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Abstract
Today’s Internet services are often expected to stay available and
render high responsiveness even in the face of site crashes and
network partitions. Theoretical results state that causal consistency
is one of the strongest consistency guarantees that is possible
under these requirements, and many practical systems provide
causally consistent key-value stores. In this paper, we present
a framework called Chapar for modular verification of causal
consistency for replicated key-value store implementations and their
client programs. Specifically, we formulate separate correctness
conditions for key-value store implementations and for their clients.
The interface between the two is a novel operational semantics for
causal consistency. We have verified the causal consistency of two
key-value store implementations from the literature using a novel
proof technique. We have also implemented a simple automatic
model checker for the correctness of client programs. The two
independently verified results for the implementations and clients
can be composed to conclude the correctness of any of the programs
when executed with any of the implementations. We have developed
and checked our framework in Coq, extracted it to OCaml, and built
executable stores.

Categories and Subject Descriptors C.2.2 [Computer Communi-
cation Networks]: Network Protocols—Verification; D.2.4 [Soft-
ware Engineering]: Software/Program Verification—Correctness
Proofs

General Terms Algorithms, Reliability, Verification

Keywords causal consistency, theorem proving, verification

1. Introduction
Modern Internet servers rely crucially on distributed algorithms for
performance scaling and availability. Services should stay available
even in the face of site crashes or network partitions. In addition,
most services are expected to exhibit high responsiveness [21].
Hence, modern data stores are replicated across continents. During

Program 1 (p1): Uploading a photo and posting a status
0→ Alice

put(Pic, ); . uploads a new photo
put(Post , ) . announces it to her friends

1→ Bob
post ← get(Post); . checks Alice’s post
photo ← get(Pic); . then loads her photo
assert(post = ⇒ photo 6= ⊥)

put(Pic, ) put(Post , )

get(Post): get(Pic):⊥

Figure 1. Inconsistent trace of Photo-Upload example

the downtime of a replica, other replicas can keep the service
available, and the locality of replicas enhances responsiveness.

On the flip side, maintaining strong consistency across repli-
cas [30] can limit parallelism [35] and availability. When avail-
ability is a must, the CAP theorem [19] formulates a fundamental
trade-off between strong consistency and partition tolerance, and
PACELC [3] formulates a trade-off between strong consistency
and latency [5]. In reaction to these constraints, modern storage
systems including Amazon’s Dynamo [17], Facebook’s Cassan-
dra [27], Yahoo’s PNUTS [16], LinkedIn’s Voldemort [1], and mem-
cached [2] have adopted relaxed notions of consistency that are
collectively called eventual consistency [48]. The main guarantee
that eventually consistent stores provide is that if clients stop is-
suing updates, then the replicas will converge to the same state.
Researchers [13, 44, 46] have proposed eventually consistent algo-
rithms for common datatypes like registers, counters, and finite sets.
Recent work [12, 14, 54] has formalized and verified the eventual-
consistency condition for these algorithms.

Weaker consistency is a double-edged sword. It can lead to
more efficient and fault-tolerant algorithms, but at the same time
it exposes clients to less consistent data. Programming with weak
consistency is challenging and error-prone. As an example, consider
Program 1, which shows two client routines (0 for Alice and
1 for Bob) running concurrently. An execution of the program
with an eventually consistent store is shown in Figure 1. Alice
uploads a photo of herself and then posts a message that she
has uploaded a photo . Bob reads Alice’s post announcing the
upload. He attempts to see the photo but only sees the default value.
The message containing the photo arrives late. The post is issued
after the photo is uploaded in Alice’s node. We call this a node-
order dependency from the post to the upload. If Bob can see the
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Program 2 (p2): The lost and found ring
0→ Alice

put(Alice, ); . “I’ve lost my ring”
put(Alice, ) . “Found it!”

1→ Bob
post ← get(Alice);

if post = then
put(Bob, ) . “Glad to hear it!”

2→ Carol
post ← get(Bob);
post ′ ← get(Alice);

assert (post = ⇒ post ′ 6= )

put(A, ) put(A, )

get(A): put(B , )

get(B): get(A):

Figure 2. Inconsistent trace of Lost-Ring example

post, he is expected not to miss the photo. Bob’s code includes
an assertion formalizing his expectation that the presence of a
post implies the presence of a photo. Unfortunately, some natural
implementations of a key-value store will not respect such properties.
For instance, eventual consistency does not guarantee this invariant
in intermediate execution states, just quiescent states.

Program 2 and Figure 2 depict another scenario [31], where
Alice posts that she has lost her ring , but then she finds it and
posts that all is well . Bob sees Alice’s second post. We say that
there is a gets-from dependency from Alice’s second put to Bob’s
get operation. Bob then responds with “Glad to hear it!” . Bob’s
put operation is node-order dependent on his get operation. Thus,
Bob’s put operation is transitively dependent on Alice’s second put
operation. Carol is an observer of this exchange. If she sees Bob’s
post, she should not miss Alice’s second post. However, a store
that does not respect dependencies may allow for an inconsistent
execution, where Carol could mistakenly think that Bob is glad to
hear that Alice has lost her ring.

Therefore, stronger notions of consistency that can still be
provided in the face of partitions are desirable. Causal consis-
tency [4, 9, 28, 42] is shown [34] to be one of the strongest con-
sistency notions compatible with high availability. Thus, many pi-
oneering systems such as ISIS [9], causal memory [4], lazy repli-
cation [26], Bayou [37, 47], and PRACTI [7], plus recent systems
such as COPS and Eiger [31, 32] and Bolt-On [6], provide causal
consistency. In addition to social-network applications, many others,
including the familiar example of electronic mail, can benefit from
causal consistency.

Causal consistency ensures that replicas respect the causal
dependencies between the operations. In other words, if an update
is visible at a replica, all the updates that it is dependent on should
be also visible at that replica. For example, in the scenario above,
Alice’s post is dependent on her upload of the photo. Thus, the
update for the post should be applied to Bob’s replica only when the
update for the photo is already applied. Therefore, when the post
is retrieved from the replica, the photo is already available in the
replica.

Concurrent and distributed algorithms are challenging to design
and understand, and distributed-system bugs [20, 52] are notoriously
hard to find and reproduce. Further, the integrity of the data store and

Programs

Verified Model Checker

Abstract Causal Operational Semantics

Instrumented Concrete Operational Semantics

Concrete Operational Semantics

Implementations

Causally Content

Causal Consistency

Well-Reception

Figure 3. Overview of Chapar Framework

the consistency of the data that clients observe are dependent on the
correctness of the causally consistent algorithm that coordinates
between the replicas. Therefore, precise specification of causal
consistency and verification techniques that check the compliance
of key-value store implementations with the specification enhance
the reliability of applications that are built using these data stores.
In addition, causal consistency provides weaker guarantees than
serializability to clients. Thus, the client programs are exposed to
less consistent data and are prone to more bugs. Therefore, automatic
checkers are a useful aid for client programmers to verify that
their programs preserve their application invariants if executed with
causally consistent stores. Although there have been recent efforts
on verification of eventual consistency, to the best of our knowledge,
our work presented here is the first to address causal consistency.

We have developed a verification framework called Chapar for
causally consistent key-value stores using the Coq proof assistant.
Figure 3 shows an overview of the framework. We explain each part
in turn.

Previous work [4, 13, 42] has presented denotational definitions
of causal consistency for execution histories. In this work, we
present an abstract operational semantics for causal consistency.
The semantics defines all the causally consistent executions of
a program on the map interface independently of any concrete
implementation of the interface. It serves as a layer that separates
the verification of concrete implementations from the verification of
client programs. Implementations are verified to comply with, and
clients are verified on top of, the abstract semantics. (For brevity,
throughout this paper we adopt the convention that implementations
refers to implementations of key-value stores, while client code
refers to programs running on top, even though those programs
are reasonably considered as “implementations” with standard
terminology.)

The abstract semantics provides a convenient execution model
to build automatic model checkers. We refer to programs that avoid
assertion failures when executed with the abstract semantics as
causally content. We present a simple automatic model checker that
can verify that a closed program is causally content.

