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Summary. A language for parallel programming, with a primitive construct for 
synchronization and mutual exclusion, is presented. Hoare's deductive system for 
proving partial correctness of sequential programs is extended to include the paral- 
lelism described by the language. The proof method lends insight into how one should 
underst~,nd and present parallel programs. Examples are given using several of the 
standard problems in the literature. Methods for proving termination and the absence 
of deadlock are also given. 

1. Introduction 

The importance of correctness proofs for sequential programs has long been 
recognized. Advocates of structured programming have argued that  a well struc- 
tured program should be easy to prove correct, and tha t  programs should be 
written with a correctness proof in mind. In  this connection, Hoare 's  deductive 
system [9], using axioms, inference rules and assertions, has been the most in- 
fluential. Not only has Hoare shown us how to prove programs correct, his de- 
ductive system has shown us how to understand programs in an informal manner,  
and has given us insight into how to write bet ter  programs. 

The need for correctness proofs for parallel programs is even greater. When 
several processes can be executed in parallel, the results can depend on the un- 
predictable order in which actions from different processes are executed, resulting 
in a complexity too great to handle informally. Even worse, program testing 
will rarely uncover all mistakes since the particular interactions in which errors 
a r e  visible may  not occur. A proof method is required which teaches us how to 
handle parallelism in a simple, understandable manner. 

A number of methods have been used in proofs for parallel programs. The 
most common is reliance on informal a rguments - -a  risky business given the com- 
plexity of parallel program interactions. More formal approaches have included 
application of Scott 's mathematical  semantics (Cadiou and Levy [3]), Lipton's  
reduction method [14], and Rosen's Church-Rosser approach [17]. 

This paper, based on the PhD thesis of the first author, extends Hoare 's  
a t tempt  [t01 to include parallelism in this deductive system. We feel it is intuitive 
enough to be used as a basis for reliable proof outlines, and it has given us insight 
into how to understand parallel programs. Other approaches related to our work 
are contained in Ashcroft and Manna [t ], Ashcroft [2], Lauer [t 2] and Newton [t 5 ]. 

* This research was partially supported by National Science Foundation grant 
GJ-425t2. 
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Any parallel programming language must contain statements for describing 
cooperation between processes--synchronization, mutual  exclusion, and the like. 
We provide a flexible but primitive tool, so primitive that  other methods for 
synchronization such as semaphores and events can be easily described using it. 
This means that  the deductive system can be used to prove correctness of pro- 
grams using other methods as well. I t  can also be used to prove correctness for 
programs of such a fine degree of interleaving that  the only mutual  exclusion 
need be the memory  reference. This has been done for Dijkstra 's on-the-fly gar- 
bage collector [6], with fairly good results given the complexity of this algorithm, 
in [7]. 

The paper is organized as follows. In section 2 we describe Hoare 's  work 
briefly. In Section 3 we introduce the parallel language and extend his system to 
include it. In Section 4 we give several examples of proofs of partial correctness, 
while in Section 5 we show how to describe semaphores in the language and give 
examples. Sections 6 and 7 are devoted to discussions of proofs of other important  
properties of parallel programs: the absence of deadlock and termination. We 
summarize our work in Section 8. 

Thanks go to Charles Moore for many  valuable discussions about parallel 
processing, and also to Robert  Constable and Marvin Solomon. We are grateful 
to the members of I F I P  working group 2.3 on programming methodology, 
especially to Tony Hoare and Edsger W. Dijkstra, for the opportunity to present 
and discuss this material in its various stages at working group meetings. The 
observation that  the memory reference must  have "reasonable" properties, as 
discussed in Section 3, was made by  John Reynolds. 

2. Proofs of Properties of Sequential Programs 

Let P and Q be assertions about variables and S a statement.  Informally, 
the notation 

s {Q} 

means: if P is true before execution of S, then Q is true after execution of S. 
Nothing is said of termination; Q holds provided S terminates. The notation 

a 

b 

means: if a is true, then b is also true. Using such notation, Hoare [9] describes a 
deductive system for proving properties of sequential programs. Let P, P~ re- 
present assertions, x a variable, E an expression, B a Boolean expression and 
S, S i statements, then the axioms for the five kinds of statements allowed are: 

(2.t) null {P} skip {P} 

(2.2) assignment {P~} x : =  E {P} where P~ is the assertion formed by re- 
placing every occurrence of x in P by E. 

(2.3) alternation {P ^ B} S 1 {Q}, {P ^ -~B} S 2 {Q} 

{P} if B lhen S 1 else $2 {Q} 
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(2.4) iteration {P ^ B} S {P} 

{P} while B do S {P ^ -,B} 

(2.5) composition {P~} $1 {P~}, {P2} Sz {P~} . . . . .  {P.} S. {P.+z} 

{P1} begin $1; S~;...; S. end {P~+z} 

In addition, we have the following rule of consequence: 

(2.6) consequence {P~} S {Q1}, P I- P1, QI I-Q 

{p} s {Q} 

The notation P F Q means it is possible to prove Q using P as an assumption. 
The deductive system to be used in proving Q from P is not given; it could be 
any system which is valid for the data types and operations used in the program- 
ming language. 

Note that  declarations have been omitted, purely for the sake of simplicity. 
Hence all variable are globally defined. We also choose not to give the syntax 
of expressions or assertions. In general, we use an ALGOL-like syntax for ex- 
pressions, while assertions will be given in a mixture of mathematical notation 
and English. 

Now let us briefly discuss proofs of properties of sequential programs. When 
we write {P} S {Q}, this implies the existence of a proof of {P} S {Q}, using axioms 
(2A)-(2.6). For example, suppose we have 

S,-= begin x:---- a; ife then S1 else $2 end 

and suppose we already have proofs 

{Pt Ae}St{QI} and {Pt ^-~e}S2{QI}.  

