
mechan i sm for specifying schedul ing rules in a
p rovab le way.

Acknowledgments. I t h a n k R a l p h L o n d o n for sug-
gest ing the use of h is tory var iables , and the referees
and C .A.R . H o a r e for their though t fu l and helpful
commen t s on ear l ier draf ts o f this paper .

References
1. Dijkstra, E.W. Hierarchical ordering of sequential processes.
In Operating Systems Techniques, C.A.R. Hoare and R.H.
Perrott (Eds.), Academic Press, 1972, pp. 72-93.
2. Brinch Hansen, P. Operating System Principles. Prentice-
Hall, Englewood Cliffs, N.J., 1973.
3. Hoare, C.A.R. Monitors: an operating system structuring
concept. Comm. ACM 17, 10 (Oct. 1974), 549-557. Corrigendum,
Comm. ACM 18, 2 (Feb. 1975), 95.
4. Hoare, C.A.R. An axiomatic basis for computer program-
rning. Comm. ACM 12, 10 (Oct. 1969), 576-580, 583.
5. Hoare, C.A.R. Proof of correctness of data representations.
Acta Informatica I (1972), 271-281.
6. Robinson, L., Levitt, K.N., Neumann, P.G., and Saxena,
A.R. On attaining reliable software for a secure operating system.
1975 International Conf. on Reliable Software, Los Angeles,
pp. 267-284.
7. Clint, M. Program proving: coroutines. Acta Informatiea 2
(1973), 50-63.
8. Hopcroft, J.E., and Ullman, J.D. Formal Languages and their
Relation to Automata. Addison-Wesley, Reading, Mass., 1969.
9. Howard, J.H., and Alexander, W.P. Analyzing sequences of
operations performed by programs. Program Test Methods, W.C.
Hetzel (Ed.), Prentice-Hall, 1973, pp. 239-254.
10. Alexander, W.P. Analysis of sequencing in computer programs
and systems. Ph.D. Diss., U. of Texas at Austin, 1974.
11. Zilles, S.N. Abstract specification for data types. Working
paper, IBM Research, San Jose, Calif., 1975. Extracted from
1974 Project Mac Progress Report, MIT, Cambridge, Mass.,
1975.
12. Liskov, B.H., and Zilles, S.N. Specification techniques for
data abstractions. 1975 International Conf. on Reliable Software,
Los Angeles, pp. 72-87.
13. Parnas, D.L. A technique for software module specificationwith
examples. Comm. ACM15, 5 (May 1972), 330-336.
14. Habermarm, A.N. Synchronization of communicating
processes. Third Symp. on Operating Systems Principles, Palo
Alto, 1971, pp. 80-85.
15. Sintzoff, M., and van Lamsweerde, A. Constructing correct
and efficient concurrent programs. 1975 International Conf. on
Reliable Software, Los Angeles, pp. 319-326.
16. Teory, T.J., and Pinkerton, T.B. A comparative analysis of
disk scheduling policies. Third Symp. on Operating Systems
Principles, Palo Alto, 1971, pp. 114-121.

Ope ra t i ng R.S. Ga ines
Systems Ed i to r

Verifying Properties of
Parallel Programs: An
Axiomatic Approach
Susan Owicki and David Gries
Cornell University

An ax iomat ic method for proving a number of
properties of paral le l programs is presented. Hoare has
given a set of ax ioms for par t ia l correctness, but they
are not s t rong enough in most cases. This paper defines
a more powerful deductive system which is in some
sense complete for pa r t i a l correctness. A crucial
ax iom provides for the use of aux i l i a ry variables, which
are added to a para l le l p rog ram as an aid to proving it
correct . The information in a par t ia l correctness
proof can be used to prove such propert ies as mutual
exclusion, freedom from deadlock, and program
termination. Techniques for verifying these properties
are presented and i l lustrated by appl icat ion to the
dining philosophers problem,

Key Words and Phrases: structured multiprogram-
ming, correctness proofs, program verification,
concurrent processes, synchronizat ion, mutual exclusion,
deadlock

CR Ca tegor ies : 4.32, 4.35, 5.21, 5.24

279

Copyright Q 1976, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

A version of this paper was presented at the Fifth ACM Sym-
posium on Operating Systems Principles, The University of Texas
at Austin, November 19-21, 1975.