We present a common interface for the key-value store imple-
mentations. The interface captures the type of the node state and
broadcast updates; the signatures of the put, get, and update opera-
tions; and a precondition guard on updates. We present a concrete
operational semantics for implementations of this interface, paramet-
ric in a choice of implementation. We define that an implementation
is causally consistent if and only if the concrete operational se-
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n : NId Node identifier
k : K Key
v : V Value
x Variable
s : S Statement

::= put(k, v); s
| x ← get(k); s
| skip
| assertfail

N : P(NId) Node identifier set
p : N → S Program

P(S) , The powerset of the set S

Figure 4. Program

mantics instantiated with the implementation is a refinement of the
abstract operational semantics.

We present a novel proof technique for causal consistency of
key-value store implementations. We present a condition called
well-reception for implementations and prove that it is a sufficient
condition for causal consistency. The well-reception condition is
defined based on an instrumented concrete operational semantics
that can track dependencies by instrumenting values with the unique
identifiers of the put operations that originated them. The proof of
sufficiency of the well-reception condition factors out a significant
part of the proof of causal consistency for standard implementations.
Thus, the well-reception proof technique requires a small number of
specific obligations to be proved for each implementation.

We have modeled two key-value store implementations from the
literature [4, 32] (and a variant of the first one) as implementations
of the common interface and verified their causal consistency using
the well-reception proof technique. All the definitions and lemmas
presented in the paper are formalized and machine-checked in Coq.
Our Coq and OCaml code are available online at:

https://github.com/mit-plv/chapar

We have extracted the verified implementations to OCaml and built
executable key-value stores. We compare the performance results of
the resulting stores.

In summary, this paper presents the following.

• An abstract causal operational semantics (§ 3)
• An automatic program verifier for client programs when run

with the abstract semantics (§ 6)
• A programming interface and a concrete operational semantics

for distributed key-value store implementations (§ 2)
• A proof technique for causal consistency of key-value store

implementations (§ 4)
• A verification framework and the proof of causal consistency of

two key-value store implementations from the literature (§ 5)
• The performance results of the resulting key-value stores (§ 7)

2. Key-Value Stores and Clients, Formally
In this section, we define an interface for distributed key-value store
implementations. (In § 5, we present two implementations of this
interface.) Then, we define an operational semantics parameterized
on this interface. The operational semantics models the executions of
the asynchronous distributed system of replicated stores. To motivate
the developments of the following sections, we finish this section
with an example of a final theorem that we have proved in Coq,
verifying a system that includes a client program and a key-value
store implementation. The following sections will fill in more details
on how to do such proofs modularly.

I = (State,Update, init, put, get, guard, update)
State : (V: Type)→

Type
init : (V: Type)→

State(V )
get : (V: Type)→

(N,State(V ),K)→ (V × State(V ))
Update: (V: Type)→

Type
put : (V: Type)→

(N,State(V ),K, V )→ (State(V )× Update(V ))
guard : (V: Type)→

(N,State(V ),K, V,Update(V ))→ Bool
update : (V: Type)→

(N,State(V ),K, V,Update(V ))→ State(V )

Figure 5. Key-Value Store Interface

Let us define the client programs first. Figure 4 defines the syntax
of programs. We use n to denote a node identifier, k to denote a
key, v to denote a value, x to denote a variable, and s to denote
a statement. A statement is either put , get , skip, or assertfail . A
put updates the mapping for the given key to the given value. A
get returns the value that the given key is mapped to. The skip
statement terminates a sequence of statements. We omit trailing
skip statements for brevity. The assertfail statement is used to
represent invariant violations. An assert statement assert(b); s is
desugared to the statement if b then s else assertfail , where, thanks
to a Coq encoding in the style of higher-order abstract syntax [38],
we use Coq’s base functional programming language, Gallina, to
provide extra features like conditional branching. Note that after
assert is desugared, assertfail always appears as the last statement.
A program p is a map from a finite set of node identifiers N to
statements, which run concurrently on the nodes with a shared map
abstract data type. Programs 1 and 2 were examples of this style.

Figure 5 presents the signature of the functions that a key-value
store implements. The definitions are parametric in terms of the
type V of values that are stored in the store. The State function
(i.e., type family) defines the state type that each node maintains.
The init function returns the initial state of every node. The get
function, given the identifier and the state of the current node, and
the input key, returns the value for the key and the new state of the
node. After the execution of a put operation by a node, an update
is sent to every other node. The Update type family defines the
type of update payloads. The put function, given the identifier and
the state of the current node, and the input key and value, returns
the new state of the node and the update payload. To preserve
consistency conditions, the application of updates should be delayed
until certain conditions hold. The algorithm designer can program
these conditions in the guard function. The semantics that follows
applies an update available from another node only if the guard
is satisfied for the update at the current node. Given the identifier
and the state of the current node, the key, the value, and the update
payload, the guard function returns whether the update is allowed to
be applied. The update function, given the same arguments, returns
the new state resulting from applying the update.

Figure 6 presents the concrete operational semantics→C(I) for
key-value store implementations of the interface defined above. It is
a labeled transition system that is parametric on the implementation
I = (State, Update, init, put, get, guard, update) and the type
of values V . The type variable of the implementation state State,
update payload Update, and operation functions is instantiated with
the value type V . First, let us consider the states and labels of the
transition system that are presented in the lower part of Figure 6.
Worlds WC are pairs of the host states h and the in-transit messages
t. The host states h is a map from each node identifier to the pair
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PUT
put(V, n, σ, k, v) ∗ (σ′, u)

t′ = t ∪ {(n′, k, v, u) | n′ ∈ N \ {n}}
(h[n 7→ (put(k, v); s, σ)], t)

n. put(k,v)−−−−−−−−→C(I)(
h[n 7→ (s, σ′)], t′

)
GET

get(V, n, σ, k) ∗ (v, σ′)

(h[n 7→ (x ← get(k); s, σ)], t)
n. get(k) : v−−−−−−−−→C(I)(

h[n 7→ (s[x := v], σ′)], t
)

UPDATE
guard(V, n, σ, k, v, u) ∗ true
update(V, n, σ, k, v, u) ∗ σ′

(h[n 7→ (s, σ)], t ∪ {(n, k, v, u)})
n. update(k,v)−−−−−−−−−−→C(I)(
h[n 7→ (s, σ′)], t

)
ASSERTFAIL

(h[n 7→ (assertfail , σ)], t)
assertfail−−−−−−→C(I) (h[n 7→ (skip, σ)], t)

WC : H × T World
h : H = N → (S × State(V )) Hosts
t : T = PM(M) Transit
m : M = N ×K × V × Update(V ) Message
σ : State(V ) Alg State
u : Update(V ) Alg Update
lC ::= n . put(k, v) Label

| n . get(k) : v
| n . update(k, v)
| assertfail

hC ::= lC
∗ History

PM(S) , The multiset powerset of the set S
WC0(p) , (λn.(p(n), init(V, v0)), ∅)

v0 , The initial value

Figure 6. Concrete Operational Semantics →C(I) for the imple-
mentation I = (State, Update, init, put, get, guard, update) and
the value type V

of the statement of the node and the state of the implementation for
the node. Implementation state is replicated across the nodes of the
distributed system, and each node may be running some distinct
statement. The in-transit messages t is a multiset of messages.
Messages are generated only by put operations broadcasting new
updates to all nodes. A message is the tuple of the receiver node
identifier, the key, the value, and the update payload (which is
specific to the implementation). The initial world for a program
p is WC0(p). A label lC is either a put, get, update, or assertion
failure. The first three labels encode the issuing node identifier and
the corresponding key and value, where the symbol . in labels is
just a separator. A history hC is a sequence of labels. We use ∗

to denote the big-step operational semantics of the metalanguage
in which the implementation is programmed (in our case, Coq’s
Gallina).

The rule PUT executes a put statement with the key k and the
value v. It executes the put function of the implementation on the
current node identifier n and state σ and the given k and v to yield
the new state σ′ and the update u for other nodes. A message for
every other node n′, containing the key k, the value v, and the
update payload u, is added to the in-transit messages t. The rule
GET executes a get statement with the key k. It executes the get

function of the implementation on the current node identifier n
and state σ and the given k to yield the value v of k and the new
state σ′. The rule UPDATE removes a message that is sent to the
current node n from the set of in-transit messages and applies the
update that it carries. The update of a message is applied only if
the guard condition is satisfied for the current state of the node and
the update. The update function of the implementation is executed
on the current node identifier n and state σ, the key k, value v, and
update payload u to yield the new state σ′. The rule ASSERTFAIL
steps an assertfail statement. The components of the world remain
unchanged, except for the statement of the current node n, which is
changed to skip. Updating the statement of a node, whose assertion
fails, to skip prevents further execution in the node.

