
Linearizability Proofs
for Distributed Consensus Protocols

Consensus
v1

• Several nodes, which can crash

• Each proposes a value

v2 v3

Consensus
v1

v2

v2 v3

v2

✘

• Several nodes, which can crash

• Each proposes a value

• All non-crashed nodes agree on a single value

Deterministic state
c1 c2 c3

Clients submit commands

c1 c2 c3

Machine totally orders commands and
computes the sequence of results

Deterministic state

r1, r2, r3

✘

c1, c2, c3

State machine

c3, c2, c1

c1 c2 c3

c1, c2, c3 c2, c1, c3

Clients send commands to all replicas
Replicas may receive commands in different orders

State machine

c3, c2, c1

c1 c2 c3

c1, c2, c3 c2, c1, c3

c2, c1, c3 c2, c1, c3 c2, c1, c3

Order commands via a sequence of consensus instances

State machine

c3, c2, c1

r2, r1, r3

c1 c2 c3

c1, c2, c3

r2, r1, r3

c2, c1, c3

r2, r1, r3

c2, c1, c3 c2, c1, c3 c2, c1, c3

Replicas compute the same sequence of results

State machine

c3, c2, c1

r2, r1, r3

c1 c2 c3

c1, c2, c3

r2, r1, r3

c2, c1, c3

c2, c1, c3 c2, c1, c3

Replicas compute the same sequence of results

✘

Correctness: replicated implementation is
linearizable wrt. single-server one:
replication transparent to clients

The zoo of consensus protocols

• Viewstamped replication (1988)

• Paxos (1998)

• Disk Paxos (2003)

• Cheap Paxos (2004)

• Generalized Paxos (2004)

• Paxos Commit (2004)

• Fast Paxos (2006)

• Stoppable Paxos (2008)

• Mencius (2008)

• Vertical Paxos (2009)

• ZAB (2009)

• Ring Paxos (2010)

• Egalitarian Paxos (2013)

• Raft (2014)

• M2Paxos (2016)

• Flexible Paxos (2016)

• Caesar (2017)

Complex protocols: constant
fight for better performance

• Develop methods for proving protocols correct,
including realistic deployments;

• Get insights into their structure;

• Design new and better protocols?

Our Agenda

P1

P2

P3 P1 ⊑ S1

Approach
• Modular reasoning: verify parts of the protocol

separately instead of the whole thing

• Linearizability implies refinement [Filipovic+ 2009]

Ivana Filipovic, Peter W. O'Hearn, Noam Rinetzky, Hongseok Yang:
Abstraction for Concurrent Objects. ESOP 2009

https://dblp.uni-trier.de/pid/o/PeterWOHearn.html
https://dblp.uni-trier.de/pid/15/5033.html
https://dblp.uni-trier.de/pid/82/5808.html
https://dblp.uni-trier.de/db/conf/esop/esop2009.html#FilipovicORY09

Approach

S1

P1 ⊑ S1

• Modular reasoning: verify parts of the protocol
separately instead of the whole thing

• Linearizability implies refinement [Filipovic+ 2009]

atomic {
 ...
}

P2

P3

Ivana Filipovic, Peter W. O'Hearn, Noam Rinetzky, Hongseok Yang:
Abstraction for Concurrent Objects. ESOP 2009

https://dblp.uni-trier.de/pid/o/PeterWOHearn.html
https://dblp.uni-trier.de/pid/15/5033.html
https://dblp.uni-trier.de/pid/82/5808.html
https://dblp.uni-trier.de/db/conf/esop/esop2009.html#FilipovicORY09

P1 ⊑ S1

P2(S1) ⊑ S2

Approach
• Modular reasoning: verify parts of the protocol

separately instead of the whole thing

• Linearizability implies refinement [Filipovic+ 2009]

S1

atomic {
 ...
}

P2

P3

Ivana Filipovic, Peter W. O'Hearn, Noam Rinetzky, Hongseok Yang:
Abstraction for Concurrent Objects. ESOP 2009

https://dblp.uni-trier.de/pid/o/PeterWOHearn.html
https://dblp.uni-trier.de/pid/15/5033.html
https://dblp.uni-trier.de/pid/82/5808.html
https://dblp.uni-trier.de/db/conf/esop/esop2009.html#FilipovicORY09