This research was partially supported by National Science
Foundation grant GJ-42512. The authors are grateful for the pos-
sibility of presenting and discussing these ideas in a prefiminary
stage at the IFIP WG2.3 (on programming methodology) meeting
in December 1974. Authors' address: Computer Science Depart-
ment, CorneU University, Ithaca, NY 14853.

Communications May 1976
of Volume 19
the ACM Number 5

1. I n t r o d u c t i o n

The importance of correctness proofs for sequential
programs is widely recognized; with parallel programs
the need is even greater. When several processes are
executed in parallel, their results can depend on the
unpredictable order in which actions from different
processes are executed. Such complexity greatly in-
creases the probabili ty that the programmer will make
mistakes. Even worse, the mistakes may not be de-
tected during program testing, since the particular
interactions in which the errors are visible may not
occur. I t is important to structure parallel programs in
a way which eliminates some of this complexity, and
to verify their correctness with proofs as well as by
program testing.

The techniques for program proofs given here are
based on Hoare ' s syntax and axioms for parallel pro-
grams [6]. We find Hoare ' s language attractive because
it restricts the interactions between parallel processes
in a way which leads to intellectually manageable
programs. His axiomatic method gives a sound basis
for formal program proofs, but it also can be used
informally and is more reliable than most informal
methods.

But Hoare ' s axioms for parallel programs have
certain weaknesses. They are intended only for proofs
of partial correctness (a program is partially correct if
it either produces the desired results or fails to termi-
nate), and there are many other correctness criteria for
parallel programs. Also, they are too weak to prove
even partial correctness for many simple programs.
In this paper we present a stronger set of axioms which
greatly increase the power of the deductive system, and
are in ,some sense complete. We also show how to
apply axiomatic techniques to some other properties of
parallel programs: mutual exclusion, blocking, and
termination. Our intent is to describe the proof methods
in an informal manner, relying on the reader 's intuitive
understanding of program execution. A more thorough
formal presentation can be found in [9].

2. The L a n g u a g e

The parallel programming language we use is de-
rived f rom Algol 60. It contains the usual assignment,
conditional, while, for, compound, and null statements,
plus two statements which are designed for parallel
processing. Parallel execution is initiated by a state-
ment of the fo rm

or about the relative speeds of the parallel processes.
The second statement, called a critical section,

provides for synchronization and protection of shared
variables. A statement of the form:

with r when B do S

has the following interpretation: r is a resource, B is a
Boolean expression, and S is a statement which uses
the variables of r. When a process attempts to e x e c u t e

such a statement it is delayed until the condition B is
true and r is not being used by another process. When
the process has control of r and B is true, S is executed.
Upon termination r is free for further use by other
processes. When several processes are competing for a
particular resource we make no assumptions about
the order in which they receive it. Critical section state-
ments can only appear inside parallel processes, and
critical sections for the same resource cannot be nested.

Much of the complexity of parallel programs stems
f rom the way processes can interfere with each other as
they use shared variables. The critical section statement
reduces these problems by guaranteeing that only one
process at a time has access to the variables in a re-
source. The following syntax restrictions ensure that
all variables which could cause conflict are protected
by critical sections.

1. I f variable x belongs to resource r, it cannot appear
in a parallel process except in a critical section for r.

2. I f variable x is changed in process S , it cannot
appear in S j (i ~ j) unless it belongs to a resource.

These restrictions can easily be enforced by a compiler.
They greatly reduce the complexity of parallel pro-
grams and their correctness proofs.

