is not a.llowetl by
S a , wliicli requires fifty-nine internal steps for every ex-
teriially visible one. Hence, no refineinelit, niappirig ca.n
prove that Si implemeiits S z .

S2 may “run slower” t1ia.n S I .

If a, refinement ma.pping does not exist, it call often be
made to exist by a.dding nnzi1iai.y .un~riuDles to the lower-level
specification. An a.uxilia.ry varia,ble is ail iiiternal sta.te coiii-
ponent that is added to a specification without affecting the
%xterna,lly visible behavior. The t h e situations describctl

a.buve in wliicli refinement mappings caanot be found are
handled as follows:

Ilistorica.1 information niissiiig From tlie iiileriial state
specified by S1 can be provided by adding a hisfory
vwinble--a well-liliowli forin of auxiliary variable t1ia.t
merely records past actions [Owi75].

If S2 requires that a iioiideteriiiiiiisbic clioice be imde be-
fore it lias to be, then S1 call be iiiodified so the clioice is
made sooner by addiug a prophecy uarinble. A propliecy
variable is a new forin or auxiliary variable that is the
mirror iina.ge of a history varia.ble-its forma.l definition
is almost tlie sa.ine as the definition of a liistory va,ri-
able wit.11 pa.st a d future iiitercliaiiged, but there is an
asyinmetry due to b e h i o r s Iia.viiig a. l>eginiiing h i t . iiot
necessarily an end.

166

If Sz runs slower than S i , then an auxiliary variable
must be added to S1 to slow it down. We will define
prophecy variables in such a way that they can perform
this slowing.

Our main result states that, under three hypotheses about
the specifications, if Si implements Sz then one can add
auxiliary history and pro hecy variables to S1 t o form an
equivalent specification SFp and find a refinement mapping
from Sy to Sz. The three hypotheses, and their intuitive
meanings, are:

is machine closed. Machine closure means that the sup-
plementary property (the one normally used to specify
liveness requirements) does not specify any safety prop-
erty not already specified by the state machine. In other
words, the state machine does as much of the specifying
as possible.

has finite invisible nondeterininisnr. This denotes that,
given any finite portion of an externally visible behavior
allowed by S a , there are only a finite number of possible
choices for its internal state component.

is internally continuous. A specification is internally con-
tinuous if we can show that it does not allow a partic-
ular complete behavior by examining the behavior's ex-
ternally visible part (which may be infinite) and some
finite portion of the complete behavior.

We will show by examples why these three hypotheses are
needed.

We will prove that any safety property has a specification
with finite invisible nondeterminism, any specification of a
safety property is internally continuous, and any property has
a machine-closed specification. Thcrefore, our result implies
that if the specifications are written properly and Sz specifies
only a safety property then one can ensure that a refinement
mapping exists. We will also show that, even when Sz is not
internally continuous, a refinement mapping exists to show
that S1 satisfies the safety property specified by Sa. There-
fore, by writing specifications properly, refinement mappings
can always be used to prove the safety property of a specifica-
tion if not its liveness property. We do not know if anything
can be said about proving arbitrary liveness properties.

In this paper, proofs are just sketched. Detailed proofs as
well as some additional discussion can be found in [ALSS].

2 Preliminaries

2.1 Sequences
We now define some useful notations for sequences. In these
definitions, U denotes tlie sequence ((so, s1 , sz, . . .)) and T de-
notes the sequence ((to, t l , tz , . . .)). These sequences may be
finite or infinite. If U is finite, we let]loll denote its length and
last(a) denote its last element, so II((so,. . . ,s,,-~))ll = m and
las t (((so , . . . , s ~ - ~))) = S,-l. An infinite sequence is said to

be terminating if it is of the forni ((so, sl, . . . , s,,, s,, s,,, . . .))-
in other words, if it reaches a final state that it iepeats for-
ever.

As usual, a mapping on elements is extended to a map-
ping on sequences of elements by defining g(o) to equal
((g (s o) , g (s l) , . . .)), ancl to a mapping 011 sets of elemelits 1,y
defiiiing g (S) to equal { g (s) : s E S}.

The sequence a is said to be stutfer-jree i f , foi each i , ei-
ther s, # s,+1 or the sequelice is infinite and s, = s3 for all
j 2 i. Thus, a nonteiminating sequence is stutter-free iIf (if
and only i f) it never stutters, ancl a teriiiinatitig sequeiice is
stutter-free iff it stutters ouly after reaching its final state.
We defiue ha to be the stutter-flee sequence obtained by re-
placing every maximal finite sul>sequeiice s,, s,+I, . . . , s3 of
identical elements with the siugle element s,. For example,

We define a = T to n1ea.n that bo = 117, aut1 we tlefiiie I'a to
be the set { T : T N o}. If S is a set ol sequetices, l'(S) is
the set { r a : a E S}. A set of sequences S is closcd urtdcr
stuttering if S = I'(S). Thus, S is closed untlcr stuttering if f
for every pair of sequences o, T with g N T , if U E P then
T E P .

We use "." to denote concatenation of sequences--tliat is, i f
lloll = m, then o . T = ((SO,. . . , s ~ ~ - ~ , to , t l , . . .)). If lloll 2 i n ,

we let oln, denote ((so, si , . . . , ~ , ~ - 1)) .

For any set E, let E" denok the set of all inlinibe seclumces
of elemelits in E. A n infinite sequelice ((go, aI ,a2 , . . .)) of
sequences i n C" is said to corioerge to the sequelice a i l l E"
iff for all 71% 2 O there exists a.n n >_ O such that cr;J,,, = CTJ,,,

for all i 2 n. In this case, we define linia, to be a. l'liis
definition of convergence gives rise to a topology on E"'. We
now recall some other defiiiitiotis.

Let o be an element in E" and let ,S be a sul>set of Ew. We
say that U is a liiriit yoirit of S ili" there exist eleirieiits o, i i i

S such that lima; = o. The set S is closed iff S roiita.ius a.ll
its limit poiiits. Tlie closiire of S, tleiiokd 3, coiisisbs of a.11
limit points of S; it is tlie smallest closed sct cout.aitiiirg ,S'.

2.2 Properties
We can only sa.y that one specifica.tion iiiip1c"wts aiiot1ic.r if
we are given a. correspontlcnce bet.wt.eii the extcriially visilde
states of the two specifica.tions. For esainple, if Sz asserts
that the initial value of a. pa.rticular register is tlie iiit,rgcr - 3
and S1 asserts t1ia.t tlie regisber's iiiit,ial d u e is tlic seclueiicr
of bits 1111100, then we ca.n't sa.y whether or iiot SI iiiiple-
nients Sa without knowing how to intcrpwt a sccliic~iicc~ of
bits as an integer. In general, to decide if Si iiiiplciiieiits Sz,
we must know how to interpret a.ri esteriia.lly visilh s t a k of
S1 as an externally visible s h t e of Sz. Giveii sucli an iiiler-
pretation, we can translate S1 int,o a. specification with t,lie
same set of externally visible states as S I . TIius, t h e is 110

loss of generality in requiring that S1 a . 1 ~ 1 Sz liave the same
set of externally visible states.

