
mechan i sm for specifying schedul ing  rules in a 
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An ax iomat ic  method for proving a number of  
properties of paral le l  programs is presented. Hoare has 
given a set of  ax ioms for par t ia l  correctness,  but they 
are not s t rong enough in most  cases. This paper defines 
a more powerful deductive system which is in some 
sense complete for pa r t i a l  correctness.  A crucial  
ax iom provides for the use of  aux i l i a ry  variables,  which 
are added to a para l le l  p rog ram as an aid to proving it 
correct .  The information in a par t ia l  correctness 
proof  can be used to prove such propert ies  as  mutual  
exclusion, freedom from deadlock,  and program 
termination. Techniques for verifying these properties 
are  presented and i l lustrated by  appl icat ion to the 
dining philosophers problem, 
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1. I n t r o d u c t i o n  

The importance of correctness proofs for sequential 
programs is widely recognized; with parallel programs 
the  need is even greater. When several processes are 
executed in parallel, their results can depend on the 
unpredictable order in which actions from different 
processes are executed. Such complexity greatly in- 
creases the probabili ty that the programmer  will make 
mistakes. Even worse, the mistakes may not be de- 
tected during program testing, since the particular 
interactions in which the errors are visible may not 
occur. I t  is important  to structure parallel programs in 
a way which eliminates some of this complexity, and 
to verify their correctness with proofs as well as by 
program testing. 

The techniques for program proofs given here are 
based on Hoare ' s  syntax and axioms for parallel pro- 
grams [6]. We find Hoare ' s  language attractive because 
it restricts the interactions between parallel processes 
in a way which leads to intellectually manageable 
programs. His axiomatic method gives a sound basis 
for formal  program proofs, but it also can be used 
informally and is more reliable than most  informal 
methods. 

But Hoare ' s  axioms for parallel programs have 
certain weaknesses. They are intended only for proofs 
of partial correctness (a program is partially correct if 
it either produces the desired results or fails to termi- 
nate), and there are many other correctness criteria for 
parallel programs.  Also, they are too weak to prove 
even partial correctness for many simple programs. 
In this paper  we present a stronger set of  axioms which 
greatly increase the power of  the deductive system, and 
are in ,some sense complete. We also show how to 
apply axiomatic techniques to some other properties of  
parallel programs:  mutual  exclusion, blocking, and 
termination. Our intent is to describe the proof  methods 
in an informal manner,  relying on the reader 's  intuitive 
understanding of program execution. A more thorough 
formal presentation can be found in [9]. 

2.  The  L a n g u a g e  

The parallel programming language we use is de- 
rived f rom Algol 60. It  contains the usual assignment, 
conditional, while, for, compound,  and null statements, 
plus two statements which are designed for parallel 
processing. Parallel execution is initiated by a state- 
ment  of  the fo rm 

or about  the relative speeds of the parallel processes. 
The second statement, called a critical section, 

provides for synchronization and protection of shared 
variables. A statement of  the form: 

with r when B do S 

has the following interpretation: r is a resource, B is a 
Boolean expression, and S is a statement which uses 
the variables of  r. When a process attempts to e x e c u t e  

such a statement it is delayed until the condition B is 
true and r is not being used by another process. When 
the process has control of  r and B is true, S is executed. 
Upon  termination r is free for further use by other 
processes. When several processes are competing for a 
particular resource we make no assumptions about  
the order in which they receive it. Critical section state- 
ments can only appear  inside parallel processes, and 
critical sections for the same resource cannot  be nested. 

Much of the complexity of parallel programs stems 
f rom the way processes can interfere with each other as 
they use shared variables. The critical section statement 
reduces these problems by guaranteeing that only one 
process at a time has access to the variables in a re- 
source. The following syntax restrictions ensure that  
all variables which could cause conflict are protected 
by critical sections. 