Then a proof of {P} S {O} might be: 

(2.7) (1) {Pt:} x : =  a {PI} assignment 

(2) {Ply} x :---- a {Pt}, P b PI2 rule of consequence 

(3) {Pt ^ e} $1 {QI}, {P1 ^ -~e} $2 {Qt} alternation 

{Pt} ife then $t else $2 {Qt} 

(4) {Pt} ifethen $t elseS2 {Ot},Qt bQ 
{PI} ire then $t else $2 {Q} 

(5) {P} x := a {PI}, {PI} ire then $I else $2 {Q} composition 

{P} begin x : =  a; ife then $t else $2 end {Q} 

rule of consequence 

22*  

This proof is made much more understandable by giving a proof outline, in which 
the program is given with assertions interleaved at appropriate places, as in (2.8). 
In such a proof outline, two adjacent assertions {PI} {P2} denote a use of the 
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rule of consequence, where P I  I- P2. 

(2.8) {P} 
begin {P} 

x : ~ - a ;  

if e then {Pl ^ e} 
$1 
{Ql} 

else {PI ^-~e} 
$2 

{Qt} 
{Q} 

end 
(Q} 

Most of our proofs will be presented in this style. If P t  b P2 can be understood 
easily, we will sometimes only write P I ,  or P2. Thus, we might have written 

(2.9) begin {P}  x : =  a; { P t }  ... 

leaving out the assertion {Pt~} in (2.8). However, each statement S is always 
preceded directly by one assertion, called its precondition, written pre (S). In (2.8), 
pre ( x : = a ) =  Pt~* while in (2.9) pre(x: = a ) =  P. This notion of a precondition of a 
s tatement  is important  for our work. Similarly, the postcondition post (S) is the asser- 
tion following statement S. 

We may  also leave out assertions entirely for a sequence of assignments or 
simple conditionals, since the necessary weakest precondition of the sequence 
can always be derived from the postcondit ion--from the result assertion of the 
sequence. However, as we shall see, in the parallel case this can sometimes lead to 
our inability to develop a proof; this situation can sometimes be remedied by  
explicitly stating stronger preconditions. Proofs of correctness in the face of 
parallelism require much more care then the simple sequential case. 

We will later discuss proofs of properties of parallel programs, such as ter- 
mination and the absence of deadlock. These are actually properties of the exe- 
cution of a program, and in order to discuss them we should introduce an opera- 
tional model of the language and show that  the deductive system is consistent 
with it. This has been done for the sequential system by Hoare and Lauer El t ] 
and Cook ES~, and for the parallel system by  Owicki [t6]. The systems have 
also been shown to be complete in a restricted sense by Cook [5] and Owicki [16]; 
informally this means that  every program you would expect to be able to prove 
partially correct, can indeed be proved in this system. 

We will not introduce an operational model here, but wiU rely on the reader's 
knowledge that  this can be done and his knowledge about execution of programs. 
We should however discuss assertions somewhat. 

An assertion P is a Boolean function defined over the possible values of all 
the variables of the program. Let the state m of the machine denote the set 
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of values of all variables at  any moment  during execution. By the phrase " P  is 
true at tha t  moment" ,  we mean tha t  Ptml-- - - t rue .  By P = t r u e  we mean that  
P Em~ = true for all possible states m. 

Our informal proof outlines and proofs of properties of execution rely on the 
following property, which must  be true if the deductive system is to be consistent 
with the operation model: 

(2.t0) Let S be a s tatement  in a program T, and pre (S) the precondition of S 
in a proof outline of {P} T {Q}. Suppose execution of T begins with P 
true and reaches a point where S is about to begin execution, with the 
variables in state m. Then pre(S)Ira] = t r u e .  

3. Proof of Correctness of Parallel Programs 

We introduce parallelism by  extending the sequential language with two new 
s ta tements - -one  to initiate parallel processing, the other to coordinate processes 
to be executed in parallel. 

Let $t ,  $2 . . . . .  Sn be statements. Then execution of the cobegin s ta tement  

r St  //$2//...//Sn coend 

causes the statements Si to be executed in parallel. Execution of the cobegin 
statement terminates when execution of all of the processes Si have terminated. 
There are no restrictions on the way in which parallel execution is implemented; 
in particular, nothing is assumed about the relative speeds of the processes. 

We do require that  each assignment s tatement  and each expression be executed 
or evaluated as an individual, indivisible action. However this restriction can be 
lifted if programs adhere to the following simple convention (which we follow in 
this paper) : 

(3.t) Each expression E may  refer to at most one variable y which can be 
changed by  another process while E is being evaluated, and E may  refer 
to y at  most once. A similar restriction holds for assignment statements 
x : = E .  

With this convention, the only indivisible action need be the memory  reference. 
That  is, suppose process Si references variable (location) c while a different pro- 
cess Sj is changing c. We require tha t  the value received by  Si for c be the value 
of c either before or after the assignment to c, but  it may  not be some spurious 
value caused by  the fluctuation of the value of c during assignment. Thus, our 
parallel language can be used to model parallel execution on any reasonable 
machine. 

The second s ta tement  has the form 

await B then S 

where B is a Boolean expression and S a s tatement  not containing a cobegin or 
another await  statement.  When a process a t tempts  to execute an await,  it is 
delayed until the condition B is true. Then the s tatement  S is executed as an 
indivisible action. Upon termination of S, parallel processing continues. If  two 
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or more processes are waiting for the same condition B, any one of them may  be 
allowed to proceed when B becomes true, while the others continue waiting. 
In some applications it is necessary to specify the order in which waiting processes 
are scheduled, but  for our purposes any scheduling rule is acceptable. Note that  
evaluation of B is part  of the indivisible action of the await  statement;  another 
process may  not change variables so as to make B false after B has been evaluated 
but  before S begins execution. 

The await statement  can be used to turn any statement S into an indivisible 
action : 

await  true then S 

or it may  be used purely as a means of synchronization: 

await "some condition" then skip 

Note that  the await is not proposed as a new synchronization statement to 
be inserted in the next programming language; it is too powerful to be implemented 
efficiently. Rather, it is provided as a means of representing a number of standard 
synchronization primitives such as semaphores. Thus to verify a program which 
uses semaphores, one first expresses the semaphore operations as awaits, and 
then applies the techniques given here. 

