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ABSTRACT. Threshold guards are a basic primitive of many fault-tolerant algorithms that
solve classical problems of distributed computing, such as reliable broadcast, two-phase
commit, and consensus. Moreover, threshold guards can be found in recent blockchain
algorithms such as Tendermint consensus. In this article, we give an overview of the
techniques implemented in Byzantine Model Checker (ByMC). ByMC implements several
techniques for automatic verification of threshold-guarded distributed algorithms. These
algorithms have the following features: (1) up to ¢ of processes may crash or behave
Byzantine; (2) the correct processes count messages and make progress when they receive
sufficiently many messages, e.g., at least ¢+ 1; (3) the number n of processes in the system
is a parameter, as well as ¢; (4) and the parameters are restricted by a resilience condition,
e.g., n > 3t. Traditionally, these algorithms were implemented in distributed systems with
up to ten participating processes. Nowadays, they are implemented in distributed systems
that involve hundreds or thousands of processes. To make sure that these algorithms are
still correct for that scale, it is imperative to verify them for all possible values of the
parameters.

1. INTRODUCTION

The recent advent of blockchain technologies [72, 34, 2, 21, 91, 24] has brought fault-tolerant
distributed algorithms to the spotlight of computer science and software engineering. In
particular, due to the huge amount of funds managed by blockchains, it is crucial that
their software is free of bugs. At the same time, these systems are characterized by a
large number of participants. Thus, automated verification methods face the well-known
state space explosion problem. Furthermore, the well-known undecidability results for the
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verification of parameterized systems [4, 88, 41, 42, 16] apply in this setting. One way to

circumvent these problems is to develop domain specific methods that work for a specific

subclass of systems.

In this article, we survey verification techniques for fault-tolerant distributed algorithms.
As an example, consider a blockchain system, where a blockchain algorithm ensures coordi-
nation of the processes participating in the system. We observe that to do so, the processes
need to solve a coordination problem called atomic (or, total order) broadcast [47], that is,
every process delivers the same transactions in the same order. To achieve that, we typically
need a resilience condition that restricts the fraction of processes that may be faulty [74].
The techniques we survey deal with the concepts of broadcast and atomic broadcast under
resilience conditions.

While Bitcoin [72] was a new approach to consensus, several Blockchain systems like
Tendermint [21] and HotStuff [91] are modern implementations that are built on these classic
Byzantine fault tolerance concepts. While the techniques we describe here address in part
the challenges for the verification of such systems. We discuss open challenges in Section 8.

In addition to practical importance, the reasons for the long-standing interest [65, 62,
74, 43] in distributed systems is that distributed consensus is non-trivial in two aspects:
(1) Most coordination problems are impossible to solve without imposing constraints on

the environment, e.g., an upper bound on the fraction of faulty processes, assumptions

on the behavior of faulty processes, or bounds on message delays and processing speeds

(i.e., restricting interleavings) [74, 43, 37].

(2) Designing correct solutions is hard, owing to the huge state and execution space, and the
complex interplay of assumptions mentioned in Point 1. Thus, even published protocols
may contain bugs, as reported, e.g., by [66, 68].

Due to the impossibility of asynchronous fault-tolerant consensus [43], much of the
research focuses one what kinds of problems are solvable in asynchronous systems (e.g.,
some forms of reliable broadcast) or what kinds of systems allow to solve consensus. In
Section 2 we will survey some of the most fundamental system assumptions that allow
to solve problems in the presence of faults and example algorithms. In Sections 3 to 5
we will discuss how these algorithms can be formalized in threshold automata and how
they can be automatically verified. Indeed threshold automata represent an abstraction of
distributed algorithms. In Section 6 we discuss how this abstraction can be automatically
generated from a formalization close to the algorithm descriptions in the literature. We then
present in Section 7 how out tool ByMC evolved in the last years and which techniques
were implemented. While our standard benchmarks were classic fault-tolerant distributed
algorithms from the literature, we demonstrate in Section 8 how ByMC can be used to
analyze Tendermint, a state-of-the art consensus algorithms used in the Cosmos blockchain
ecosystem.

2. THRESHOLD-GUARDED DISTRIBUTED ALGORITHMS

In a classic survey, Schneider [79] explains replicated state machines by the following notion

of replica coordination that consists of two properties:

Agreement.: “Every non-faulty state machine replica receives every request.”

Order.: “Every non-faulty state machine replica processes the requests it receives in the
same relative order.”
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bool accept:=false;
while (true) do {
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if (v = 1) then send <ECHO> to all; s <
receive messages from other processes; ry
if received <ECHO> from >t + 1 processes SE

then v:=1; 5
. . .n_
if received <I§CHO.> from > n - t processes

then accept:=true; T8 AC 7

} Te

Figure 1: Pseudo code of reliable broadcast a la [83] and its threshold automaton.

In Schneider’s approach [79], the specification of Agreement can be solved using an algo-
rithm for reliable broadcast [47]. The processes can use a consensus algorithm [39, 29, 26]
to establish the Order property. For instance, the atomic broadcast algorithm from [26]
contains these two sub-algorithms.

The simplest canonical system model that allows one to solve consensus is the syn-
chronous one, and we discuss it in Section 2.1. A second elegant way to circumvent the
impossibility of [43] is by replacing liveness with almost sure termination, that is, a proba-
bilistic guarantee. We review this approach in Section 2.3. In fact, reliable broadcast can
be solved with an asynchronous distributed algorithm. We discuss their characteristics in
Section 2.2.

2.1. Synchronous algorithms. A classic example of a fault-tolerant distributed algorithm
is the broadcasting algorithm by Srikanth & Toueg [82]. The description of its code is given
in Figure 1. As is typical for distributed algorithms, the semantics is not visible from the
pseudo code. In fact, we use the same pseudo-code to describe its asynchronous variant
later in Section 2.2.

The algorithm satisfies the Agreement property mentioned above. In a distributed
system comprising reliable servers, which do not fail and do not lose messages, this property
is easy to achieve. If a server receives a request, it sends the request to all other servers.
As messages are delivered reliably, every request will eventually be received by every server.
The problems comes with faults. Srikanth and Toueg studied Byzantine failures, where
faulty servers may send messages only to a subset of the servers (or even send conflicting
data). In this scenario, two servers may receive different requests. The algorithm in Figure 1
addresses this problem, by forwarding message content received from other servers and only
accepting a message content when it was received from a quorum of servers. For each
message content m, one instance of this algorithm is executed. Initially the variable v
captures whether a process has received m, and it stores the value 1 if this is the case. A
process that has received m sends ECHO to all (line 4). In an implementation, the message
would be of the form (ECHO, m), that is, it would be tagged with ECHO, and carry the
content m to distinguish different instances running in parallel; also it would suffice to send
the message once instead of sending it in each iteration. If the guard in line 6 evaluates to
true at a server p, then p has received ¢t +1 ECHO messages, which means that at least one
correct process has forwarded the message. This triggers the server p to also forward the
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best := input_value;

for each round 1 through |t/k] + 1 do {
broadcast best;
receive values b1, ... b, from others;
best := min {b1,...b};

}

choose best;

Figure 2: Pseudo code of FloodMin from [30]

message. If a server p receives n — t ECHO messages, it finally accepts the request stored
in m due to line 8. The reason this algorithm works is that the combination of n — ¢, ¢t + 1,
and n > 3t ensures that if one correct processes has n — t ECHO messages, every other
correct process will eventually receive at least ¢+ 1 (there are ¢+ 1 correct processes among
any n — t processes). This implies that every correct process will forward the message, and
since there are at least m — ¢ correct processes, every correct will accept. However, this
arithmetics over parameters is subtle and error-prone. To overcome this, our verification
techniques focus on threshold expressions and resilience conditions.

