
�
�
�
��
��

��
� �
��	
���� �

�
��� 

�
��
	
�����������

��

��
��
� �

���������

�
�
�
�
�
��

������ �

�
�
�

SMT and POR beat Counter Abstraction:

Parameterized Model Checking of

Threshold-Based Distributed Algorithms
?

Igor Konnov, Helmut Veith, and Josef Widder

TU Wien (Vienna University of Technology)

Abstract. Automatic verification of threshold-based fault-tolerant dis-
tributed algorithms (FTDA) is challenging: they have multiple parame-
ters that are restricted by arithmetic conditions, the number of processes
and faults is parameterized, and the algorithm code is parameterized due
to conditions counting the number of received messages. Recently, we in-
troduced a technique that first applies data and counter abstraction and
then runs bounded model checking (BMC). Given an FTDA, our tech-
nique computes an upper bound on the diameter of the system. This
makes BMC complete: it always finds a counterexample, if there is an
actual error. To verify state-of-the-art FTDAs, further improvement is
needed. In this paper, we encode bounded executions over integer coun-
ters in SMT. We introduce a new form of o✏ine partial order reduction
that exploits acceleration and the structure of the FTDAs. This aggres-
sively prunes the execution space to be explored by the solver. In this
way, we verified safety of seven FTDAs that were out of reach before.

1 Introduction

In recent work [28] we applied bounded model checking to verify reachabil-
ity properties of threshold-based fault-tolerant distributed algorithms (FTDA),
which are parameterized in the number of processes n and the fraction of faults t,
e.g., n > 3t. Moreover, we showed how to make bounded model checking com-
plete in the parameterized case. In particular, we considered counter systems
where we record for each local state, how many processes are in this state. We
have one counter per local state `, denoted by [`]. A process step from local
state ` to local state `0 is modeled by decrementing [`] and incrementing [`0].
When � processes perform the same step one after the other, we allow the pro-
cesses to do the accelerated step that instantaneously changes two counters by �.
The number � is called acceleration factor, it can vary within a single run.

As we focus on FTDAs, we consider specific counter systems, namely those
defined by threshold automata. Here, transitions are guarded by threshold guards

that compare a shared integer variable to a linear combination of parameters,
e.g., x � n� t or x < t, where x is a shared variable and n and t are parameters.

? Supported by the Austrian National Research Network S11403 and S11405 (RiSE),
and project P27722 (PRAVDA) of the Austrian Science Fund (FWF).



Completeness of the method [28] with respect to reachability is shown by
proving a bound on the diameter of the accelerated system. Inspired by Lam-
port’s view of distributed computation as partial order on events [30], our method
is in essence an o✏ine partial order reduction. Instead of pruning executions that
are “similar” to ones explored before [22,43,38], we use the partial order to show
(o✏ine) that every run has a similar run of bounded length. Interestingly, the
bound is independent of the parameters. In combination with the data abstrac-
tion of [25], we obtained the following automated method [28]:

1. Apply a parametric data abstraction to the process code to get a finite state
process description, and construct the threshold automaton (TA) [25,27].

2. Compute the diameter bound, based on the control flow of the TA.
3. Construct a system with abstract counters, i.e., a counter abstraction [39,25].
4. Perform SAT-based bounded model checking [7,16] up to the diameter bound,

to check whether bad states are reached in the counter abstraction.
5. If a counterexample is found, check its feasibility and refine, if needed [13,25].

While this allowed us to automatically verify several FTDAs not verified
before, there remained two bottlenecks for scalability to larger and more complex
protocols: First, due to abstraction there were spurious counterexamples. Second,
counter abstraction works well in practice only for processes with a few dozens
of local states, but it does not scale to hundreds of local states; partly because
many di↵erent interleavings result in a large search space.

To address these bottlenecks, we make two crucial contributions in this paper:
First, to eliminate one of the two sources of spurious counterexamples, namely,
the non-determinism added by abstract counters, we do bounded model checking
using SMT solvers with linear integer arithmetic on the accelerated system,
instead of SAT-based bounded model checking on the counter abstraction.

Second, we reduce the search space dramatically: We introduce the notion
of an execution schema that is defined as a sequence of local rules of the TA.
By assigning to each rule of a schema an acceleration factor (possibly 0), one
obtains a run of the counter system. Hence, each schema represents infinitely
many runs. We show how to construct a set of schemas whose set of reachable
states coincides with the set of reachable states of the accelerated counter system.

Our construction can be seen as an aggressive partial order reduction, where
each run has a similar run generated by a schema from the set. To show this,
we capture the guards that are locked and unlocked in a locking context. Our
key insight is that a bounded number of transitions changes the context in each
run. For example, of all transitions increasing a variable x, at most one makes
x � n � t true, and at most one makes x < t false (the parameters n and t are
fixed in a run). We fix those transitions that change the context, and apply the
ideas of partial order reduction to the subexecutions between these transitions.

Our experiments show that SMT solvers and schemas outperform SAT solvers
and counter abstraction in parameterized verification of threshold-based FTDAs.
Indeed, we verified safety of complicated FTDAs [37,40,23,41,10,18] that have
not been automatically verified before. In addition we achieved dramatic speedup
and reduced memory footprint on previously verified FTDAs [9,42,12] (cf. [28]).

2



`1

`2

`3 `4 `5

r3 : '1 7! x++

r2 : '2 7! x++

r1 : true 7! x++

r4 : '1 7! y++

r5 : '2 7! y++

r6 : '3

Fig. 1. An example threshold automaton.

2 A Motivating Example

Figure 1 is an example of a threshold automaton TA over two shared variables x
and y and parameters n, t, and f . It is inspired by the distributed asynchronous
broadcast protocol from [9], where n � f correct processes concurrently exe-
cute TA, and f processes are Byzantine. As is typical for FTDAs, the parameters
must satisfy a resilience condition, e.g., n > 3t^ t � f � 0 stating that less than
a third of the processes is faulty. The circles depict the local states `1, . . . , `5,
two of them are the initial states `1, `2. The edges depict the rules r1, . . . , r6 la-
beled with guarded commands ' 7! act, where ' is one of the threshold guards
“'1 : x � d(n+ t)/2e�f”, “'2 : y � (t+1)�f”, and “'3 : y � (2t+1)�f”, and
an action act increases the shared variables x or y by one, or zero (as in rule r6).

Every local state `i has a non-negative counter [`i] that represents the
number of processes in `i. Together with the values of x, y, n, t, and f , the
values of the counters constitute a configuration of the system. In the initial
configuration there are n�f processes in initial states, i.e., [`1]+[`2] = n�f ,
and the other counters and the shared variables x and y are zero.

The rules define the transitions of the counter system. For instance, according
to the rule r2, if in the current configuration the guard y � t+ 1� f holds true
and [`1] � 5, then five processes can instantaneously move out of the local
state `1 to the local state `3, and increment x as prescribed by the action of r2.
This results in increase of x and the counter [`3] by five, and counter [`1] is
decreased by five. When, as in this example, rule r2 is conceptually executed
by 5 processes, we denote this transition by r52.