We now turn to formal definitions of these statements, in (3.2) and (3.3). The 
definition of the await is straightforward, but (3-3) will require an explanation, 
along with a definition of "interference-free": 

(3.2) await  {P A B} S {Q} 

{P} await B then S {Q} 

(3.3) cobegin {PI} $1 {Qt} . . . .  , {Pn} Sn {Qn) are interference-free 

{PI A. . .  ^ Pn} cobegin $1 / / . . . / /Sn  coend {Qt ^ . . .  ^ Qn} 

Definition (3.3) says that  the effect of executing $1 . . . . .  Sn in parallel is the 
same as executing each one by itself, provided the processes don' t  "interfere" 
with each other. The key word is of course "interfere". One possibility to obtain 
non-interference is not to allow shared variables, but this is too restrictive. A 
more useful rule is to require that  certain assertions used in the proof {Pi} Si 
{Qi) of each process are left invariantly true under parallel execution of the other 
processes. For if these assertions are not falsified, then the proof {Pi)  Si {Qi} 
will still hold and consequently Qi will still be true upon termination ! For example, 
the assertion {x =>y} remains true under execution of x : =  x + t ,  while the as- 
sertion {x----y} does not. The invariance of an assertion P under execution of a 
s tatement  S is explained by the formula 

{P ^ pre (S)) S {P} 

We now give the definition of "interference-free". 

(3.4) Definition. Given a proof {P} S {Q} and a statement T with precondition 
pre (T), we say that  T does not inter]ere with {P} S {Q} if the following two 
conditions hold: 
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(a) (Q ^ pre(T)) T ((2), 
(b) Let S' be any statement  within S but  not within an 

await. Then {pre(S') ^ pre(T)} T {pre(S')}. 

(3-5) Definition. {PI} St {Qt} . . . . .  {Pn} Sn {Qn} are inter/erence-]ree if the fol- 
lowing holds. Let T be an a w a i t  or assignment s tatement  (which does not 
appear in an a w a i t )  of process Si. Then for all j, j 4:i ,  T does not interfere 
with {Pi} Sj {Qj}. 

We will from time to time make program transformations which obviously 
don' t  affect correctness, such as replacing beg in  S end  by  S, and replacing 
a w a i t  t r u e  then  x : =  E by  x : =  E provided the assignment satisfies (3A). One 
transformation that  is necessary in proving correctness of parallel programs is 
the addition (or deletion) of assignments to so-called auxiliary variables. These 
auxiliary variables are needed only for the proof of correctness and other proper- 
ties, and not in the program itself. Typically, they record the history of execution 
or indicate which part  of a program is currently executing. The need for such 
variables has been independently recognized by  many;  the first reference we have 
found to them is Clint [4]. We define: 

(3.6) Definition. Let A V be a set of variables which appear  in S only in assign- 
ments x : ----- E, where x is in A V. Then A V is an auxiliary variable set for S. 

(3.7) Auxiliary variable trans/ormation: Let A V  be an auxiliary variable se t  
for S',  and P and Q assertions which do not contain free variables from A V. Let 
S be obtained from S' by deleting all assignments to the variables in A V. Then 

W} s'  {Q} 
(P) s {Q} 

We shall give examples of the use of the deductive system (2A)--(2.6), (3.2), 
(3.3), (3.7) in the next section. But  first let us discuss it. Rule (3.3) teaches us to 
understand parallel processes in two steps. First, understand each process Si, 
that  is s tudy its proof, as an independent, sequential program, disregarding 
parallel execution completely. Then show tha t  execution of each other process 
does not interfere with the proo/of Si. 

The conventional way of showing non-interference has been to see whether 
execution of a process Sj interferes with the execution of Si. Thus we find phrases 
like "Suppose S i does so and so, and then Si executes this and does tha t" .  This 
interleaving of two dynamic objects, the execution of Si and Sj, is very difficult 
if not impossible to understand for many  parallel processes, and it is too easy to miss 
an argument somewhere. 

By concentrating on whether Sj can affect the proo] of Si's correctness, we 
turn our attention to a static object which is easier to deal with. Showing non- 
interference is quite mechanical; make up a list of Si's preconditions, a second 
list of S]"s assignments and awai t s ,  and show tha t  each element of the second 
list does not disturb the t ruth of each assertion in the first. 

If  a s tatement  T of Sj does interfere with a precondition P of Si, then either the 
program is incorrect or else Si's proof is inadequate. Often the proof {Pi} Si 
{Qi) can be adjusted--assert ions can be weakened, keeping the proof still valid, 



326 S. Owicki and D. Gries 

until S?" no longer interferes with them. In any case, the possibility of the pro- 
grammer  missing a particular case is quite low as long as he is careful and persists; 
this is not the case with earlier informal reasoning. 

4. Examples of Proof Outlines of Partial Correctness 

Example t .  A proof outline for a very simple program is given in (4.t). I t  is 
obvious tha t  the program "works",  as long as $t  and $2 are interference-free. 
This requires verification of 4 formulas: 

t. {pre(Sl) ^ pre(S2)} S2 {pre(S1)}: 
{ ( x = o  v x=2) ^ ( x = o  v x = 1 ) }  
{x=0) 
a w a i t  t rue then { x = O }  

x : =  x + 2  
{~=2} 

{x=2} 
{x=o v ~=2} 

2. {Qt a pre(S2)} $2 {Qt} (verification left to the reader) 

3. {pre (S2) ^ pre ($t)} S1 {pre (S2)} (left to the reader) 

4. {Q2 ^ pre(Sl)} St {{)2} (left to the reader) 

(4.t) {x=O} 
S : cobegin {x = O} 

{x=0 ~ x=2} 
Sl :  awa i t  t rue  then x : =  x + l  
{QI: x = l  v x=3} 

// 
{x ~ 0} 
{x=o v x= 1} 
$2: a w a i t  t rue  then x : =  x + 2  
{Q2:x=2 v x=3} 

coend 
{(x=t v x=3) ^ (x---2 v x=3)} 
{x=3} 

Suppose we replace $t  by the single assignment statement x : =  x +  1. Then the 
program does not follow convention (3.t). Hence the proof method could not be 
used to prove this program correct for execution in an environment where the 
grain of interleaving is finer than the assignment statement.  In fact, execution 
of the program (with this change) could result in the value 2 or 3 for x. 