In the above discussion, we were imprecise about the code semantics. In this section
we consider the synchronous semantics: All correct processes execute the code line-by-line
in lock-step. One loop iteration is called one round. A message sent by a correct process
to a correct process is received within the same round. Then after sending and receiving
messages in lock-step, all correct processes continue by evaluating the guards, before they all
proceed to the next round. Because this semantics ensures that all processes move together,
and all messages are received within the next rounds, no additional fairness constraints are
needed to ensure liveness (something good eventually happens). In practice, this approach
is often considered slow and expensive, as it has to be implemented with timeouts that are
aligned to worst case message delays (which can be very slow in real networks). However,
synchronous semantics offers a high-level abstraction that allows one to design algorithms
easier.

Figure 2 shows an example of another synchronous algorithm. This algorithm is run
by n replicated processes, up to t of which may fail by crashing, that is, by prematurely
halting. It solves the k-set agreement problem, that is, out of the m initial values each
process decides on one value, such that the number of different decision values is at most k.
By setting £ = 1, we obtain that there can be exactly one decision value, which coincides
with the definition of consensus. In contrast to the reliable broadcast above, it runs for a
finite number of rounds. The number of loop iterations |¢/k]| 41 of the FloodMin algorithm
has been designed such that it ensures that there is at least one clean round in which at
most k& — 1 processes crash. When we consider consensus, this means there is a round in
which no process crashes, such that all processes receive the same values by,...bp. As a
result, during that round all processes set best to the same value.

2.2. Asynchronous algorithms. We now discuss the asynchronous semantics of the code
in Figure 1: at each time point, exactly one processes performs a step. That is, the steps of
the processes are interleaved. In the example, one may interpret this as one code line being
an atomic unit of execution at a process. In the “receive” statement, a process takes some
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bool v := input_value({0, 1}); 10 if received at leastt + 1

intr:=1; 11 messages (P,r,w,D) then {
while (true) do 12 Vi=W;
send (R,r,v) to all; 13 if received at least (n +t) /2
wait for n — t messages (R,r,*); 14 messages (P,r,w,D)
if received (n + t) / 2 messages (R,r,w) 15 then decide w;
then send (P,r,w,D) to all; 16 }elsev :=random({0, 1});
else send (P,r,?) to all; 17 ri=r+1;
wait for n — t messages (P,r,*); 18 od

Figure 3: Pseudo code of Ben-Or’s algorithm for Byzantine faults

messages out of the incoming message buffer: possibly no message, and not necessarily all
messages that are in the buffer. The “send to all” then places one message in the message
buffers of all the other processes. Often, the asynchronous semantics is considered more
coarse-grained, e.g., a step consists of receiving messages, updating the state, and sending
one or more MmMessages.

As we do not restrict which messages are taken out of the buffer during a step, we
cannot bound the time needed for message transmission. Moreover, we do not restrict the
order, in which processes have to take steps, so we cannot bound the time between two
steps of a single process. Typically, we are interested in verifying safety (nothing bad ever
happens) under these conditions.

However, for liveness this is problematic. We need messages to be delivered eventually,
and correct processes to take steps from time to time. That is, liveness is typically pre-
conditioned by fairness guarantees: every correct processes takes infinitely many steps and
every message sent from a correct process to a correct process is eventually received. These
constraints are sufficient for broadcast, while for consensus they are not.

2.3. Randomized algorithms. A prominent example is Ben-Or’s fault-tolerant binary
consensus [8] algorithm in Figure 3. It circumvents the impossibility of asynchronous con-
sensus [43] by relaxing the termination requirement to almost-sure termination, i.e., termi-
nation with probability 1. Here, the processes execute an infinite sequence of asynchronous
rounds. While the algorithm is executed under asynchronous semantics, the processes have
a local variable r that stores the round number, and use it to tag the messages that they
send round r. Observe that the algorithm only operates on messages from the current round
(the guards only count messages tagged with ). Asynchronous algorithms with this feature
are called communication closed [40, 32]. In the case of Ben-Or’s algorithm, each round
consists of two stages where the processes first exchange messages tagged with R, wait until
the number of received messages reaches a certain threshold (the expression over parameters
in line 5) and then exchange messages tagged with P. As in the previous examples, n is the
number of processes, among which at most ¢ may crash or be Byzantine. The thresholds
n—t, (n+t)/2 and t + 1 in combination with the resilience condition n > 5¢ ensure that
no two correct processes ever decide on different values. If there is no “strong majority” for
a value in line 13, a process chooses a new value by tossing a coin in line 16.



3. PARAMETERIZED VERIFICATION OF SYNCHRONOUS ALGORITHMS

In [84], we introduced the synchronous variant of threshold automata, and studied their
applicability and limitations for verification of synchronous fault-tolerant distributed algo-
rithms. We showed that the parameterized reachability problem for synchronous threshold
automata is undecidable. Nevertheless, we observed that counter systems of many syn-
chronous fault-tolerant distributed algorithms have bounded diameters, even though the
algorithms are parameterized by the number of processes. Hence, bounded model checking
can be used for verifying these algorithms. We briefly discuss these results in the following.

3.1. Synchronous Threshold Automata. In a synchronous algorithm, the processes ex-
ecute the send, receive, and local computation steps in lock-step. Consider the synchronous
reliable broadcast algorithm from [83], whose pseudocode is given in Figure 1 (left). A
synchronous threshold automaton (STA) that encodes the pseudocode of this algorithm is
given in Figure 1 (right). The STA models the loop body of the pseudo code: one iteration
of the loop is expressed as an STA edge that connects the locations before and after a loop
iteration.

The semantics of the synchronous threshold automaton is defined in terms of a counter
system. For each location ¢; € {v0,V1,SE,AC} (a node in the graph), we have a counter &;
that stores the number of processes located in ¢;. The counter system is parameterized in
two ways: (i) in the number of processes n, the number of faults f, and the upper bound
on the number of faults ¢, (ii) the expressions in the guards contain n, ¢, and f. Every
system transition moves all processes simultaneously; potentially using a different rule for
each process (depicted by an edge in the figure), provided that the rule guards evaluate
to true. The guards compare a sum of counters to a linear combination of parameters.
Processes send messages based on their current locations. Hence, we use the number of
processes in given locations to test how many messages of a certain type have been sent
in the previous round. However, the pseudo code in Figure 1 is predicated by received
messages rather than by sent messages. This algorithm is designed to tolerate Byzantine-
faulty processes, which may send corrupt messages to some correct processes. Thus, the
number of received messages may deviate from the number of correct processes that sent a
message. For example, if the guard in line 6 evaluates to true, the ¢ 4+ 1 received messages
may contain up to f messages from the faulty processes. If i correct processes send ECHO,
for 1 < ¢ < t, the faulty processes may “help” some correct processes to pass over the t + 1
threshold. That is, the effect of the f faulty processes on the correct processes is captured
by the ”—f” component in the guards. As a result, we run only the correct processes, so
that a system consists of n — f copies of the STA.