We now consider the runs more closely. As initially x and y are zero, threshold
guards '1, '2, and '3 evaluate to false. As rules may only increase variables,
these guards may eventually become true. (In this example we do not consider
guards like x < t that are initially true and become false, although we treat
them later.) In fact, initially only r1 is unlocked. Because r1 increases x, it may
unlock '1. Thus r4 becomes unlocked. Rule r4 increases y and thus repeated
execution of r4 (by di↵erent processes) first unlocks '2 and then '3. We call
the set of conditions which evaluate to true in a configuration the context. For
our example we observe that each run goes through the following sequence of
contexts {}, {'1}, {'1,'2}, and {'1,'2,'3}. In fact, the sequence of contexts
in an execution of a TA is always monotonic.

3



The conjunction of the guards in the context {'1,'2} implies the guards of
the rules r1, r2, r3, r4, r5; we say they are unlocked in the context. A technical
challenge addressed in this paper is to show that a fixed sequence of these rules
can “capture” all schedules allowed in this context. To this end we analyze
the control flow of the TA. Our example is acyclic up to self-loops, and thus the
control flow establishes a partial order on the rules. We show in this paper that we
can use any linear extension of this partial order as the required fixed sequence,
e.g., r1 < r2 < r3 < r4 < r5. (In this example we do not deal with loops,
although we handle them in Section 4.1.) It remains to deal with transitions
that actually change the context. In our example, only r4 or r5 can change the
context from {'1,'2} to {'1,'2,'3}. Therefore we append r4, r5 —that change
the context— to the fixed sequence for the context. Thus, we obtain the following
schema, where inside the curly brackets we give the contexts, and between two
contexts the fixed sequences of rules. (We discuss the underlined rules below.)

S = {} r1, r1 {'1} r1, r3, r4, r4 {'1,'2}
r1, r2, r3, r4, r5, r4, r5 {'1,'2,'3} r1, r2, r3, r4, r5, r6 {'1,'2,'3}

We now show how each schedule is captured by schema S. Consider, e.g., a
schedule from the initial state �0 with n = 5, t = f = 1, [`1] = 1, and [`2] = 3.
We are interested in whether there is a schedule that reaches a configuration,
where all processes are in state `5. Consider the following schedule:

⌧ = r11,

⌧1

r11|{z}
t1

, r13, r
1
1

⌧2

, r14|{z}
t2

,

⌧3

r15|{z}
t3

, r16, r
1
5, r

1
5, r

1
6, r

1
6, r

1
6

⌧4

Observe that after r11, r
1
1, variable x = 2 and '1 is true. Hence transition t1

changes the context from {} to {'1}. Similarly t2 and t3 change the context.
Context changing transitions are marked with curly brackets. Between them we
have the subschedules ⌧1, . . . , ⌧4 (⌧3 is empty) marked with square brackets.

To show that this schedule is captured by the schema, we apply partial order
arguments regarding distributed computations: As the guards '2 and '3 evaluate
to true in ⌧4, and r5 precedes r6 in the control flow of the TA, all transitions
r15 can be moved to the left in ⌧4. Similarly, r11 can be moved to the left in ⌧2.
The resulting schedule is applicable and leads to the same configuration as the
original one. Further, we can accelerate the adjacent transitions with the same
rule, e.g., the sequence r15, r

1
5 can be transformed into r25. Thus, we transform

subschedules ⌧i into ⌧ 0i , and arrive at the following schedule ⌧ 0 that we call the
representative schedule of ⌧ . Importantly for reachability checking, if ⌧ and ⌧ 0

are applied to the same configuration, they end in the same configuration.

⌧ 0 = r11,

⌧ 0
1

r11|{z}
t1

, r11, r
1
3

⌧ 0
2

, r14|{z}
t2

,

⌧ 0
3

r15|{z}
t3

, r25, r
4
6

⌧ 0
4

Reconsidering schema S, we observe that the sequence of underlined rules in S
matches the schedule ⌧ 0. In this paper we show that every schedule can be trans-
formed into a representative schedule that matches one schema from a small set of

4



schemas. Each schema in this set corresponds to one of the monotonic sequences
of contexts, and is constructed following the ideas from above. Completeness
regarding reachability follows from the fact that each schedule goes through a
monotonic sequence of contexts. For each schema, reachability can be expressed
by an SMT formula involving both state variables and parameters.

3 Parameterized Counter Systems

We extend the framework of [28]. A threshold automaton describes a process in
a concurrent system, and is a tuple TA = (L, I,�,⇧,R,RC ) defined below.

States. The finite set L contains the local states, and I ✓ L is the set of initial
states. The finite set � contains the shared variables that range over N0. The
finite set ⇧ is a set of parameter variables that range over N0, and the resilience
condition RC is a formula over parameter variables in linear integer arithmetic,

e.g., n > 3t. The set of admissible parameters is PRC = {p 2 N|⇧|
0 : p |= RC}.

Rules. A rule defines a conditional transition between local states that may
update the shared variables. Formally, a rule is a tuple (from, to,','>,u):
The local states from and to are from L, and capture from which local state
to which a process moves. A rule is only executed if the conditions ' and '>

evaluate to true. Each condition is a conjunction of guards. Each guard is defined
using some shared variable x 2 � , coe�cients a0, . . . , a|⇧| 2 Z, and parameter

variables p1, . . . , p|⇧| 2 ⇧ so that a0+
P|⇧|

i=1 ai ·pi  x and a0+
P|⇧|

i=1 ai ·pi > x
are a lower guard and upper guard, respectively. Let �U and �L be the sets of
lower and upper guards. The set guard(') ✓ �U is the set of guards used in ',
while the set guard('>) ✓ �L is the set of guards used in '>.

Rules may increase shared variables using an update vector u 2 N|� |
0 that is

added to the vector of shared variables. Finally, R is the finite set of rules.

Definition 1. Given a threshold automaton (L, I,�,⇧,R,RC ), we define the

precedence relation �P : for a pair of rules r1, r2 2 R, it holds that r1 �P r2
if and only if r1.to = r2.from. We denote by �+

P the transitive closure of �P .

Further, we say that r1 ⇠P r2, if r1 �+
P r2 ^ r2 �+

P r1, or r1 = r2.

As in [28], we limit ourselves to threshold automata relevant for FTDAs,
namely those where r.u = 0 for all rules r 2 R that satisfy r �+

P r.