We therefore assume that all specificatioiis uiitler consitler-
ation have the same fixed set C E of estertially visiljle stales.

167

A state space C is a subset of C E x C I for some set C I of in-
ternal states. We let n~ be tlie obvious projection mapping
from C E x CI onto C E . The set C E itself is considered to be
a state space for which IIE is the identity mapping.

If C is a state space, then a C-behavior is an element of
E". A CE-behavior is called an externally visible behavior. A
C-property P is a set of C-behaviors that is closed under stut-
tering. A CE-property is called an externally visible property.
If P is a E-property, then IIE(P) is a set of externally visible
behaviors but is not necessarily an externally visible property
because it need not be closed under stuttering. The exter-
nally visible property induced by a C-property P is defined
to be the set I '(n~(p)).

If C is clear from context or is irrelevant, we use the terms
behavior and property instead of C-behavior and C-property.
We sometimes add tlie adjective "complete", as in "complete
behavior", to distinguish behaviors and properties from ex-
ternally visible behaviors and properties.

A property P that is closed (P = P) is called a safety
property. Intuitively, a safety property is one asserting that
something bad does not happen. To see that our formal
definition of a safety property as a closed set captures this
intuitive meaning, observe that if something bad happens,
then it must happen within some finite period of time. Thus,
P is a saiety property iff, for any sequence a not in P , one
can tell that a is not in I-' by looking at some finite prefix
aiI of a. In other words, a @ P iff there exists an z such that
for all T if 71, = al. then T @ P. Hence, a E P iff for all z
there exists a T, E P such that ~ , 1 , = 01,. But l imq = a,
whjch implies that a E P; thus, a E P iff o E B. Therefore,
P satisfies the intuitive definition of a safety property only if
P = P.

Even though we do not use the formal definition, it is in-
teresting to note that a C-property L can be defined to be
a liveness property iff it is dense in E"-in other words, if
L = E". Tliis means that L is a liveness property iff any fi-
nite sequence of elements in C can be extended to a behavior
in L. In a topological space, every set can be written as the
intersection of a closed set and a dense set, so any property
P can be wiitteii as Aln L , where M is a safety property and
L is a liveness property. Moreovei, M can be taken to be Ti.

-

2.3 Specifications
A state machine is a triple (C, F, N) where

C is a state space. (Recall that this means C C_ C E x C I
for some set C I of internal states.)

0 F , the set of initial states, is a subset of C.

N , the next-state relation, is a subset of CXC. (Elements
of N are denoted by pairs of states enclosed in angle
brackets, like (s, t) .)

The (complete) property generated by a state machine
(E, F, N) consists of all infinite sequences ((so, SI,. . .)) such
that so E F and, for all i 2 0, either (s,,s,+l) E N or

s, = s , + ~ . This set is closed under stuttering, so it is a
C-property. The externally visible property generated by a
state machine is the externally visible property induced by
its complete property.

We now show that the complete property P generated by a
state machine is a safety property. This requires proving that
if lima, = a and each a, E P , then a E P. For any behavior
T = ((s",s~, . . .)) and any j 2 0, let TI be the teriniiiating
behavior ((so,sl,. . . , sJ , s , , s,, . . .)). Then T is in P iff each
TJ is in P . Since limo, = a, each 01 equals (a,)' for some i .
Since each a, is in P , each (a,)J is in P , which implies that
a is also in P. Hence, P is closed, so the complete property
generated by a state machine is a safety property. However,
we will show in Section 3 that its externally visible property
need not be a safety property.

A state machine (E, F, N) is a familiar type of nondeter-
ministic automaton, where F is the set of starting states a i d
N describes the possible state transitions. (However, remem-
ber tliat C may be an infinite set.) The set of sequences gen-
erated (or accepted) by such an automaton is usually defined
to be the set A of all sequences starting with a state in F and
progressing by making transitions allowed by N . However,
we also allow stuttering transitions, so we have defined tlie
property generated by tlie state niachine to be r (A) together
with all terminating sequences obtained from finite prefixes
of behaviors in r (A) by infinite stuttering.

A specification S is a four-tuple (C, F, N , L) , where
(E, F, N) is a state machine ancl L is a C-property, called
the supplementary property of the specification. The prop-
erty M generated by the state machine (E, F, N) is called the
machine property of S . The (complete) property defined by
S is defined to be A1 n L , and the externally visible property
defined by S is defined to be r (n E (M n L)) , the externally
visible property induced by M n L.

State machines are easier to work with tliaii arbitrary sets
of sequences, so one would like to specify a property purely
in terms of state machines. However, the complete property
generated by a state niacliiiie is a safety property. The sup-
plementary property of a specification is needed to introduce
liveness requirements. However, if we were to place no ad-
ditional requirement on our specifications, we could use the
Supplementary property to do all the specifying. To see why
this leads to trouble, let S2 be a specification consisting of
any arbitrary state machine that generates an externally vis-
ible safety property 0 together with the trivial supplemen-
tary property that contains all behaviors. Define S1 to be
the specification with state space C E whose state inachine
is the trivial one that generates all CE-behaviors and wliose
supplenientary property is 0. Obviously SI implements Sa.
The existence of a refinement mapping from SI to Sz ini-
plies that Si's state machine implements Sz's state machine.
However, S1 has the trivial state inachine and no inteinal
state. Auxiliary variables are added to a specification's state
machine without affecting or being affected by the supple-
mentary property. (Tliis is what makes tlie addition of aux-
iliary variables practical.) No souncl method of adding auxil-
iary variables can transform the trivial macliine into one that

168

I

implements a completely arbitrary state machine. Therefore,
we need some constraint on the supplementary property.

In practice, we specify a desired property P by writing P
as the intersection M n L of a safety property M and a live-
ness property L. We try to construct L so that it does not
specify any safety property, meaning that it does not rule out
any finite behavior. More precisely, we try to choose L to be
a liveness property such that any finite sequence of states
generated by the state machine is the prefix of a behavior in
P. For our results, it is not necessary that L be a liveness
property; we need only require that L does not specify any
safety property not implied by M . To express this require-
ment formally, we say that a specification S having machine
property M and supplementary property L is machine closed
i f f M = T i i T .

The following lemma implies that, for a machine-closed
specification, we can ignore the supplementary property and
consider only the state machine when we are interested in
finite portions of behaviors.

L e m m a 1 If M = B, then every prefiz of a behavior in M
is the prefiz of a behavior in P.

Proof Given U E M and m > 0, we must find 7 E P with
o l m = 71,. Choose ai E P with limoi = U , choose 11 such
that oilm = olm for all i 2 11, and’let 7 = on. 1

The converse of this lemma is also true, but we will not
need it.

2.4 Refinement Mappings
A specification S1 implements a specification S2 ilf the ex-
ternally visible property induced by S1 is a subset of the ex-
ternally visible property induced by S a . In other words, S1
implements S p iff every externally visible behavior allowed
by S1 is also allowed by Sa.