The operational semantics is nondeterministic in the choice of the
node that takes the step, and, if the step is an update, the message that
is received. With this nondeterminism, messages can be delivered
out of order. Further, the operational semantics models executions
with node crashes and message losses as well. A crashed node is
not chosen to take a step. Further, a node can be considered crashed
for some period of time and then return and take steps. A message
that is lost is never chosen to be received. Thus, messages of a node
can appear to be lost for some nodes but be received and processed
by other nodes.

In the next section, we will present an abstract operational
semantics for causal consistency (§ 3). We will later present the
key-value store implementation I1 from the literature and prove
its correctness (§ 5). More precisely, we prove that the above
concrete operational semantics instantiated with I1, −→C(I1), is a
refinement of the abstract operational semantics. We will also sketch
our automatic verifier for client programs, which is able to verify
the client program p1 from § 1 against the abstract operational
semantics (§ 6). More precisely, we prove that no execution of
p1 with the abstract operational semantics involves an assertion
failure. With these two results in place, we derive the following
final theorem showing that the execution of the program p1 with the
implementation I1 never results in an assertion failure. This theorem
is proved with black-box composition of natural correctness results
for p1 and I1.

Theorem 1.
∀hC ,WC : WC0(p1)

hC−−→
∗
C(I1) WC ⇒ assertfail 6∈ hC

That is, no trace generated by the combined system will ever
contain an assertion-failure label. We use the usual transitive-
reflexive closure →∗ of a labeled transition system →, which
concatenates labels of individual steps to form a history.

3. Operational Causal Consistency
In this section, we present a novel abstract operational semantics
for causal consistency. Given a program, it defines causally consis-
tent executions of the program. The semantics is abstract from any
concrete implementation and does not involve message passing. It
forms an effective interface between key-value store implementa-
tions and their client programs, letting us verify each side against
a suitable abstraction of the other. For the client side, in this sec-
tion, we define a safe program as a program that never reaches an
assertion failure when executed with the abstract causal operational
semantics. In § 6, we will present a model checker for the safety of
client programs. For the implementation side, in the next section, we
define a causally consistent implementation as an implementation
that, combined with the concrete operational semantics, refines the
abstract operational semantics.

The semantics uniquely identifies each put operation. For each,
it tracks the identifiers of other put operations that it depends on.
The update of a put operation put is applied to a node only if the
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PUT
u′ = u++[(k, v, d)] a′ = a[n 7→ a(n) + 1]

m′ = m[k 7→ (v, n, |u′|, ∅)] d′ = d ∪ {(n, |u′|)}
WA[n 7→ (put(k, v); s, d, u, a,m)]

n, |u′| . put(k,v)−−−−−−−−−−−−→A
WA[n 7→ (s, d′, u′, a′,m′)]

GET
m(k) = (v, n′′, c′′, d′′)

d′ =

{
d ∪ {(n′′, c′′)} ∪ d′′ if n′′ 6= n0

d otherwise
WA[n 7→ (x ← get(k); s, d, u, a,m)]

n′′, c′′, n . get(k) : v−−−−−−−−−−−−−→A
WA[n 7→ (s[x := v], d′, u, a,m)]

UPDATE
a1(n2) < |u2| u2[[a1(n2)]] = (k, v, d)∧

(n,c)∈d
c ≤ a1(n) a′1 = a1[n2 7→ a1(n2) + 1]

m′1 = m1[k 7→ (v, n2, a
′
1(n2), d)]

WA[n1 7→ (s1, d1, u1, a1,m1)][n2 7→ (s2, d2, u2, a2,m2)]
n2, a

′
1(n2), n1 . update(k,v)

−−−−−−−−−−−−−−−−−−−→A
WA[n1 7→ (s1, d1, u1, a

′
1,m

′
1)][n2 7→ (s2, d2, u2, a2,m2)]

ASSERTFAIL

C[n 7→ (assertfail , d, u, a,m)]
assertfail−−−−−−→A C[n 7→ (skip, d, u, a,m)]

c : C Clock number
d : D = P(N × C) Dependencies
u : U = (K × V ×D)∗ Updates
a : A = N → C Applied
m : M = K → (V ×N × C ×D) Store

WA : N → (S ×D × U ×A×M) World
lA ::= n, c . put(k, v) Label
| n′, c′, n . get(k) : v
| n′, c′, n . update(k, v)
| assertfail

hA ::= lA
∗ History

WA0(p) , (λn.(p(n), ∅, [], λn.0, λk.(v0, n0, 0, ∅))

[] , The empty list
|ls| , The length of a list ls
++ , The append function for lists

ls[[i]] , The ith element of the list ls
n0 ∈ NId \N , The dummy initial node

Figure 7. Abstract Causal Operational Semantics→A

updates of the put operations that put is dependent on are already
applied to that node.

A put operation put by a node n is dependent on the preceding
get or put operations by n (node-order dependence). In addition, if
a get operation get returns a value that the put operation put has
put, then get is dependent on put (gets-from dependence). Further,
if op is dependent on op′ and op′ is dependent on op′′, then op is
dependent on op′′ (transitive dependence). We say that a dependency
from an operation to another is a put dependency if the former is a
put operation.

The semantics stores a set of put identifiers for each node, each
update, and each stored value. The dependency information stored
for a node is the set of identifiers of the past put operations of that
node and the put operations that the past operations of that node are
transitively dependent on.

Upon a put operation put by a node n, the update that is issued
for other nodes includes the identifier of put so that the nodes that

read the value in the future become dependent on put . It also stores
the stored dependencies of n so that the transitive dependencies of
put are propagated. In addition, upon a put operation put by a node
n, the identifier of put is added to the stored dependencies of n so
that future put operations by n become dependent on put . Once an
update with the identifier of the originating put put and its stored
dependencies d is received, it is checked that all the dependencies d
are already received, and the new value together with the identifier
of put and d are stored in the local store. Upon a get operation by
a node n, the local store is read, and the identifier of put and d are
added to the stored dependencies of n.

Figure 7 defines the abstract causal operational semantics. Let
us first see the structure of the states and labels of the transition
system. The definition of programs is unchanged from the previous
section (Figure 4). A world WA is a mapping from nodes to tuples
with the following fields: the current statement s of the node, the
set of put-operation identifiers d that the current node depends on,
the list of updates u that the current node has issued for other nodes,
the map a tracking which updates have been applied from other
nodes, and the store m that contains the current values of the keys
and their dependencies. Each node maintains a clock number that is
advanced on each put operation. (The clock number of each node
is stored in the mapping of its “applied” map a for the node itself.)
We use c to denote a clock number. A put operation is uniquely
identified by the pair of the issuing node identifier and clock number.
The applied-updates field a is a map from node identifiers to clock
numbers that keeps track of how far the current node has applied
updates from each other node. Each update is the tuple of the key,
value, and dependencies of the value. The store maps each key to the
tuple of a value, the identifier of its originating put operation, and
the dependencies of that put operation. The following paragraphs
explain these transitions in more detail.

We use lA to denote the put, get, update, and assertion-failure
labels. A put label carries the identifier of the put operation (i.e.
the pair of the issuing node identifier and clock number). A get or
update label carries the identifier of the originating put operation
before the identifier of the issuing node.

The rule PUT executes a put statement with the key k and
the value v by the node n. The triple of k, v, and the current
dependencies of the node d is appended at the end of the existing
update list u to result in the new update list u′. Other nodes that
apply this update will be dependent on the current put operation and
d. Since the node n is executing a put operation, it is effectively
applying an update from itself. Therefore, the mapping of the
“applied” map a for n itself is incremented. The updates field u′

has an entry for each put operation executed by n. Therefore, its
length |u′| is the number of executed put operations by n. Thus, the
current clock number for n is |u′|, and the identifier of the current
put operation is the pair of n and |u′|. The store m is updated to
map input key k to a triple of the input value v, the identifier of
the current put operation (n, |u′|), and an empty dependency set.
The dependency set is empty, as getting a value that is put by the
node itself incurs no new dependencies. Finally, the identifier of the
current put operation is added to the set of dependencies of the node
so that any future put by the node will be dependent on the current
put operation.