Looplets. The relation ⇠P defines equivalence classes of rules. An equivalence
class corresponds to a loop or a single rule that is not part of a loop. Hence, we
use the term looplet for one such equivalence class. For a given set of rules R
let R/⇠ be the set of equivalence classes defined by ⇠P . We denote by [r] the
equivalence class of rule r. For two classes c1 and c2 from R/⇠ we write c1 �C c2
i↵ there are two rules r1 and r2 in R satisfying [r1] = c1 and [r2] = c2 and
r1 �+

P r2 and r1 6⇠P r2. As the relation �C is a strict partial order, there are
linear extensions of �C . Below, we fix an arbitrary of these linear extensions to
sort transitions in a schedule: We denote by �lin

C a linear extension of �C .

5



3.1 Counter Systems

Given a threshold automaton TA, a function N : PRC ! N0 that determines the
number of processes to be modeled (typically, N(n, t, f) = n�f) and admissible
parameter values p 2 PRC , we define a counter system as a transition system
(⌃, I, R), that consists of the set of configurations ⌃, which contain the counters
and variables, the set of initial configurations I, and the transition relation R:

Configurations ⌃ and I. A configuration � = (,g,p) consists of a vector

of counter values �. 2 N|L|
0 (for simplicity we use the convention that L =

{1, . . . , |L|}) a vector of shared variable values �.g 2 N|� |
0 , and a vector of pa-

rameter values �.p = p. The set ⌃ is the set of all configurations. The set
of initial configurations I contains the configurations that satisfy �.g = 0,P

i2I �.[i] = N(p), and
P

i 62I �.[i] = 0.

Transition relation R. A transition is a pair t = (rule, factor) of a rule of the
TA and a non-negative integer called the acceleration factor, or just factor for
short. For a transition t = (rule, factor) we refer by t.u to rule.u, by t.'>

to rule.'>, etc. We say a transition t is unlocked in configuration � if 8k 2
{0, . . . , t.factor � 1}. (�.,�.g + k · t.u,�.p) |= t.' ^ t.'>.

A transition t is applicable (or enabled) in configuration �, if it is unlocked,
and �.[t.from] � t.factor , or t.factor = 0. We say that �0 is the result of
applying the enabled transition t to �, and use the notation �0 = t(�), if
– �0.g = �.g + t.factor · t.u and �0.p = �.p
– if t.from 6= t.to then �0.[t.from] = �.[t.from] � t.factor and �0.[t.to] =
�.[t.to] + t.factor and 8` 2 L \ {t.from, t.to}. �0.[`] = �.[`]

– if t.from = t.to then �0. = �.

The transition relation R ✓ ⌃⇥⌃ of the counter system is defined as follows:
(�,�0) 2 R i↵ there is a r 2 R and a k 2 N0 such that �0 = t(�) for t = (r, k).
As updates to shared variables do not decrease their values, we obtain:

Proposition 1 ([28]). For all configurations �, all rules r, and all transitions

t applicable to �, the following holds:

1. If � |= r.'
then t(�) |= r.'

3. If � 6|= r.'>
then t(�) 6|= r.'>

2. If t(�) 6|= r.'
then � 6|= r.'

4. If t(�) |= r.'>
then � |= r.'>

Schedules and paths. A schedule is a sequence of transitions. For a schedule ⌧
and an index i : 1  i  |⌧ |, by t[i] we denote the ith transition of ⌧ , and by ⌧ i

we denote the prefix t[1], . . . , t[i] of ⌧ . A schedule ⌧ = t1, . . . , tm is applicable to
configuration �0, if there is a sequence of configurations �1, . . . ,�m with �i =
ti(�i�1) for 1  i  m. If there is a ti.factor > 1, then a schedule is accelerated.

By ⌧ · ⌧ 0 we denote the concatenation of two schedules ⌧ and ⌧ 0. A sequence
�0, t1,�1, . . . ,�k�1, tk,�k of alternating configurations and transitions is called a
(finite) path, if transition ti is enabled in �i and �i = ti(�i�1), for 1  i  k. For
a configuration �0 and a schedule ⌧ applicable to �, by path(�0, ⌧) we denote
the path �0, t1, . . . , t|⌧ |,�|⌧ | with ti = ⌧ [i] and �i = ti(�i�1), for 1  i  |⌧ |.

6



3.2 Contexts and Slices

The evaluation of the guards in the sets �U and �L solely defines whether certain
rules are unlocked. Due to Proposition 1, we infer that when the transitions of
a schedule are applied, more and more guards from �U become unlocked and
more and more guards from �L become locked. To capture this, we define:

Definition 2. A context is a pair (⌦U ,⌦L) of subsets ⌦U ✓ �U
and ⌦L ✓ �L

.

We denote by ⌦ the pair (⌦U ,⌦L), and by |⌦| = |⌦U |+ |⌦L|.

For two contexts (⌦U
1 ,⌦

L
1 ) and (⌦U

2 ,⌦
L
2 ), we define that (⌦

U
1 ,⌦

L
1 ) @ (⌦U

2 ,⌦
L
2 )

if and only if ⌦U
1 [ ⌦L

1 ⇢ ⌦U
2 [ ⌦L

2 . Then, a sequence of contexts ⌦1, . . . ,⌦m

is monotonically increasing, if ⌦i @ ⌦i+1 for 1  i < m. Further, a monotoni-
cally increasing sequence of contexts ⌦1, . . . ,⌦m is maximal, if ⌦1 = (;, ;) and
⌦m = (�U ,�L) and |⌦i+1| = |⌦i|+ 1, for 1  i < m. We obtain:

Proposition 2. Every maximal monotonically increasing sequence of contexts

is of length |�U |+ |�L|+ 1. There are at most (|�U |+ |�L|)! such sequences.

Definition 3. Given a threshold automaton, we define its configuration context

as a function ! : ⌃ ! 2�
U ⇥ 2�

L

that for each configuration � 2 ⌃ gives a

context (⌦U ,⌦L) with ⌦U = {' 2 �U : � |= '} and ⌦L = {' 2 �L : � 6|= '}.

Proposition 3. If a transition t is enabled in a configuration �, then either

!(�) @ !(t(�)), or !(�) = !(t(�)).

We say that a schedule ⌧ is steady for a configuration �, if for every prefix
⌧ 0 of ⌧ , the context does not change, i.e., !(⌧ 0(�)) = !(�).

Proposition 4. A schedule ⌧ is steady for a configuration � if and only if

!(�) = !(⌧(�)).

Given a configuration � and a schedule ⌧ applicable to �, we say that
path(�, ⌧) is consistent with a sequence of contexts ⌦1, . . . ,⌦m, if the set of
indices {0, . . . , |⌧ |} can be partitioned into m (possibly empty) disjoint sets
I1, . . . , Im such that !(⌧ i(�)) = ⌦k, for 1  k  m and i 2 Ik.

A context defines which rules of the TA are unlocked. As we consider steady
schedules, we need to understand, which rules are unlocked in that schedule:

Definition 4. Given a threshold automaton TA = (L, I,�,⇧,R,RC ) and a

context ⌦, we define the slice of TA with context ⌦ as a threshold automaton

TA|⌦ = (L, I,�,⇧,R|⌦ ,RC ), where a rule r 2 R belongs to R|⌦ if and only if�V
'2⌦U '

�
! r.'

and
�V

 2�L\⌦L  
�
! r.'>

.