1. I f  variable x belongs to resource r, it cannot  appear  
in a parallel process except in a critical section for r. 

2. I f  variable x is changed in process S ,  it cannot  
appear  in S j ( i ~ j )  unless it belongs to a resource. 

These restrictions can easily be enforced by a compiler. 
They greatly reduce the complexity of  parallel pro- 
grams and their correctness proofs. 

Even with these restrictions, the results of  executing 
a parallel program still depend on the relative speeds of 
the parallel processes. We introduce the term computa-  
tion to correspond to one particular instance of pro- 
gram execution. In most  cases there are many different 
computat ions for a given parallel program, and each 
one may result in different values for the program 
variables. Since we are interested in intermediate 
stages in program execution as well as the final result, 
we allow computat ions which represent only partial  
execution of a program. 

In general a parallel program may have any number  
of  cobegin statements and resources. In the interests of  
clarity we will restrict our attention to simple programs 
with just one resource and cobegin statement. Our 
results are valid for more complex programs, but they 
are easier to state and prove for the restricted case. 

resource r~(variable l ist) , . . . ,  tin(variable list): 
cobegin $1/ / .  • • / / S ~  eoend 

Here a resource r~ is a set of  logically connected shared 
variables, and S t . . .  S, are statements to be executed 
in parallel, i.e. parallel processes. No assumption is 
made about  the way parallel execution is implemented, 

3 .  T h e  A x i o m s  

The axioms defined by Hoare  [4] give the meaning 
of program statements in terms of assertions about  
variables in the program. The notat ion {P}S{Q} e x -  
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Fig. 1. Assertions for {x = 0} addl {x = 2}. 

{x =0} 
addl:beginy:= 0; z : = 0 ;  

{y=0 A z=0 A I(r)} 
resource r(x, y, z): cobegin 

{Y=01 
with r when t rue  do 

{y=O A l(r)} 
begin x :=  x + I; 
{y=l f I(r)} 

{y=l} 
/ /  

{z=O} 
with r when true do 

{z=O A I(r)} 
begin x := x -F 1; 
{z=l f I(r)} 

{z=l} 
coend 
{y=l f z= l  f I(r)} 

end 
{x=2} 
I(r) = {x=yWz} 

y :=  1 end 

z :=  1 end 

Fig. 2. The program add2. 

add2: resource r(x): cobegin 
with r when t r u e  do x := x -F 1 

/ /  
with r when t rue  do x := x -F 1 

eoend 

Critical Section Axiom. If {I(r) f P f B} S 
{I(r) A Q}, and I(r) is the invariant from the c o b e g i n  

statement, and no variable free in P or Q is changed 
in another process, then {P} with r w h e n  B do  S {Q}. 

Note  that we cannot assume that I(r) is still true 
after the critical section statement is finished, since 
another process may have control of  the resource and 
I(r) may be (temporarily) false. These two axioms are 
similar to ones given by Hoare,  but are more powerful  
because they allow a more flexible use of  variables in 
assertions. 

Figure 1 shows an example of an informal proof  of  
part ial  correctness based on the axioms. Note that the 
preconditions and postconditions are set off by braces 
{ } and interspersed with the program statements. 

Suppose we have a proof  of {P} S {Q}, and S'  
is a statement in program S. We will write pre(S')  
and pos t (S0 to denote the preconditions and postcon- 
ditions which appear  with S'  in the proof. Likewise, if 
r is a resource of S, we will write I(r) for the invar iant  
used with r. These assertions will be used extensively 
in our proofs of  mutual  exclusion and other properties. 
Their value derives from the fact that in any computa-  
tion which starts with P true, 

I. pre(S')  is true whenever S '  is ready to execute; 
2. post(S0 is true whenever S '  finishes; 
3. I(r) is true whenever no critical section for r is 

being executed. 

presses the partial  correctness of  statement S with 
respect to assertions P and Q: i.e. if P is true before 
executing S, and S halts, then Q is true after executing 
S. P is called the precondition, Q the postcondition 
of  S. 