A refinement mapping from a specification S1 =
(Cl, F,, N,, L,) to a specification S p = (Ez, Fz, N2, L z) is a
mapping f : C1 + Cz such that

R1. For all s E C1: II,(f(s)) = II,(s). (f preserves the
externally visible state component.)

R2. f (F1) C F.. (f takes initial states into initial states.)

R3. If (s , t) E Nl then (f (s) , f (t)) E Nz or f (s) = f (t) . (A
state transition allowed by Nl is mapped by f into a
[possibly stuttering] transition allowed by N z .)

R4. f(Pl) C_ Lz, where PI is the property defined by SI. (f
maps behaviors allowed by S1 into behaviors that satisfy
Sp’s supplementary property.)

Conditions Rl-R3 are local, meaning tha.t they can be
checked by reasoning about states or pairs of states rather
than about behaviors. Condition R4 is not local, but check-
ing it is simplified by the fact that f is not an arbitrary
mapping on sequences, but is obtained from a mapping on
states. Thus, one can apply local methods like well-founded
induction to prove R4.

Proposi t ion 1 If there exists a refinement inapping fi’orn S1
to S p , then S1 implements S p .

Proof For i = 1,2, let Si = (EI, F,, N,, LI), let AII be the
machine property of Si, and let f be a refinement mapping
from S1 to S p . Conditions R2 and R3 iniply that f(M1) C_
M,, and R4 then implies f(Ml f l L,) AI, n L2. Condition
R1 implies that I I E (M ~ n LI) C IIE(Mz n L2). I

3 Finite Invisible Nondeterminism
The machine property M of a specification is a safety prop-
erty. However, tlie property that is really beiiig specified
by the specification’s state macliine is the externally visible
property r (I I E (M)) induced by M . The following exaiiiple
shows that this exteriially visible property is not necessarily
a safety property.

Let C E be llie set N of natural nunhers, and define the
state machine (E, F, N) by:

0 C equals C E x N.

0 F equals {(O,O)}.

0 N is tlie union ol the following two sets:

- { ((O , O) , (L T ~)) : 12 E N I ,
- { ((T 7 1 , T ~ + l) , (7 I ~ + 1 , ~ ~)) : T l l , l ? E N } .

A slutter-free beliavior of tliis machine starts i i i state (O,O),
gdes to state (1,n) for some arlitrary 11 2 0, then goes
througli the sequence of states (2 , ~ - l) , (3 , n - 2), . . . ,
(TZ - z + 1 , i) for some i 2 0, and terniinat.cs (slutleis [or-
ever) in the state (11 - i + 1,~).

The se1 of externally visible beliaviors induced by this
state macliine consists of all sequences obtainable by stutter-
ing froin a sequence on of the foiiii ((0,1,2,. . . , i f , i z , ~ , . . .)).
This set is not closed, because limo, = ((0 ,1 ,2 ,3 , . . .)), and
((0,1,2,3,. . .)) is iiot in tlie set. The cxternally visible 1x011-
erty specified by tlie state macliiiie is the coiijunction of lwo
properties:

1. The set ol all behaviors that start in state 0 and cliange
state only by adding 1 to the previous state.

2. The set of terminating behaviors.

The first property is a safety properly, 1x11 the second is a
liveness property; their intersection is neither a safety nor a
liveness property.

The purpose of a specification is to specify an exteinally
visible property. We feel that the externally visible property
specified by state machine should be a safely property, so we
want to restrict the class of allowed state niacliines.

The reason the externally visible property defined by llie
state machine in our example is not a safety property can
be traced to the existence of infinitely niany state transi-
tions ((O,O), (I,??)) that correspond to the sanie externally
visible transition (0,l) . It is this type of infinite invisible

169

tio~ideter~iiitiism that allows the introduction of liveness into
the externally visible property of a state machine. To ensure
that a state machine specifies only safety properties, we must
restrict it to having finite invisible noncleterniinism.

Instead of defining the concept of fitiite invisible nondeter-
niinisiii for a state machine, it is more general to define it for
a property. A state niacliine is defined to have f i d e invisible
tioiidetertiiiiiistii iK tlie property it generates does.

Definition 1 Let P be a property arid 0 i t s induced exter-
nally visible property. W e say that P is fin (for finitely in-
visibly nondeterministic) i f i f o r all 7 E 0 and all n > 0 the
set

{h(U17r2) : (171 > 0) A (U E P) A (H E (~ (u L)) 11 d7J
is f inite. (I n other words, every finite prefix ill,, of a behavior
I / in 0 is tlie externally visible part of ouly fiiiitely many finite
stutter-free prefixes ~ (u I , , ,) of behaviors in P.) W e s a y that a
specificatiori isfiu i . the complete propei.ty of the specification
is j i i i .

If a propel ty A l is fin then every stionger property P is also
fin. (Property P is stlotiger than ptolwrty Af iff P M .) In
our main result, instead of requiring that the state tnacliitie
of Sz is fin, we make tlie weaker assuniption that S2 is fin.
This is stiictly wealter only if Sz is not machine closed, since
a machine-closed specification is fin iK its state niacliine is
fin.

The following pi oposition asserts that tlie exterually visible
property of a fin state machine is a safety property. It is a
simple corollai y of tlie subsequent lemma, wliicli will be used
later as well.

Proposi t ion 2 Zj a sa je fy property P 7s $ 1 1 , then the exfer-
iially iiisiblc p m p e r f y I'(lTE(P)) f h a i ?i ruduccs rs also a safety
y r o p 1.1 y .

Lemma 2 (Closure aiid i ioiideterminism) Let property
P be jiii and let 0 be the exter-iially visible prope,rty that it
induces. If 6 is a liniit point of 0 then there is a limit point
p of P sucl. that IIE(p) 2: 6.

Proof Lct @,, equal {k(aln) : (ni > 0) A (U E P) A
(HE(h(oIrn)) Y & I 7 ,) } . Since P is fin, the set 0, is finite.
The definitioiis of 6 and 0 imply that e,, is noiiempty. Let
o 5 T denote I1ia.t U is a. prefix of 7. For all 11 a.nrl all
0 E 07L+1 there exists 0' E 0, sucli that 0' 5 0. Konig's
Leinilla [I<uu73, pages 381-3s3] then implies that there is an
infinite sequence pl 5 pz 5 p3 5 . . . with ea.cli p i E 0,. Ex-
tend the length of the p, by stuttering if necessary so they
keep getting longer, extend each p i to a behavior p: E P , and

the choice eventually be revealed. Fornmlly, this iiiea.ns defin-
ing a property P witli induced externally visible propertv 0
to be fin iff for every 7 in 0 and 11 2 0 there exists an 1,' 2 9:

such that tlie set

is finite. However, using this weaker definition of finite invis-
ible nondeterminisin would require sornewlmt more powerful
prophecy variables and would complicate our proofs, so we
will stick with our origina.1 definition.