For example, in the STA in Figure 1, processes send a message if they are in a location
V1, SE, or AC. Thus, the guards compare the number of processes in a location V1, SE,
or AC, which we denote by #{V1,SE, AC}, to some linear expression over the parameters,
called a threshold. The assignment v:=1 in line 7 is modeled by the rule ry, guarded with
¢1 = #{vl,sE,Ac} > t+ 1 — f. This guard evaluates to true if he number of processes
in location V1, SE, or AC is greater than or equal to ¢t +1 — f. The implicit “else” branch
between lines 6 and 8 is modeled by the rule r, guarded with ¢35 = #{v1,SE,ACc} < t+ 1.
The effect of the faulty processes is captured by both the rules 7 and m being enabled.
Similarly, the rules r5, 7, 13 are guarded with the guard ¢o = #{V1,SE,AC} > n — 1t — f,
which is true when the number of process in one of V1, SE, or AC is greater or equal to
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Table 1: A long execution of reliable broadcast and the short representative.

Process | o9 | 01 | 02 | ... | opp1 | ovao | 0413 Process | o, | o1 | 0}
1 Vl| SE| SE | ... SE SE AC 1 vl | SE | AC

2 vO| vO [ SE | ... SE SE AC 2 v0O | SE | AC
t+1 [vO|VvO[vO[...] sE | sE | AC t+1 [v0[sE]ac
n—f |[vO[VvO[vO]...] vO | SE | Ac n—f |vO[SE]ac

n —t — f, while the rules r3, 7y are guarded with ¢4 = #{Vv1,sE,Ac} < n —t. The rule rg
is unguarded, i.e., its guard is T.

3.2. Bounded Diameter. An example execution of the synchronous reliable broadcast
algorithm is depicted in Table 1 on the left. Observe that the guards of the rules r; and r,
are both enabled in the configuration og of the counter system for the STA in Figure 1. One
STA uses r, to go to SE while the others use the self-loop 7 to stay in v0. As both rules
remain enabled, in every round one copy of STA can go to SE. Hence, the configuration o;11
has ¢t + 1 correct STA in location SE and the rule 4 becomes disabled. Then, all remaining
STA go to SE and then finally to AC. This execution depends on the parameter ¢, which
implies that the length of this execution grows with ¢ and is thus unbounded. (We note
that we can obtain longer executions, if some STA use the rule r4). On the right, we see an
execution where all copies of STA immediately move to SE via rule rp. That is, while the
configuration o, 3 is reached by a long execution on the left, it is reached in just two steps on
the right (observe that of, = 0443). We are interested in whether there is a natural number
k (independent of n, ¢t and f) such that we can always shorten executions to executions of
length < k. (By length, we mean the number of transitions in an execution.) In such a case,
we say that the STA has bounded diameter. We adapt the definition of diameter from [15],
and introduce an SMT-based procedure for computing the diameter of the counter system.
The procedure enumerates candidates for the diameter bound, and checks (by calling an
SMT solver) if the number is indeed the diameter; if it finds such a bound, it terminates.

3.3. Bounded Model Checking. The existence of a bounded diameter motivates the use
of bounded model checking, as safety verification can be reduced to checking the violation
of a safety property in executions with length up to the diameter. Crucially, this approach
is complete: if an execution reaches a bad configuration, this bad configuration is already
reached by an execution of bounded length. Thus, once the diameter is found, we encode
the violation of a safety property using a formula in Presburger arithmetic, and use an SMT
to check for violations.

The SMT queries that are used for computing the diameter and encoding the violation
of the safety properties contain quantifiers for dealing with the parameters symbolically.
Surprisingly, performance of the SMT solvers on these queries is very good, reflecting the
recent progress in dealing with quantified queries. We found that the diameter bounds of
synchronous algorithms in the literature are tiny (from 1 to 8), which makes our approach
applicable in practice. The verified algorithms are given in Section 7.



3.4. Undecidability. In [84], we showed that the parameterized reachability problem is
in general undecidable for STA. In particular, this implies that some STA have unbounded
diameters. We identified a class of STA which in theory have bounded diameters. For some
STA outside of this class, our SMT-based procedure still can automatically find the diameter.
Remarkably, the SMT-based procedure gives us the diameters that are independent of the
parameters.

4. PARAMETERIZED VERIFICATION OF ASYNCHRONOUS ALGORITHMS

4.1. Asynchronous Threshold Automata. Similarly as in STA, nodes in asynchronous
threshold automata (TA) represent locations of processes, and edges represent local transi-
tions. What makes a difference between an STA and a TA are shared variables and labels
on edges that have a form v — act. A process moves along an edge labelled by v — act and
performs an action act, only if the condition -, called a threshold guard, evaluates to true.

We model reliable broadcast [82] using the same threshold automaton from Figure 1
but with different edge labels in comparison to the STA. We use a shared variable z to
capture the number of ECHO messages sent by correct processes. We have two threshold
guards: v1: 2z > (t+1) — f and v9: 2 > (n — t) — f. Depending on the initial value of a
correct process, 0 or 1, the process is initially either in location vO or in v1. If its value is 1
a process broadcasts ECHO, and executes the rule r3: TRUE +— z++. This is modelled by a
process moving from V1 to SE and increasing the value of z. If its value is 0, it has to wait
to receive enough messages, i.e., it waits for «; to become true, and then it broadcasts the
ECHO message and moves to location SE. Thus, r, is labelled by 77 + z++. Finally, once
a process has y9-enough ECHO messages, it sets accept to true and moves to AC. Thus, 75
is labelled by 79, whereas r; and 15 by g > x++.

4.2. Counter Systems. Similarly to STA, the semantics of TA is captured by counter
systems. Instead of storing the location of each process, we count the number of processes
in each location, as all processes are identical. We also store the values of the shared vari-
ables, which are incremented as the processes execute the rules. Therefore, a configuration
comprises (i) values of the counters for each location, (ii) values of the shared variables,
and (iii) parameter values. A configuration is initial if all processes are in initial locations,
here vO or v1, and all shared variables have value 0 (here z = 0). A transition of a process
along an edge from location ¢ to location ¢/ — labelled by v — act — is modelled by the
configuration update as follows: (i) the counter of ¢ is decreased by 1, and the counter of
¢" is increased by 1, (ii) shared variables are updated according to the action act, and (iii)
parameter values are unchanged. The key ingredient of our technique is acceleration of
transitions, that is, many processes may move along the same edge simultaneously. In the
resulting configuration, the counters and shared variables are updated depending on the
number of processes that participate in the transition. It is important to notice that any
accelerated transition can be encoded in SMT.



4.3. Reachability. In [53], we determine a finite set of execution “patterns”, and then
analyse each pattern separately. These patterns restrict the order in which the threshold
guards become true (if ever). Namely, we observe how the set of guards that evaluate to
true changes along each execution. In our example TA for the reliable broadcast algorithm,
given in Figure 1, there are two (non-trivial) guards, 71 and 7,. Initially, both evaluate
to false, as = 0. During an execution, none, one, or both of them become true. Note
that once they become true, they can never evaluate to false again, as the number of sent
messages  cannot decrease. Thus, there is a finite set of execution patterns.