Even with these restrictions, the results of executing
a parallel program still depend on the relative speeds of
the parallel processes. We introduce the term computa-
tion to correspond to one particular instance of pro-
gram execution. In most cases there are many different
computat ions for a given parallel program, and each
one may result in different values for the program
variables. Since we are interested in intermediate
stages in program execution as well as the final result,
we allow computat ions which represent only partial
execution of a program.

In general a parallel program may have any number
of cobegin statements and resources. In the interests of
clarity we will restrict our attention to simple programs
with just one resource and cobegin statement. Our
results are valid for more complex programs, but they
are easier to state and prove for the restricted case.

resource r~(variable l ist) , . . . , tin(variable list):
cobegin $1/ / . • • / / S ~ eoend

Here a resource r~ is a set of logically connected shared
variables, and S t . . . S, are statements to be executed
in parallel, i.e. parallel processes. No assumption is
made about the way parallel execution is implemented,

3 . T h e A x i o m s

The axioms defined by Hoare [4] give the meaning
of program statements in terms of assertions about
variables in the program. The notat ion {P}S{Q} e x -

280 Communications May 1976
of Volume 19
the ACM Number 5

Fig. 1. Assertions for {x = 0} addl {x = 2}.

{x =0}
addl:beginy:= 0; z : = 0 ;

{y=0 A z=0 A I(r)}
resource r(x, y, z): cobegin

{Y=01
with r when t rue do

{y=O A l(r)}
begin x := x + I;
{y=l f I(r)}

{y=l}
/ /

{z=O}
with r when true do

{z=O A I(r)}
begin x := x -F 1;
{z=l f I(r)}

{z=l}
coend
{y=l f z= l f I(r)}

end
{x=2}
I(r) = {x=yWz}

y := 1 end

z := 1 end

Fig. 2. The program add2.

add2: resource r(x): cobegin
with r when t r u e do x := x -F 1

/ /
with r when t rue do x := x -F 1

eoend

Critical Section Axiom. If {I(r) f P f B} S
{I(r) A Q}, and I(r) is the invariant from the c o b e g i n

statement, and no variable free in P or Q is changed
in another process, then {P} with r w h e n B do S {Q}.

Note that we cannot assume that I(r) is still true
after the critical section statement is finished, since
another process may have control of the resource and
I(r) may be (temporarily) false. These two axioms are
similar to ones given by Hoare, but are more powerful
because they allow a more flexible use of variables in
assertions.

Figure 1 shows an example of an informal proof of
part ial correctness based on the axioms. Note that the
preconditions and postconditions are set off by braces
{ } and interspersed with the program statements.

Suppose we have a proof of {P} S {Q}, and S'
is a statement in program S. We will write pre(S')
and pos t (S0 to denote the preconditions and postcon-
ditions which appear with S' in the proof. Likewise, if
r is a resource of S, we will write I(r) for the invar iant
used with r. These assertions will be used extensively
in our proofs of mutual exclusion and other properties.
Their value derives from the fact that in any computa-
tion which starts with P true,

I. pre(S') is true whenever S ' is ready to execute;
2. post(S0 is true whenever S ' finishes;
3. I(r) is true whenever no critical section for r is

being executed.

presses the partial correctness of statement S with
respect to assertions P and Q: i.e. if P is true before
executing S, and S halts, then Q is true after executing
S. P is called the precondition, Q the postcondition
of S.

Hoare [4, 6] gives a set of axioms and inference
rules for formal proofs of partial correctness formulas.
Since we are mainly concerned with parallel programs
here, we will be informal about sequential statements,
and provide formal rules only for parallel statements.
We will rely on an i,ntuitive understanding of sequential
programs to write formulas like

{z=xy}beginy:= y-t- 1; z : = x.zend {z=xy}

The axioms for parallel programs require an as-
sertion I(r), the invariant for resource r, which de-
scribes the "reasonable" states of the resource. I(r)
must be true when parallel execution begins, and re-
mains true at all times outside critical sections for r.
The axioms for cobegin and with-when statements
make use of this invariant.