4 Safety Properties
Alpern and Schneider [ASS71 and otliers have observed i n tlie
finite-state case that there is a correspondence between state
niacliines and externally visible safety properties. We extend
their results to tlie infinite-state case for state machines with
finite invisible iioridetertiiiiiistii. We also prove a result that
allows us to apply our coinpleteness tlieoreni to safety prop-
erties even when tlie iuternal continuity hypotliesis is not
satisfied.

Proposition 2 implies tliat the externally visible property
geiieratecl by a fin state machine is a safety property. We
now prove tlie converse.

Proposit ioii 3 Every exteriially visible sa j e f y prolier./y can
be generated by a state niachirie with f inite invisible iioiide-
ter ini t i ism

Proof Given a closed CE-property 0, the required state
niacliine machine is constructed by defining tlie set of
states to consist of all pairs (c i , ((e", e l , . . . , e i))) sucli tliat
((eo,el , . . . , e ,)) is a prefix of a, sequence in 0, deh ing
tlie starting states to be ones with ititernal coiiiponeiits
of length one, a.nd defining the iiext-state relatioil so the
iiia,cliine ca,n go from state (e,, ((eo , . . . , e ,))) only to state
(e i+i , ((eo,. . . ,ei, € ,+I))) for Some € , + I . I

If specification Sz is not interiially continuous, it is possible
for it to be implenientecl by a specification SI witliout h e r e
being a refinement ma.ppiiig from SI to S z . (Internal conti-
nuity will be defined formally in Section 6.) However, since
safety properties are internally contiiiuous, we would expect
to be able to prove tliat the externally visible nia,cliiue p r o p
erty of S1 implcments the exteriially visible iiiacliiiie property
of Sz. Combined with our main tlieoreni, tlie followi~ig result
shows that this is always possible if the state iiia.cl~ine of S1
is machine closed and the nia,cliine property of Sz is fin.

let p = lini>i. I
Theoreii? 1 (Sepa ra t e safety proofs) Lct PI = MI n Ll
a,nd PZ = Mz n L z , w k r e tlie Li are arbitrary properties arid
the A[; are safety properties; arid let 0; arid OM be /he ester-
nally visible properties induced by Pi and Mi , respectively. If
MI = F, A42 is f i i i , aiid 0, c 0 2 , tlieii Ot' c O y .

For a state iiiacliiiie to be fin, it may not nialte an infi-
nite nondeiemiinistic choice unless all but a finite pa.rt of
that choice is immediately revealed in tlie externally visible
state. We can weaken our definition by requiring only tliat

I 70

I

~

Proof For any set Q of behaviors, r(g) r(Q) and the induced externally visible piopeities. Conditions 112
nE(Q 5 ~ E (Q) . Fronl this and the hypothesis that hfl = and I13 imply I l [~ l (h f ”) C hf and coiiditioii 115 iinplies
Pl, we can prove that OC4 C_ n, which implies O y E &. 11[~l(P~) C P , I)roving that O’L C 0. To 1)rove 0 C O“,
The inonotoiiicity of nE, r,%d closure imply & & v, and we n n ~ t Show that p &i](ph) , WlliCh is t h e I)Y USiW
Proposition 2 implies that 0,” = O r . I 112-114 to construct from ally sequence ((so, sl,. . .)) E I’ a se-

quence (((so, / i o) , (sir Ill), . . .)) E A i ” , and using I15 to sliow
that this sequence is also in L’L. I

-

5 Auxiliary Variables
Altl~ougl~ in practice refinement mappings usually exist , they
do not always exist. To construct a refinement mapping, it
may be necessary to add auxiliary variables. We now for-
mally define two types of auxiliary variables: tlie well-known
history variable and the new prophecy variable. These aux-
iliary variables are added to a specification’s state machine;
the supplementary property is essentially left unchanged.

5.1 History Variables
Adding a history variable means augmenting tlie state space
with an additional component C H and modifying the state
machine in such a way that this additional compo~ient records
past information but does not affect the behavior of the
original state components. Formally, a specification S” =
(E”, F“, N “ , L”) is said to be obtained fi.orn the specification
S = (E, F, N , L) by adding a history variable iff the followiiig
five conditions are satisfied. In these conditions, we identify
(C, x C,) x C H with C E x (E, x EH) (so HI implies that Eh
is a state space), and we let be the obvious projection
mapping from C x C H onto C. (In the intuitive explana-
tion, we say that a C”-behavior U siiiiulates tlie C-behavior
n[Hl(u).)

H1. C” C C x C H for some set C H .

H2. n [~ l (F ”) = F. (A state in C is an iiiitial state of S iff it
is the first component of an initial state of s”.)

H3. If ((s, I i) , (s’, h‘)) E N” then (s, 5’) E N or s = s’. (Every
step of S”’s state machine simulates a [possibly stutter-
ing] step of s’s state machine.)

H4. If (s, s‘) E N and (s, h) E C” then there exists h’ E EH
such that ((s, h) , (s’, h’)) E N ” . (From any state, S’”s
state machine can simulate any possible step of S’s state
machine.)

H5. L” = II&(L). (A C“-behavior is in Lh iff the C-behavior
that it simulates is in L.)

The following result shows that adding a history variable
leaves an implementation essentially unchanged.

Proposition 4 (Soundness of history variables) l j S”
is obtained froin S by adding a history variable, [hen the two
specifications define the same externally visible property.

Proof Let M and M” be the specifications’ niacliine p rop
erties, P and Ph their complete properties, and O and Oh

5.2 Simple Prophecy Variables
A prophecy va.riable is the dual of a history variable; i1.s clef-
inition is alinost t1ia.t of a. history va.ria.ble with time running
bnckwa.rds. Intuitively, whereas a. liistory varialde rc~ortls
p a t behavior, a prophecy va,ria.ble giicsses lutrirc I,elia.vior.
Using nota.tion si1nila.r t.o t.1ia.t used i n tlrfiiiing Iiistouy va.ri-
a.bles, we tlefine a. specification S P = (SP, FP, NI’, LI’) 1.0 be
obtained jrona S = (Cl I;, N , L) by adrlitig a prophwy r~rtt~inble
iff the following conditions a.re sa.tisfied. (C:oiiclit,ions 1’2’ a.iicl
P4’ will be repla.ced in Section 5 .3 .)

PI. CP C C x C p for some set C p .

P2’. FP = lIGl(F‘). (This is the expected correspontlenre
between tlie initial states of tlie two specificat,ions.)

P3. I f ((~ ,p) , (~ ’ ,p ’)) E NP then (s,s’) E N 01’ s = S’. (ICvc~y
step of SP’s state ma.chine siiiinla.tes a [possiiLly stu(.ter-
iiig] step of S’s sta.te ina.cliine.)

P4‘. If (s,s’) E N a.nd (s ’ , J) E Cl’ then there exists 1) E C p
such that ((s , p) , (d , p ’)) E Np. (l+o~n every sta.t.e in
CP, the state ma.cliirie of SI’ can ta.lie a, Ixdwartls ski)
that siniulates any possilde backwa.rtls slep of S’s st.at,e
machine. This is tlie time-reversed vcrsion ol‘ condition
H4.)