S2

P1 ⊑ S1

atomic {
 ...
 ...
}

Approach
• Modular reasoning: verify parts of the protocol

separately instead of the whole thing

• Linearizability implies refinement [Filipovic+ 2009]

P2(S1) ⊑ S2

P3

Ivana Filipovic, Peter W. O'Hearn, Noam Rinetzky, Hongseok Yang:
Abstraction for Concurrent Objects. ESOP 2009

https://dblp.uni-trier.de/pid/o/PeterWOHearn.html
https://dblp.uni-trier.de/pid/15/5033.html
https://dblp.uni-trier.de/pid/82/5808.html
https://dblp.uni-trier.de/db/conf/esop/esop2009.html#FilipovicORY09

P1 ⊑ S1

P3(S2) ⊑ S3

Approach
• Modular reasoning: verify parts of the protocol

separately instead of the whole thing

• Linearizability implies refinement [Filipovic+ 2009]

P2(S1) ⊑ S2

S2

atomic {
 ...
 ...
}

P3

S3

atomic {
 ...
 ...
 ...
}

Approach
• Modular reasoning: verify parts of the protocol

separately instead of the whole thing

• Linearizability implies refinement [Filipovic+ 2009]

P1 ⊑ S1

P3(S2) ⊑ S3

P2(S1) ⊑ S2

Layered structure in consensus

• Steal abstractions from an existing analysis of Paxos
[Boichat+ 2003, Chockler+ 2002]

• Show their linearizability ⇒ modular proof of Paxos

• Generalise them to modularise proofs of other Paxos
versions and consensus protocols (e.g., ZAB and Raft)

v1 v2 v3

• Acceptors = members of parliament:
can vote to accept a value, majority wins;

• Leader = parliament speaker:
proposes its value to vote on

• Good for multi-consensus: can elect the leader
once and get it to process multiple client requests

1 2 3

Acceptor Acceptor Acceptor

Leader

1 2 3

Leader ?

• Phase 1: a prospective leader convinces a
majority of acceptors to accept its authority

1 2 3

Leader#: 2

• Phase 1: a prospective leader convinces a
majority of acceptors to accept its authority

Leader#: 2

ok1 2 3✘

Leader#: 2

• Phase 1: a prospective leader convinces a
majority of acceptors to accept its authority

Leader#: 2

1 2 3

Leader#: 2 ✔

✘

• Phase 1: a prospective leader convinces a
majority of acceptors to accept its authority

Leader#: 2

1 2 3

Leader#: 2 ✔

v2 ✘

• Phase 1: a prospective leader convinces a
majority of acceptors to accept its authority

• Phase 2: the leader gets a majority of acceptors to
accept its value and replies to the client

1 2 3✘ok

• Phase 1: a prospective leader convinces a
majority of acceptors to accept its authority

• Phase 2: the leader gets a majority of acceptors to
accept its value and replies to the client

Leader#: 2
Accepted: v2

Leader#: 2 ✔

1 2 3✘ok ✘

Leader#: 2
Accepted: v2

Leader#: 2 ✔

Accepted: v2 ✔

• Phase 1: a prospective leader convinces a
majority of acceptors to accept its authority

• Phase 2: the leader gets a majority of acceptors to
accept its value and replies to the client

1 2 3✘✘

Leader#: 2
Accepted: v2

Leader#: 2 ✔

Accepted: v2 ✔

Reply v2 to client

• Phase 1: a prospective leader convinces a
majority of acceptors to accept its authority

• Phase 2: the leader gets a majority of acceptors to
accept its value and replies to the client

1 2 3

• Phase 1: a prospective leader convinces a
majority of acceptors to accept its authority

• Phase 2: the leader gets a majority of acceptors to
accept its value and replies to the client

Leader#: 2
Accepted: v2

Leader#: 2 ✔

Accepted: v2 ✔

Reply v2 to client

Leader#: 3
Accepted: v3

1 2 3

Leader#: 2 ✔

Accepted: v2 ✔

Reply v2 to client

Leader#: 3 ✔

Accepted: v3 ✔

Reply v3 to client

• Problem: node 3 may wake up,
form a majority of 1 and 3, and accept value v3;

• Need to ensure once a value is chosen by a majority, it
can’t be changed;

• Use round numbers to distinguish different votes.