Parallel Execution Axiom. I f {P1} S1 {Q1} and
{P2} $2 {Q2} a n d . . . {Pn} Sn {Qn} and no variable
free in Pi or Qi is changed in Sj (i ~ j) and all variables
in I(r) belong to resource r, then {P1 f . - . f Pn f
I(r)} r e s o u r c e r: c o b e g i n S 1 / / . . . / / S n c o e n d

{Q1 f . . . f Qn f I(r)}.

281

4 . A u x i l i a r y V a r i a b l e s

Unfortunately the axioms given above are inade-
quate for many simple programs. Figure 2 shows the
program add2, for which {x = 0} add2 {x = 2} is
certainly true. However this cannot be proved using
the axioms given so far: we cannot even prove that
{0 _< x _< 2} is a valid invariant for resource r. Now
consider the program addl in Figure 1. It has the same
effect on x as add2, but it is possible to prove {x = 0}
add1 {x = 2} because of the extra variables y and z.
The program add1 has essentially the same behavior as
add2, in spite of the fact that it contains statements
and variables which do not appear in add2. This is
because the additional variables, and the statements
using them, do not affect the flow of control or the
values assigned to x. Variables which are used in this
way in a program will be called auxiliary variables.
The need for auxiliary variables in proofs of parallel
programs has been recognized by Brinch Hansen [1]
and Lauer [7].

We would like to be able to conclude from the proof
of {x = 0} add1 {x = 2} that {x = 0} add2 {x = 2}
is also true. In order to do this we need an axiom
which allows us to use auxiliary variables.

Definition. Let AV be a set of variables of program
S such that x E AV ~ x appears in S only in assign-

Communications May 1976
of Volume 19
the ACM Number 5

Fig. 3. The dining philosophers.

fork 4

Pl

ment statements of the form x := E where any vari-
able may be used in E. Then AV is an auxiliary variable
set for S.

Auxiliary Variable Axiom. If AV is an auxiliary
variable set for S, let S' be obtained from S by deleting
all assignments to variables in AV (and possibly some
redundant begin end brackets). Then if {P} S {Q} is
true and P and Q do not refer to any variables from
AV, {P} S' {Q} is also true. (The rules for deleting
statements are defined more formally in [9]).

This axiom can be applied to {x = 0} add1 {x = 2}
to yield a proof of {x = 0} add2 {x = 2}. Auxiliary
variables can be a very powerful aid in program proofs.
Starting with a program such as add2, new variables
and statements using them can be added to give a
program like add1 for which a proof is possible. Then
the auxiliary variable axiom can be applied to yield a
proof for the original program.

In [9] we show that the auxiliary variable rule
makes the axioms for parallel programs given here
complete in the following sense: any true formula
{P} S {Q} can be proved from these axioms, given
sufficient knowledge about the data types of S. Thus
the axioms capture all the information about program
execution that is required for partial correctness proofs.
Cook [2] gives a formal presentation of this kind of
completeness for sequential programs.

5. Mutual Exclusion

Two statements are mutually exclusive if they cannot
be executed at the same time. The critical section state-
ment is designed to provide mutual exclusion for state-
ments which operate on shared variables. However,
there are times when the programmer must control the
scheduling of resources directly, and must provide his
own code for mutual exclusion. In such cases mutual

exclusion can be verified using the assertions from a
partial correctness proof.

As an example, consider a standard synchronization
problem, the five dining philosophers. Five philosophers
sit around a circular table (see Figure 3), alternately
thinking and eating spaghetti. The spaghetti is so long
and tangled that a philosopher needs two forks to eat
it, but unfortunately there are only five forks on the
table. The only forks which a philosopher can use are
the ones to his immediate right and left. Obviously two
neighbors cannot eat at the same time. The problem is
to write a program for each philosopher to provide this
synchronization. Hoare 's solution [6] is given in Figure
4. The array af[0:4] indicates the number of forks
available to each philosopher. In order to eat, a phi-
losopher must wait until two forks are available; he
then takes the forks and reduces the number available
to each of his neighbors. Figure 5 shows some pre and
post assertions for the dining philosophers program.
Note the use of an auxiliary variable array, eating[O:4].
These assertions are derived from a formal proof, but
they should also be intuitively valid.