P5. LP = IIg1(L). (The suppIement.ary prol)ert,y or SI’ is tIie
set of behaviors that siinulate beliaviors ill the supple-
mentary property of s.)

PF. For all s E C the set II&(s) is finite a.nd Iionenipty. (To
every state of S there corresponds some nonzero finite
number of states of S*.)

Coiiditioii P6 is the only one not correspolitli~ig to any concli-
tion for history variables. It is lieetled IIecaLrse tinie reversal
is asy~iinmetric-all beliaviors liave initial states b r ~ t oiily ter-
mimting behaviors liave final sta.t.es. l‘lie second exa.iiiple
below indicates why it is Iieedetl.

We iiow give two exainples to illustrate tlie tlefiiiition of
prophecy variables. We mention only the stat.e Iiia,rhiiim;
the suppleiiieiitary property can be takeli to be tlie trivia.1
one coiitaiiiing a,ll behaviors.

For our first example, we take a. sta1.e iiiacliiiie t1ia.b IIOII-

deterniiiiistically generates an integer between 0 and 9. Tlie
inacliine couiits up by one until it either drcitles to sbop or
else reaches 9, at wliicli poiiit it stutters forever. 'rile set C E
of ext,ernally visible states is the set N of natural nunil,ers,
and tlie iiiteriial sta.te component is a 13ooIea.ii t1ia.t Ixxoiiies

171

true when the final value is reached. (The Boolean values are
written t and f.)

C = N x {t,f}.

F = {(O,f)}.

N is tlie union of tlie following two sets:

- (((2 - l , f) , (i , f)) : 0 < i < lo},

- {((i , f) , (i , t)) : i E N}.

Tlie set of stutter-free behaviors generated by this state ma-
chine consists of all sequences of the forms

(((O,f),(17f),*. . , (7z , f) , (n , t) , (?~ , t) , (n , t) , . ..))

(((O,f) ,(Lf), . . . , (7 ~ , f) , (n , f) , (n , f) , . ’ .))
and

with 0 5 n < 10.
We now add a prophecy variable whose value is a natural

number. This variable “predicts” how many more nonslut-
tering steps tlie state machine will take at most. The precise
definition of the new state macliine is:

CY is tlie uiiion of tlie followiiig two sets:

- {(i , f , j) : O 5 i, O 5 j, and i + j < IO},
- {(i,t,O) : 0 5 i < lo}.

Fp = {(O,f, j) E E”}.

NP is the union of the following two sets:

- (((2 - l , f , j + l) , (i , f , j)) E EP x CP},
- {((i,f,O),(i,t,O)) E cp x CP}.

The reader can check that the conclitions Pl-P4’ and PG
given above are satisfied. (Condition P5 is satisfied if L and
LP are tlie trivial properties that contain all behaviors.) Ob-
serve that although condition P4 is satisfied, condition I14 is
not. The state niachine can take a backwards step from the
state (6 , f , 0) but not a forward step.

The state machine (CP, FP, N p) is deterministic. The only
stutter-free behaviors starting from the state (0, f , n) are of
the forms

(((O,f,n),(l ,f ,n - I) , . .. , (i , f , n - i) , (i , f , n - z),. . .))

with 0 5 i 5 11. Tlie set of externally visible behaviors
generated by the two state machines is the same; the stutter-
free behaviors have tlie form ((0,1,. . . , n , n , n , . . .)) for some
n less than 10. State machine (E, F, N) decides nondeter-
ministically when it is going to stop counting, while in state
machine (CP, FP, NP) this choice is made by the initial value
of the prophecy variable.

As our second exa,mple, replace “IO” by “00” in the clef-
initions of the two state macliines. Conditions Pl-P4’ still
hold, but PG does not; for each state (i , f) of C there are an
infinite number of states (z , f , j) i n CP. Tlie externally visi-
ble stutter-free behaviors of (CP, Fp, Np) consist of sequences
of the form ((0,1,. . . , n, n , 7 1 , . . .)) for any natural number 11.

The stat,e machine (E, F, N) generates all these behaviors
plus the a.dditiona1 behavior ((0, 1,2,3, . . .)) tlia,t never termi-
nates. Because the finiteness condition PG is not satisfied,
adding the auxiliary variable c1ia.nged the specification by
ruling out this nontermina.ting beha.vior-eflectively adcling
a liveness condition.

We can use our last example to inclica.te why we need tlie
hypothesis of finite invisible nondeterminism for our coin-
pleteness result. Let Sa be the specification consisting of the
state macliine (CP, FP, NP) we just constructed (tlie one with
“10” replaced by “CO”) and the trivia.1 supplementary p rop
erty containing all CP-behaviors. Let S1 be the specification
with state machine (E, F, N) a i d supplementa.ry property
L consisting of all terminating behaviors. Both specifica-
tions define the same set of externally visible beliaviors-
all behaviors obtainable by stuttering from ones of the form
((0,1,. . . , n, n,n)) . To construct a refinemelit mapping, we
would have to add to S1 a prophecy variable that “guesses”
the value of the last component of a state of CP. However, no
such prophecy variable can be constructed that satisfies PG,
since for any starting state of Si there are an infinite nuiiiber
of corresponding sta.rting sta.tes of S2.

The complete property Pz defined by this specification S2
is a safety property, and we will see that this implies that S2 is
internally continuous. Moreover, specification S1 is ma.chine
closed. Nevertheless, adding auxiliary variables to S1 will
not allow us to construct a refinement mapping to prove that
it implements S2. Our completeness theorem does not apply
because Pz is not fin.

In this example, the prophecy variable we wa,nted to add
would not satisfy PG. However, the supplementary property
1ia.ppenecl to ensure that adding the prophecy variable clicl not
change the externally visible behavior. If we were to repla,ce
PG by the weaker requirement that SP have the same exter-
nally visible property ils S, then we could find a refinenient
mapping. However, this requirement is precisely what we had
to prove in tlie first place-na.niely, that S1 iniplenients S z .

5.3 Prophecy Variables That Add Stut-
tering

We now generalize our definition of a prophecy variable to
allow it to introduce stuttering. Condition P2’ asserts that a
state (s , p) E C p is an initial state of Sp’s state machine iff s is
an initial state of S’s state machine. We relax this condition
by requiring only that such a state (s , p) be reachable from an
initial state by steps that simulate stuttering steps. Formally,
we replace P2‘ by:

112

(b) For all (5 , p) E I I G (F) there exist p o , p ~ , . . . ,pn = p
such that (s , p o) E FP and, for O 5 z < n,
((~ , P ~) , (~ , Z A + I)) E N P .

Similarly, we ielax condition P4’ by allowing SP’s state
machine to simulate the step in S’s state niacliinc froni state
s to state 5‘ by a sequence of 1% + 1 steps, the last 72 of wliicli
simulate stuttering steps. The precise coudition that replaces
P4’ is:

P4. If (s, s’) E N and (s’, p’) E CP then there exist p , p:, . . . ,
pL-l, pi, =]’I sucli tliat ((Lq,p),(s’,ph)) E NP aiirl. for
0 I2 < 72% ((~ ’ , P ;) , (S ’ , P : + ~)) E N P .