1 2 3

• Phase 1: a prospective leader choses a unique round r
and convinces a majority of acceptors to switch to r

• Acceptor switches only if it’s current round is less

Leader#: ?
Round#: 0

Accepted: ?

Leader#: ?
Round#: 0

Accepted: ?

Leader#: ?
Round#: 0

Accepted: ?

Leader#: 2
Round#: r

Accepted: ?

1 2 3
r

• Phase 1: a prospective leader choses a unique round r
and convinces a majority of acceptors to switch to r

• Acceptor switches only if it’s current round is less

Leader#: ?
Round#: 0

Accepted: ?

Leader#: ?
Round#: 0

Accepted: ?

Leader#: 2
Round#: r

Accepted: ?

Leader#: 2 ✔
Round#: r

Accepted: ?

1 2 3ok

• Phase 1: a prospective leader choses a unique round r
and convinces a majority of acceptors to switch to r

• Acceptor switches only if it’s current round is less

Leader#: ?
Round#: 0

Accepted: ?

1 2 3

Leader#: 2 ✔
Round#: r

Accepted: v2

Leader#: 2
Round#: r

Accepted: ?

r, v2

Leader#: ?
Round#: 0

Accepted: ?

• Phase 2: the leader sends its value tagged with
the round number;

• Acceptor only accepts a value tagged with the round
it has agreed for before.

1 2 3ok

• Phase 2: the leader sends its value tagged with
the round number;

• Acceptor only accepts a value tagged with the round
it has agreed for before.

Leader#: 2 ✔
Round#: r

Accepted: v2

Leader#: 2
Round#: r

Accepted: v2

Leader#: ?
Round#: 0

Accepted: ?

1 2 3ok

Leader#: 2 ✔
Round#: r

Accepted: v2 ✔
Reply v2 to client

Leader#: 2
Round#: r

Accepted: v2

Leader#: ?
Round#: 0

Accepted: ?

• Phase 2: the leader sends its value tagged with
the round number;

• Acceptor only accepts a value tagged with the round
it has agreed for before.

1 2 3

Leader#: 2 ✔
Round#: r

Accepted: v2 ✔
Reply v2 to client

Leader#: 2
Round#: r

Accepted: v2

Leader#: 3
Round#: rʹ

Accepted: ?

rʹ

• Phase 1: acceptor sends to the prospective leader its
round number and value;

1 2 3

Leader#: 2 ✔
Round#: r

Accepted: v2 ✔
Reply v2 to client

Leader#: 3
Round#: rʹ

Accepted: v2

ok, r, v2

• Phase 1: acceptor sends to the prospective leader its
round number and value;

• Acceptor sends to the prospective leader its round
number and value

Leader#: 3
Round#: rʹ

Accepted: ?

1 2 3

Leader#: 3
Round#: rʹ

Accepted: v2

ok, r, v2

Leader#: 2 ✔
Round#: r

Accepted: v2 ✔
Reply v2 to client

Leader#: 3
Round#: rʹ

Accepted: v2

• Phase 1: acceptor sends to the prospective leader its
round number and value;

• Acceptor sends to the prospective leader its round
number and value;

• If some acceptor has accepted a value, the leader
proposes the value with the highest round number.

1 2 3

ok, r, v2

• Phase 1: acceptor sends to the prospective leader its
round number and value;

• Acceptor sends to the prospective leader its round
number and value;

• If some acceptor has accepted a value, the leader
proposes the value with the highest round number.