The rule GET executes a get statement with the key k by the
node n. The mapping for k in the store m represents its value v, the
identifier n′′ of the node that put the value, the clock number c′′ of
the originating put operation, and the dependencies d′′ of that put
operation. If n′′ is not the dummy node n0 (stored initially for all
keys), by reading the value, the current node becomes dependent on
the originating put and its dependencies. Therefore, the identifier of
the originating put (n′′, c′′) and its dependencies d′′ are added to
the dependencies of the node.
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lE ::= n . put(k, v) External Label
| n . get(k) : v
| assertfail

hE ::= lE
∗ External History

ExtA(lA) ,


n . put(k, v) if lA = n, c . put(k, v)
n . get(k) : v if lA = n′, c′, n . get(k) : v
ε if lA = n′, c′, n . update(k, v)
assertfail if lA = assertfail

ExtA(lA
∗) , ExtA(lA)

∗

ExtC(lC) ,


n . put(k, v) if lC = n . put(k, v)
n . get(k) : v if lC = n . get(k) : v
ε if lC = n . update(k, v)
assertfail if lC = assertfail

ExtC(lC
∗) , ExtC(lC)

∗

Figure 8. External Labels

The rule UPDATE applies an update from node n2 to node n1.
The number of updates that n1 has received from n2 is a1(n2). If
this number is less than the size of the updates u2 of n2, there are
more updates from n2 for n1 . With this condition, the next update
of u2 is read. An update is the triple of a key k, a value v, and
dependencies d. Before the update is applied to n1, it is critical
to check that all the dependencies in d are already applied in n1,
which is done by consulting the “applied” map a1. A put with the
identifier (n, c) is applied in n1 if the clock number c is less than
or equal to a1(n), the number of updates applied from n in n1. As
an update from node n2 is applied, the mapping of a1 for n2 is
advanced. The mapping of store m for k is updated to the tuple of
v, the identifier of its originating put, and its dependencies. Note
that the dependencies d1 of node n1 remain unchanged, as n1 only
updated the mapping for a key but did not get its value.

We now define the safety of client programs. The class of
programs whose invariants can be maintained by the relatively weak
consistency guarantees of causally consistent stores can benefit
from the responsiveness and availability of these stores. We define
causally content programs as the class of programs that do not
experience assertion failures when executed with the abstract causal
operational semantics.

Definition 1 (Cause-Content Program).
CauseContent(p) , ∀hA,WA :

WA0(p)
hA−−→
∗
A WA ⇒ assertfail 6∈ hA

A program is causally content if and only if every abstract causal
execution of the program is assertion-fail-free. An execution is
assertion-fail-free if and only if it includes no assertion-fail step.

An interesting property of our causal semantics is that it is
directly executable. For medium-sized, terminating programs, it is
tractable to consider all possible interleaved executions of the rules
from Figure 7. This observation foreshadows the verified, automatic
checker that we sketch in § 6. Our next step, however, is to turn
to proof obligations on the other side of the client/implementation
divide.

4. Verification of Implementations
In this section, we present a technique for the proof of causal
consistency of key-value store implementations. We first define the
causal consistency condition for a key-value store implementation
and then introduce the well-reception condition, which is sufficient
to establish causal consistency but also easier to reason about
directly.

Before defining causal consistency, we define external labels and
histories in Figure 8. We define external labels lE and functions ExtA
and ExtC that map the labels of the abstract and concrete operational
semantics to external labels. External labels capture the external

behavior of the operational semantics that is observable to client
programs. Update transitions are not issued by the client program
but are nondeterministically issued by the operational semantics.
Therefore, update labels are not externally observable. On the other
hand, assertion-failure labels are externally observable. Empty labels
ε are ignored in constructing traces, in the usual style of labeled
transition systems.

An implementation I is causally consistent if and only if the
concrete operational semantics instantiated with the implementation
→C(I) is a refinement of the abstract causal operational semantics
→A. An operational semantics is a refinement of another operational
semantics if and only if every external trace of the former is an
external trace of the latter. In other words, an implementation is
causally consistent if and only if, for any concrete execution of
any program (with the implementation), there exists an abstract
execution of the program with the same external history:

Definition 2 (Causal Consistency).
CauseConst(I) , ∀p, hC ,WC :
WC0(p)

hC−−→
∗
C(I) WC ⇒

∃hA,WA : WA0(p)
hA−−→
∗
A WA ∧ ExtC(hC) = ExtA(hA)

By the above definition, if an implementation is causally con-
sistent, any program executed with the implementation exhibits
external behaviors that it would exhibit with the abstract operational
semantics as well. In particular, if there is an execution of the pro-
gram with the implementation that exhibits an assertion failure, there
exists an abstract execution of the program that exhibits some asser-
tion failure. We defined in Definition 1 that a program is causally
content if and only if every abstract execution of the program is
assertion-fail-free. Thus, we can conclude that every execution of a
causally content program with a causally consistent implementation
is assertion-fail-free.

Lemma 1.
∀I, p, hC ,WC :
(CauseConst(I) ∧ CauseContent(p)

∧WC0(p)
hC−−→
∗
C(I) WC) ⇒ assertfail 6∈ hC

The immediate implication of this lemma is that the implemen-
tations and the clients can be verified separately to be causally
consistent and causally content respectively, and the combination of
every pair of verified implementation and verified program is safe.
In the remainder of this section, we focus on proving the causal
consistency of implementations. We consider proving that programs
are causally content in § 6.

Definition 2 gives the direct way of proving the causal con-
sistency of an implementation: prove that the concrete semantics
instantiated with the implementation refines the abstract semantics.
However, establishing a refinement for every implementation can
be repetitive. We present a proof technique called well-reception for
the proof of causal consistency of implementations. It factors out
a significant part of the proofs of causal consistency for implemen-
tations and requires a limited number of specific obligations to be
proved for each implementation.

In the following paragraphs, we present the well-reception con-
dition WellRec for key-value store implementations. The following
theorem proves that it is a sufficient condition for causal consistency.

Theorem 2 (Sufficiency of Well-Reception).
∀I : WellRec(I)⇒ CauseConst(I)

The theorem states that every well-receptive implementation
is causally consistent. With this theorem, to prove that an imple-
mentation is causally consistent, it is sufficient to prove that the
implementation is well-receptive. Well-reception is defined based
on an instrumented operational semantics. First, we consider the
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PUT
c′ = c+ 1

put(IV, n, σ, k, (n, c′, v)) ∗ (σ′, u)
l = n, c′ . put(σ, k, v) : σ′, u

t′ = t ∪ {(n, c′, n′, k, v, u, l) | n′ ∈ N \ {n}}
(h[n 7→ (put(k, v); s, σ, c)], t)
n,c′. put(σ,k,v) : σ′, u−−−−−−−−−−−−−−−→I(I)(
h[n 7→ (s, σ′, c′)], t′

)
GET
get(IV, n, σ, k) ∗ ((n′, c′, v), σ′)

(h[n 7→ (x ← get(k); s, σ, c)], t)
n′,c′,n. get(σ,k) : σ′, v−−−−−−−−−−−−−−−−→I(I)(
h[n 7→ (s[x := v], σ′, c)], t

)
UPDATE

m = (n′, c′, n, k, v, u, l)
guard(IV, n, σ, k, (n′, c′, v), u) ∗ true
update(IV, n, σ, k, (n′, c′, v), u) ∗ σ′

(h[n 7→ (s, σ, c)], t ∪ {m})
n′,c′,n. update(σ,k,v,m) : σ′
−−−−−−−−−−−−−−−−−−−−→I(I)(

h[n 7→ (s, σ′, c)], t
)

ASSERTFAIL

(h[n 7→ (assertfail , σ, c)], t)
assertfail−−−−−−→I(I) (h[n 7→ (skip, σ, c)], t)

IV = N × C × V Instrumented Val
h : H = N → (S × State(IV )× C) Hosts
m : M = N × C ×N× Message

K × V × Update(IV )× L
t : T = PM(M) Transit

WI : H × T World
σ : State(IV ) Alg State
u : Update(IV ) Alg Update
lI : L Label

::= n, c . put(σ, k, v) : σ′, u
| n′, c′, n . get(σ, k) : σ′, v
| n′, c′, n . update(σ, k, v,m) : σ′

| assertfail
hI ::= lI

∗ History

WI0(p) , (λn.(p(n), init(IV, (ninit, 0, v0)), 0), ∅)

Figure 9. Concrete Instrumented Operational Semantics →I(I)
for the implementation I = (State, Update, init, put, get, guard,
update) and the value type V

instrumented operational semantics, and then we flesh out the well-
reception condition.