3.3 Parameterized Reachability

Given a threshold automaton TA, a state property B is a boolean combination of
formulas that have the form

V
i2Y [i] = 0, for some Y ✓ L. The parameterized

reachability problem is to decide whether there are parameter values p 2 PRC ,
an initial configuration �0 2 I, with �0.p = p, and a schedule ⌧ satisfying that ⌧
is applicable to �0, and property B holds in the final state: ⌧(�0) |= B.

7



4 Main result: a complete set of schemas

We introduce the notion of a schema that is an alternating sequence of contexts
and sequences of rules. A schema serves as a pattern for an infinite set of paths,
and can be used to e�ciently encode parameterized reachability in SMT. We
show how to construct a set of schemas S with the following property: for each
schedule ⌧ and each configuration �, there is a representative schedule, i.e., a
schedule that if applied to �, ends in ⌧(�), and is generated by a schema from S.

Definition 5. A schema is a sequence ⌦0, ⇢1,⌦1, . . . , ⇢m,⌦m of alternating

contexts and rule sequences. Often we write {⌦0}⇢1{⌦1} . . . {⌦m�1}⇢m{⌦m}
for a schema. A schema with two contexts is called simple.

Given two schemas S1 = ⌦0, ⇢1, . . . , ⇢k,⌦k and S2 = ⌦0
0, ⇢

0
1, . . . , ⇢

0
m,⌦0

m with
⌦k = ⌦0

0, we define their composition S1 � S2 to be the schema that is obtained
by concatenation of the two sequences: ⌦0, ⇢1, . . . , ⇢k,⌦0

0, ⇢
0
1, . . . , ⇢

0
m,⌦0

m.

Definition 6. Given a configuration � and a schedule ⌧ applicable to �, we say

that path(�, ⌧) is generated by a simple schema {⌦} ⇢ {⌦0}, if the following hold:

– For ⇢ = r1, . . . , rk there is a monotonically increasing sequence of indices

i(1), . . . , i(m), i.e., 1  i(1) < · · · < i(m)  k, and there are factors

f1, . . . , fm > 0, so that schedule (ri(1), f1), . . . , (ri(m), fm) = ⌧ .
– The first and the last states match the contexts: !(�) = ⌦ and !(⌧(�)) = ⌦0

.

In general, we say that path(�, ⌧) is generated by a schema S, if S = S1 �· · ·�
Sk for simple schemas S1, . . . , Sk and ⌧ = ⌧1 · · · ⌧k such that each path(⇡i(�), ⌧i)
is generated by the simple schema Si, for ⇡i = ⌧1 · · · ⌧i�1 and 1  i  k.

The language of a schema S—denoted with L(S)— is the set of all paths
generated by S. For a set of configurations C ✓ ⌃ and a set of schemas S, we
define the set Reach(C,S) to contain all configurations reachable from C via
the paths generated by the schemas from S, i.e., Reach(C,S) = {⌧(�) | � 2
C, 9S 2 S. path(�, ⌧) 2 L(S)}. We say that a set S of schemas is complete, if:
8C ✓ ⌃. {⌧(�) | � 2 C, ⌧ is applicable to �} = Reach(C,S).

In [28, Thm. 1], we introduced a quantity C that depends on the number of
conditions in a TA, and have shown that for every configuration � and every
schedule ⌧ applicable to �, there is a schedule ⌧ 0 of length at most d = |R| · (C+
1)+C that is also applicable to � and results in ⌧(�). Hence, by enumerating all
sequences of rules of length up to d, one can construct a complete set of schemas:

Corollary 1. For a threshold automaton, there is a complete schema set Sd of

cardinality |R||R|·(C+1)+C
.

Although the set Sd is finite, enumerating all its elements is impractical. We
show that there is a complete set of schemas whose cardinality solely depends
on the number of guards that syntactically occur in the TA. These numbers |�U |
and |�L| are in practice much smaller than the number of rules |R|:

8



Theorem 1. For a threshold automaton, there is a complete schema set of car-

dinality at most (|�U |+ |�L|)!, where the length of each schema does not exceed

(3 · (|�U |+ |�L|) + 2) · |R|.

Proof idea. Construct the set Z of all maximal monotonically increasing se-
quences of contexts. From Proposition 2, there are at most (|�U |+|�L|)! maximal
monotonically increasing sequences of contexts. Therefore, |Z|  (|�U |+ |�L|)!.
Then, for each sequence z 2 Z, we do the following:
1. Show that for each configuration � and each schedule ⌧ applicable to � and

consistent with the sequence z, there is a schedule s(⌧) that has a specific
structure, and is also applicable to �. We call s(⌧) the representative of ⌧ .

2. Construct a schema and show that it generates all paths of all schedules s(⌧)
found in (1). The length of the schema is at most (3 · (|�U |+ |�L|) + 2) · |R|.
To prove Theorem 1, it remains to show existence of a representative schedule

and of a schema as formulated in (1)–(2). We do this below in Proposition 9 and
Theorem 2 respectively. Before that we consider special cases: when all rules of
a schedule belong to the same looplet, and when a schedule is steady.

4.1 Special case I: one context and one looplet

We show that for each schedule that uses only the rules from a fixed looplet and
does not change its context, there exists a representative schedule of bounded
length that reaches the same final state.

Proposition 5. Fix a threshold automaton, a context ⌦, and a looplet c 2
(R|⌦)

�
⇠ in the slice TA|⌦. Let � be a configuration and ⌧ = t1, . . . , tm a steady

schedule applicable to �, with [ti.rule] = c for 1  i  |⌧ |. There exists a

representative schedule crep⌦c [�, ⌧ ] with the following properties:

a) schedule crep⌦c [�, ⌧ ] is applicable to �, and crep⌦c [�, ⌧ ](�) = ⌧(�),
b) the rule of each transition t in crep⌦c [�, ⌧ ] belongs to c, that is, [t.rule] = c,
c) schedule crep⌦c [�, ⌧ ] is not longer than 2 · |c|.

Proof idea for Proposition 5. If |c| = 1, then we use a single accelerated transition
or the empty schedule as representative. If |c| > 1, the rules of the slice TA|⌦ form
a strongly connected component. Then, we can choose a node h, and construct
two spanning trees: an out-tree, whose edges are pointing away from h, and an in-

tree, whose edges are pointing to h. Using the trees, we construct two sequences
of rules sorted in the topological order of the trees: the sequence rin(1), . . . , rin(k)
moves processes to h, and the sequence rout(1), . . . , rout(m) distributes the pro-
cesses from h to the locations. As a result, for each location ` in the graph, the
processes are transferred from ` to the other locations, if �[`] > ⌧(�)[`], and
additional processes arrive at `, if �[`] < ⌧(�)[`].