Example g. Consider the more realistic problem of finding the first component 
x(k) of an array x(l  :M), if there is one, which is greater than zero. Program 
Findpos (4.2), given by  Rosen [t 7], does this using two parallel processes to check 
the even and odd subscripted array elements separately. In (4.3) we present a 
proof outline, except for the interference-free check. Note that  Findpos uses no 
a w a i t  statement.  
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(4.2) Findpos: begin 

initialize: i : =  2;/" : =  t ; eventop : =  M + I  ; oddtop :---- M + t  ; 
search: c o b e g i n  

Evensearch : w h i l e  i < rain (oddtop, event@) d o  
if  x (i) > 0 t h e n  event@ : = i 

e l s e i : = i + 2  
// 
Oddsearch: w h i l e / '  < rain (oddtop, eventop) do  

if x (i) > 0 t h e n  oddtop : = i 
e l s e i : = i + 2  

coend; 

k : =  rain (event@, oddtop) 
end 

(4-3) {ES ^ OS} 

search: c o b e g i n  {ES} 

Evensearch: w h i l e  i < rain (oddtop, event@) d o  
{ES ^ i < eventop ^ i < M + t }  
if x (i) > 0 
t h e n  {ES ^ i < M +  t ^ x (i) > 0 ^ i < event@} 

event@ : =  i 
{Es} 

else {ES ^ i < eventop A x (i) <= O} 
i : = i + 2  
{Es} 

II 

{Es} 
{ES A i >_ rain (oddtop , event@)} 

{os} 
Oddsearch : whi le/"  < rain ( oddtop, event@) do 

{OS ^ i < oddtop ^ i <  M + 1 } 
if x (i) > 0 
then {OS ^ / ' < M + t  ^ x(/') > 0  ^ i<oddtop} 

oddtop : =  i 
{os} 

e l s e  {OS A i<oddtop ^ x( i  ) --<_0} 
/ ' := / '+2  
{os} 

{os} 
{OS A /' >=rain (oddtop, event@)} 

coend 
{OS ^ ES A i >= rain (oddtop, event@) A /' >= rain (oddtop, event@)} 

k : = rain (oddtop, event@) 

{k <=M + l ^ Vl(O<l <k=~ x(l) ~_ 0) ^ (k <=M=> x(k) > O)} 
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leventop - -< M+ t  A Vl((l even A O < l < i ) = ~ x ( l )  <=0) A i even I 
where ES---- L A (eventop <= M =~ x (eventop) > O) 

1 

Joddtop < M + t A Vl ( (l odd A 0 < l < i) =~ X (l) <= O) A i odd} 
OS = [ A (oddtop <= M =~ x (oddtop) > O) 

While studying (4.3) do not worry about interaction between Evensearch and 
Oddsearch; look upon them as sequential, independent programs. To verify the 
interference-free property, we must  show that  each assignment in Oddsearch leaves 
invariantly true each precondition and the final assertion of Evensearch. (The 
argument that  Evensearch does not interfere with Oddsearch is symmetric.) The 
only assignment in Oddsearch that  changes a variable in one of Evensearch's 
assertions is oddtop:= i, and the only clause in Evensearch's assertions which 
references oddtop is i >= rain (eventop, oddtop). Thus we must show that  

(4.4) {i >min(eventop, oddtop) A pre(oddtop := j)} 
oddtop : =  j 
{ i > rain ( eventop, oddtop ) } 

Since pre (oddtop : = i) =~i < oddtop, (4.4) is certainly true. Thus, for this program, 
establishing the interference-free property was quite simple. 

Example 3. We consider a standard problem from the literature of parallel 
programming. A producer process generates a stream of values for a consumer 
process. Since the producer and consumer proceed at a variable but roughly 
equal pace, it is profitable to interpose a buffer between the two processes, but 
since storage is limited, the buffer can only contain N values. The description of 
the buffer is: 

(4.5) buHer [0: N - -  t I is the shared buffer; 
in = number  of elements added to the buffer; 
out= number  of elements removed from the buffer; 
the buffer contains in-out values. These are in order, in 
huller [out m o d  N] . . . . .  bu//er E (out + in -- out-- t ) m o d  N]. 

In (4.6) we show a solution to the problem in a general environment. In (4.7), 
we consider a program using this solution which copies an array of values A Et : M] into 
an array BEt :Ml.  (4.8) gives a proof outline for the main program; (4.9) and (4.t0) 
proof outlines for the separate processes. To show the interference-free property, 
first note that  assertion I is invariant throughout both processes. The only as- 
signment in the consumer which might invalidate an assertion of the producer 
is out : =  o u t + l .  The only assertion of the producer which it could possibly 
invalidate is in-out < N,  but  clearly increasing out leaves this true. Hence the 
consumer does not interfere with the producer; similar reasoning shows that  the 
producer does not interfere with the consumer. 

(4.6) b e g i n  corn m e n t  See (4.5) for description of buffer; 
in : =  0; out : =  0; 
cobegin producer: . . .  
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(4.7) 

(4.8) 

await in-out  < N t h e n  sk ip ;  
add: bu//er (in m a d  N) : =  nex t  value;  
m a r k i n  : in  : = in  + t ; 

// 
consumer:  . . .  

await  in-out  > 0 then skip; 
remove: this v a l u e : =  bu//er  [out mad N ] ;  
markout :  out : = out + t ; 

coend 
end 

]gt  : begin comment See (4.5) for description of buffer;  
i n : =  0; out:---- 0; i : =  l ;  ~ ' :=  t ;  
cobegin producer: while i ~ M  d o  

begin x : =  A [i] ; 
await  in-out  < N then skip; 
add: bu//er [in m a d  N] : = x; 
m a r k i n  : in  : = in  + t ; 
i : = i + t  

end 
// 

consumer:  while ~" ~ M  do 
begin await in-out  > 0 t h e n  sk ip ;  

remove: y : =  bu//er [out mad N] ; 
markout :  out : =  out + t ;  

B [i] : = Y ;  
i : = i + t  

end 
coend 

end 

Proof  outline fo r /g  t (main program) 
{M > o} 
~gt:  begin in  : - -  0; o u t : =  0; i : =  1 ; / ' : =  l ;  

{ I  A i = i n +  l----t A i = O U t +  t = l }  
]g l '  : r 

{ I  A i = in  + l = 1} producer { I  ^ i = in  + t = M + t } 
/ / { I  ^ i=  out + t = t }  consumer { I  A ( e  [k] = A [k], 1 ~ k ~< M)} 
coend 

end 
{B [k] = A Ek], 1 --< k _< M} 

where I =  ^ 0 <-- in-out  <= N 
^ 1 ~ i - - < M + t  
^ t < : i < M + t  
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(4.9) 