As with history variables, the additioii of piopliecy vari-
ables leavcs ail iinl)lerneiitatioii essentially unclianged.

Proposition 5 (Soundness of prophecy variables) If
S P 25 obtained froin S by nddzng (I prophecy variable, t / 1 ~ 7 1 the
two s p e c i ~ c a t i o t ~ s define the s m i e e.uter-ria1ly aini6lc pialierty.

Proof Let 111 aiid I M P be the specifica.tions’ niacliiiie p r o p
erties, P and PP tlieir complete propcrties, and 0 a.nd 0’’ tlie
iiiduced externally-visible properties. ‘I‘hc proof that 0” C 0
is identical to tlie proof of the corresponding condition for liis-
tory variables ill Proposition 4. To prove that 0 C: Ol’, we
must prove that P C_ I I [p](PP) . Giveii cr = ((so, SI,. . .)) E P ,
we find T E Pt’ with l l ~ q (~) N cr as follows. Define a
grapli whose set of nodes is EP x N wit,li a.11 cdge betweeii
((s j , p) , i) aiid ((sJ ,p’) , i+1) iff (s , , p) = (sl+l,p‘) or tliereex-
ist po,pI, . . . ,pn = p’ E C p such t1ia.t ((5 i , p) , (s,+l, p o)) E Nl’

and, for all 0 5 k < i t , ((5 j + I , z ~ k) , (s ~ + 1 , ~ ~ + 1)) E N P . Tlir
subgra.pli reac1ia.ble froni nodes of tlic forin ((so,&)), 0) is
acyclic, and 1’6 implies that it has finik brmclling a.iitl a
finite set of sources. An iiiductioii proof ba.sed 011 P4 iiiiplies
t1ia.t for all n 2 0 a i d all (5 , , 1 1 , ~) E CP there exist cleiiients
po , . . . , pn-l in C p sucli tliat ((((so ,po) ,O) , . . . , ((sn,p,),n)))
is a path in this gra.pli. Konig’s Lemma implies tlie exis-
tence of a.n infinite path ((((so,po) , 0), ((S l , l) l) , I) , . . .)). Let
p = (((so ,po) , (s1,p2), . . .)), aiid coiistruct T from p by using
the definition of tlie gra.ph to fill in the internal steps of Sp
between each (sl ,pi) and (s,+1, pc+l), and using P2 t80 fill in
the steps at tlie beginning. The construction guarantees that
T E AP, and P5 iinplies that T E LP. I

6 Internal Continuity
We now define internal continuity, which appears in our tliird
hypothesis. But first, we give an example that iiidicates why
tlie hypothesis is needed for our completeness theorem.

Let C E = N, let 7% be the terminating sequence
((0,1,. . . , i, i , i , . . .)), and let 71 be the nonteriiiiiiating se-
quence ((0,1,2,. . .)). Let ((eo, e l , . . .)) x x denote the sequence
(((eo, z), (el, x), . . .)). We construct a specification Sz that de-
fines the property whose stutter-free sequences consist of all
sequences qz x t together with the sequence 71 x f . Formally,
S2 = (Ez, Fz, N 2 , L 2) , where

C2 = N x {t, f} . (The iiiteriial compoueiil is a. 1Joolcaii.)

Pz = ((0, t) , (O,f)}. (Beliauiors start with thrir visiI,Ic
coniponents equal to 0.)

Nz = { ((z , b) , (i + l , b)) } . (‘lh external coliipoiiriib is
increinented by I a.nd tlie iiit.ernal coinpoiirnt. rriiiaiiis
coilstant .)

L2 consists of all I~ehaviors c.rcrpf oiies of tlic forin U x f
with U teriiiinating a.iltl c x t with cr iioiit[,riiiiiia.l,iiig.

r x Ilie externally visible 1wq)ert.y 02 defiiied by S z ronsists o f
tlie behaviors rjt, tlie 1)rhavior 1 1 , aiicl all Iirliaviors ol)taincvl
froiii tliciii by stuttering. Spccificabion Sa is f i i i aii t l i i i d i i i i r

closed.
l l i e cxteriially visiblc property 0, is also tlcliiicd 1,y t l i r

simpler specilicatioii SI = (X i , F1. A’,, L I) , wlicrr

Cl = C E = N. (There is no iiiternal coinpoiiriit.)

N I = { (i , i + I)} . (Tlir state is iiicrriii(vik:tI I)y I .)

L1 = E? (the t.rivial pro1)crty tliat a.lIow all Ix4i;tviors).

OI,viousIy, SI iinl)Ieiiiciits ~ p . I,rI, S y = (Yy, /,’:, K/, /,:)
be a n y specilicat,ioii obtaiiied froin S1 by adding a ~) i ~ o p l i c ~ ~ y
variaMe. We now show tlint I,l~crr does not csist a rdilirili(\lii
iiiappiiig rrom Sf t,o Sz; i n fktct tlirrc. tIocs L I ~ I . c,xisl ~IIIJT

niapping froni E; t,o X 2 tIiat proves t h a t S y iiiipIciiicwt,s sa,
Let 1’: be t,Iic propcrty t I c l i i i c ~ I by S y . \Vc> slioiv I)y c.oii~ [‘a-

tlict.ioii that tliere does 1101 exist. any iiiiipping ,I : Xy + Y 2
sricli that (i) I I E (j ’ (i , p)) = i a i i d (i i) j‘(/):) C I t 2 . I b i . rilcIi
i let 11: E 1’: be a, behavior wit11 lI[pj(?/i) N ?jt. kIorc~)vor, 1’5
implies that we ca.n choosc 71: to Iiave i i o w p r a t (d nonfinal
stat.es, inea.iiiiig t1ia.t for j < i and X. > I, tlierr is iio s r g i i i e ~ i ~ .
(((j , n) , (.i,n), . . . , (3 , p k))) of 71: w i l h 1’1 = i l k . By (i), WP
then have t1la.t for every i a. id ? t i wit,li i < 71) t.licrc i s a i i 1
such that 1lE(i/;,II) N ~ / ~ l i + ~ . Moreover, 1% a n d the aI,seiice
of repeated nonfinal s t a h imply t.lia,t for (’ilcli i t.licrr is a i l

integer ~ (i) > i such b1ia.t 1 5 r (i) for all such 7)) . \k call

choose T so that ~ (i + 1) 2 ~ (i) fool. a l l i .
For ally 7 1 , tlie set is hi(.(. (hy 1%). ’ l ’ l i r r d o i ~ ,

we caii iiiductively construct the scqueiicc O,, of lciigtl~ r (7))

sucli that 0, is a prefix of ii~liuibely n i a ~ ~ y of tlic 71,; a11t1 is
also a prefix of O,,,,. Let 7’ = liiiiOt,; t l icm lI,c(?/‘) N 7 1 . Siiicv
each O,, is a. prefix of some TI:, clearly 7)’ is iii l.lir iiia.cliitir

property of ST. Properly 1’5 t h iniplies t.lial 111 E jlf. By
definition of I) : , assumption (ii) implies tha.(. /(?/:) N 71, x t,
which implies that f ($) 21 71 x t . We thew Iia.ve 0’ E 1’; a i i t l
f (I / ’) 6 P2, wliich contradicts assuiiiptioii (ii).