Now we would like to use these assertions to prove
that mutual exclusion is accomplished, i.e. that two
neighbors do not get to eat at the same time. We will
do this by assuming that it is possible for two neighbors
to be eating at the same time and deriving a contra-
diction. Suppose program execution can take place in
such a way that philosophers i and i @ 1 are ready to
eat at the same time. At this point eating[i] = 1 and
eating[i (9 1] = 1, from the preconditions for "eat i"
and "eat i @ 1". If I(forks) is also true at this point
we have the desired contradiction, for

(eating[i] = 1 A eat ing[i~l] = 1 A I(forks))
(af[il = 2 A afti] < 2) ~ false

Unfortunately I(forks) is not necessarily true, since
some other philosopher may be in the midst of exe-
cuting a critical section. Nevertheless, the following
theorem shows that

(eating[i] = 1 A eating[i~l] = 1 A
I(forks)) ~ false

is a sufficient condition for guaranteeing that the re-
quired mutual exclusion holds.

THEOREM. Suppose $I and Se are statements in
different parallel processes o f a program S, and neither
SI nor Se belongs to a critical section for resource r.
L e t Pl and P2 be assertions such that

pre ($1') ~ P l f o r all statements S / in $I,
pre (S~') ~ P2 for all statements S / in S~,

where pre(S/) and pre(S/) are derived from a proof o f
{P} S {Q}; i.e. Pi is true throughout the execution o f
S~. Then i f

(P1 A P2 A I(r)) ~ false,

$I and S~ are mutually exclusive i fP is true when execu-
tion o f S begins.

282 Communications May 1976
of Volume 19
the ACM Number 5

Fig. 4. Dining philosophers program.

dining philosophers: begin
comment af[i] is the number of forks available to philosopher i;
a f := 2;
resource forks (af): cobegin D P O / / . . . / / D P 4 coend

end

DPi: forj := 1 step 1 until Ni do
begin

getforks i: with forks when af[i] = 2 do
begin af[i01] := af[i01] -- 1;

af[i@ll := af[i~ l] -- 1;
end

eat i: "eat";
release forks i: with .forks do

begin af[i01] := af[iG1] q- 1;
af[i~)l] := af[i$ l] + 1;

end
think i: "think";

end

@ and e indicate arithmetic modulo 5

Fig. 5. Assertions for the dining philosophers.

{ true }
dining philosophers: begin

comment eating[i] is an auxiliary variable,
eating[i] = 1 when philosopher i is eating, 0 otherwise;

a f := 2; eating := 0;
{I(forks) A eating[i] =0, 0 < i < 4}
resource forks(af, eating): eobegin DPO / / . . . / / DP4 coend
{I(forks) A eating[i] =0, 0 < i < 4}

end

{eating[i] =0}
DPi: forj : = I step 1 until Ni do

begin {eating[i] =0}
getforks i: with forks when af[i] = 2 do

{eating[i] =0 A af[i] =2 A I(forks) }
beginaf[iOl] := a f [i e l] - 1; a f[i~l] := af[i@l] - 1;

eating[i] := 1
end
{eating[i] = 1 A I(forks) };

{eating[i] = 1 }
eat i: "eat";
{eating[i] = 1 }
release forks i: with forks do

{eating[i] = 1 A I(forks) }
be~naf[iO1] := af[i01] -q- 1; af[i@l] := affiX1] + 1;

eating[i] := 0
end
[eating[i] =0 A I(forks)};