For instance, a pattern {}...{v1}...{71,72} captures all finite executions 7 that can
be represented as 7 = 71 - f; - To - o - T3, Where 71,79, 73 are sub-executions of 7, and #
and t, are transitions. No threshold guard is enabled in a configuration visited by 71,
and only v is enabled in all configurations visited by 75. Both guards are enabled in all
configurations visited by 73, and # and ty change the evaluation of the guards. Another
pattern {}...{y2}...{71,72} enables ~, before ;. The third pattern {}... {1} never
enables vs.

To perform verification, we have to analyse all execution patterns. For each pattern,
we construct a so-called schema defined as a sequence of accelerated transitions, whose
free variables are the number of processes that execute the transitions and the parameter
values. In Figure 1, the transitions are modelled by edges denoted with r;, ¢ € {1,...,8}.
For instance, the pattern {}... {7y} produces the schema:

S=A{} r,m,m3{n} r,r2,r3,m {n}.
| Iy T | I —|
1t T2

There are two segments, 71 and 79, corresponding to {} and {;}, respectively. In each
of them we list all the rules that can be executed according to the guards that evaluate to
true, in a fixed natural order: only 7 and 73 can be executed if no guard is enabled, and
r1, 12, 13, 4 if only the guard ; holds true. Additionally, we have to list all the candidate
rules for #; that can change the evaluation of the guards. In our example, only r3 can enable
the guard ~;.

We say that an execution follows the schema & if its transitions appear in the same
order as in S, but they are accelerated (every transition is executed by a number of pro-
cesses, possibly zero). For example, if (r,k) denotes that k processes execute the rule r
simultaneously, then the execution p = (r1,2)(r3,3)(r2,2)(r4, 1) follows S, where the tran-
sitions of the form (r,0) are omitted. In this case, we prove that for each execution 7
of pattern {}...{y1}, there is an execution 7’ that follows the schema S, and 7 and 7’
reach the same configuration (when executed from the same initial configuration). This
is achieved by mover analysis: inside any segment in which the set of enabled guards is
fixed, we can swap adjacent transitions (that are not in a natural order). In this way, we
gather all transitions of the same rule next to each other, and transform them into a single
accelerated transition. For example, 7 = (r3,2)(r1,1)(r3,1)(r1,1)(r2,1)(r4,1)(72,1) can be
transformed into 7/ = p from above, and they reach the same configurations. Therefore,
instead of checking reachability for all executions of the pattern {}...{v}, it is sufficient
to analyse reachability only for the executions that follow the schema S.

Every schema is encoded as an SMT query over linear integer arithmetic with free
variables for acceleration factors, parameters, and counters. An SMT model gives us an
execution of the counter system, which typically disproves safety.



Figure 4: Three out of 18 shapes of lassos that satisfy the formula F (a AF dAF eAG bDAGF ¢).
The crosses show cut points for: (A) formula F(a AFdAFeAGbAGFc),
(B) formula Fd, (C) formula Fe, (D) loop start, (E) formula F ¢, and (F) loop
end.

For example, consider the following reachability problem: Can the system reach a
configuration with at least one process in 37 For each SMT query, we add the constraint
that the counter of ¢3 is non-zero in the final configuration. If the query is satisfiable, then
there is an execution where at least one process reaches 3. Otherwise, there is no such
execution following the particular schema, where a process reaches £3. That is why we have
to check all schemas.

4.4. Safety and Liveness. In [54] we introduced a fragment of Linear Temporal Logic
called ELTLgr. Its atomic propositions test location counters for zero. Moreover, this
fragment only uses only two temporal operators: F (eventually) and G (globally). Our
goal is to check whether there exists a counterexample to a temporal property, and thus
formulas in this fragment represent negations of safety and liveness properties.

Our technique for verification of safety and liveness properties uses the reachability
method as its basis. As before, we want to construct schemas that we can translate to SMT
queries and check their satisfiability. Note that violations of liveness properties are infinite
executions of a lasso shape, that is, 7- p*, where 7 and p are finite executions. Hence, we
have to enumerate the patterns of lassos. These shapes depend not only on the values of
the thresholds, but also on the evaluations of atomic propositions that appear in temporal
properties. We single out configurations in which atomic propositions evaluate to true, and
call them cut points, as they “cut” an execution into finitely many segments (see Figure 4).

We combine these cut points with those “cuts” in which the threshold guards become
enabled (as in the reachability analysis). All the possible orderings in which the evaluations
of threshold guards and formulas become true, give us a finite set of lasso patterns.

We construct a schema for each shape by first defining schemas for each of the segments
between two adjacent cut points. On one hand, for reachability, it is sufficient to execute all
enabled rules of that segment exactly once in the natural order. Thus, each sub-execution
7; can be transformed into 7/ that follows the segment’s schema, so that 7; and 7/ reach
the same final configuration. On the other hand, the safety and liveness properties reason
about atomic propositions inside executions. To this end, we introduced a property specific
mover analysis that allows us to construct schemas by executing all enabled rules a fixed
number of times in a specific order. The number of rule repetitions depends on a temporal
property; it is typically two or three.

For each lasso pattern we encode its schema in SMT and check its satisfiability. As ELTLgt
formulas are negations of specifications, an SMT model gives us a counterexample. If no
schema is satisfiable, the temporal property holds true.
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Figure 5: Ben-Or’s alorithm as PTA with resilience condition n > 3t At >0At > f > 0.

Table 2: The rules of the PTA from Figure 5. We omit rules r, 15, 113, r14 as they have the
trivial guard (¢rue) and no update.

Rule Guard Update
T3 true To++
T4 true T+
5 To+x1 > n—t—f To > (n—|—t>/2 f Yo++
¢  To+T1 > n—t—f x> (n+t)/2—f Y+
L To+m = n—t—f > (n=3t)/2—f AN x> (n=3t)/2—f yo++

v > (n=3t)/2—f AN yo=>t+1-f —
Yo > (n+t)/2—f —
yr > (n=3t)/2—f AN y>n-2t—f-1 —
yl > (n+t)/2 - f —

>(n=3t)/2—f AN yp>t+l—f —

3 Yo+y1+y2
9 Yo+y1+y2
o Yot+yit+ye
1 Yot+yit+ye
T2 Yotyitye
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§33|33
NMTLN&
>>>>>58

5. PARAMETERIZED VERIFICATION OF ASYNCHRONOUS RANDOMIZED MULTI-ROUND
ALGORITHMS

5.1. Probabilistic Threshold Automata. Randomized algorithms typically have an un-
bounded number of asynchronous rounds and randomized choices. Probabilistic threshold
automata (PTAs), introduced in [12], are extensions of asynchronous threshold automata
that allow formalizing these features. A PTA modelling Ben-Or’s algorithm from Figure 3
is shown in Figure 5. The behaviour of a process in a single round is modelled by the solid
edges. Note that in this case threshold guards should be evaluated according to the values
of shared variables, e.g., 19 and z1, in the observed round. The dashed edges model round
switches: once a process reaches a final location in a round, it moves to an initial location of
the next round. The coin toss is modelled by the branching rule rjg: a process in location
SP can reach either location CTy or location C'T} by moving along this fork, both with
probability 1/2.