Proposition 6. Fix a threshold automaton, a context ⌦, and a looplet c 2
(R|⌦)

�
⇠ in the slice TA|⌦. There exists a schema cschema⌦c with the following

properties: For each configuration � and each steady schedule ⌧ = t1, . . . , tm ap-

plicable to �, if [ti.rule] = c for 1  i  |⌧ |, then path(�, ⌧ 0) of the representative

schedule ⌧ 0 = crep⌦c [�, ⌧ ] from Proposition 5 is generated by cschema⌦c .

9



Proof idea. We construct the schema using the same sequence of rules as in
Proposition 5, i.e., cschema⌦c = {⌦} rin(1), . . . , rin(k), rout(1), . . . , rout(m) {⌦}.
It follows that cschema⌦c generates all paths of the representative schedules.

4.2 Special case II: one context and multiple looplets

In this section, we show that for each steady schedule, there exists a represen-
tative steady schedule of bounded length that reaches the same final state.

Proposition 7. Fix a threshold automaton and a context ⌦. For every configu-

ration � with !(�) = ⌦ and every steady schedule ⌧ applicable to �, there exists

a steady schedule srep⌦ [�, ⌧ ] with the following properties:

a) srep⌦ [�, ⌧ ] is applicable to �, and srep⌦ [�, ⌧ ](�) = ⌧(�),
b) |srep⌦ [�, ⌧ ]|  2 · |(R|⌦)

�
⇠|

To construct a representative schedule, we fix a context ⌦ of at TA, a con-
figuration � with !(�) = ⌦, and a steady schedule ⌧ applicable to �. The key
notion in our construction is a projection of a schedule on a set of looplets:

Definition 7. Let ⌧ = t1, . . . , tk be a schedule and C be a set of looplets. Given

an increasing sequence of indices i(1), . . . , i(m) 2 {1, . . . , k}, i.e., i(j) < i(j+1),
for 1  j < m, a schedule ti(1) . . . ti(m) is a projection of ⌧ on C, if each index

j 2 {1, . . . , k} belongs to {i(1), . . . , i(m)} if and only if [tj .rule] 2 C.

In fact, each schedule ⌧ has a unique projection on a set C. In the following,
we write ⌧ |c1,...,cm to denote the projection of ⌧ on a set {c1, . . . , cm}.

Provided that c1, . . . , cm are all looplets of the slice (R|⌦)
�
⇠ ordered with

respect to �lin
C , we construct the following sequences of projections on each

looplet (note that ⇡0 is the empty schedule): ⇡i = ⌧ |c1 · · · · · ⌧ |ci for 0  i  m.
Having defined {⇡i}0im, we construct the representative srep⌦ [�, ⌧ ] simply

as a concatenation of the representatives of each looplet:

srep⌦ [�, ⌧ ] = crep⌦c1 [⇡0(�), ⌧ |c1 ] · crep
⌦
c2 [⇡1(�), ⌧ |c2 ] · · · crep

⌦
cm [⇡m�1(�), ⌧ |cm ]

Lemma 1 (Looplet sorting). Given a threshold automaton, a context ⌦, a

configuration �, a steady schedule ⌧ applicable to �, and a sequence c1, . . . , cm of

all looplets in the slice (R|⌦)
�
⇠ with the property ci �lin

C cj for 1  i < j  m,

the following holds:

1. Schedule ⌧ |c1 is applicable to the configuration �.
2. Schedule ⌧ |c2,...,cm is applicable to the configuration ⌧ |c1(�).
3. Schedule ⌧ |c1 · ⌧ |c2,...,cm , when applied to �, results in configuration ⌧(�).

Proof (of Proposition 7). By iteratively applying Lemma 1, we prove by induc-
tion that schedule ⌧ |c1 · · · · · ⌧ |cm is applicable to � and results in ⌧(�). From
Proposition 5, we conclude that each schedule ⌧ |ci can be replaced by its repre-
sentative crep⌦ci [⇡i�1(�), ⌧ |ci ]. Thus, srep⌦ [�, ⌧ ] is applicable to � and results in
⌧(�). By Proposition 4, schedule srep⌦ [�, ⌧ ] is steady, since !(�) = !(⌧(�)). ut

10



Finally, we show that for a given context, there is a schema that generates
all paths of such representative schedules.

Proposition 8. Fix a threshold automaton and a context ⌦. Let c1, . . . , cm be

the sorted sequence of all looplets of the slice (R|⌦)
�
⇠, i.e., it holds that c1 �lin

C

. . . �lin
C cm. Schema sschema⌦ = cschema⌦c1 �cschema⌦c2 �· · ·�cschema⌦cm satisfies:

For each configuration � with !(�) = ⌦ and each steady schedule ⌧ applicable

to �, path(�, ⌧ 0) of the representative ⌧ 0 = srep⌦ [�, ⌧ ] is generated by sschema⌦.

Proof. As for an arbitrary configuration � with !(�) = ⌦ and a steady sched-
ule ⌧ applicable to �, we constructed srep⌦ [�, ⌧ ] as a sorted sequence of repre-
sentatives of the looplets, all paths of srep⌦ [�, ⌧ ] are generated by sschema⌦ . ut

4.3 The general case

Using the results from Sections 4.1 and 4.2, for each configuration and each
schedule (without restrictions) we construct a representative schedule.

Proposition 9. Given a threshold automaton, a configuration �, and schedule ⌧
applicable to �, there exists a schedule rep[�, ⌧ ] with the following properties:

a) rep[�, ⌧ ] is applicable to �, and rep[�, ⌧ ](�) = ⌧(�),
b) |rep[�, ⌧ ]|  2 · |R| · (|�U |+ |�L|+ 1) + |�U |+ |�L|.

Proof idea. Consider the maximal monotonically increasing sequence ⌦0, . . . ,⌦m

such that path(�, ⌧) is consistent with the sequence. Thus, ⌧ contains at most m
transitions that change their context, and schedules between these transitions
are steady. By applying Proposition 7, we replace the steady schedules with their
representatives and obtain rep[�, ⌧ ], which is applicable to � and results in ⌧(�).
By Proposition 7, the representative of a steady schedule is not longer than
2 · |R|, which together with m transitions gives us the bound 2 · |R| · (m+1)+m.
By Proposition 2, the number m is |�U |+ |�L|. This gives us the needed bound.

Further, given a maximal monotonically increasing sequence z of contexts,
we construct a schema that generates all paths of the schedules consistent with z:

Theorem 2. For a threshold automaton and a monotonically increasing se-

quence z of contexts, there exists a schema schema(z) that generates all paths of
the representative schedules that are consistent with z, and the length of schema(z)
does not exceed (3 · |R|+ 1) · (|�U |+ |�L|) + 2 · |R|.