This proof can be estendetl to tlie ca.sc wlirrr S1 i s rrplactyl
by any specificatiou S! oI)taiiied froiii it 117 adtliiig a Iiistoiy
variable. We just replace 71 with a.uy I)eIiavior aIIoivetI ~,y S!
that simulates it, and replace I) ; with ail iiiitial pIefix of this
new 9 . Thus, first adding a Iiistory varialh still docs liot

allow one to construct tlic refinemelit nia.ppiiig.

= { O } . (All bcliaviors st.art at. 0.)

I73

Tlie probleni will1 specification Sz is that 71 x t is not in Pz
even though 1 1 ~ (q x t) is in 0 2 ancl aiiy finite portion of q x t is
the same as the corresponding portion of some behavior lit x t
in P2. The sequence 11 x t is not in P2 even thougli we ca.niiol
tell that it isn’t by loolting either at its externally visible
component or at a.ny finite pa.rt of tlie complete behavior.
To rule out t.his possibility, we must a.tltl to o w conipleteness
tlieorerii tlie liypotliesis that Pz is iiitei-iially continuous.

Definition 2 A C-pl-operty P with iiiduced exlcriially visible
propeity 0 i s interiially continuous iff, jor aiiy E-behavior U,

if HE(.) E 0 aiid U E P, then U E 1’. A specificatioii is
iialeriially coiifaiiuous iff the (complete) property it defines is
iiiteriially continuous.

Suppose I-’ = A i fl L a d M = P. Then limo; = U for
U, E P iff g E A l . 11 follows froin this tliat, for a. iiia.cliiiie-
closed specification, interna.1 continuity is equivalent to the
condition that a complete behavior is allowed iff it is gener-
ated by the s h t e ina.chine ailcl its extermlly visible compo-
nent is allowed. In particular, safety properties are internally
coiitiiiuous.

Since the iiiacliine property Af is closed, if lini gj = U for
ut E A,! n L , tlieii U E L iff U E A n I,. This iniplies that if I,
is iiiternally continuous, then Af n L is internally continuous.
Hence, for a.ny specification, if the suppleinentary pro1iert.y
is interiially continuous, tlien the specification is illternally
continuous. The converse is iiot true, since if A i is llie eniply
property, then 113 n L is iiiternally continuous for a,ny L.

Any specifica.tion can be made internally continuous by
adding to L all sequences o in A f such that 11E(a) E 0.
Expa.nding L in this way obviously adds no new externally
visible behaviors, so tlie resulting specificatioii is equivalent
to the origiiial one. Tlie espaiision could introduce iiifinile
iiiteriial iioiitlet,eriiiiiiisni, but not if A! is fin.

7 Completeness Results
We can now prove our main result.

Theorem 2 (Completeness) IJ f h e iiicrclrii~~e-closed speci-
fication, S 1 iniplc inc i i 1s t lic iiit cl-iiully C O i i / in U ous, ,fin speciji-
cnlioii S a , t h e n /her is a sptcijicatioii Sk ob/.aiiicd froin SI
by addii7g n histoi~y ~ ~ n ~ i a b l e ant1 a specijicatioii Sy obtained
f r o m S? by addiirg a pi~ophccy variable sricli that there csisls
a refiiieriieiit iiiappiiig f ro in s!” to sa.
Proof F o r i = I , 2, let Si = (E t , Ft, N i , Lt) , and let P, be
the conipletc property of si. Delilie S? = (E:, P:, N:, L?) ,
where: Xf is the set of pairs (s , h) sucli that h is a finite
prefix or a bcliavior iii eliding in s; F;’” is the set of states
with 11/i11 = I ; ((5 , h) , (s’, h’)) E Nt iK Ii’ = / i ((s‘)); a d Lf
is delerniiiied by H5. Coiiditioiis 112 and 114 follow froill llie
machine closure of SI a,iid Lemiiia. I , aiid the otlier conditions
are proved using only the deiiiiitioii of S y . 1)efiiie Sy =
(E:“, F?, N?, L?), wliere: E:. is tlie set of triples (s, / i , p)

sucli tha t 1’ is a.n initial prefix of a stutter-free be1ia.vior in

P2 sucli that p has the sa.me extcriially visible behvior a.s
h; r;;““ is the set of states with (s , h) E F,” a.nd 11p11 = 1;
((s, / i , p) , ($’, / i , p ‘)) E N? iff eitlier (a.) p’ = y . ((lasf(p’)))
and either ((s , h) , (s ’ , / i ’)) E N: or (s, h) = (S I , V) , or (11) 1)’ =
p antl ((s, h) , (s’, h’)) E N:; and L y is deterniiiietl by 1’5.
ConcIitions ~ 1 - 1 ’ 5 follow from tlie clefinition of S ~ P , a,ncl tlie
proof of PG requires also the hypotheses tlmt SI iinplenieiits
~2 ant1 that SZ is fin. Tlefine j : -+ E Z by j ((s , / z , p)) =
la.d(p). Then Rl-R3 follow froin the definit3ion of S:1I) a.iitl
R4 follows froni the hypotheses 1,Iial SI iiiiplements Sz and
S2 is illternally continuous. 1

I he converse of this complet,eness theorem is not true. For
instance, no matter how pathological a specification is, we
can use the identity refiiiement nia.pping to prove t1ia.t it ini-
plemen t s itself.

The hypotheses of tlie internal continuity aatl Gnitc invis-
ible nondetermiriisni of S2 ca.n be removrtl froni our coni-
pleteness result by generalizing the clclinition of a propliecy
va~ria.ble-namely, by relhciiig condition 1% witli the explicit
requirement t1ia.t the externally visible I,elia.viors of Sp l ie the
same a those ol S. This result is proved by defining S? as in
the proof of Tlieoreni 2, definiiig s!’ so ttiat its states are
4-tuples (s, h,ii,.) with (s , h) E Et , 7 a compIete IieIiavior
allowed by S a , and I I E (/ i) E 11E(‘r17L), ancl defining the re-
finement. mapping by Iettiiig i((.~, h , i ~ , .)) be the lit’’ element
of r . Ilowevtrr, tlic condition tliat repla.ces 1’6 asserts tliat
specification SP iiiipleiiients S, wliicli is precisdy the type of
condition we arc trying to prove in the first place. This g a -
eralization of Tlieorem 2 is tliereforc of little practical value,
so we will not bother to sta.te it antl prove it fornially.