(4.to) 

Proof outline for ]gl  (producer). Inva r i an t  I is as in (4.8). 
{ I  A i = i n +  1} 
producer: while i ~ M  do 

begin {I A i - - - - i n + t  A i<--M} 
x : ~  A [i]; 
{ I  ^ i = i n + t  A i < = M  A x = A  [i]} 
await in-out < N then skip; 
{ I  A i----- in  + 1 A i <= M A x = A Ill A in-out  < N }  
add: bu//er [in mad N] : =  x; 
{ I  A i = i n +  l A i <--_M A buffer[in m a d  N I = A  [il A i n - o u t < N }  
mark in  : in  : = in  + t ; 
{ I  A i = in  A i ~ M }  
i : = i + 1  
{ I  A i= in+ t}  

end 
{ I  A i - ~ i n +  t = M + t }  

Proof  outline for ]g I (consumer). Inva r i an t  I is as in (4.8). 
{ I  A I C  A i---- out + t } 
consumer: while ] =<M do 

begin { I A I C A i = 0 u t + t  A i < = M }  
await  in-out > 0 then skip; 
{ I  A I C  A j = out + t A i <= M A in-out > 0} 
remove: y : =  buffer [out mad N ] ;  
{ I  A I C  A i =  out + 1 A i <= M A in-out  > 0 A y = A [i]} 
markout:  out : = out + t ; 

{ I  A I C  A i----out A i < m A y =  A [1"1} 
B[1"] : =  y ;  
{ I  A I C  A i = o u t  A ] <=M A B [ j ] = A  [1"~} 

i : - - i + t  
{ I  A I C  A i = o u t +  I A i = < M + I }  

end 
{ I  A I C  A i = o u t + t  = M + I }  
{ I  A ( B [ k ] = A  [k], I <_k<_M)} 
where I V  = {B [k] ~-- A [k], t =< k < i} 

5. Implement ing Semaphores 

A semaphore  sem is an integer variable which can only accessed by  two 
operations,  P and V. 

P (sere) : if sem ~ O, sere : = s e m - -  1 ; otherwise suspend the process until 
sem > O. 

V (sere) : sere : : sere + t .  

The P and V operat ions are indivisible. They  can be represented by  synchroniza- 
t ion s t a t ements  as follows. 

P (sere) : await  sem > 0 then sere : = sere--  t ; 
V (sem) : await  true then s e r e : =  sem + 1 
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Semaphores, as first defined by Dijkstra [18] were slightly different: 

P'(sem)  : sere : ~- s e re - -  t ; if sem < 0 then the process is suspended on a 
queue associated with sem. 

V' (sem) : sem : ~- sere + 1 ; if sere <~ O, awaken one of the processes on the 
semaphore's queue. 

A possible implementation of these operations uses a Boolean array wait ing,  
with one element for each process. Initially wai t ing  ~i] =fa lse,  and wai t ing  Ell = 
t r u e  implies that  i is on the queue. 

P ' ( s e m )  : awa i t  t rue then 
begin sere : = s e r e - -  1 ; 

if sere < 0 then wai t ing  [this processJ : = true; 
end; 

awai t  ~ w a i t i n g  [this process] then skip 
V ' ( s e m )  : awai t  t rue then 

begin sere : =  sem + t ; 
if sere <= 0 then 

begin choose i such that  wai t ing  [i] ; 
wai t ing  [i] : =  false 

end 
end 

In some cases the effects of the operations P and V are different from those of 
P '  and V', but  for the properties we discuss--partial correctness, absence of 
deadlock, and termination--these differences are irrelevant. See Lipton Et3] for 
a comparison of the two kinds of semaphore operations. We leave it to the reader 
to define semaphores P "  and V", like P '  and V', except that the longest waiting 
process always gets served next. 

Given a program with semaphores, the semaphore operations can be replaced 
by the corresponding awaits. The result is an equivalent program which can be 
proved correct using the methods presented in this paper. A number of other syn- 
chronization primitives can also be modelled using await. 

Consider a second version of the producer-consumer program,/g2 (5.1), which 
uses semaphores/ull  and e m p t y  to synchronize access to the buffer. In (5.2) we 
show the translation of the semaphores into awaits; (5.2) also uses auxiliary 
variables needed for a proof of partial correctness. In (5.3) we give a proof out- 
line for the main program; in (5.4) the proof outline for the consumer (the pro- 
ducer is omitted, since it is similar). The proof is essentially the same as for the 
earlier version/g t of the program. Using inference rule (3.7), the auxiliary variables 
can be removed to yield a proof of {M =>0}/g2 { B  [k ]=A [k], t <_k ~<M}.The 
producer does not interfere with the proof of the consumer because the assertions 
in this proof include only I (which is invariantly true in both processes) and 
variables not changed by the producer. Likewise, the consumer does not interfere 
with the proof of the producer. 

Habermann (8) presents this solution to the producer-consumer problem and 
provides an informal proof of correctness. He uses special functions which count 
the number of P and V operations on each semaphore; these play the same 
role as our auxiliary variables. 
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(s.~) 

(5.2) 

/g2: begin comment bu//er [ 0 : N - - t ]  is the shared buffer, 
lul l= number  of full places in bu//er (semaphore), 
empty = number  of e m p t y  places (semaphore) ; 

/ull:=O; empty:= N ; i : =  t ; j : =  1; 
c a b e g i n  producer: w h i l e  i =<M do  

b e g i n  x : =  A [i] ; 
P (empty); 
bu//er[i mad N] : =  x; 
v (/uZl); 
i : = i + t  

e n d  
/ /  

coend 
end 

consumer: w h i l e  ~' ___< M do  
b e g i n  P (lull) ; 

y : = bu//er ~" m a d  N] ; 
V (empty) ; 
B [i] : =  Y; 
i : = / + t  

end 

/g2' : begin comment Pempty, Vempty, P/ull, V/ull are 
auxil iary variables;  