Hoare  [4, 6] gives a set of  axioms and inference 
rules for formal proofs of partial correctness formulas. 
Since we are mainly concerned with parallel programs 
here, we will be informal about  sequential statements, 
and provide formal rules only for parallel statements. 
We will rely on an i,ntuitive understanding of sequential 
programs to write formulas like 

{z=xy}beginy:= y-t- 1; z : =  x.zend {z=xy} 

The axioms for parallel programs require an as- 
sertion I(r),  the invariant for resource r, which de- 
scribes the "reasonable"  states of  the resource. I(r) 
must  be true when parallel execution begins, and re- 
mains true at all times outside critical sections for r. 
The axioms for cobegin and with-when statements 
make use of this invariant. 

Parallel Execution Axiom. I f  {P1} S1 {Q1} and 
{P2} $2 {Q2} a n d . . .  {Pn} Sn {Qn} and no variable 
free in Pi or Qi is changed in Sj (i ~ j) and all variables 
in I(r) belong to resource r, then {P1 f . - .  f Pn f 
I(r)} r e s o u r c e  r: c o b e g i n  S 1 / / . . . / / S n  c o e n d  

{Q1 f . . .  f Qn f I(r)}. 

281 

4 .  A u x i l i a r y  V a r i a b l e s  

Unfortunately the axioms given above are inade- 
quate for many simple programs. Figure 2 shows the 
program add2, for which {x = 0} add2 {x = 2} is 
certainly true. However this cannot  be proved using 
the axioms given so far: we cannot even prove that 
{0 _< x _< 2} is a valid invariant for resource r. Now 
consider the program addl in Figure 1. It  has the same 
effect on x as add2, but it is possible to prove {x = 0} 
add1 {x = 2} because of the extra variables y and z. 
The program add1 has essentially the same behavior as 
add2, in spite of  the fact that it contains statements 
and variables which do not appear in add2. This is 
because the additional variables, and the statements 
using them, do not affect the flow of control or the 
values assigned to x. Variables which are used in this 
way in a program will be called auxiliary variables. 
The need for auxiliary variables in proofs of  parallel 
programs has been recognized by Brinch Hansen [1] 
and Lauer [7]. 

We would like to be able to conclude from the proof  
of  {x = 0} add1 {x = 2} that {x = 0} add2 {x = 2} 
is also true. In order to do this we need an axiom 
which allows us to use auxiliary variables. 

Definition. Let AV be a set of  variables of  program 
S such that x E AV ~ x appears in S only in assign- 
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Fig. 3. The dining philosophers. 

fork 4 

Pl 

ment statements of the form x := E where any vari- 
able may be used in E. Then AV is an auxiliary variable 
set for S. 

Auxiliary Variable Axiom. If  AV is an auxiliary 
variable set for S, let S' be obtained from S by deleting 
all assignments to variables in AV (and possibly some 
redundant  begin end brackets). Then if {P} S {Q} is 
true and P and Q do not  refer to any variables from 
AV, {P} S' {Q} is also true. (The rules for deleting 
statements are defined more formally in [9]). 

This axiom can be applied to {x = 0} add1 {x = 2} 
to yield a proof  of {x = 0} add2 {x = 2}. Auxiliary 
variables can be a very powerful aid in program proofs. 
Starting with a program such as add2, new variables 
and statements using them can be added to give a 
program like add1 for which a proof  is possible. Then 
the auxiliary variable axiom can be applied to yield a 
proof  for the original program. 

In [9] we show that the auxiliary variable rule 
makes the axioms for parallel programs given here 
complete in the following sense: any true formula 
{P} S {Q} can be proved from these axioms, given 
sufficient knowledge about the data types of S. Thus 
the axioms capture all the information about program 
execution that is required for partial correctness proofs. 
Cook [2] gives a formal presentation of this kind of 
completeness for sequential programs. 