Leader#: 3
Round#: rʹ

Accepted: v2

Leader#: 2 ✔
Round#: r

Accepted: v2 ✔
Reply v2 to client

Leader#: 3
Round#: rʹ

Accepted: v2
 Ensures that the chosen

value v2 will not be changed later

Round-based register
[Boichat+ 2003]

• Data type representing the
“state” of acceptors as a
shared pointer

• read() - Phase 1 of Paxos

• write() - Phase 2 of Paxos

Round-based
register

Paxos

Read - Paxos Phase 1
read(r) {
 if (a majority of acceptors has round < r) {
 switch them to round r
 if (no acceptor has a value accepted)
 return none
 else
 return the value at the acceptor
 with the highest round
 } else
 return abort
}

Write - Paxos Phase 2

write(r, v) {
 if (a majority of acceptors has round r) {
 put v to all of them
 return commit
 } else {
 return abort
 }
}

Consensus Using the Register
propose(v) {
 choose a round r
 vʹ = read(r)
 if (vʹ = abort)
 increase r and repeat
 if (vʹ = none) vʹ = v
 if (write(r, v’) = commit)
 return v’
 else
 increase r and repeat
}

Conjecture

Register

Paxos

Round-based register is linearizable wrt an atomic specification
strong enough to prove Paxos correct

distributed
implementation

Register

Paxos

atomic  
shared-memory
implementation

* only safety, no liveness

atomic read(k) {
 if (round < k) {
 if (nondet()) {
 round = k;
 v = pickNondet(vals);
 return v;
 } else {
 return abort;
 }
 } else {
 return abort;
 }
}  

atomic write(k, v) {
 if (round ≤ k) {
 if (nondet()) {
 vals = {v};
 round = k;
 return commit;
 } else {
 vals = vals ∪ {v};
 return abort;
 }
 } else {
 return abort;
 }
}

round = 0;
vals = {none};

“Centralized state”

atomic read(k) {
 if (round < k) {
 if (nondet()) {
 round = k;
 v = pickNondet(vals);
 return v;
 } else {
 return abort;
 }
 } else {
 return abort;
 }
}  

atomic write(k, v) {
 if (round ≤ k) {
 if (nondet()) {
 vals = {v};
 round = k;
 return commit;
 } else {
 vals = vals ∪ {v};
 return abort;
 }
 } else {
 return abort;
 }
}

round = 0;
vals = {none};

Atomic methods

atomic read(k) {
 if (round < k) {
 if (nondet()) {
 round = k;
 v = pickNondet(vals);
 return v;
 } else {
 return abort;
 }
 } else {
 return abort;
 }
}  

atomic write(k, v) {
 if (round ≤ k) {
 if (nondet()) {
 vals = {v};
 round = k;
 return commit;
 } else {
 vals = vals ∪ {v};
 return abort;
 }
 } else {
 return abort;
 }
}

round = 0;
vals = {none};

atomic read(k) {
 if (round < k) {
 if (nondet()) {
 round = k;
 v = pickNondet(vals);
 return v;
 } else {
 return abort;
 }
 } else {
 return abort;
 }
}  

atomic write(k, v) {
 if (round ≤ k) {
 if (nondet()) {
 vals = {v};
 round = k;
 return commit;
 } else {
 vals = vals ∪ {v};
 return abort;
 }
 } else {
 return abort;
 }
}

Paxos becomes
a shared-memory algorithm

round = 0;
vals = {none};

propose(v) {
 choose a round r
 vʹ = read(r)
 if (vʹ = abort)
 increase r and repeat
 if (vʹ = none) vʹ = v
 if (write(r, v’) = commit)
 return v’
 else
 increase r and repeat
}

Single round number: the last round a
majority of acceptors was switched to

• Tricky to simulate the implementation using a single
round number;

• Different acceptors might have adopted different round
numbers; the register “acts” differently depending on the
underlying quorum;

• Solution: highly non-deterministic specification

Set of values stored at acceptors:
singleton {v} if a quorum accepted v

round = 0;
vals = {none};

atomic read(k) {
 if (round < k) {
 if (nondet()) {
 round = k;
 v = pickNondet(vals);
 return v;
 } else {
 return abort;
 }
 } else {
 return abort;
 }
}  

atomic write(k, v) {
 if (round ≤ k) {
 if (nondet()) {
 vals = {v};
 round = k;
 return commit;
 } else {
 vals = vals ∪ {v};
 return abort;
 }
 } else {
 return abort;
 }
}

round = 0;
vals = {none};

Methods can abort even if the parameter
round is higher than the current one.