Figure 9 presents the concrete instrumented operational seman-
tics →I(I). It is parametric on the implementation I = (State,
Update, init, put, get, guard, update) and the value type V . The
instrumented semantics is similar to the (non-instrumented) con-
crete operational semantics→C(I) presented in Figure 6. The crucial
difference is that it uniquely identifies put operations to track causal
dependencies between them. Each node maintains a clock number
that is advanced on every put operation by the node. The unique
identifier of a put operation is the pair of its issuing node identifier
and the clock number of the node when the put is issued. To track
the origins of values, every value is coupled with the identifier of
its originating put operation. Thus, an instrumented value (IV ) is
a triple of a node identifier, clock number, and value. The seman-
tics instruments the values that the client program puts, employs
the implementation to store and retrieve instrumented values, and
deinstruments values before returning them to the client program.

LNode(lI) ,
n if lI = n, c . put(σ, k, v) : σ′, u
n if lI = n′, c′, n . get(σ, k) : σ′, v
n if lI = n′, c′, n . update(σ, k, v,m) : σ′

n0 if lI = assertfail

LClock(lI) ,
c if lI = n, c . put(σ, k, v) : σ′, u
c′ if lI = n′, c′, n . get(σ, k) : σ′, v
c′ if lI = n′, c′, n . update(σ, k, v,m) : σ′

0 if lI = assertfail

LPostState(lI) ,
σ′ if lI = n, c . put(σ, k, v) : σ′, u
σ′ if lI = n′, c′, n . get(σ, k) : σ′, v
σ′ if lI = n′, c′, n . update(σ, k, v,m) : σ′

σ0 if lI = assertfail

lI ≺hI l′I ,
lI precedes l′I in the sequence of labels hI

Figure 10. Label Functions

We instantiate the functions of I with IV (whereas our concrete
semantics instantiate them with the plain value type, V ). As part of
the proof of Theorem 2, a refinement from→C(I) to→I(I) is proved
for every implementation I, and a refinement from→I(I) to→A is
proved for every well-receptive implementation I.

The definition of programs is unchanged from Figure 4. Similarly
to the (non-instrumented) concrete semantics, worlds WI are pairs
of the host states H and the in-transit messages T . We only mention
the differences in the states and labels. Each node maintains a clock
number in addition to the statement and the implementation state of
the node. A message tuple includes the identifier of the originating
put operation and the label of the put transition that created it. A
label lI is either a put, get, update, or assertion-failure label. The
first three labels include the implementation prestate σ and poststate
σ′ of the transition. A put label contains the unique identifier of the
performed put operation. A get label contains the identifier of the put
operation whose put value is returned. An update label contains the
identifier of the originating put operation and the processed message
as well. We use the predicates LIsPut, LIsGet, and LIsUpdate on
labels that are satisfied respectively on only put, get, and update
labels. We also use the auxiliary functions LNode, LClock, and
LPostState and the precedence relation≺ on labels that are defined
in Figure 10.

The rule PUT executes a put statement with the key k and
the value v by the node n. It increments the clock c to yield the
current clock c′. It instruments the value v with the current put
identifier n, c′ and calls the put function of the implementation with
the instrumented value. Thus, the implementation stores the put
identifier together with the value. The label includes the current
put identifier. The inclusion of the put identifier in the put label
allows us to uniquely identify put labels. The rule GET executes
a get statement on the key k. Calling the get function of the
implementation yields an instrumented value (n′, c′, v) where the
identifier of the originating put is n′, c′ and the value is v. The
value v is returned to the client program, and the identifier of the
originating put is included in the get label. The inclusion of this put
identifier in the get label allows us to identify the put transition that
created the returned value. The rule UPDATE receives a message sent
to the current node and applies the update that it carries. The received
message is included in the update label. The PUT rule includes the
label of the put transition in the sent messages. Therefore, given an
update label, the put label whose update is applied is immediately
available in the message field of the label.

The correctness condition WellRec is presented in Figure 11.
To make the condition more readable, we use underscore to
skip the record fields that are not used in the context. An imple-
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WellRec(I) ,
let (State, , , , , , ) = I in
∃Rec : (State(IV ), N)→ C :
let Rec′(W,n′, n) =

let (H[n′ 7→ ( , σ, )], ) =W in
Rec(σ, n) in

InitCond(I,Rec′) ∧ StepCond(I,Rec′) ∧ CauseCond(I,Rec′)
∧ SeqCond(I)

InitCond(I,Rec′) , ∀p, n, n′ :
Rec′(WI0(p), n, n

′) = 0

StepCond(I,Rec′) , ∀p, hI ,WI , lI ,W ′I :
(WI0(p)

hI−−→
∗
I(I) WI ∧ WI

lI−−→I(I) W ′I)⇒

CASE lI = n, . put( , , ) : ,
Rec′(W ′I , n, n) = Rec′(WI , n, n) + 1 ∧
∀n′ : n′ 6= n⇒ Rec′(W ′I , n, n

′) = Rec′(WI , n, n
′)

CASE lI = n, . get( , ) : ,
∀n′ : Rec′(W ′I , n, n

′) = Rec′(WI , n, n
′)

CASE lI = n′, c′, n . update( , , , ) :
Rec′(WI , n, n

′) + 1 = c′ ∧
Rec′(W ′I , n, n

′) = Rec′(WI , n, n
′) + 1 ∧

∀n′′ : n′′ 6= n′ ⇒ Rec′(W ′I , n, n
′′) = Rec′(WI , n, n

′′)

CauseCond(I,Rec′) , ∀p, hI ,WI , lI ,W ′I , l
′′
I :

(WI0(p)
hI−−→
∗
I(I) WI ∧ WI

lI−−→I(I) W ′I
∧ LIsUpdate(lI) ∧
let , , n . update( , , ,m) : = lI

( , , , , , , l′I) = m in
LIsPut(l′′I) ∧ l′′I yhI l′I)⇒

let n′′, c′′ . put( , , ) : , = l′′I in
Rec′(WI , n, n

′′) ≥ c′′

SeqCond(I) , ∀p, hC ,WC :

WC0(p)
hC−−→
∗
C(I) WC ⇒ ∃W ′S : WS0

Eff(hC)−−−−−→
∗

S W
′
S

Figure 11. Correctness condition WellRec for implementation I

lI yhI l′I ,
StepCause+hI

(lI , l
′
I)

StepCausehI ,
NodeOrderCausehI ∪ GetsFromCausehI

NodeOrderCausehI (lI , l
′
I) ,

lI ≺hI l′I ∧ LNode(lI) = LNode(l′I) ∧
((LIsGet(lI) ∧ LIsPut(l′I))
∨ (LIsPut(lI) ∧ LIsPut(l′I)))

GetsFromCausehI (lI , l
′
I) ,

lI ∈ hI ∧ l′I ∈ hI ∧ LIsPut(lI) ∧ LIsGet(l′I) ∧
let n, c . put( , , ) : , = lI

n′, c′, n′′ . get( , ) : , = l′I in
n = n′ ∧ c = c′

Figure 12. Causal Relation y

mentation is well-receptive if and only if there exists a function
Rec for the implementation such that the four conditions InitCond,
StepCond, CauseCond, and SeqCond are satisfied. The function
Rec (mnemonic for “received”), given a node state σ and a node
identifier n, should return the number of updates that σ has received
from n. We define an auxiliary function Rec′ that given a world
WI and node identifiers n′ and n, returns the value of Rec for the
implementation state of node n′ in WI and the node identifier n.
Now, let us look at each of the conditions in turn.

PUT

WS [n 7→ m]
n. put(k,v)−−−−−−−−→S WS [n 7→ m[k 7→ v]]

GET
m(k) = v

WS [n 7→ m]
n. get(k) : v−−−−−−−−→S WS [n 7→ m]

ASSERTFAIL

WS
assertfail−−−−−−→S WS

WS : N → K → V World

WS0(p) , λn, k. v0

Eff(lC) ,


n . put(k, v) if lC = n . put(k, v)
n . get(k) : v if lC = n . get(k) : v
n . put(k, v) if lC = n . update(k, v)
assertfail if lC = assertfail

Eff(lC
∗) , Eff(lC)

∗

Figure 13. Sequential Operational Semantics→S

• InitCond: This condition requires that any initial state returned
by the implementation’s init function has a 0 received-message
count according to Rec. In other words, the initial state should
not have received any update from any node.
• StepCond: This condition requires the implementation to affect

the mapping of the received function Rec for a node only when
an update from that node is received. More precisely, in a
put step, the mapping of Rec for the current node should be
incremented, and the mapping of Rec for every other node
should remain unchanged. In a put step, the current node is
implicitly receiving an update from itself. In a get step, the
mapping of Rec for every node should remain unchanged. In
an update step by a node n that applies an update from another
node n′ with the clock number c′, the clock number of the
next expected update from n′ should be c′. In other words, the
successor of the number of already-received updates from n′

should be c′. The mapping of Rec for the originating node n′

should be incremented, and the mapping of Rec for every other
node should remain unchanged.
• CauseCond: This condition is the most important of the four.