5.2. Unboundedly many rounds. In order to overcome the issue of unboundedly many
rounds, we prove that we can verify PTAs by analysing a one-round automaton that fits in
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the framework of Section 4. In [12], we prove that one can reorder the transitions of any
fair execution such that their round numbers are in a non-decreasing order. The obtained
ordered execution is stutter-equivalent to the original one. Thus, both executions satisfy
the same LTL.x properties over the atomic propositions of one round. In other words, the
distributed system can be transformed to a sequential composition of one-round systems.

The main problem with isolating a one-round system is that the consensus specifications
often talk about at least two different rounds. In this case we need to use round invariants
that imply the specifications. For example, if we want to verify agreement, we have to check
that no two processes decide different values, possibly in different rounds. We do this in
two steps: (i) we check the round invariant that no process changes its decision from round
to round, and (ii) we check that within a round no two processes disagree.

5.3. Probabilistic properties. The semantics of a probabilistic threshold automaton is
an infinite-state Markov decision process (MDP), where the non-determinism is traditionally
resolved by an adversary. In [12], we restrict our attention to so-called round-rigid adver-
saries, that is, fair adversaries that generate executions in which a process enters round r+1
only after all processes finished round r.

Verifying almost-sure termination under round-rigid adversaries calls for distinct ar-
guments. Our methodology follows the lines of the manual proof of Ben-Or’s consensus
algorithm by Aguilera and Toueg [3]. However, our arguments are not specific to Ben-Or’s
algorithm, and apply to other randomized distributed algorithms (see Table 3). Compared
to their paper-and-pencil proof, the threshold automata framework required us to provide a
more formal setting and a more informative proof, also pinpointing the needed hypotheses.
The crucial parts of our proof are automatically checked by the model checker ByMC.

5.4. Weak adversaries. The approach from Section 5.3 leaves a gap between round-rigid
adversaries and the classed adversary definitions we find in distributed computing literature.
This problem is addressed in [13] where the standard notion of a “weak adversary” is
considered. Weak adversaries pose a formalization challenge in the counter system semantics
of TAs. The reason is that these adversaries are defined over individual processes and
messages; notions that do not exist in the counter system representation. As a result, a
more concrete semantics of threshold automata was introduced, which explicitly captures
processes, sets of received messages for each process, and threshold guards over the number
of specific messages in these sets. For this semantics, [13] contains a reduction theorem from
weak adversaries to round-rigid adversaries. While [13] does not contain a formalization of
the abstraction step from the explicit model to (send) threshold automata, we conjecture
that such a proof can be done based on the ideas that underly Section 6.1. Hence, verification
results of ByMC can be lifted to algorithms scheduled by weak adversaries.

6. MODELING

6.1. From Pseudocode to Threshold Automata. Observe that the parameterized ver-
ification approaches, presented in Sections 3, 4, and 5, take as input threshold automata,
whose guards are evaluated over the global state (the sent messages). When modeling
threshold-guarded distributed algorithms with verification in mind, we are faced with a
formalization gap between the threshold automata and the algorithm descriptions given in
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terms of (pseudo) code, which is supposed to run locally on a node and contains guards over
the local state (the received messages). For many cases, this formalization gap is easy to
overcome, i.e., the translation from (pseudo) code to a threshold automaton is immediate,
and can easily be done manually. However, for some algorithms this is not the case. Con-
sider the consensus algorithm by Ben-Or given in Figure 3. The main challenge we faced
in the formalization is to express the path that leads to the coin toss in line 16. Because it
is in an “else” branch of an if statement with a “> condition” over local variables, reaching
the coin toss means that a local variable is a “< condition”. In other words, if we were to
rewrite the pseudo code as a set of guarded commands, the coin toss would be guarded by
a “< condition” over receive variables. However, expressing the global constraints that can
lead to the coin toss is captured by the rule ryg, given in Figure 5, which in fact represents a
“> condition” over global variables. This translation is non-trivial, and when done manually,
requires intuition on the operation of the algorithm. As a result, in writing our benchmarks,
we observed that when done manually, this translation is error-prone.

In [86, 87], we address the problem of automating the translation from pseudo code to a
threshold automaton, for both asynchronous and synchronous threshold-guarded distributed
algorithms. For randomized algorithms, whose local control flow motivated this line of
work, the same results as for the asynchronous algorithms apply. In order to automate
the translation, we need to formalize the local transition relation expressed by the pseudo
code. To this end, we introduce a variant of threshold automata, called receive threshold
automata, whose rules are guarded by expressions over the local receive variables.

Let nr;(m) denote such a receive variable that encodes how many messages of type m
process i has received and let ns(m) denote a send variable, that stores the number of sent
messages of that type. Translating guards over receive variables nr;(m) to guards over send
variables ns(m), for each message type m, is based on quantifier elimination for Presburger
arithmetic [75, 31, 76]. In order to obtain the most precise guards over the send variables,
in the quantifier elimination step, the guards over the receive variables are strengthened
by an environment assumption Env. As we will see in Section 6.2 below, the environment
assumption encodes the relationship between the receive and send variables, which depends
on the degree of synchrony and the fault model. Given a guard ¢ over the receive variables,
a guard @ over the send variables can be computed automatically by applying quantifier
elimination to the formula ¢’ = 3nr;(mg) ... 3Inr;(my) (© A Env), where my, ..., m; are the
message types that define the messages exchanged in the execution of the algorithm. This
produces a quantifier-free formula ¢ over the send variables.

The translation procedure was implemented in a prototype [86, 87] that automatically
generates guards over the send variables, by using Z3 [33] to automate the quantifier elimi-
nation step. By applying the translation procedure to the guard of every rule in the receive
threshold automaton given as input, a threshold automaton with no receive variables is
obtained automatically. In [86, 87], it was shown that the translation procedure based on
quantifier elimination is sound for both the asynchronous and synchronous case. This means
that a system of n copies of an automatically generated threshold automaton over the send
variables is an overapproximation of a system of n copies of the receive threshold automa-
ton given as input. For a class of distributed algorithms that captures typical distributed
algorithms found in the literature, it was also shown to be complete.

The translation procedure based on quantifier elimination thus closes the formaliza-
tion gap between the original description of an algorithm (using received messages) and
the threshold automaton of the algorithm, given as an input to a verification tool. More
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precisely, parameterized verification of threshold-guarded distributed algorithms, starting
with a formal model of the pseudocode given by a receive threshold automaton, can be
fully automated by: (i) automatically producing a formal model suitable for verification by
applying the translation procedure based on quantifier elimination and (ii) automatically
verifying its correctness by applying existing tools.

6.2. Modeling Faults in Threshold Automata. To model the behavior that the faults
introduce, when producing a (receive) threshold automaton for a given algorithm, we have to
capture the semantics of executing the code on a faulty process. To capture these semantics
in the automaton, we typically need to introduce additional locations or rules, depending
on the fault model. Also, depending on the fault model, we have different constraints
on the values of the receive and send variables, which are encoded by an environment
assumption Env (required to obtain the more precise guards after the quantifier elimination
discussed above).

We consider two types of faults in this paper — crash and Byzantine faults. In the
case of crash faults, a process may crash in the middle of a send-to-all operation, which
results in the message being sent only to a subset of processes. In the case of Byzantine
faults, no assumptions are made on the internal behavior of the faulty processes. That is,
Byzantine-faulty processes may send any message in any order to any process or fail to send
messages.