‘I‘hcre is one simple way to streiigtlien the coinpletcness
tlieoreni that is of some interest. Tlie specilicatioii S2 is fin
a,id illternally coiitinuous ill tlie property P2 that it defines is
f in and internally continuous. We caii wcakcn the hypothesis
by rrquiriiig oiily tliat there exist a fin ancl intrrna.lly coil-
tiiiuous property Pi conta.iiied in P2 t1ia.t iiiclnccs tlie saiiie
exteriia.lly-visible propcrt,y as P2. Lc:t Sl, be the sl)ecificat<ion
ol~~aiiictl Iroin S2 Iiy replacing L2 wit.11 Lz n i’;. The correct-
ness of this result follow~s easily froni ‘I’heoreni 2 by repla.cing
S2 with S i .

r 7

8 Whence and Whither?
llefiiiciiicut IllilppillgS arc’ iiot iicw. ’I’licy form the basis of
tlie nielliods advocatecl by La.m nntl S1ianka.r [LS84] a.iitl by
lis [I,a.inK~], ant l they arc usctl by 1,yncIi a.nd ‘lut,tle [L‘IW]
t,o prove tha t one a.utoniaton iiiiplr~iicnts a,notlier. IIo\vt~vcr,
none of this work addresses the issue 01 coiiiplet.eness. .Joii-

sson [JonS’i] did prove a. con~plt~t.encss rcsrill, simi1a.r to ours,
bnl for a sina1lt.r class of s~)eciiicabioiis.

Compl& niet,liods for cliccking tha t a prograiii iinl)lements
a specifica.tion, without conslriictiiig rrfiiic~riiciit inappings,
have bern developed. Sonic of I,lie niost geiirral a,re t,Iiosc
of Alpern and Scluieider [ASS’i], Manna a.ritl Pniirli [M1’87],
and Vartli [VarS’i]. ’l’lieir nietliotls tlilkr froiii our a~pproa.cli
in a.1 Icast two important ways:

I74

They do not consider behaviors with different amounts
of “stuttering” to be equivalent, so their definition of
what const i t 11 t es a correct implement a t ion is weaker
than ours.

Tliey recluire taltiiig tlie negation of specifications. In
practice, the nega.tion of a specification may be hard to
construct ancl hard to uiiderstaiid.

Because of these differences, the nietliods may not offer prac-
tical alternatives to tlie use of refiiieiiient ma.ppings for prov-
ing correctness.

Our exposition has been purely semantic. We have consid-
ered specifications, but not the langua.ges in wliicli they are
expressed. We proved the existence of refinemetit mappings,
but said nothing about wlietlier they are expressible in any
language. We do not linow what lariguages can describe the
necessary auxiliary variables and resulting refinement map-
pings.

Our results also raise the question of what properties can
be described by specificatioiis that are fin aiid internally con-
tinuous. If the specification language is expressive enougli,
then all properties can be defined by specifications without
internal state, wliicli are trivially fiii and interidly continu-
ous. At t.he other extreme, one can easily invent artificially
impoverished ianguages that do not allow ally fiii or internally
contiiiuous specifications. The questiori becomes interesting
only for interesting specification la,ngua.ges, such as various
forms of temporal logic. In addition, recall t1ia.t tlie hypotlie-
ses of our completeness result can be weakeiied by requiring
only that S z ’ s complete property be equivalent to a fin and
internally contiiiuous subproperty. This raises the inore gen-
eral question of what expressible properties have equivalent
fin and continuous suliproperties.

Acknowledgements
The first example we saw that demonstrated the inadequacy
of liistory variables is due to Herliliy and Wing [IIWS7]. The
int.roduction of prophecy variables was based on a suggestion
of Jim Saxe. We also wish to thank Pierre Wolper for making
clear whence our ideas came and Gordon Plotkin for inalting
clear that whither they will lead is not an easy question, since
lie coulcln’t answer it on the spot.

References
[ALSS]

[ASSG]

Martin Abadi and Leslie Lamport. The Existence
of Refinement Afappings. Research Report SRC28,
Digital Equipiiieiit Corporation, Systems Research
Center, April 19SS.

Bowen Alpern and Fred B. Schneider. Recognizing
Safety aiid Liveness. Technical Report TRSG-727,
Department of Computer Science, Cornell Univer-
sity, January 19%.

[ASS71 Boweii Alpern and Fred Sclineitler. Provitig boo1ea.n
combinations of deterministic properties. In P I W -
ceedings of the Second Symposi.u.iri oii Logic in Coin-
puter Science, pages 131-137, IEEE, June 1957.

[IIWS7] M.P. IIerlihy a.nd J.M. Wing. Axioins for concurreill
objects. 111 Proceccliiigs of the Fourleenth A n n i ~ n l
ACM S I G P L A N - S I G A C T Syrnposivin 011. Princi-
ples of Prograirtining Langringcs, p g e s 13-26, ACM,
Munich, January 19S7.

Bcngt .JOIISSOII. Con~posi/ioiinl I’krijicatioit of Dis-
tributed Sysfe.tti.s. PIiD thesis, Uppsala Uiiiversily,
19S7.

[JonSS]

[I<nu73] Donald E. Iinutli. Fuiida.rtiettda1 /Ilgori/hitis. Vol-
ume 1 ol The Arf of Cortipriler. Programiui~tg,
Addison-Wesley, Rea.ding, Massachusetts, srcoiitl
edition, 1973.

[LSS4] Sitnoii S. Lam a.nd A . Utlaya Sl1a.iika.r. Protocol
verification via projections. IEEE Z’t~ait.snc/ioii.s oti
Sofluarc E,tigitieel.%ng, SE-10(4):325-342, July 1984.

[Lain771 Leslie Lamport. Proving the correci,iiess of multi-
process progra.ins. IEEE Tia, i tsac/ io~~s o’ti S o j h n r e
Engiiieering, SG3(2): 125-143, Ma.rcli 1977.

[La.rnS3] Leslie Laniport. Specifyitig concurrciit progra~u
modules. A CM Tinnsactioris O I L Proginniniiiig Lati-
guages and S y s f e m s , 5(2):190-222, April 19SR.

[LTS7] Nancy Lynch and Mark Tuttle. 1liera.rcliical cor-
rectness proofs for distriliutetl a.lgorithiiis. 111 />/a-
ccedings of the Sixth Syi~rpo.sictiit ou [lie Pi~iriciplcs of
D i s t d u t e d Co,tripntitt.g, pages 137-151, AC!M, Au-
gust 1987.

Zo1ia.r Manna atid Aniir Pnueli. Sp.yificat,ion a.titl

verifica.tion of concurrent progra,nis Iiy V-a,utoinata,.
In Proceediitgs of / he Foo l~~~~tem/h Syiitposititi i 011 / l tc
Priiici$le.s of Pvogmtiiitiirtg La,ttgricipn, pages 1 --12,
ACM, Ja.nua,ry 1987.

[MI‘S71

[owi75] s. Owicki. AxionLnfic Proof 2’cchicPqric.s f o r Patallcl
Proginms. PliD tlicsis, C h i e l l Uiiiversitg, Arigrist
1975.

[VarST] Moslic Vartli. Verifica.tion of coiicurrcnt progra.nis:
tlie a,utonia.ta-theoretic framework. In Piaceerliltgs
o f l h e Second Symposium on Logic i t i ClOltlpiftr ,S’ci-
ence, pa.ges lG7-17G, IEEE, Juiie l9S7.

175