5. Mutual Exclusion 

Two statements are mutually exclusive if they cannot 
be executed at the same time. The critical section state- 
ment is designed to provide mutual exclusion for state- 
ments which operate on shared variables. However, 
there are times when the programmer must control the 
scheduling of resources directly, and must provide his 
own code for mutual exclusion. In such cases mutual 

exclusion can be verified using the assertions from a 
partial correctness proof. 

As an example, consider a standard synchronization 
problem, the five dining philosophers. Five philosophers 
sit around a circular table (see Figure 3), alternately 
thinking and eating spaghetti. The spaghetti is so long 
and tangled that a philosopher needs two forks to eat 
it, but unfortunately there are only five forks on the 
table. The only forks which a philosopher can use are 
the ones to his immediate right and left. Obviously two 
neighbors cannot eat at the same time. The problem is 
to write a program for each philosopher to provide this 
synchronization. Hoare 's  solution [6] is given in Figure 
4. The array af[0:4] indicates the number of forks 
available to each philosopher. In order to eat, a phi- 
losopher must wait until two forks are available; he 
then takes the forks and reduces the number available 
to each of his neighbors. Figure 5 shows some pre and 
post assertions for the dining philosophers program. 
Note the use of an auxiliary variable array, eating[O:4]. 
These assertions are derived from a formal proof, but 
they should also be intuitively valid. 

Now we would like to use these assertions to prove 
that mutual exclusion is accomplished, i.e. that two 
neighbors do not get to eat at the same time. We will 
do this by assuming that it is possible for two neighbors 
to be eating at the same time and deriving a contra- 
diction. Suppose program execution can take place in 
such a way that philosophers i and i @ 1 are ready to 
eat at the same time. At this point eating[i] = 1 and 
eating[i (9 1] = 1, from the preconditions for "eat i" 
and "eat i @ 1". If I(forks) is also true at this point 
we have the desired contradiction, for 

(eating[i] = 1 A eat ing[i~l]  = 1 A I(forks)) 
(af[il = 2 A afti] < 2) ~ false 

Unfortunately I(forks) is not necessarily true, since 
some other philosopher may be in the midst of exe- 
cuting a critical section. Nevertheless, the following 
theorem shows that 

(eating[i] = 1 A eating[i~l] = 1 A 
I(forks) ) ~ false 

is a sufficient condition for guaranteeing that the re- 
quired mutual exclusion holds. 

THEOREM. Suppose $I and Se are statements in 
different parallel processes o f  a program S, and neither 
SI nor Se belongs to a critical section for resource r. 
L e t  Pl  and P2 be assertions such that 

pre ($1') ~ P l f o r  all statements S /  in $I, 
pre (S~') ~ P2 for  all statements S /  in S~, 

where pre(S/ )  and pre(S/ )  are derived from a proof  o f  
{P} S {Q}; i.e. Pi is true throughout the execution o f  
S~. Then i f  

(P1 A P2 A I(r)) ~ false, 

$I and S~ are mutually exclusive i fP  is true when execu- 
tion o f  S begins. 
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Fig. 4. Dining philosophers program. 

dining philosophers: begin 
comment af[i] is the number of forks available to philosopher i; 
a f  := 2; 
resource forks (af): cobegin D P O / / . . . / / D P 4  coend 

end 

DPi:  forj := 1 step 1 until Ni do 
begin 

getforks i: with forks when af[i] = 2 do 
begin af[i01] := af[i01] -- 1; 

af[i@ll := af[ i~ l]  -- 1; 
end 

eat i: "eat"; 
release forks i: with .forks do 

begin af[i01] := af[iG1] q- 1; 
af[i~)l] := af[ i$ l ]  + 1; 

end 
think i: "think"; 

end 

@ and e indicate arithmetic modulo 5 

Fig. 5. Assertions for the dining philosophers. 