Methods can abort even if the parameter
round is higher than the current one.
OK for consensus safety - it just restarts.

atomic read(k) {
 if (round < k) {
 if (nondet()) {
 round = k;
 v = pickNondet(vals);
 return v;
 } else {
 return abort;
 }
 } else {
 return abort;
 }
}  

atomic write(k, v) {
 if (round ≤ k) {
 if (nondet()) {
 vals = {v};
 round = k;
 return commit;
 } else {
 vals = vals ∪ {v};
 return abort;
 }
 } else {
 return abort;
 }
}

round = 0;
vals = {none};

propose(v) {
 choose a round r
 vʹ = read(r)
 if (vʹ = abort)
 increase r and repeat
 if (vʹ = none) vʹ = v
 if (write(r, v’) = commit)
 return v’
 else
 increase r and repeat
}

Spec allows proving that a decision
taken in consensus can’t be changed

atomic read(k) {
 if (round < k) {
 if (nondet()) {
 round = k;
 v = pickNondet(vals);
 return v;
 } else {
 return abort;
 }
 } else {
 return abort;
 }
}  

atomic write(k, v) {
 if (round ≤ k) {
 if (nondet()) {
 vals = {v};
 round = k;
 return commit;
 } else {
 vals = vals ∪ {v};
 return abort;
 }
 } else {
 return abort;
 }
}

round = 0;
vals = {none};

Successful write of v sets vals to {v}

atomic read(k) {
 if (round < k) {
 if (nondet()) {
 round = k;
 v = pickNondet(vals);
 return v;
 } else {
 return abort;
 }
 } else {
 return abort;
 }
}  

atomic write(k, v) {
 if (round ≤ k) {
 if (nondet()) {
 vals = {v};
 round = k;
 return commit;
 } else {
 vals = vals ∪ {v};
 return abort;
 }
 } else {
 return abort;
 }
}

round = 0;
vals = {none};

atomic read(k) {
 if (round < k) {
 if (nondet()) {
 round = k;
 v = pickNondet(vals);
 return v;
 } else {
 return abort;
 }
 } else {
 return abort;
 }
}  

atomic write(k, v) {
 if (round ≤ k) {
 if (nondet()) {
 vals = {v};
 round = k;
 return commit;
 } else {
 vals = vals ∪ {v};
 return abort;
 }
 } else {
 return abort;
 }
}

round = 0;
vals = {none};

Successful write of v sets vals to {v}
Following successful read will return v

propose() writes what it has read.

atomic read(k) {
 if (round < k) {
 if (nondet()) {
 round = k;
 v = pickNondet(vals);
 return v;
 } else {
 return abort;
 }
 } else {
 return abort;
 }
}  

atomic write(k, v) {
 if (round ≤ k) {
 if (nondet()) {
 vals = {v};
 round = k;
 return commit;
 } else {
 vals = vals ∪ {v};
 return abort;
 }
 } else {
 return abort;
 }
}

round = 0;
vals = {none};

propose(v) {
 choose a round r
 vʹ = read(r)
 if (vʹ = abort)
 increase r and repeat
 if (vʹ = none) vʹ = v
 if (write(r, v’) = commit)
 return v’
 else
 increase r and repeat
}

Following successful read will return v.
Successful write of v sets vals to {v}.

Multi-Paxos

c3, c2, c1 c1, c2, c3 c2, c1, c3

c2, c1, c3 c2, c1, c3 c2, c1, c3

State machine replication requires solving a
sequence of consensus instances

• Naive solution: execute a separate Paxos instance for each
sequence element

• Multi-Paxos: “Amortize” Phase 1 once for multiple sequence
elements

Scaling to Multi-Paxos
Multi-Paxos refines the naive solution ➜

can be proven without unpacking the proof of Paxos

• Naive solution: execute a separate Paxos instance for each
sequence element

• Multi-Paxos: “Amortize” Phase 1 once for multiple sequence
elements

• See the ESOP’18 paper “Paxos Consensus, Deconstructed and
Abstracted” for details.

• Shared-memory concurrency is simpler than
synchronous message-passing concurrency;

• Linearizability is a good tool for vertically structuring protocols;

• Non-determinism is specs is your friend.

To Take Away

Thanks!