{eating[i] =0}
think i: "think";
[eating[i] =0}

end
{eating[i] =0}
I(forks) = {[0 _< eating[i] _< 1 A (eating[i]=l~af[i]=2) A

af[i]=2 - (eating[iel]+eating[i@l])] 0 < i < 4}

PROOF. Suppose not. I f $1 and S~ are no t mutual ly
exclusive there is a computa t ion C for S which starts
with P true and reaches a point at which $I and Se
are both in execution. P1 and P2 must be true after C,
since they hold t h roughou t execution o f $1 and Se
respectively. N o w if I(r) is also true after C we have a
contradict ion, since

Px A P2 A I(r) ~ false.

But it is possible that some third process S ' is in the
midst of executing a critical section s tatement for r, so
that I(r) does not hold after C. In this case there is
another computa t ion C ' for S which has S~ and S~
in execution and I(r) true.

To derive C' , let execution proceed as in C until
the time when S' is ready to start the critical section
ment ioned above. In the original computa t ion C, S '
begins this s tatement but does not finish it. So f rom
this point on in C, no process except S ' makes any
reference to the variables in resource r. C ' is obtained
by s topping process S ' at this point and allowing the
other processes to cont inue exactly as before. Stopping
S ' does no t affect the behavior of the other processes;
because o f the restrictions on shared variables, S '
cannot change any variables used in other processes
except those in resource r, and the other processes do not
have access to r in the final par t o f the computa t ion .

N o w C ' still has $1 and Se in execution, but no
critical section for r is in execution. Then P1 A P2 A I(r)
holds after C'. Since this is impossible, the original
assumption was wrong, and S, and Se are mutual ly
exclusive. (A more formal p r o o f o f this theorem, based
on a precise definition of " compu ta t i on , " is given in
[9D.

Returning to the dining philosophers problem, we
now can prove that two neighbors cannot eat at the
same time. Let

$1 = "eat i" S~ = "eat i @ 1"
P~ = {eating[i]=l} P2 = {eating[i~)l]=l}

Since (P1 A P2 A I(r)) ~ false, mutual exclusion is
guaranteed.

6. B l o c k i n g

Anothe r problem which is peculiar to parallel
processes is the possibility that a p rogram can be
forced to stop before it has accomplished its purpose.
This can happen in our parallel language because o f
the with-when statements. We say that a parallel process
Si is b l o c k e d if it is s topped at the s tatement with r
when B do S because B is false or because another
process is using the resource r. A program containing
parallel processes is blocked if at least one o f its proc-
esses is blocked, and the others are either finished or
blocked.

In mos t cases process blocking is harmless: a

283 Communications May 1976
of Volume 19
the ACM Number 5

process may be blocked and then unblocked many
times during program execution. However if an entire
program is blocked there is no way to recover. In this
section we describe a way of proving this cannot occur
in a given program, i.e. that the program is deadlock-
free. Once again the method is based on assertions
obtained from a partial-correctness proof.

THEOREM. Suppose program S contains the statement

S' = resource r; cobegin $ 1 / / . . . / / S n coend.

Let the w i t h - w h e n statements o f process Sk be

S~i = with rki when Bk i do T~J, 1 _< j < nk.

Let pre(SkJ), and I(r) be assertions derived f rom a prooJ
of{P} S {Q}. Let

D1 = /k (post(Sk) V (V(--aBk i A pre(Ski))))
k j

D2 = V V(~B~i A pre(SkJ'))

Then i f D1 /k D2 /k I(r) ~ false, S cannot be blocked
i f P is true when execution begins.

PROOF. Suppose S is blocked for some computation
C which starts with P true. Since S can only be blocked
at with-when statements in S', C has begun parallel
execution of the S~. For each process S~, either C has
finished S~ or S~ is blocked at one of the SiL In either
case, no critical sections are in execution, so I(r) holds.
Also, if C has finished S~, post(S~) holds, and if S~
is blocked at S~ i, pre(S~J) /k "~Bi j holds (S~ j must be
blocked because B~ j is false, since no critical sections
are in execution). Thus D1 must hold after C. Since at
least one of the St is blocked, D2 must hold after C.
This means that D1 /k D2 /k I(r) holds after C, but
this is impossible since D1 /k D2 /k I(r) ~ false. So no
such C exists, and S cannot be blocked.