{ true } 
dining philosophers: begin 

comment eating[i] is an auxiliary variable, 
eating[i] = 1 when philosopher i is eating, 0 otherwise; 

a f  := 2; eating := 0; 
{I(forks) A eating[i] =0, 0 < i < 4} 
resource forks(af, eating): eobegin DPO / / . . . / /  DP4 coend 
{I(forks) A eating[i] =0, 0 < i < 4} 

end 

{eating[i] =0} 
DPi: forj : = I step 1 until Ni do 

begin {eating[i] =0} 
getforks i: with forks when af[i] = 2 do 

{eating[i] =0 A af[i] =2 A I(forks) } 
beginaf[iOl] := a f [ i e l ]  - 1; a f[ i~l]  := af[i@l] - 1; 

eating[i] := 1 
end 
{eating[i] = 1 A I(forks) }; 

{eating[i] = 1 } 
eat i: "eat"; 
{eating[i] = 1 } 
release forks i: with forks do 

{eating[i] = 1 A I(forks) } 
be~naf[ iO1] := af[i01] -q- 1; af[i@l] := affiX1] + 1; 

eating[i] := 0 
end 
[eating[i] =0 A I(forks)}; 

{eating[i] =0} 
think i: "think"; 
[eating[i] =0} 

end 
{eating[i] =0} 
I(forks) = {[0 _< eating[i] _< 1 A (eating[i]=l~af[i]=2) A 

af[i]=2 - (eating[iel]+eating[i@l])] 0 < i < 4} 

PROOF. Suppose not.  I f  $1 and S~ are no t  mutual ly  
exclusive there is a computa t ion  C for S which starts 
with P true and reaches a point  at which $I and Se 
are both  in execution. P1 and P2 must  be true after C, 
since they hold t h roughou t  execution o f  $1 and Se 
respectively. N o w  if I(r) is also true after C we have a 
contradict ion,  since 

Px A P2 A I(r) ~ false. 

But it is possible that  some third process S '  is in the 
midst of  executing a critical section s tatement  for r, so 
that  I(r) does not  hold after C. In this case there is 
another  computa t ion  C '  for S which has S~ and S~ 
in execution and I(r) true. 

To derive C' ,  let execution proceed as in C until 
the time when S'  is ready to start the critical section 
ment ioned above. In the original computa t ion  C, S '  
begins this s tatement but  does not  finish it. So f rom 
this point  on in C, no process except S '  makes any 
reference to the variables in resource r. C '  is obtained 
by s topping process S '  at this point  and allowing the 
other processes to cont inue exactly as before. Stopping 
S '  does no t  affect the behavior  of  the other processes; 
because o f  the restrictions on shared variables, S '  
cannot  change any variables used in other processes 
except those in resource r, and the other processes do not  
have access to r in the final par t  o f  the computa t ion .  

N o w  C '  still has $1 and Se in execution, but  no 
critical section for r is in execution. Then P1 A P2 A I(r) 
holds after C'. Since this is impossible, the original 
assumption was wrong,  and S, and Se are mutual ly  
exclusive. (A more  formal  p r o o f  o f  this theorem, based 
on a precise definition of  " compu ta t i on , "  is given in 
[9D. 

Returning to the dining philosophers problem, we 
now can prove that  two neighbors  cannot  eat at the 
same time. Let 

$1 = "eat i" S~ = "eat i @ 1" 
P~ = {eating[i]=l} P2 = {eating[i~)l]=l} 

Since (P1 A P2 A I(r)) ~ false, mutual  exclusion is 
guaranteed.  

6. B l o c k i n g  

Anothe r  problem which is peculiar to parallel 
processes is the possibility that  a p rogram can be 
forced to stop before it has accomplished its purpose.  
This can happen in our  parallel language because o f  
the with-when statements. We say that  a parallel process 
Si is b l o c k e d  if it is s topped at the s tatement  with r 
when B do S because B is false or because another  
process is using the resource r. A program containing 
parallel processes is blocked if at least one o f  its proc-  
esses is blocked, and the others are either finished or 
blocked. 