Proof. Given a threshold automaton, let ⇢all be the sequence r1, . . . , r|R| of all
rules from R, and z = ⌦0, . . . ,⌦m a monotonically increasing sequence of con-
texts. By the construction in Proposition 9, each representative schedule rep[�, ⌧ ]
consists of the representatives of steady schedules terminated with transitions
that change the context. Then, for each context ⌦i, for 0  i < m, we compose
sschema⌦ with {⌦i} ⇢all {⌦i+1}. This composition generates the representative
of a steady schedule and the transition changing the context from ⌦i to ⌦i+1.
Consequently, we construct the schema(z) as follows:

(sschema⌦0 � {⌦0} ⇢all {⌦1})�· · ·�(sschema⌦m�1 � {⌦m�1} ⇢all {⌦m}) � sschema⌦m

11



By inductively applying Proposition 8, we prove that schema(z) generates
all paths of schedules rep[�, ⌧ ] that are consistent with the sequence z. We get
the needed bound on the length of schema(z) by using an argument similar to
Proposition 9 and by noting that we add |R| extra rules per context. ut

Computing the Complete Set of Schemas.Our proofs show that the set of schemas
is easily computed from the TA: The threshold guards are syntactic parts of the
TA, and enable us to directly construct increasing sequences of contexts. To find
a slice of the TA for a given context, we filter the rules with unlocked guards,
i.e., check if the context contains the guard. To produce the simple schema of a
looplet, we compute a spanning tree over the slice. To construct simple schemas,
we do a topological sort over the looplets. For example, it takes just 30 seconds
to compute the schemas in our longest experiment that runs for 4 hours.

4.4 Optimization: smaller complete sets of schemas

Entailment optimization. We say that a guard '1 2 �U
entails a guard '2 2 �U ,

if for all combinations of parameters p 2 PRC and shared variables g 2 N|� |
0 , it

holds that (g,p) |= '1 ! '2. For instance, in our example, '3 : y � (2t+1)� f
entails '2 : y � (t+ 1)� f . If '1 entails '2, then we can omit all monotonically
increasing sequences that contain a context (⌦U ,⌦L) with '1 2 ⌦U and '2 62
⌦U . If the number of schemas before applying this optimization is m! and there
are k entailments, then the number of schemas reduces from m! to (m� k)!. A
similar optimization is introduced for the guards from �L.

Control flow optimization. Based on the proof of Lemma 1, we introduce the
following optimization for TAs that are DAGs (possibly with self loops).

We say that a rule r 2 R may unlock a lower guard ' 2 �U , if there is a

p 2 PRC and g 2 N|� |
0 satisfying: (g,p) |= r.' ^ r.'> (the rule is unlocked);

(g,p) 6|= ' (the guard is locked); (g + r.u,p) |= ' (the guard is now unlocked).
In our example, the rule r1 may unlock the guard '1.
Let ' 2 �U be a guard, r01, . . . , r

0
m be the rules that use ', and r1, . . . , rk be

the rules that may unlock '. If ri �lin
C r0j , for 1  i  k and 1  j  m, then we

exclude some sequences of contexts as follows (we call ' forward-unlockable). Let
 1, . . . , n 2 �U be the guards of r1, . . . , rk. Guard ' cannot be unlocked before
 1, . . . , n, and thus we can omit all sequences of contexts, where ' appears
in the contexts before  1, . . . , n. Moreover, as  1, . . . , n are the only guards
of the rules unlocking ', we omit the sequences with di↵erent combinations of
contexts involving ' and the guards from �U \ {', 1, . . . , n}. Finally, as the
rules r01, . . . , r

0
m appear after the rules r1, . . . , rk in the order �lin

C , the rules
r01, . . . , r

0
m appear after the rules r1, . . . , rk in a rule sequence of every schema.

Thus, we omit the combinations of the contexts involving ' and  1, . . . , n.
Hence, we add all forward-unlockable guards to the initial context (we still

check the guards of the rules in the SMT encoding in Section 5). If the number
of schemas before applying this optimization is m! and there are k forward-
unlocking guards, then the number of schemas reduces from m! to (m � k)!. A
similar optimization is introduced for the guards from �L.

12



5 Checking a Schema with SMT

The encoding for a schema is obtained by decomposing the schema into a se-
quence of simple schemas and encoding the simple schemas. Given a simple
schema S = {⌦1} r1, . . . , rm {⌦2}, we construct an SMT formula such that ev-
ery model of the formula represents a path from L(S), and for every path in L(S)
there is a corresponding model of the formula. Thus, we need to model a path of
m+ 1 configurations and m transitions (whose acceleration factors may be 0).

To represent a configuration �i, for 0  i  m, we introduce two vectors of
SMT variables: a vector k

i = (ki1, . . . , k
i
|L|) to represent the process counters,

a vector x
i = (xi

1, . . . , x
i
|� |) to represent the shared variables. We call the pair

(ki,xi) the layer i, for 1  i  m.
A straightforward way to represent a bounded computation of length m is to

encode the choice of a rule from R and to encode all the rules from R for each
layer. In any case, we do not encode bounded computation but rather schemas,
for which the sequence of rules r1, . . . , rm is fixed. We exploit this in two ways:
First, instead of encoding the choice of a rule and encoding all rules, we encode
for each layer i the constraints of rule ri. Second, as this constraint may update
only two counters— ri.from and ri.to—we do not need |L| counter variables per
layer, but only encode the two counters per layer that have actually changed.
As is a common technique in bounded model checking, the counters that are
not changed are “reused” from previous layers in our encoding. By doing so,
we encode the schema rules with |L|+ |� |+m · (2 + |� |) integer variables, 2m
equations, and at most m·(|�U |+|�L|) inequalities over linear integer arithmetic.

6 Experiments

Implementation. We have implemented the technique in our tool ByMC (Byzan-
tine Model Checker [2]), which integrates with an SMT solver via the interface
provided by SMTLIB2. In our experiments, we used Z3 [17] as back-end solver.

Benchmarks. We revisited several asynchronous FTDAs that we evaluated in
previous work [25,28]. In addition to these classic FTDAs, we considered asyn-
chronous (Byzantine) consensus algorithms—namely, BOSCO [41], C1CS [10],
and CF1S [18]— that are designed to work despite partial failure of the dis-
tributed system. All our benchmarks, their source code in our parametric exten-
sion of Promela, and the code of the threshold automata are freely available [1].

The challenge in the verification of FTDAs is the immense non-determinism
caused by interleavings, asynchronous message passing, and faults. In our mod-
eling, all these are reflected in non-deterministic choices in the Promela code.
To obtain threshold automata, as required for our technique, our tool constructs
a parametric interval data abstraction [25] that adds to non-determinism.