]ull : =  0; empty : =  N ;  i : =  1 ; 1" :---- t ; 
P/ull, V/ull, Pempty, Vempty : =  0, 0, 0, 0; 
cobegin producer: while i --<M do 

b e g i n  x : ---- A Eli ; 
await  empty > 0 then 

begin empty:= empty--1; 
Pempty : = Pempty + t e n d ;  

bu//er[i mad N] : =  x; 
await  true then 

begin ]ull := /ul l+ t ;V/utl := V/ul l+ t end; 
i : = i + t  

// 

coend 

end 

consumer: w h i l e  j =<M d o  
b e g i n  a w a i t  lull > 0 t h e n  

b e g i n / u l l : = / u l l - - t  ; P/ull := P/ul l+ t e n d ;  
y : =  huller [I' m a d  N] ; 
await  true then 

begin empty : =  empty + t ; 
Vempty : --- Vempty + t e n d ;  

B[j] : = y ;  
i : = i + t  

end 

end 
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(5.3) 

(5.4) 

Proof outline of ]g2' (main program) 

/g2': begin 
/ u l l :=  0; empty : =  N;  i : =  l ; ] ' : =  t ;  
P/ull, V/ull, Pempty, Vempty : =  0, 0, 0, 0; 
{I n V/u l l= Pempty ^ i =  V/ul l+ t n Vempty= P/ull 
n i = Vempty + t } 

cabegin 
{I ^ V/ull---- Pempty ^ i =  V/u l l+ t} 
producer 
{z} 

// 
{I ^ Vempty = Plull ^ f = Vempty + t } 
c o n s u m e r  

{ I ^  (B[kJ=A[k~, I <--k<--M)} 
coend 

end 

{ B [ k J = A  [k], t <_k <_M)} 

where I =  (bu//er [k mod N] = A  [k], Vempty < k <= V/ult) 
^ / u l l =  V/ul l--  P/ull 
^ e m p t y = N +  Vempty--  Pempty 
^ 1 <--i<--M+t 
^ I =<i_--__M+t 

Proof outline for/g2" (consumer). Invariant I is given in (5.3) 

{I ^ IC ^ Vempty = P/ull ^ f = Vempty + t ) 
consumer: while ] --<M do 

begin {I ^ IC ^ Vempty= P/ull ^ ]=  Vempty+ t ^ i <-M} 
await /ul l  > 0 then 

begin/ull  : = / u l t - -  t ; P/ull : =  P/u l l+  t end; 
{I n IC ^ Vempty = P/ul l - -  t ^ i = Vempty + 1 ^ i <= M} 
y : = bu//er [1" mod N] ; 
{I ^ IC > Vempty = P/ul l - -  t ^ i = Vempty + t 
^ i <=M ^ y = A  [1"]} 

await true then 
begin empty : =  e m p t y + t ;  

Vempty : =  Vempty + t end;  
{I ^ IC A Vempty = P/ull A ] =  Vempty ^ ] <=M ^ y = A  [1']} 
B[i]  : = y ;  
{I ^ IC ^ Vempty = P/ull n i = Vempty ^ f ~= M ^ B ~'] = A [7']} 
i : = i + t  
{I  A IC ^ Vempty = P/ull ^ f = Vempty + t n ] ~_ M + t } 

end 

{I A I C  ^ j = M + t }  
{I h (B [k ]=A [k], 1 _<k _<M} 
where I C =  (B [k] = A  [k], 1 =<k< ]) 
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6. Blocking and Deadlock 

Because of the a w a i t  statements, a process may  be delayed, or "blocked" 
at an await ,  until its condition B is true. 

(6.1) Definition. Suppose a statement S is being executed. S is blocked if it has 
not terminated, but  no progress in its execution is possible because it (or all of 
its subprocesses that  have not yet terminated) are delayed at an await .  

Blocking by  itself is harmless; processes may  become blocked and unblocked 
many  times during execution. However, if the whole program becomes blocked, 
this is serious because it can never be unblocked and thus the program cannot 
terminate. 

(6.2) Definition. Execution of a program ends in deadlock if it is blocked. 

(6.3) Definition. A program S with proof {P} S {Q} is/ree [rom deadlock if no 
execution of S which begins with P true ends in deadlock. 

We wish to derive sufficient conditions under which a program is free from 
deadlock. First of all, a proof of correctness of a program S includes a proof of 
correctness of a program S', together with several applications of the auxiliary 
variable rule (3.7) which reduce S' to S. Since the reduction consists of deleting 
assignments to auxiliary variables, we take as obvious the following theorem 
(a proof with respect to a particular execution model appears in Owicki [16]). 

(6.4) Theorem. Suppose program S' is free from deadlock, and suppose S is 
derived from S' by application of inference rule (3.7). Then S is also free 
from deadlock. 

We are now in a position to give sufficient conditions for freedom from dead- 
lock. 

(6.5) Theorem. Let S be a statement with proof {P} S {Q}. Let the awai ts  of 
S which do not occur within r  of S be 

A s :  await Bj then . . .  

Let the cobegins of S which do not occur within other cobegins of S be 

T~: cobegin S~//S~//...//S~k coend 
Define 

D ( S ) =  [V(pre(AT) ^ ~Bi ) ]  v [VDI(Tk) ] 

DI(T~)=[A(post(S~ ) v D(S~))] ^[V D(S~)] 

Then D (S)=  false  implies that  in no execution of S can S be blocked. Hence, 
if S is a program, S is free from deadlock. 

Proo/. We show by induction on the level of nesting of r  in S that  S 
blocked in state m implies D (S)[m] = t r u e .  Hence D ( S ) = f a l s e  would indicate 
that  S cannot be blocked. Suppose S has no r  Then it is blocked at a 
single a w a i t  with label Aj. Therefore (pre (A j) ^ ~ Bj) [m] = true and D (S) Em] = 
true. 

Suppose S contains r  and is blocked in state m. Then either it is 
blocked at an a w a i t  Ap in which case D(S) [ m ] = t r u e  as above, or one of its 
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parallel processes T~ is blocked. Consider one of T~'s processes S~. By  induction, we 
know tha t  if S~ is blocked in state m, tha t  D ( S ~ ) [ m ] = t r u e .  Now, since T k is 
blocked, then each of its processes S~ has terminated or is blocked, and moreover,  
at least one of its processes S~ is blocked. Inspection of formula D 1 (Tk) shows 
therefore tha t  D 1 (Tk) Ira] = true. Hence D (S) [m] = t rue .  g.e.d. 