Applying this theorem to the dining philosophers
-problem we have

DI = /~ [post(OPi) V (pre(getforks i) /~ af[i]~2) V
i

(pre(releaseforks i) /~ ~true)]

= /k (eating[i]=O V (eating[i] =0/~ af[i]~2))
i

A eating[i] =0

D1/k I(forks) ~ Vi (af[i] =2)
D2 = V [pre(getforks i) A af[i]~2) V

i

(pre(releaseforks i) /k --atrue)]
3i(af[i]~2)

So DI /k D~ /~ I (forks) ~ false, and the dining phi-
losophers program cannot be blocked.

7. T e r m i n a t i o n

Program termination is an important property for
both parallel and sequential programs, although there
are correct parallel programs which do not terminate.
Various techniques have been suggested for proving

termination of sequential programs (Hoare [4], Manna
[8]), and the same methods can often be applied to
parallel programs. A sequential program can fail to
terminate for two reasons: an infinite loop or the execu-
tion of an illegal operation such as dividing by zero.
With parallel programs there is an additional possi-
bility: the program can be blocked. (It is even possible
that a program can be blocked for one computation
and loop infinitely for another.) But if a program can-
not be blocked, termination can be proved just as it
would be for a sequential program.

One approach to proving termination is to show
that each statement terminates provided that its com-
ponents terminate. We will not attempt to present
general rules for doing this, but will give sufficient
conditions for proving that a parallel statement termi-
nates.

Definition. A statement T terminates conditionally
if it can be proved to terminate under the assumption
that it does not become blocked.

THEOREM. I f T is a cobegin statement in a program S
which cannot be blocked, T terminates i f each o f its
parallel processes terminates conditionally.

PROOF. Suppose T does not terminate. None of its
processes can loop indefinitely, since they terminate
conditionally. So after a finite time each one either
finishes or is blocked. At that point S is blocked. Since
this is impossible, T must terminate.

As an example, consider once again the dining
philosophers program in Figure 5. We have already
proved that it cannot be blocked, so we need only
show that each philosopher process terminates condi-
tionally. Assuming that the operations involved in
"eat ing" do not stop execution, philosopher i must
either become blocked or perform Ni iterations of the
loop and terminate. So the process terminates condi-
tionally. The termination theorem implies that the
e o b e g i n statement, and thus the whole dining phi-
losophers program, must terminate.

8. C o n c l u s i o n

The theorems and examples presented here have
showed how to prove various properties of parallel
programs. These techniques have been applied suc-
cessfully to a number of standard problems from the
parallel programming literature, e.g. readers and
writers, communication via a bounded buffer, etc.
They can also be modified to apply to programs which
use other synchronization operations (e.g. semaphores,
events) instead of with-when (see [9] for a theoretical
discussion, and [3] for an application of these tech-
niques to the verification of a concurrent garbage col-
lector). However the proof process becomes much
longer in languages which do not restrict the use of

shared variables.

284 Communications May 1976
of Volume 19
the ACM Number 5

There are many important correctness properties for
parallel programs besides the ones treated here; priority
assignments, progress for each process, blocking of
some subset of the processes in a program, etc. Many of
these properties are difficult to define in a uniform way,
while others require a language in which there are
definite rules for scheduling competing processes. We
are working to broaden the range of properties which
can be proved with axiomatic methods.

The proof techniques we have discussed can be
profitably applied at three levels. First, they provide a
sound basis for formal proofs of program correctness.
Although formal proofs are generally too long to be
reasonably done by hand, the axiomatic method would
be well suited for an interactive program verifier, in
which the programmer provides the resource invariants
and some of the pre and post assertions, and the pro-
gram verifier checks that these satisfy the axioms.