In  mos t  cases process blocking is harmless:  a 
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process may be blocked and then unblocked many 
times during program execution. However if an entire 
program is blocked there is no way to recover. In this 
section we describe a way of proving this cannot occur 
in a given program, i.e. that the program is deadlock- 
free. Once again the method is based on assertions 
obtained from a partial-correctness proof. 

THEOREM. Suppose program S contains the statement 

S' = resource r; cobegin $ 1 / / . . . / / S n  coend. 

Let  the w i t h - w h e n  statements o f  process Sk be 

S~i = with rki when Bk i do T~J, 1 _< j < nk. 

Let  pre(SkJ), and I(r) be assertions derived f rom a prooJ 
of{P} S {Q}. Let  

D1 = /k (post(Sk) V (V(--aBk i A pre(Ski)))) 
k j 

D2 = V V(~B~i A pre(SkJ')) 

Then i f  D1 /k  D2 /k I(r) ~ false, S cannot be blocked 
i f  P is true when execution begins. 

PROOF. Suppose S is blocked for some computation 
C which starts with P true. Since S can only be blocked 
at with-when statements in S', C has begun parallel 
execution of the S~. For each process S~, either C has 
finished S~ or S~ is blocked at one of the SiL In either 
case, no critical sections are in execution, so I(r) holds. 
Also, if C has finished S~, post(S~) holds, and if S~ 
is blocked at S~ i, pre(S~J) /k "~Bi j holds (S~ j must be 
blocked because B~ j is false, since no critical sections 
are in execution). Thus D1 must hold after C. Since at 
least one of the St is blocked, D2 must hold after C. 
This means that D1 /k D2 /k I(r) holds after C, but 
this is impossible since D1 /k  D2 /k  I(r) ~ false. So no 
such C exists, and S cannot be blocked. 

Applying this theorem to the dining philosophers 
-problem we have 

DI = /~ [post(OPi) V (pre(getforks i) /~ af[i]~2) V 
i 

(pre(releaseforks i) /~ ~true)] 

= /k (eating[i]=O V (eating[i] =0/~ af[i]~2)) 
i 

A eating[i] =0 

D1/k I(forks) ~ Vi (af[i] =2) 
D2 = V [pre(getforks i) A af[i]~2) V 

i 

(pre( releaseforks i) /k --atrue) ] 
3i(af[i]~2) 

So DI /k D~ /~ I ( forks)  ~ false, and the dining phi- 
losophers program cannot be blocked. 

7.  T e r m i n a t i o n  

Program termination is an important property for 
both parallel and sequential programs, although there 
are correct parallel programs which do not terminate. 
Various techniques have been suggested for proving 

termination of sequential programs (Hoare [4], Manna 
[8]), and the same methods can often be applied to 
parallel programs. A sequential program can fail to 
terminate for two reasons: an infinite loop or the execu- 
tion of an illegal operation such as dividing by zero. 
With parallel programs there is an additional possi- 
bility: the program can be blocked. (It is even possible 
that a program can be blocked for one computation 
and loop infinitely for another.) But if a program can- 
not be blocked, termination can be proved just as it 
would be for a sequential program. 

One approach to proving termination is to show 
that each statement terminates provided that its com- 
ponents terminate. We will not attempt to present 
general rules for doing this, but will give sufficient 
conditions for proving that a parallel statement termi- 
nates. 

Definition. A statement T terminates conditionally 
if it can be proved to terminate under the assumption 
that it does not become blocked. 

THEOREM. I f  T is a cobegin statement  in a program S 
which cannot be blocked, T terminates i f  each o f  its 
parallel processes terminates conditionally. 