Let us first see the definition of the causality relation y on labels
in Figure 12. It is a partial order that is defined as the transitive
closure of the step-causal relation StepCause. The step-causal
relation is the union of the two relations NodeOrderCause and
GetsFromCause.

Node-order relation NodeOrderCause: A put label is
causally dependent on the preceding get and put labels
of the same node.

Gets-from relation GetsFromCause: A get label is causally
dependent on the label of the originating put transition that
provided the value. Note that the unique put identifiers that
the instrumented values and labels carry help us match the
get label to the originating put label.

The condition CauseCond requires that if an update is being
received that is originated from the put label l′I , and l′I is causally
dependent on another put label l′′I , then the update of l′′I should
have been received already. More precisely, for every step with
an update label lI , if m is the message received by the step, the
put label that created m is l′I , and l′I is dependent on another
put label l′′I , then the number of updates received from the node
of l′′I should be greater than or equal to the clock of l′′I .

364



I1 (ALGORITHM 1)
State
(store : K → V ,
clock : N → C )

Update
(unode : N,
uclock : N → C )

init (v0)
ret (λk.v0, λn.0)

put (self , this)(k, v)
(s, c)← this;
c′ ← c[self 7→ c[self ] + 1];
s′ ← s[k 7→ v];
ret ((s′, c′), (self , c′));

get (self , this)(k)
(s, c)← this;
ret (s[k], (s, c))

guard (self , this)(k, v, u)
(s, c)← this;
(n′, c′)← u;
ret forall (λn. n 6= n′ ⇒ c′[n] ≤ c[n])N
∧ c′[n′] = c[n′] + 1

update (self , this)(k, v, u)
(s, c)← this;
(n′, c′)← u;
c′′ ← c[n′ 7→ c′[n′]];
s′′ ← s[k 7→ v];
ret (s′′, c′′)

Figure 14. Causally Consistent Map Implementation 1 [4]

For example, in Figure 1, the second put of Alice is dependent
on her first put. Therefore, when the second update is applied to
Bob’s replica, her first update should have already been applied.
As another example, in Figure 2, Alice’s second put is dependent
on her first put, and Bob’s put is dependent on Alice’s second put.
Thus, when Alice’s second update is being applied to Carol’s
replica, Alice’s first update should have been applied. Similarly,
when Bob’s update is being applied to Carol’s replica, Alice’s
second update should have been applied.
• SeqCond: This condition checks that the functions put and

update mutate the mapping for and only for the given key to the
given value, and that the function get returns the mapping for
the given key. In other words, it requires that if we treat updates
as simple puts, then the implementation refines a sequential
map. Figure 13 defines the sequential operational semantics
→S and the effect function Eff. The operational semantics→S
defines the semantics of a separate sequential map for each node.
The function Eff translates an update label to a put label with
the same key and value, leaving the other labels unchanged.
The function is naturally lifted to histories. Based on these two
definitions, the SeqCond condition requires the following for
the implementation I: for every program p, for every execution
of p with the concrete operational semantics→C(I), there exists
an execution of the sequential operational semantics→S whose
history is the effect history of the concrete execution. Unlike
the previous two conditions that are stated on the instrumented
concrete operational semantics →I(I), SeqCond is stated on
the concrete operational semantics→C(I). We have separately
proved a refinement from→C(I) to→I(I) for every I.

5. Implementations
Now, we present and verify two key-value store implementations
from the literature. We also present and verify a variant of the
first implementation in Appendix C. We have proved the causal
consistency of these implementations using the well-reception proof

technique and mechanically checked the proofs with Coq. In this
section, we present explanations and parts of the proof sketches. The
full proof sketches are available in the appendix.

5.1 Implementation 1
The first implementation that we consider is by Ahamad and oth-
ers [4], which we present in Figure 14. This implementation main-
tains a vector clock for each node to serve as (an over-approximation
of) the node’s dependencies. It is a map from node identifiers to the
number of updates from that node that the current node has applied.
It is notable that a node’s applied updates is an over-approximation
of the node’s dependencies as there may be updates that are applied
but whose values are not returned by a get operation. An update
sent from a node to another contains the vector clock of the sender.
The receiving node ensures that the dependencies of the update
are satisfied by checking that its own vector clock is ahead of the
sender’s vector clock.

The state of each node contains a store function, store, and a
vector-clock function, clock . The store maps keys to values, and
the vector clock maps each node identifier to the number of updates
received from it. An update contains the identifier (unode) and
vector clock (uclock ) of the sender node.

The put function, on key k and value v, first increments the
mapping of the vector clock for the current node self . (Because a
node never issues an update to itself, the vector clock of each node
maps self to the number of put operations that it has performed.)
Then it updates the mapping of the store for k to v. The get function
on k returns the current mapping for k.

When applying an update u, where n′ is the sender node, c′ is the
sender’s vector clock, and c is the vector clock of the current node,
the guard function checks the following two conditions. Firstly, it
checks that for every node n other than n′, the value of c′ for n
is less than or equal to the value of c for n. This means that for
every node n other than the sender node n′, the number of messages
that the sender node had received from n is less than or equal to
the number of messages that the current node has received from n.
Secondly, the guard method checks that the clock value of c′ for n′

(i.e. c′(n′)) is the successor of the clock value of c for n′ (i.e. c(n′)).
As mentioned above, the clock value of every node for the node itself
is the number of put operations that the node has issued. Thus, the
update that is being received is sent by the c′(n′)-th put operation of
n′. The current node has received c(n′) updates from n′. Thus, this
condition checks that the update that is being received is the next
expected update from n′. In summary, the guard condition makes
sure that every update that had been applied to the sender is already
applied to the current node as well.

If the guard condition is satisfied, then the update function
applies the update from n′. It updates the mapping of c for n′ to
the sender’s vector clock c′ value for n′. Note that, by the second
condition that the guard function checks, c′(n′) is equal to the
successor of c(n′). Thus, the update method effectively increments
the mapping of c for n′. It also updates the mapping of the current
store s for the key k to the new value v.

Now, we prove the causal consistency of the implementation us-
ing the well-reception proof technique. In the following paragraphs,
we prove that I1 is well-receptive.

Theorem 3. WellRec(I1)

By Theorem 2, we immediately conclude that I1 is causally
consistent.

Corollary 1. CauseConst(I1)

The condition WellRec(I), defined in Figure 11, requires us to
provide a function Rec. Given the state of a node, σ, and a node
identifier, n, Rec must return the number of updates that σ has
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received from n. In this implementation, clock stores the number
of updates received from other nodes. Therefore, we define Rec to
be clock . Let us define the function clock ′ that mirrors the function
Rec′ in Figure 11 as follows

clock ′(W,n′, n) , let (H[n′ 7→ ( , σ, )], ) =W in
clock(σ)(n)

To prove the CauseCond condition, we need to prove the follow-
ing monotonicity property for vector clocks. We refer to the vector
clock of the poststate of a label as the vector clock of that label. If
a label lI causally precedes another label l′I , the clock of lI is less
than or equal to the clock of l′I for every node. Further, if l′I is a put
label, the clock of lI is strictly less than the clock of l′I for the node
identifier of l′I .