A second possibility is informal proofs, like the
ones given in this paper. The techniques are easy to use,
and are relatively reliable. Although mistakes are
possible in any informal proof, the structure of the
axioms reduces the probability of error. Once the pro-
grammer has defined his resource invariants, the rea-
soning involved in the proofs is strictly sequential, and
thus easy to do. In contrast, many informal proofs
involve arguments about the order in which statements
can be executed--in these it is dangerously easy to
overlook the one case in which the program performs
incorrectly.

Finally, the language and the axioms give guides for
the construction of correct and comprehensible pro-
grams. The use of resources isolates the areas in which
programs can interfere with each other, and the resource
invariant states explicitly what each process can as-
sume about the variables it shares with other processes.
The programmer who takes the time to define a re-
source invariant and check that it is preserved in each
critical section is using a valuable tool for producing
correct programs.

References
1. Brinch Hansen, P. Concurrent programming concepts.
Computing Surveys 5, 4 (Dec. 1973), 223-245.
2. Cook, S. A. Axiomatic and interpretive semantics for an Algol
fragment. Tech. Rep. 79, Dep. of Computer Sci., U. of Toronto,
1975.
3. Gries, D. An exercise in proving properties of parallel
programs. Lecture notes, Technical U. Munich.
4. Hoare, C.A.R. An axiomatic basis for computer program-
ming. Comm. ACM 12, 10 (Oct. 1969), 576-580.
5. Hoare, C.A.R. Monitors: an operating system structuring
concept. Comm. ACM 17, 10 (Oct. 1974), 548-557.
6. Hoare, C.A.R. Towards a theory of parallel programming.
In Operating Systems Techniques, Hoare and Perott (Eds.),
Academic Press, New York, 1972.
7. Lauer, H.C. Correctness in operating systems. Ph.D. Th.,
Carnegie-Mellon U., 1973.
8. Manna, Z. and Pnueli, A. Axiomatic approach to total
correctness of programs. Acta lnformatica 3 (1974), 243-263.
9. Owicki, S. Axiomatic proof techniques for parallel programs.
Ph.D. Th., Cornell U., 1975.

28S

Operating R.S. Gaines
Systems Editor

Characteristics of
Program Localitie, s
A. Wayne Madison and Alan P. Batson
University of Virginia

The term "locality" has been used to denote that
subset of a program's segments which are referenced
during a particular phase of its execution. A program's
behavior can be characterized in terms of its residence
in localities of various sizes and lifetimes, and the
transitions between these localities. In this paper the
concept of a locality is made more explicit through
a formal definition of what constitutes a phase of
localized reference behavior, and by a corresponding
mechanism for the detection of localities in actual
reference strings. This definition provides for the
existence of a hierarchy of localities at any given time,
and the reasonableness of the definition is supported by
examples taken from actual programs. Empirical
data from a sample of production Algol 60 programs
is used to display distributions of locality sizes and
lifetimes, and these results are discussed in terms of
their implications for the modeling of program behavior
and memory management in virtual memory systems.

Key Words and Phrases: program behavior, memory
management, locality

CR Categories: 4.22, 4.35, 4.6, 4.9, 6.21

Copyright @ 1976, Association for Computing Machinery, Inc.
General permission to republish, but not for profit, all or part
of this material is granted provided that ACM's copyright notice
is given and that reference is made to the publication, to its date
of issue, and to the fact that reprinting privileges were granted
by permission of the Association for Computing Machinery.

A version of this paper was presented at the Fifth ACM Sym-
posium on Operating Systems Principles, The University of Texas
at Austin, November 19-21, 1975.

This research was supported by NSF Grant G J-1005. Authors'
address: Department of Applied Mathematics and Computer
Science, University of Virginia, Charlottesville, VA 22901.

Communications May 1976
of Volume 19
the ACM Number 5