6.2.1. Crash Faults. Crash-faulty processes stop executing the algorithm prematurely and
cannot restart. To model this behavior in a threshold automaton, we add so-called “crash”
locations to which processes move from the “correct” locations. Processes that move to the
“crash” locations remain there forever. In addition, we introduce send variables ns;(m), for
each message type m, that count the number of messages of type m sent by processes which
are crashing, i.e., by processes that are moving from a “correct” to a “crashed” location.

The threshold automaton thus models the behavior of both correct and faulty processes
explicitly. This allows us to express so-called uniform properties that also refer to states of
faulty processes.! The environment assumption Env imposes constraints on the number of
processes allowed to populate the “crash” locations, and on the number of received messages
of each message type m. In particular, environment assumption Env requires that there are
at most f processes in the “crash” locations, where f is the number of faulty processes.
Additionally, for each message type m, the number of received messages of type m, stored
in the receive variable nr;(m) does not exceed the number of messages of type m sent by
the correct and the crash-faulty processes, stored in the send variables ns(m) and nsy(m),
respectively.

In the synchronous case, where there exist strict guarantees on the message delivery, the
environment assumption Env also bounds the value of the receive variables from below: the
constraint ns(m) < nr;(m) encodes that all messages sent by correct processes are received
in the round in which they are sent.

Ixor instance, in consensus “uniform agreement states that “no two processes decide on different values”,
while (non-uniform) “agreement” states that “no two correct processes decide on different values”.
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Table 3: Asynchronous fault-tolerant distributed algorithms that are verified by different
generations of ByMC. For every technique and algorithm we show, whether the
technique could verify the properties: safety (S), liveness (L), almost-sure termi-
nation under round-rigid aversaries (RRT), or none of them (-).

Algorithm CA+SPIN[51] CA+BDD[59] CA+SAT[59] SMT-S [56] SMT-L [54] SMT+MR[12]
FRB [27] S+L S+L S S S+L -
STRB [83] S+L S+L S S S+L -
ABA [19] - S+L - S S+L -
NBACG [46] - - - S S+L -
NBACR [77] - - - S S+L -
cBc [70] - - - S S+L -
CF1s [36] - S+L — S S+L -
cics [20] - - — S S+L -
BOSCO [81] - - — S S+L -
Ben-Or [§] - - - - - S+RRT
RABC [18] - - - - - S+RRT
kSet [69] - - - - - S+RRT
RS-BOSCO [81] - - - - - S+RRT

6.2.2. Byzantine Faults. To model the behavior of the Byzantine-faulty processes, which
can act arbitrary, no new locations and rules are introduced in the threshold automaton.
Instead, the threshold automaton is used to model the behavior of the correct processes, and
the effect that the Byzantine-faulty processes have on the correct ones is captured in the
guards and environment assumption. The number of messages sent by the Byzantine-faulty
processes is overapproximated by the parameter f, which denotes the number of faults. That
is, in the environment assumption Env, we have the constraint nr;(m) < ns(m) + f, which
captures that the number of received messages of type m does not exceed ns(m) + f, which
is an upper bound on the number of messages sent by the correct and Byzantine-faulty
processes.

Since we do not introduce locations that explicitly model the behavior of the Byzantine-
faulty processes, the threshold automaton is used to model the behavior of the n — f correct
processes only.2 In addition to the above constraint that bounds the number of received
messages from above, the environment assumption for the synchronous case also contains
the constraint ns(m) < nr;(m). It is used to bound the number of received messages from
below, and ensure that all messages sent by correct processes are received.

7. BYMC: BYZANTINE MODEL CHECKER

7.1. Overview of the techniques implemented in ByMC. Table 3 shows coverage of
various asynchronous algorithms with the techniques that are implemented in ByMC. In
the following, we give a brief description of these techniques.

2As classically no assumptions are made on the internals of Byzantine processes, it does not make sense
to consider uniform properties. Thus we also do not need Byzantine faults explicit in the model.
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Table 4: Synchronous fault-tolerant distributed algorithms verified with the bounded model
checking approach from [84]. With v' we show that: the SMT based procedure
finds a diameter bound with Z3 (DIAM+z3) and CVC4 (DIAM+CVC4); there is a theo-
retical bound on the diameter (DIAM+THM). We verify safety (S) by bounded model
checking with Z3 (BMC+z3) and CVC4 (BMC+CVC4).

Algorithm DIAM+Z3 DIAM+CVC4 DIAM+THM BMC+Z3 BMC+CVC4
FloodSet [67] v v - S S
FairCons [78] v v - S S
PhaseKing [11] v v - S S
PhaseQueen [10] v v - S S
HybridKing [14] v v - S S
ByzKing [14] v v - S S
OmitKing [14] v v - S S
HybridQueen [14] - — - — -
ByzQueen [14] v v - S S
OmitQueen [14] v v - S S
FloodMin [67] v v - S S
FloodMinOmit [14] v v - S S
kSetOmit [78] - - - - -
RB [83] v v v S S
HybridRB [14] v v v S S
OmitRB [14] v v v S S

We started the development of ByMC in 2012. We extended the classic {0,1,00}-
counter abstraction to threshold-guarded algorithms [51, 50, 45]. Instead of using the pre-
defined intervals [0,1) and [1,00), the tool was computing parametric intervals by simple
static analysis, for instance, the intervals [0,1), [1,t + 1), [t + 1,n — t), and [n — ¢,00).
ByMC was automatically constructing the finite-state counter abstraction from protocol
specifications in Parameterized Promela. This finite abstraction was automatically checked
with Spin [49]. As this abstraction was typically too coarse for liveness checking, we have
implemented a simple counterexample-guided abstraction refinement loop for parameterized
systems. This technique is called CA+SPIN in Table 3.

Spin scaled only to two broadcast algorithms. Thus, we extended ByMC with the
abstraction/checking loop that used nuXmv [25] instead of Spin. This technique is called
CA+BDD in Table 3. Although this extension scaled better than CA+SPIN, we could only
check two more benchmarks with it. Detailed discussions of the techniques CA+SPIN and
CA+BDD can be found in [45, 57].

By running the abstraction/checking loop in nuXmv, we found that the bounded model
checking algorithms of nuXmv could check long executions of our benchmarks. However,
bounded model checking in general does not have completeness guarantees. In [55, 59],
we have shown that the counter systems of (asynchronous) threshold automata have com-
putable bounded diameters, which gave us a way to use bounded model checking as a com-
plete verification approach for reachability properties. This technique is called CA+SAT in
Table 3. Still, the computed upper bounds were too high for achieving complete verification.

The SMT-based techniques of Section 4 are called SMT-S (for safety) and SMT-L (for
liveness) in Table 3. These techniques accept either threshold automata or Parametric

16



Promela on their input. As one can see, these techniques are the most efficient techniques
that are implemented in ByMC. More details on the experiments can be found in the tool
paper [58].

Finally, the technique for multi-round randomized algorithms is called SMT-MR in
Table 3. This technique is explained in Section 5.