Note tha t  (6.5) provides a static check in order to prove a proper ty  of all 
executions of S,  t6 show freedom from deadlock we need only manipulate  the 
assertions in the proof of correctness. The amount  of detail is directly proport ional  
to the level of nesting of parallel s tatements .  

If  a s ta tement  S contains no parallel s tatements ,  then V D 1 (T~) is the e m p t y  
k 

union and is false, and hence D (S) reduces to 

V. ( (pre(Aj)  ^ ~ B i ) .  

If, further, S has no awaits, then this union is also e m p t y  and D ( S )  is false. 
Thus, a sequential program without  awaits is free from deadlock. I t  is also 
easy to apply  the theorem to show tha t  if a program has no awaits, or if all 
awaits have the form await  true then . . . .  then the program is free from dead- 
lock. Finally if a parallel s ta tement  T is not  supposed to terminate,  i.e. pos t (T )  
= false,  then D I ( T  ) reduces to 

D 1 (T) = Q D (Si) where the Si are the processes of T. 

Section 4 contains several examples of programs with proof outlines. P rogram 
(4A) is free from deadlock since the conditions of the awaits are all true. Find -  
pus in (4.2) is free from deadlock since it has no awaits. 

To prove freedom from deadlock for the producer-consumer program (4.7), 
we use its proof outline given in (4.8)-(4.t0). We have 

D (producer) =~ in  < M ^ in-out  = N 
post (producer) =~ in---- M 
D (consumer) =~ out < M ^ in-out  = 0 
post (producer) =~ out = M 

Writ ing D l ( / g t ' ) = x  A y ,  where ]g t '  is the r statement,  we then rewrite 
x as the "or"  of 4 terms. 

x=~ [in < M ^ i n - o u t =  N ^ out < M ^ i n - o u t = O l  
v [in < M ^ in-out  ~-- N ^ out = M]  
v [in = M A out < M A in-out  = Ol 
V [in = M ^ out = M]  
= ~ N = 0  v N < 0  v false v i n = o u t = M  
=~N <=0 v i n = o u t = M  

y = D (producer) v D (consumer) =~ in  < M v out < M 
D ( [ g t ) = D l ( t g l ' ) = x  A y = ~ N  <=0. 

Hence, sufficient conditions for freedom from deadlock i n / g  t is tha t  N > 0 - -  tha t  
is, the buffer has room at least one element. 

I n  some programs using semaphores, it is often useful to know how m a n y  processes 
can be blocked at a part icular  moment ,  wait ing to enter a critical section. We 

23 Acta Informatiea, Vol. 6 
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can prove  a general  theorem abou t  such programs,  general izing the  idea of block- 
ing a b i t  a t  the  same t ime.  

(6.6) Theorem. Consider a p rogram of the  form (6.7). Then a t  any  poin t  of execu- 
t ion a t  most  n - - m  of the  processes S t . . . . .  Sn can be blocked at  P (s). Fu r the r -  
more,  if a process is b locked a t  P (s), then  m processes are execut ing the  cri t ical  
sect ion or V(s) ."  

(6.7) s : = m ; . . .  
cobegin $ t / / . . . / / S n / / . . . / / s p  coend 

where each Si, t <--_ i ~_ n, has the  form given below, none of the  processes Si, 
i > n ,  reference s, and  the only references to s are those shown:  

Si:  .. .  
while t rue do 

begin noncr i t ica l  section ; 
P (s); 
cri t ical  sect ion;  
V (s); 
noncr i t ica l  sect ion 

end 

Proo/. In  (6.8) we show this  same program wr i t t en  using awaits, with  auxil i-  
a r y  var iables ,  and  wi th  a proof  outl ine.  The assert ions t h a t  INCi----1 t h roughou t  
the  cr i t ical  sect ion and  I N C i = O  elsewhere are jus t i f ied since the  only  opera t ions  
on I N C i  are those expl ic i t ly  shown. Simil lar ly ,  assert ion I holds th roughou t  
because  there  are no o ther  opera t ions  on s. The interference-free requi rement  is 
eas i ly  verif ied,  because each assert ion is a s t a t emen t  about  INCi ,  which is not  
changed  in Sj ,  ~" 4 : i ,  and  abou t  I ,  which is i nva r i an t  over  the  s t a t emen t s  in pro- 
cess S/'. 

Now suppose  n - - m  + k, k ~ 0, processes are blocked at  P (s). Then we have  

I N C i  = 0 for these processes, and  hence s = m - -  ~ I N C j  > 0. Bu t  the  fact  t ha t  
i=1 

the  processes are b locked a t  P (s) implies  t h a t  s = 0, and  we have a contradict ion.  

Secondly,  suppose a process is b locked bu t  only  m - - k ,  k > 0 processes are 
execut ing  the i r  cr i t ical  sect ion or the  await true s ta tement .  Because a process 
is b locked we have  s = 0. Bu t  since m - - k  processes are execut ing their  cri t ical  
section, for each of these processes we have  I N C i  = 1, and  toge ther  wi th  invar ian t  
I th is  yields  s > 0. Thus we have  a contradic t ion.  

(6.8) s : =  m; INC1,  I N C 2  . . . . .  I N C n  : =  0, 0 . . . . .  0; . . .  
{I  ^ ( I N C i = O ,  t <_i --<n)} 
cobegin $t  / / . . . / / S n / / . . . / / S p  r 
(false) 
where Si, t <~ i <~ n, is 

{I  ^ I N C i  = O} 
Si: ... 

while true do 
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begin {I ^ I N C i = O }  
noncritical section ; 
{ I  A I N C i  = O} 
await  s > O t h e n  begin s : =  s - - l ;  I N C i : =  1 end; 
{ I  A I N C i  = t} 
critical section ; 
{ I  A I N C i  = t}  
await true then begin s : =  s + t ;  I N C i : =  0 end; 
{ I  ^ I N C i  = O} 
noncritical section 

end 
{false} 

n 

where I =-- s = m --  ~. I N C i  A (Vi, t <= i ~ n, 0 <= I N C i  <= t) 

Theorem 6.6 thus confirms our understanding of the semaphore. 