Lemma 2 (Clock Monotonicity).
∀p, hI ,WI , lI , l′I , n :
(WI0(p)

hI−−→
∗
I(I1) WI ∧ lI yhI l

′
I)⇒

(clock(LPostState(lI), n) ≤ clock(LPostState(l′I), n)
∧ (LIsPut(l′I) ∧ n = LNode(l′I))⇒

clock(LPostState(lI), n) < clock(LPostState(l′I), n))

Let us see why the above lemma holds. By the definitions in
Figure 12, the causal order holds by either the node order, gets-
from relation, or transitivity. Firstly, if it holds by the node order, the
conclusion is immediate by noting the following facts. On every step,
the mapping of the vector clock for every node is nondecreasing.
On a put step, the vector clock of the node for the node itself is
incremented. Secondly, we consider the case that the causal relation
holds by a gets-from relation from the put label lI to the get label l′I .
Let n and n′ be the node identifiers of lI and l′I respectively. The
get label l′I can get the value put by the put label lI only if there
exists an update label l′′I by n′ before l′I that receives the update of
lI . When the update is being received, the guard function checks
that the vector clock value of lI for every node n′′ other than n is
less than or equal to the current vector clock value for n′′. Then the
update function remaps the current vector clock value for n to the
vector clock value of lI for n. Thus, the vector clock of lI is less
than or equal to the vector clock of l′′I for every node. As mentioned
above, the vector clock of a node is nondecreasing. Therefore, as l′′I
precedes l′I , and they are by the same node n′, the vector clock of
l′′I is less than or equal to the vector clock of l′I for every node. The
inequality of the conclusion is immediate from the transitivity of
the above two inequalities. Thirdly, if the causal order holds by the
transitivity of other causal orders, the conclusion is immediate from
the transitivity of the equalities and inequalities of the induction
hypotheses.

5.2 Implementation 2
Our next case study is the implementation by Lloyd and others [32].
The implementation is presented in Figure 15. To keep the focus on
causal consistency, we model only their causally consistent imple-
mentation and not their support for convergence. Instead of keeping
track of all the dependencies of a put operation, this implementation
only tracks its one-hop, or immediate, dependencies. As we will see,
it is sufficient to only record the one-hop dependencies because of
the transitive property of dependencies.

Each node maintains four components. The clock stores the
current clock number of the node. It counts the number of puts that
the node has issued. The store maps keys to pairs of values and
timestamps, where a timestamp is a tuple of the identifier and clock
number of the value’s originating node. The “received” function rec
is a function from a node identifier to the clock of the latest update
that is received from the node. The dependencies dep is a list of
timestamps of put operations that the current state of the node, and
thus its future put operations, depends on. Each update is a record

I2 (ALGORITHM 2)
State
(store : K → (V ,N ,C ),
rec : N → C ,
clock : C,
dep : List [(N,C)])

Update
(unode : N,
uclock : C,
udep : List [(N,C)])

init (v0)
ret (λk.(v0, n0, 0), λn.0, 0, [])

put (self , this)(k, v)
(s, r, c, d)← this;
c′ ← c+ 1;
s′ ← s[k 7→ (v, self , c′)];
r′ ← r[self 7→ c′];
d′ ← (self , c′) :: [];
ret ((s′, r′, c′, d′), (self , c′, d))

get (self , this)(k)
(s, r, c, d)← this;
(v, n′, c′)← s[k];
d′ ← if n′ 6= n0 then (n′, c′) :: d else d;
ret (v, (s, r, c, d′))

guard (self , this)(k, v, u)
( , r, , )← this;
( , , d′)← u;
ret forall (λ(n′, c′). r(n′) ≥ c′) d′

update (self , this)(k, v, u)
(s, r, c, d)← this;
(n′, c′, )← u;
s′ ← s[k 7→ (v, n′, c′)];
r′ ← r[n′ 7→ c′];
ret (s′, r′, c, d)

Figure 15. Causally Consistent Map Implementation 2 [32]

of the following fields. The fields unode and uclock store the node
identifier and the clock number of the sender node. The field udep
stores the dependencies of the update.

On invocation of put on the key k with the value v, the state is
updated as follows. The clock c is incremented to yield the clock
c′ of the current put operation. The timestamp of the current put
operation is the current node identifier self and c′. The store s is
updated to map k to v with the current timestamp. The “received”
function r is updated to record that the current node is immediately
receiving an update from itself. The broadcast update contains
the current node identifier self , the current clock c′, and the
dependencies d of the prestate. The dependency list is updated
to a singleton list d′ containing the current timestamp. Every future
put operation put ′ of the current node will be dependent on the
current put operation put . Although put ′ will be dependent on
the prestate dependencies d, the poststate dependencies d′ do not
include d. Only the one-hop dependency is kept. Let us see how
transitivity implicitly preserves the dependencies d. We have that
put ′ is dependent on put and put is dependent on d. As we will see,
the guard function enforces that other nodes receive the update of
put ′ only if they have already received the update of put . Similarly,
it is enforced that they receive the update of put only if they have
already received the updates of put operations whose identifiers are
in d. Therefore, the dependency of put ′ on d is implicitly checked
by only checking that put is already received.

On invocation of get on key k, the store entry for k is read and
the value of the entry is returned to the client. The timestamp of
the entry is added to the dependencies only if it is not the dummy
timestamp (initialized for all keys originally).

The guard function checks that an update with the dependencies
d′ is applied only if for every timestamp (n, c) in d′, the current
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node has already received an update with the same or a larger clock
value c from the node n. This means that the current node has
already received all the dependencies of the update. On invocation
of the update function on an update with the timestamp (n′, c′), the
key k, and the value v, the store function s is updated to map k to v,
n′, and c′; and the received function r is updated to record c′ as the
latest clock value received from the sender node n′.

Now, we state the causal consistency of the implementation using
the well-reception proof technique.

Theorem 4. WellRec(I2)

By Theorem 2, the following corollary follows.

Corollary 2. CauseConst(I2)

The condition WellRec(I), defined in Figure 11, requires us to
provide function Rec. In this implementation, the function rec stores
the number of updates received from other nodes. Therefore, we
choose function Rec to be rec. Let us define the function rec′ that
mirrors the definition of Rec′ from Figure 11 as follows

rec′(W,n, n′) , let (H[n 7→ ( , σ, )], ) =W in
rec(σ)(n′)

To prove the condition CauseCond, we first state two important
invariants of the implementation. The first invariant states the
transitivity property explained above that if a label lI is causally
dependent on a put operation l′I , the identifier of l′I is either directly
or indirectly in the dependencies of lI .

Lemma 3 (Update Dependency Transitivity).
∀p, hI ,WI , lI , l′I :
(WI0(p)

hI−−→
∗
I(I2) WI

∧ LIsPut(lI) ∧ LIsPut(l′I) ∧ l′I yhI lI)⇒
let , . put( , , ) : , u = lI in
((LNode(l′I), LClock(l′I)) ∈ udep(u)
∨ (∃l′′I : LIsPut(l′′I) ∧ l′I yhI l

′′
I

∧ (LNode(l′′I), LClock(l′′I)) ∈ udep(u)))

The above lemma states that for every put label lI that emits the
update u and every put label l′I that causally precedes lI , either the
timestamp of l′I is directly in udep(u) or there exists a put label l′′I
that depends on l′I and the timestamp of l′′I is in udep(u).

The second invariant states that, if a put label lI depends on
another put label l′I and some node has received the update for lI ,
then it has received the update for l′I as well.

Lemma 4.
∀p, hI ,WI , lI , l′I , n :
(WI0(p)

hI−−→
∗
I(I2) WI

∧ LIsPut(lI) ∧ LIsPut(l′I) ∧ l′I yhI lI
∧ LClock(lI) ≤ rec′(WI , n, LNode(lI))⇒

LClock(l′I) ≤ rec′(WI , n, LNode(l′I))

The lemma above can be proved by induction on step transitions.
The interesting case is the update transition. Consider an update step
that receives an update u that is originated from a put label lI and
that lI is causally dependent on another put label l′I . We want to
show that the update of l′I is already received. By Lemma 7, we
have two cases. Case 1: The identifier of l′I is directly in udep(u).
The guard method checks that its update is already received. Case
2: The identifier of l′I is indirectly in udep(u); that is, there exists
another label l′′I that is causally dependent on l′I , and the timestamp
of l′′I is in udep(u). As the timestamp of l′′I is in udep(u), from
the guard method checks, we have that the update of l′′I is already
received. As l′′I is causally dependent on l′I , and the update of l′′I
is already received, by the induction hypothesis, we have that the
update of l′I is already received as well.