7.2. Model checking synchronous threshold automata. The bounded model checking
approach for STA introduced in Section 3 is not yet integrated into ByMC. It is implemented
as a stand-alone tool, available at [1]. In [84], we encoded multiple synchronous algorithms
from the literature, such as consensus [67, 78, 11, 10, 14], k-set agreement (from [67], whose
pseudocode is given in Figure 2 and [78]), and reliable broadcast (from [83, 14]) algorithms.
We use Z3 [71] and CVC4 [7] as back-end SMT solvers. Table 4 gives an overview of the
verified synchronous algorithms. For further details on the experimental results, see [84].

8. TOWARDS VERIFICATION OF TENDERMINT CONSENSUS

Tendermint consensus is a fault-tolerant distributed algorithm for proof-of-stake blockchains [23].
Tendermint can handle Byzantine faults under the assumption of partial synchrony. It is
running in the Cosmos network, where currently over 100 validator nodes are committing
transactions and are managing the ATOM cryptocurrency [22].

8.1. Challenges of verifying Tendermint. Tendermint consensus heavily relies on thresh-
old guards, as can be seen from its pseudo-code in [23][Algorithm 1]. For instance, one of
the Tendermint rules has the following precondition:

upon (PROPOSAL, h,, round,, v,*) from proposer(h,, round,)
AND 2f + 1 (PREVOTE, h,,, round,, id(v))
while walid(v) A step, > prevote for the first time (8.1)

The rule (8.1) requires two kinds of messages: (1) a single message of type PROPOSAL
carrying a proposal v from the process proposer(h,, round,) that is identified by the current
round round, and consensus instance hy,, and (2) messages of type PREVOTE from several
nodes. Here the term 2F + 1 (taken from the original paper) in fact does not refer to a
number of processes. Rather, each process has a voting power (an integer that expresses
how many votes a process has), and 2F +1 (in combination with N = 3T+ 1) expresses that
nodes that have sent PREVOTE have more than two-thirds of the voting power. Although
this rule bears similarity with the rules of threshold automata, Tendermint consensus has
the following features that cannot be directly modelled with threshold automata:

(1) In every consensus instance h, and round round,, a single proposer sends a value that
the nodes vote on. The identity of the proposer can be accessed with the function
proposer(hy, roundy). This feature breaks symmetry among individual nodes, which is
required by our modelling with counter systems. Moreover, the proposer function should
be fairly distributed among the nodes, e.g., it can be implemented with round robin.

(2) Whereas the classical example algorithms in this paper count messages, Tendermint
evaluates the voting power of the nodes from which messages where received. This adds
an additional layer of complexity.
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(3) Liveness of Tendermint requires the distributed system to reach a global stabilization pe-
riod, when every message could be delivered not later than after a bounded delay. This
model of partial synchrony lies between synchronous and asynchronous computations
and requires novel techniques for parameterized verification.

8.2. Checking parameterized one-round safety with ByMC. While we are not able
to verify the complete Tendermint consensus algorithm in ByMC, we use ByMC to verify
its one-round safety in the parameterized case. We do this in two steps. First, we take
the TLA™ specification [89] and manually abstract it, so the specification becomes struc-
turally similar to a counter system of threshold automata. Second, we manually construct
a threshold automaton from this TLAT specification?.

We find this two-step approach easier to implement. TLA™ is a general specification
language [63], so it is much easier to write the first specification in TLA™, rather than to
write down a threshold automaton right away. Additionally, we first debugged our TLA™
specification with the TLC model checker [92]. Once it worked for small values of the
parameters, we did the translation to a threshold automaton. The TLA™ specification can
be found in Appendix A.

The following snippet encodes the rule (8.1) discussed above, and indeed is a threshold-
guarded rule that encodes a transition from a process in location “prevote” to location
“precommit”, provided enough “propose” and “prevote” messages are received:

Line36(v) =
nproposals[v] > 0
nprevotes[v] + F > 2+ T + 1
counters|“prevote”] > 0
nprecommits’ = [nprecommits EXCEPT ![v] = @ + 1]

counters’ = [counters EXCEPT ! [“prevote”] =@ — 1, !
‘precommit’] = Q + 1]

A UNCHANGED (nproposals, nprevotes)

>>> > >

[

We translate the above rule into the following rules of a threshold automaton (an
explanation of the syntax can found in [58]):

3: locPrevote —-> locPrecommit
when (nprop0 >= 1 && nprevote0 >= 2 * T + 1 - F)

do {
nprecommitO’ == nprecommitO + 1;
nprecommitAll’ == nprecommitAll + 1;

unchanged (nprop0, npropl,
nprevoteO, nprevotel, nprevoteNil, nprevoteAll,
nprecommitl, nprecommitNil);
3
4: locPrevote -> locPrecommit
when (npropl >= 1 && nprevotel >= 2 *x T + 1 - F)

do {
nprecommitl’ == nprecommitl + 1;
nprecommitAll’ == nprecommitAll + 1;

3The TLAT specification and the threshold automaton are publicly available at:
https://github.com/konnov/fault-tolerant-benchmarks/tree/master/lmcs20.
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unchanged (nprop0, npropi,
nprevoteO, nprevotel, nprevoteNil, nprevoteAll,
nprecommitO, nprecommitNil);
+;

The standard TLA™ model checker TLC can check the specification for N < 20 in
reasonable time. We checked the safety of consensus in one round: No two correct processes
decide differently in the same round. As TLC is an explicit-state model checker, it did not
scale to the value of N = 125, which is the current number of validators in the Cosmos
main chain. In contrast, we have verified this property with ByMC in the parameterized
case in 2 seconds.

In this model of the algorithm, the one-round safety is satisfied under the assumption of
N =3-T+1AT > F. When we change the assumption to either N >3- T+1AT > F, or
N =3-T+1, ByMC produces counterexamples to the property. The actual implementation
of Tendermint is different, as it dynamically recomputes the voting powers of the validators
and thus it recomputes the thresholds. However, we follow the assumptions of [23] in our
modeling.

We observe that our manual abstraction of the TLA™ specification into a threshold au-
tomaton is rather mechanical. This abstraction could be done in a fully automatic pipeline:
From TLAT to a receive threshold automaton, and from a receive threshold automaton to
a threshold automaton (see Section 6.1). We are planning to use automatic abstractions to
build a bridge between ByMC and Apalache — a symbolic model checker for TLA™ [52].

8.3. Open problems for parameterized verification of multi-round safety. To ver-
ify multi-round safety of Tendermint, we would like to invoke a reduction argument similar
to the one explained in Section 5.2. However, Tendermint contains the following rule that
prevents us from directly applying the reduction result:

upon (PROPOSAL, h,,, round,, v, vr) from proposer(h,, round,)
AND 2f + 1(PREVOTE, hy,, vr, id(v))
while step, = propose A (vr > 0 A vr < round,)
(8.2)

The rule in Equation (8.2) allows a process to make a step by using messages from a past
round vr. As a result, Tendermint is not communication-closed [40, 28, 32]. Extending the
reduction argument to multi-round systems that are not communication closed is subject
to our ongoing work.

9. CONCLUSIONS

Practical approaches to computer-aided verification of distributed algorithms and systems
is a lively research area as well: Approaches range from mechanized verification [48, 90,
80] over deductive verification [35, 9, 73, 38, 32] to automated techniques [17, 60, 5, 44].
In our work, we follow the idea of identifying fragments of automata and logic that are
sufficiently expressive for capturing interesting algorithms and specifications, as well as
amenable for completely automated verification. We introduced threshold automata for
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that and implemented our verification techniques in the open source tool ByMC [58]. By
doing so, we verified several challenging distributed algorithms; most of them were verified
for the first time.