7. Termination 
Let us suppose that  all operations are defined so tha t  they always yield a 

value in the expected range. Then the only way a sequential program can fail 
to terminate is to loop infinitely in some while  loop. In order to include proof of 
termination in a useful practical manner,  one can replace the iteration inference 
rule (2.4) with another. Let t be an integer function,, t=>0. Let  us also let 
wdec (Q, S, t) mean that  execution of S with precondition Q decreases the value 
of t by  at  least one. We can write this as 

waec (Q, s ,  t ) - - {9  A t =  e} S {t < e}. 

Then the new inference rule for iteration is 

(7.t) iteration { P A B } S { P } , t > = O ,  w d e c ( P A B ,  S , t )  

with {P} while  B do S {P A ~ B }  
termination 

An alternate formulation allows t to become negative, but  then requires tha t  
(-P A t ~ 0 )  =~ ---B: 

(7.2) iteration { P  A B} S {P}, wdec (P A B, S, t), (P A t ~ O) =~ --. B 

with {P} while  B do S {P ^ ~ B }  
termination 

In  any case, we have "axiomat ized"  loop termination in a practical, useful 
manner. 

While there are some parallel programs which do not terminate, it would 
still be convenient to be able to prove termination of parallel programs. Suppose 
that  we prove tha t  each process of a parallel program S terminates, using (7.t) 
instead of (2.4). What  else must  we do to prove tha t  S itself terminates ? First 
of all, we must  show that  parallel execution of processes does not invalidate 
proof of sequential termination of the processes. If  we do that ,  then the only 
way for the program not to terminate is the occurrence of deadlock. This leads 
us to redefine first of all the interference-free property:  

23* 
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(7.3) Definition. Given a proof {P} S {Q} and a statement T with precondition 
pre(T),  we say that  T does not inter/ere with {P} S {e} if the following three 
conditions hold : 

(a) {Q ^ pre(T)} T{Q}; 

(b) Let S' be any statement within S but which is not within an awa i t .  
Then {pre(S') ^ pre(T)} T {pre(S')}; 

(c) Let W be a loop within S, but not within an a w a i t  of S. Let t be the 
integer function used in the proof of correctness of the loop (using (7.1) 
or (7.2)). Then { t= c  ^ pre(T)} T {t<~c}. 

(7.4) Definition. {P1} $1 {Q1} . . . . .  {Pn} Sn  {Qn} are inter/erence-/ree if the 
following holds. Let T be an a w a i t  or assignment statement (which does not 
appear in an awai t )  of process Si. Then for all/',/" 4: i, T does not interfere with 
{P/'} Si {Qi}- 

We can then redefine the rule (3.3) for the cobegln statement:  

(7.5) cobegin {P1} $1 {Q1} . . . . .  {Pn} Sn {Qn} interference-free, 
with {P1} $1 {Q1} . . . . .  {Pn} Sn  {Qn} deadlock-free 

termination {P1 ^ . . .  ^ Pn}  cobegln $ 1 / / . . . / / S n  coend {Q1 ^ . .  ^ Qn} 

The property "deadlock-free" for a set of parallel processes is defined as the 
sufficient conditions given in theorem (6.5) for freedom from deadlock. 

As an example, consider program Findpos (4.3). We have thus far shown 
partial correctness. To show termination of Evensearch using rule (7.2) instead of 
(2.4), we introduce the function 

te ~ min  (oddtop , eventop ) --  i 

Note that  for the loop in Evensearch, te <=0=~--,B. Secondly, 

wdec (ES ^ i < event@ ^ i < M + 1, body (Evensearch), re). 

Similarly, we use the integer function tO ~ rain (eventop, odd top) -  i to show that  
Oddtop terminates. To show non-interference of Evensearch by Oddsearch, we must 
show that  Oddsearch does not increase te (the argument for Evensearch not inter- 
feting with Oddsearch is similar). The only statement in Oddsearch which changes a 
variable of te is oddtop : =  i. We now show that  execution of this does not increase 
te : 

{te-~ c A pre (oddtop := i)} 
{rain (oddtop, eventop ) --  i = c ^ i < oddtop } 
{rain (f, eventop) --  i <--_ c} 
oddtop : = 
{rain ( oddtop, eventop ) --  i <= c} 

Finally, there is no deadlock since there are no awa i t s  in the program. 

8. Conclusions 

We have developed a deductive system for proving properties of parallel 
programs, building on work by  Hoare [9, 10]. Besides partial correctness, the 
system lends itself to proving other properties: freedom from deadlock, and 
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termination. A paper is in preparation concerning mutual  exclusion. Once one 
has a partial correctness proof, one can often prove these other properties just 
by  manipulating in some fashion the assertions already created for the partial 
correctness proof. Hence the proofs of these properties of execution only require 
work with static ob jec ts - - the  assert ions-- instead of with the dynamic execution 
of the program. 

A number of other properties could be considered: priority assignments, pro- 
gress for each process, blocking of some subset of the processes, etc. Many of 
these are difficult to define in a uniform way, while others require a model with 
definite rules for scheduling competing processes. Hopefully, future work will 
broaden the range of properties which can be dealt with using axiomatic methods. 

The synchronization primitive discussed is admittedly primitive, and a paper 
is in preparation (19) which covers the same material  using a higher level synchro- 
nization statement,  Hoare 's  w i t h - w h e n  statement.  However, this primitive 
synchronization statement  has proved useful. First, it has given us insight into 
how to understand parallel processes, as discussed in Section 3. Secondly, we 
have used it on a number of parallel programs from the literature--Findpos, 
the consumer-producer problem, etc., and we feel it will be useful in practical 
work with parallel programs. I t  gives us a method for dealing more formally with 
other synchronization primitives. 

The "insight" gained from this work, towards understanding parallelism, may  
not have come across well if the reader already understood the examples before- 
hand. A quite complicated problem with as fine a grain of interleaving as can 
be imagined, Dikjstra 's  on-the fly garbage collector [6~, has been proved correct 
in what  we feel is a satisfactory manner [71, and we invite the reader to s tudy it. 
The first author was also able to verify the semaphore solutions for readers and 
writers proposed by  Courtois, Heymans  and Parnas. This was fairly hard to do, 
because of the complexity of their solution which gives priority to the writer. 
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