Evaluation. Table 1 summarizes our experiments conducted with nuXmv, FAST,
and our new implementation. We evaluated four di↵erent tool configurations:
our new implementation (SMT); our previous implementation that checks the

13



Input Case Threshold Automaton Time, seconds Memory, GB

FTDA (if more than one) |L| |R| |�U | |�L| |S| SMT FAST BMC BDD SMT FAST BMC BDD

FRB — 6 8 1 0 1 1 1 6 6 0.1 0.1 0.1 0.1

STRB — 7 15 3 0 4 1 1 2 2 0.1 0.1 0.1 0.1

ABA
n+t
2 = 2t + 1 37 180 6 0 106 18 1103 12512 8 0.1 3.5 0.8 0.1

ABA
n+t
2 > 2t + 1 61 392 8 0 838 294 7782 ⌧ 18 0.4 12.3 ⌧ 0.1

CBC bn
2 c < n � t ^ f = 0 74 364 12? 0 1 21 B 12989 ⌧ 0.1 B 1.3 ⌧

CBC bn
2 c = n � t ^ f = 0 40 137 12? 0 1 6 B 132 ⌧ 0.1 B 0.3 ⌧

CBC bn
2 c < n � t ^ f > 0 115 896 17? 1 2 366 B L L 1.3 B L L

CBC bn
2 c = n � t ^ f > 0 71 408 17? 1 2 35 B ⌧ ⌧ 0.3 B ⌧ ⌧

NBACC — 109 1724 6 0 106 218 L L ⌧ 0.5 L L ⌧
NBAC — 77 1356 6 0 106 151 L ! ⌧ 0.3 L ! ⌧
NBACG — 24 44 4 0 14 2 B 275 ⌧ 0.1 B 0.2 ⌧
CF1S f = 0 57 416 4 0 14 10 19089 12829 81 0.1 29.1 1.3 0.2

CF1S f = 1 57 416 4 1 60 22 L 5583 309 0.1 L 0.9 0.4

CF1S f > 1 98 1152 6 1 594 531 L ⌧ 49133 0.5 L ⌧ 6.0

C1CS f = 0 125 1992 8 0 838 1989 L L 10591 1.4 L L 2.0

C1CS f = 1 84 926 6 1 594 399 L L 33033 0.4 L L 1.0

C1CS f > 1 129 2128 8 1 5808 9876 L M ⌧ 8.2 L M ⌧
BOSCO bn+3t

2 c + 1 = n � t 58 380 6 0 106 43 L M ⌧ 0.1 L M ⌧
BOSCO bn+3t

2 c + 1 > n � t 88 740 8 0 838 598 L M ⌧ 0.5 L M ⌧
BOSCO bn+3t

2 c + 1 < n � t 62 420 6 0 106 46 L M ⌧ 0.1 L M ⌧
BOSCO n > 5t ^ f = 0 134 1978 10 0 6802 13610 L L ! 9.9 L L !
BOSCO n > 7t 98 1080 8 0 838 797 L ! ! 0.7 L ! !
Table 1. Summary of our experiments on AMD Opteron R�6272, 32 cores,
192 GB. The symbols are: “⌧” for timeout of 24 h.; “L” for memory over-
run of 32 GB; “B” for BDD nodes overrun; “!” for timeout in the refine-
ment loop (24 h.); “M” for spurious counterexamples due to counter abstraction.
? In these cases, we used the control flow optimization from Section 4.4.

counter abstraction with nuXmv [11], either using binary decision diagrams
(BDD), or SAT-based bounded model checking (BMC); and the acceleration-
based tool FAST [4]. We compare our results with FAST, as TAs can be encoded
with counter automata [3], which FAST receives at its input. For FAST, we give
only the figures using the Mona plugin, which produced the best results in our
experiments. For BMC, our tool first generates a SAT formula with nuXmv and
then calls the solver Lingeling [6] to check satisfiability in non-incremental mode.
This works better than the incremental mode with MiniSAT, built into nuXmv.

On large problems, our new technique works significantly better than BDD-
and SAT-based model checking. BDDs work extremely well on smaller problems.
Importantly, our new technique does not use abstraction refinement.

NBAC and NBACC are challenging as the model checker produces many
spurious counterexamples, which are an artifact of counter abstraction losing or
adding processes. When using SAT-based model checking, the individual calls
to nuXmv are fast, but the abstraction-refinement loop times out, due to a
large number of refinements (about 500). BDD-based model checking times out

14



when looking for a counterexample. Our new technique, preserves the number
of proceses, and thus, there are no spurious counterexamples of this kind.

In comparison to the general-purpose acceleration tool FAST, our tool uses
less memory and is faster on the benchmarks where FAST is successful.

As predicted by the distributed algorithms literature, our tool finds coun-
terexamples, when we relax the resilience condition. In contrast to counter ab-
straction, our new technique gives concrete values of the parameters and shows
how many processes move at each step.

Our new method uses integer counters and thus does not introduce spurious
behavior caused by counter abstraction, but still has spurious counterexam-
ples from parameterized data abstraction for complex FTDAs such as BOSCO,
C1CS, NBAC, and NBACC. In these cases, we manually refine the interval do-
main by adding new symbolic interval borders, see [25]. We believe that these
interval borders can be derived directly from the TA, so that no refinement is
necessary in the first place, and leave this question to future work.

7 Discussions

We introduced a method to e�ciently check reachability properties of FTDAs
in a parameterized way. If n > 7t as for BOSCO, even the simplest interesting
case with t = 2 leads to a system size that is out of range of explicit state model
checking. Hence, FTDAs force us to develop parameterized verification methods.

The problem we consider is concerned with parameterized model checking,
for which many interesting results exist [20,19,15,14,21,26]. However, the FTDAs
considered by us run under the di↵erent assumptions. In [28], we discuss the rela-
tion between partial orders in accelerated counter systems of threshold automata
and the following work: compact programs [35], counter abstraction [39,5], com-
pleteness thresholds [7,16,29], partial order reduction [22,43,38,8], and Lipton’s
movers [34]. We also discussed their relation to counter automata. Indeed, our
result entails flattability [33] of every counter system of threshold automata: a
complete set of schemas immediately gives us a flat counter automaton. Hence,
the acceleration semi-algorithms [33,3] should terminate on the systems of TAs,
though it rarely happens in our experiments. Further, our execution schemas are
inspired by a general notion of semi-linear path schemas SLPS [32,33]. We con-
struct a small complete set of schemas and thus a provably small SLPS. Besides,
in our work we distinguish counter systems and counter abstraction: the former
counts processes as integers, while the latter uses counters over a finite abstract
domain, e.g., {0, 1,many} [39].

Many distributed algorithms can be specified with I/O Automata [36] or
TLA+ [31]. In these frameworks, correctness is typically shown with a proof
assistant, while model checking is used as a debugger on small instances. Param-
eterized model checking is not a concern there, except one notable result [24].

Finally, to verify all properties of FTDAs, we have to check that they are not
only safe, but also progress. Liveness properties is a subject to ongoing work.