6. Verification of Client Programs
Having considered proofs of correctness for key-value stores, we
return to proofs of safety of their client programs. We defined in § 3
that a program is causally content if and only if every abstract causal
execution of the program is assertion-fail-free. Model checking is
one approach to showing that a client program is causally content.
The basic idea is to automatically explore all executions of the client
program to decide whether any assertion fail is reachable. In this
section, we present how we implemented and proved a very simple
model checker to prove that programs are causally content. The
model checker gives us mechanically checked proofs for closed (i.e.
all parameters are instantiated with values), terminating programs.
Both the implementation and client verification are carried out in
Coq. This enables us to seamlessly compose the two results to get
end-to-end correctness results as we presented in Theorem 1.

Our first approach was to implement the checker in Coq’s
tactic language Ltac, which applied repeated inversion on inductive
judgments about initial program states evolving to arbitrary final
states, thereby considering all possible behaviors. However, this
requires a O((tk)!/tk!) search for t nodes and k instructions
per node. Even for our short examples, it produced a proof term
exceeding 2 GB that made Coq run out of memory. In other words, it
is infeasible to directly construct a proof of CauseContent in Coq.

We instead used proof by reflection: we wrote an executable
function that explores all possible behaviors of a client program, then
we proved that for any input program, this function will return true
if and only if there exists a proof that the client program is assertion-
fail-free. The advantage of this approach is that Coq knows how to
run an executable function relatively quickly and without building
a giant proof term. Proof by reflection avoids generating the giant
proof term because the correctness proof of the function proceeds
by induction on any execution (i.e. we only need to consider one
step), whereas our first approach considered all steps.

Our abstract semantics (Figure 7) is already executable, so it was
easy to write a Coq function that, given a schedule of threads and
updates, determines whether the schedule leads to a valid execution
(i.e. does not get stuck) and, if so, whether it emits an assertfail.
Then, we wrote a function to recursively generate all schedules up
to some maximum number of steps M , run the program for each
schedule, and return false iff the program emits assertfail. A naive
implementation may be excessively time consuming. However, a
simple optimization was to prune schedules as soon as they generate
an invalid step by exploring and executing one step at a time, i.e.
to use a breadth-first search of schedules rather than a depth-first
search. The final step was to prove that this function returns true
iff no execution of less than M steps emits an assertfail. Using the
“fuel” design pattern, if M is too small for a given program, then the
proof of correctness fails. In practice, it is not hard to choose a big
enough value of M for terminating programs.

To verify that our example Programs 1 and 2 satisfy
CauseContent, we run our checker with M = 20 steps of fuel.
It takes less than one second to check each. We also verify a third
client, listed in Appendix D, that concurrently constructs and tra-
verses a linked list (using a total of 17 operations); it takes just
under 8 minutes to check. Finally, we prove corollary theorems that
none of these programs will fail when run with I1 (Figure 14) or I2
(Figure 15) in our concrete semantics.

7. Experimental Results
In contrast to many verification efforts that work on abstract models
of code, our development leads to executable code. In this section,
we compare the performance of the two verified key-value store
implementations. We extracted the two implementations from Coq
to OCaml using Coq’s built-in extraction mechanism. We wrote a
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Figure 16. Performance comparison of the key-value stores result-
ing from the extraction of the two verified implementations.

shim in OCaml that implements network primitives such as UDP
message passing, queuing, and event handling. We compiled and
linked the extracted implementations together with the shim to
obtain executable key-value stores. The trusted computing base of
these stores includes the following components: the assumption that
the concrete semantics matches the physical network and the shim,
Coq’s proof checker and OCaml code extractor, and the OCaml
compiler, runtime, and libraries.

The experiments are done on a four-node cluster. Each node
had an Intel Xeon 2.27GHz CPU with 2GB of RAM and ran
Linux Ubuntu 14.04.2 with the kernel version 3.13.0-48-generic
#80-Ubuntu. The nodes were connected to a gigabit switch. We
used Coq version 8.4pl3, OCaml compiler version 4.01.0, and the
OCaml library Batteries version 2.3. All the reported numbers are the
arithmetic means of results from five repetitions of the experiment.

We have conducted a simple experiment that measures the
throughput (i.e. the number of processed requests per second) of
the two stores on a range of workloads (i.e. the get versus put ratio
of operations). In every run, each node processed 60,000 random
requests with a specific get versus put ratio of operations. Figure 16
presents the throughput of the two stores on workloads ranging from
10% to 90% get operations. We divided the processing time of the
last replica that finished its share of requests by the number of its
requests to compute the throughput of each node.

As expected, both stores’ throughputs increase as the ratio of
get operations increases. The second implementation consistently
shows a higher throughput than the first implementation. The reason
is twofold. Firstly, in the first implementation, the clock function
of a node keeps an overapproximation of the dependencies of the
node. This overapproximation incurs extra dependencies on updates.
On the other hand, the second implementation does not require any
extra dependencies. Therefore, in the first implementation compared
to the second, the updates can have longer waiting times, and the
update queues tend to be longer; so the traversal of the update queue
is more time-consuming in the first implementation than the second.
Secondly, the update payload that is sent and received by the first
implementation contains the function clock. OCaml cannot marshal
functions. However, as the clock function has the finite domain of
the participating nodes, it can be serialized to and deserialized from
a list. Nonetheless, serialization and deserialization on every sent
and received message add performance cost. Using a finite-map
data structure would likely improve the performance. On the other
hand, the payload of the second implementation consists of only
data types that can be directly marshaled. Therefore, the second
implementation has no extra marshalling cost.

8. Related Work
Eventually and causally consistent systems. The consistency and
partition-tolerance trade-off formulated by CAP [19] and the consis-

tency and latency trade-off [5] stated by PACELC [3] have motivated
industrial storage systems to target relaxed notions of consistency
that are collectively called eventual consistency [48]. Eventually
consistent key-value stores include Amazon’s Dynamo [17], Face-
book’s Cassandra [27], Yahoo’s PNUTS [16], LinkedIn’s Project
Voldemort [1], and memcached [2]. Cassandra can be configured
to provide linearizability by relaxing availability and partition toler-
ance. PNUTS can provide per-key serializability. Researchers [13,
44, 46] have proposed eventually consistent algorithms for com-
mon datatypes like registers, counters, and finite sets. In particular,
they have proposed the class of conflict-free replicated data types
(CRDTs) with sufficient convergence conditions.

Ahamad and others designed and implemented a distributed
causal memory [4]. It has been shown [4, 42] that certain classes of
programs exhibit sequential consistency when executed with a causal
memory. ISIS [10] and lazy replication [26] support replication
methods that provide causal as well as two stronger ordering
guarantees for updates. The Bayou system [37, 47] and PRACTI [7]
both support partial replication of causally consistent data stores.
Recent causally consistent systems include COPS and Eiger [31, 32]
and Bolt-On [6]. COPS is a scalable causally consistent key-value
store that can provide causal consistency between keys stored
across the cluster. It was later extended to Eiger that supports a
column-family data model. Bolt-On provides a shim layer on top of
eventually consistent stores to provide causal consistency.
Verification and testing of distributed algorithms. Operational
semantics [39, 40] and refinement [22] has been successfully ap-
plied [11, 43] to model and reason about distributed algorithms. In
addition, specification of a distributed algorithm as a state transition
system is the common base shared by the I/O Automata [33] and
TLA [29] formalisms.

Model checking has been applied to test [23, 24, 36, 50, 51, 53]
and synthesize [18] distributed algorithms. On the other hand,
theorem provers have been used to establish the absence of bugs.
EventML [41] is a domain-specific language for the specification
of distributed algorithms. Algorithms specified in EventML can
be automatically translated to the Logic of Events [8] and then
interactively verified in Nuprl [15]. It has been used [45] to verify a
total broadcast service and build serializably consistent replicated
databases. A recent effort [25] similar to ours builds a mechanized
verification framework but for consensus algorithms and in Isabelle.
Verdi [49] models several network semantics with different fault
models and provides transformers from correct algorithms in one
semantics to another. Recent work [12, 14, 54] has formalized and
verified the eventual consistency of replicated objects. To the best
of our knowledge, this paper provides the first specification and
verification framework that specifically targets causal consistency.

9. Conclusion
We have presented a formal verification framework in Coq called
Chapar for causal consistency of distributed key-value stores. The
proof structure is composed of an abstract operational semantics
for causal consistency, an automatic program verifier for the client
programs that execute on causally consistent stores, and a proof
technique for causal consistency of store implementations. We have
verified a number of store implementations and client programs from
the literature. We have extracted and compared the performance of
the verified implementations.
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