The threshold automata framework has proved to be both of practical relevance as
well as of theoretical interest. There are several ongoing projects that consider automatic
generation of threshold automata from code, complexity theoretic analysis of verification
problems, and more refined probabilistic reasoning. The restrictions posed on the form of
allowed threshold guards and the corresponding actions, are inspired by the typical forms
seen in the benchmarks. The work presented in [61] explores various relaxations of the
standard restrictions, such as non-linear threshold guards, guards that compare shared vari-
ables, decrementing shared variables, or incrementing them inside self-loops. For each of
these theoretical extensions, the authors investigate the existence of a bounded diameter
and decidability of reachability properties. For the standard setting, a systematic analysis
of computational complexity of verification and synthesis in threshold automata has been
conducted in [6]. The authors express the reachability relation as a formula in existential
Presburger arithmetic, and therefore prove that coverability and reachability problems, as
well as model checking of ELTLgt properties are NP-complete, while synthesizing threshold
guards is E?)—complete. An extension of the work from Section 5 has been explored in [13],
where the setting of the round-rigid adversaries has been lifted to a broader domain, namely,
to the more natural weak adversaries. The paper introduces a new (threshold automata-
based) modeling that distinguishes individual processes, and it presents a reduction theorem
claiming that for every weak adversary there exists a round-rigid one with the same proper-
ties. This implies that the verification results from Section 5 and the lower part of Table 3
hold under a wider class of adversaries than claimed.
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APPENDIX A. ABSTRACTION OF TENDERMINT CONSENSUS ROUND IN TLA+

MODULE Tendermint_lround_safety
*

+ This is a very simplified version of Tendermint that is tuned for safety checking

* with counter systems :

The simplifications are as follows :

— the model is completely asynchronous, as we are only concerned with safety
— we only consider binary consensus

— we only consider one height and one round

— we use symmetry arguments to replace sets of messages with message counters
— the proposer is modeled as a non-deterministic assignment in the initial state

— there are no hashes and no validity checks

A more complete specification for multiple rounds can be found at :

¥ X X X X X X ¥ X ¥ ¥ %

— as we are modeling only one round, there is no locking mechanism in the specification

* https:// github.com /informalsystems/tendermint-rs/blob/master /docs/spec/tendermint-fork-

cases/ TendermintAcc3.tla
: The original specification of Tendermint can be found at :
: https: /] arziv.org /abs/1807.04938
Ilgor Konnov, Marijana Lazic, Ilina Stoilkovska, Josef Widder, 2020

EXTENDS Integers

CONSTANTS N, the number of processes in the system
T, the threshold on the number of faults
F the number of actual Byzantine faults

the Tendermint algorithm is specified under this assumption

ASSUME (N=3xT+1AF < TAF >0)

Locs = {
“propose”; “prevote”, “precommit”’, “decide0”, “decide1”, “nodecision”
}
Nil £ “nil”
Values = {07, “17} values 0 and 1

ValuesExt = Values U { Nil}

VARIABLES
counters, the counter for every location: a function from Locs to Naturals
nproposals, the numbers of proposals sent around, for values 0 and 1
nprevotes, the numbers of prevotes sent around, for values 0, 1, and Nil
nprecommits the numbers of prevotes sent around, for value 0, 1, and Nil
Init =

initially, all but Byzantine processes are in the “propose” state
A counters = [l € Locs — 1F | = “propose” THEN N — F' ELSE 0]
25



the proposer can send 0 or 1 (or both, when it is faulty)
A nproposals € [Values — {0, 1}]
A nprevotes = [v € ValuesExt — 0]
A nprecommits = [v € ValuesExt — 0]

The action in line 22.
Line 28 is the same as Line22 in our safety abstraction.
Line22(v) =

A nproposals[v] > 0

A counters[“propose”] > 0

A V nprevotes’ = [nprevotes EXCEPT ![v] = @ + 1] line 24
V nprevotes’ = [nprevotes EXCEPT ![Nil] = @Q + 1] line 26

A counters’ = [counters EXCEPT ![“propose”] = @ — 1,

![“prevote”] = @ + 1]
A UNCHANGED (nproposals, nprecommits)

Line36(v) =

note that line 36 also works for step_p = precommit,

but it effectively does nothing in our safety abstraction.
A nproposals[v] > 0
A nprevotes[v] + F > 2% T +1
A counters[“prevote”] > 0
A nprecommits’ = [nprecommits EXCEPT ![v] = @ + 1]
A counters’ = [counters EXCEPT ![“prevote”] = @ — 1,

[["precommit’] = @ + 1]

A UNCHANGED (nproposals, nprevotes)

Lined4 =
A nprevotes[Nil] + F > 2« T + 1
A counters[‘prevote”] > 0
A nprecommits’ = [nprecommits EXCEPT ![Nil] = @Q + 1]
A counters’ = [counters EXCEPT ![‘prevote”] = @ — 1,
I["precommit’] = @ + 1]
A UNCHANGED (nproposals, nprevotes)

Line49(v) =

A nproposals[v] > 0

A nprecommits[v] + F > 2 T + 1

A Jloc € {“propose”, “prevote”, “precommit”} :
LET decision =

IF v = “0” THEN “decide0” ELSE “decidel”
IN
A counters[loc] > 0
A counters’ = [counters EXCEPT ![loc] = @ — 1,
![decision] = @ + 1]

A UNCHANGED (nproposals, nprevotes, nprecommits)

OnTimeoutPropose 2
A counters[“propose”] > 0
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A nprevotes’ = [nprevotes EXCEPT ![Nil] = @Q + 1]

A counters’ = [counters EXCEPT ![“propose”] = @ — 1,
![“prevote”] = @ + 1]

A UNCHANGED (nproposals, nprecommits)

Line340nTimeoutPrevote =
A nprevotes[“0”] + nprevotes[*1”] + nprevotes[Nil]| + F > 2% T + 1
A counters[“prevote”] > 0
A nprecommits’ = [nprecommits EXCEPT ![Nil] = @Q + 1]
A counters’ = [counters EXCEPT ![“prevote”] = @ — 1,
[["precommit’] = @ + 1]
A\ UNCHANGED (nproposals, nprevotes)

Lined7 OnTimeoutPrecommit =
A nprecommits[“0”] + nprecommits[“1”] + nprecommits[Nil] + F > 2+ T + 1
A counters[“‘precommit”] > 0
A counters’ = [counters EXCEPT ![“precommit’] = @ — 1,
I[*nodecision”] = @ + 1]
A UNCHANGED (nproposals, nprevotes, nprecommits)

Next =
vV dv € Values : Line22(v)
V 3w € Values : Line36(v)
V dov € Values : Lined4
V 3w € Values : Lined9(v)
Vv OnTimeoutPropose
V Line34 OnTimeoutPrevote
V Lined7 OnTimeoutPrecommit
V UNCHANGED (counters, nproposals, nprevotes, nprecommits)

RoundAgreementInv =
counters[“decide0”] = 0 V counters|[“decide1”] = 0

This work|257licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
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