15



References

1. https://github.com/konnov/fault-tolerant-benchmarks/tree/master/2015
2. ByMC: Byzantine model checker (2013), http://forsyte.tuwien.ac.at/

software/bymc/, accessed: Feb, 2015
3. Bardin, S., Finkel, A., Leroux, J., Petrucci, L.: Fast: acceleration from theory to

practice. STTT 10(5), 401–424 (2008)
4. Bardin, S., Leroux, J., Point, G.: Fast extended release. In: CAV. LNCS, vol. 4144,

pp. 63–66 (2006)
5. Basler, G., Mazzucchi, M., Wahl, T., Kroening, D.: Symbolic counter abstraction

for concurrent software. In: CAV. LNCS, vol. 5643, pp. 64–78 (2009)
6. Biere, A.: Lingeling, Plingeling and Treengeling entering the SAT competition 2013.

Proceedings of SAT Competition 2013; Solver and p. 51 (2013)
7. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without

BDDs. In: TACAS. LNCS, vol. 1579, pp. 193–207 (1999)
8. Bokor, P., Kinder, J., Serafini, M., Suri, N.: E�cient model checking of fault-

tolerant distributed protocols. In: DSN. pp. 73–84 (2011)
9. Bracha, G., Toueg, S.: Asynchronous consensus and broadcast protocols. J. ACM

32(4), 824–840 (1985)
10. Brasileiro, F.V., Greve, F., Mostéfaoui, A., Raynal, M.: Consensus in one commu-

nication step. In: PaCT. LNCS, vol. 2127, pp. 42–50 (2001)
11. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A.,

Mover, S., Roveri, M., Tonetta, S.: The nuXmv symbolic model checker. In: CAV.
LNCS, vol. 8559, pp. 334–342 (2014)

12. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. JACM 43(2), 225–267 (March 1996)

13. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided ab-
straction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

14. Clarke, E., Talupur, M., Veith, H.: Proving Ptolemy right: the environment abstrac-
tion framework for model checking concurrent systems. In: TACAS’08/ETAPS’08.
pp. 33–47. Springer (2008)

15. Clarke, E., Talupur, M., Touili, T., Veith, H.: Verification by network decomposi-
tion. In: CONCUR 2004. vol. 3170, pp. 276–291 (2004)

16. Clarke, E.M., Kroening, D., Ouaknine, J., Strichman, O.: Completeness and com-
plexity of bounded model checking. In: VMCAI. LNCS, vol. 2937, pp. 85–96 (2004)

17. De Moura, L., Bjørner, N.: Z3: An e�cient SMT solver. In: Tools and Algorithms
for the Construction and Analysis of Systems, LNCS, vol. 1579, pp. 337–340 (2008)

18. Dobre, D., Suri, N.: One-step consensus with zero-degradation. In: DSN. pp. 137–
146 (2006)

19. Emerson, E.A., Kahlon, V.: Model checking guarded protocols. In: LICS. pp. 361–
370. IEEE (2003)

20. Emerson, E., Namjoshi, K.: Reasoning about rings. In: POPL. pp. 85–94 (1995)
21. Esparza, J., Ganty, P., Majumdar, R.: Parameterized verification of asynchronous

shared-memory systems. In: CAV. pp. 124–140 (2013)
22. Godefroid, P.: Using partial orders to improve automatic verification methods. In:

CAV. LNCS, vol. 531, pp. 176–185 (1990)
23. Guerraoui, R.: Non-blocking atomic commit in asynchronous distributed systems

with failure detectors. Distributed Computing 15(1), 17–25 (2002)
24. Jensen, H., Lynch, N.: A proof of Burns n-process mutual exclusion algorithm using

abstraction. In: Ste↵en, B. (ed.) TACAS, LNCS, vol. 1384, pp. 409–423. Springer
Berlin / Heidelberg (1998)

16

https://github.com/konnov/fault-tolerant-benchmarks/tree/master/2015
http://forsyte.tuwien.ac.at/software/bymc/
http://forsyte.tuwien.ac.at/software/bymc/


25. John, A., Konnov, I., Schmid, U., Veith, H., Widder, J.: Parameterized model
checking of fault-tolerant distributed algorithms by abstraction. In: FMCAD. pp.
201–209 (2013)

26. Kaiser, A., Kroening, D., Wahl, T.: E�cient coverability analysis by proof mini-
mization. In: CONCUR. pp. 500–515 (2012)

27. Kesten, Y., Pnueli, A.: Control and data abstraction: the cornerstones of practical
formal verification. STTT 2, 328–342 (2000)

28. Konnov, I., Veith, H., Widder, J.: On the completeness of bounded model checking
for threshold-based distributed algorithms: Reachability. In: CONCUR. LNCS, vol.
8704, pp. 125–140 (2014)

29. Kroening, D., Strichman, O.: E�cient computation of recurrence diameters. In:
VMCAI. LNCS, vol. 2575, pp. 298–309 (2003)

30. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

31. Lamport, L.: Specifying systems: The TLA+ language and tools for hardware and
software engineers. Addison-Wesley Longman Publishing Co., Inc. (2002)

32. Leroux, J., Sutre, G.: On flatness for 2-dimensional vector addition systems with
states. In: CONCUR 2004-Concurrency Theory, pp. 402–416. Springer (2004)

33. Leroux, J., Sutre, G.: Flat counter automata almost everywhere! In: ATVA. LNCS,
vol. 3707, pp. 489–503 (2005)

34. Lipton, R.J.: Reduction: A method of proving properties of parallel programs.
Commun. ACM 18(12), 717–721 (1975)

35. Lubachevsky, B.D.: An approach to automating the verification of compact parallel
coordination programs. I. Acta Informatica 21(2), 125–169 (1984)

36. Lynch, N.: Distributed Algorithms. Morgan Kaufman (1996)
37. Mostéfaoui, A., Mourgaya, E., Parvédy, P.R., Raynal, M.: Evaluating the condition-

based approach to solve consensus. In: DSN. pp. 541–550 (2003)
38. Peled, D.: All from one, one for all: on model checking using representatives. In:

CAV. LNCS, vol. 697, pp. 409–423 (1993)
39. Pnueli, A., Xu, J., Zuck, L.: Liveness with (0,1,1)- counter abstraction. In: CAV,

LNCS, vol. 2404, pp. 93–111 (2002)
40. Raynal, M.: A case study of agreement problems in distributed systems: Non-

blocking atomic commitment. In: HASE. pp. 209–214 (1997)
41. Song, Y.J., van Renesse, R.: Bosco: One-step Byzantine asynchronous consensus.

In: DISC. LNCS, vol. 5218, pp. 438–450 (2008)
42. Srikanth, T., Toueg, S.: Simulating authenticated broadcasts to derive simple fault-

tolerant algorithms. Dist. Comp. 2, 80–94 (1987)
43. Valmari, A.: Stubborn sets for reduced state space generation. In: Advances in

Petri Nets 1990, LNCS, vol. 483, pp. 491–515. Springer (1991)

17

View publication statsView publication stats

https://www.researchgate.net/publication/300651002

	SMT and POR beat Counter Abstraction: Parameterized Model Checking of Threshold-Based Distributed Algorithms 