PROOF. Suppose T does not  terminate. None of its 
processes can loop indefinitely, since they terminate 
conditionally. So after a finite time each one either 
finishes or is blocked. At that point S is blocked. Since 
this is impossible, T must terminate. 

As an example, consider once again the dining 
philosophers program in Figure 5. We have already 
proved that it cannot be blocked, so we need only 
show that each philosopher process terminates condi- 
tionally. Assuming that the operations involved in 
"eat ing" do not stop execution, philosopher i must 
either become blocked or perform Ni  iterations of the 
loop and terminate. So the process terminates condi- 
tionally. The termination theorem implies that the 
e o b e g i n  statement, and thus the whole dining phi- 
losophers program, must terminate. 

8.  C o n c l u s i o n  

The theorems and examples presented here have 
showed how to prove various properties of parallel 
programs. These techniques have been applied suc- 
cessfully to a number of standard problems from the 
parallel programming literature, e.g. readers and 
writers, communication via a bounded buffer, etc. 
They can also be modified to apply to programs which 
use other synchronization operations (e.g. semaphores, 
events) instead of with-when (see [9] for a theoretical 
discussion, and [3] for an application of these tech- 
niques to the verification of a concurrent garbage col- 
lector). However the proof  process becomes much 
longer in languages which do not restrict the use of 

shared variables. 
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There are many important correctness properties for 
parallel programs besides the ones treated here; priority 
assignments, progress for each process, blocking of 
some subset of the processes in a program, etc. Many of 
these properties are difficult to define in a uniform way, 
while others require a language in which there are 
definite rules for scheduling competing processes. We 
are working to broaden the range of properties which 
can be proved with axiomatic methods. 

The proof  techniques we have discussed can be 
profitably applied at three levels. First, they provide a 
sound basis for formal proofs of program correctness. 
Although formal proofs are generally too long to be 
reasonably done by hand, the axiomatic method would 
be well suited for an interactive program verifier, in 
which the programmer provides the resource invariants 
and some of the pre and post assertions, and the pro- 
gram verifier checks that these satisfy the axioms. 

A second possibility is informal proofs, like the 
ones given in this paper. The techniques are easy to use, 
and are relatively reliable. Although mistakes are 
possible in any informal proof, the structure of the 
axioms reduces the probability of error. Once the pro- 
grammer has defined his resource invariants, the rea- 
soning involved in the proofs is strictly sequential, and 
thus easy to do. In contrast, many informal proofs 
involve arguments about the order in which statements 
can be executed--in these it is dangerously easy to 
overlook the one case in which the program performs 
incorrectly. 

Finally, the language and the axioms give guides for 
the construction of correct and comprehensible pro- 
grams. The use of resources isolates the areas in which 
programs can interfere with each other, and the resource 
invariant states explicitly what each process can as- 
sume about the variables it shares with other processes. 
The programmer who takes the time to define a re- 
source invariant and check that it is preserved in each 
critical section is using a valuable tool for producing 
correct programs. 
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Characteristics of 
Program Localitie, s 
A. Wayne Madison and Alan P. Batson 
University of Virginia 

The term "locality" has been used to denote that 
subset of  a program's segments which are referenced 
during a particular phase of its execution. A program's 
behavior can be characterized in terms of its residence 
in localities of various sizes and lifetimes, and the 
transitions between these localities. In this paper the 
concept of a locality is made more explicit through 
a formal definition of what constitutes a phase of 
localized reference behavior, and by a corresponding 
mechanism for the detection of localities in actual 
reference strings. This definition provides for the 
existence of a hierarchy of localities at any given time, 
and the reasonableness of  the definition is supported by 
examples taken from actual programs. Empirical 
data from a sample of production Algol 60 programs 
is used to display distributions of locality sizes and 
lifetimes, and these results are discussed in terms of 
their implications for the modeling of program behavior 
and memory management in virtual memory systems. 

Key Words and Phrases: program behavior, memory 
management, locality 
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