
Mechanising Blockchain Consensus
George Pîrlea

University College London, UK

george.pirlea.15@ucl.ac.uk

Ilya Sergey

University College London, UK

i.sergey@ucl.ac.uk

Abstract
We present the first formalisation of a blockchain-based dis-

tributed consensus protocol with a proof of its consistency

mechanised in an interactive proof assistant.

Our development includes a reference mechanisation of

the block forest data structure, necessary for implementing

provably correct per-node protocol logic. We also define a

model of a network, implementing the protocol in the form

of a replicated state-transition system. The protocol’s execu-

tions are modeled via a small-step operational semantics for

asynchronous message passing, in which packages can be

rearranged or duplicated.

In this work, we focus on the notion of global system

safety, proving a form of eventual consistency. To do so, we

provide a library of theorems about a pure functional im-

plementation of block forests, define an inductive system

invariant, and show that, in a quiescent system state, it im-

plies a global agreement on the state of per-node transaction

ledgers. Our development is parametric wrt. implementa-

tions of several security primitives, such as hash-functions, a
notion of a proof object, a Validator Acceptance Function, and a
Fork Choice Rule. We precisely characterise the assumptions,

made about these components for proving the global system

consensus, and discuss their adequacy. All results described

in this paper are formalised in Coq.

CCS Concepts • Theory of computation → Program
verification; • Networks→ Formal specifications;

Keywords blockchain, consensus, protocol verification, Coq

ACM Reference Format:
George Pîrlea and Ilya Sergey. 2018. Mechanising Blockchain Con-

sensus. In Proceedings of 7th ACM SIGPLAN International Conference
on Certified Programs and Proofs (CPP’18).ACM, New York, NY, USA,

13 pages. https://doi.org/10.1145/3167086

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

CPP’18, January 8–9, 2018, Los Angeles, CA, USA
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5586-5/18/01. . . $15.00

https://doi.org/10.1145/3167086

1 Introduction
The notion of decentralised blockchain-based consensus is

a tremendous success of the modern science of distributed

computing, made possible by the use of basic cryptography,

and enabling many applications, including but not limited

to cryptocurrencies, smart contracts, application-specific

arbitration, voting, etc.
In a nutshell, the idea of a distributed consensus proto-

col based on blockchains, or transaction ledgers,1 is rather
simple. In all such protocols, a number of stateful nodes

(participants) are communicating with each other in an asyn-

chronous message-passing style. In a message, a node (a)

can announce a transaction, which typically represents a

certain event in the system, depending on the previous state

of the node or the entire network (we intentionally leave

out the details of what can go into a transaction, as they are

application-specific); a node can also (b) create and broad-

cast a block that contains the encoding of a certain vector

of transactions, created locally or received via messages of

type (a) from other nodes. Each recipient of a block message

should then validate the block (i.e., check the consistency of

the transaction sequence included in it), and, in some cases,

append it to its local ledger, thus, extending its subjective

view of the global sequence of transactions that have taken

place in the system to date. The process continues as more

messages are emitted and received.

In order to control the number of blocks in the system,

distributed ledger protocols rely on certain cryptographic

primitives, such as a hash-function hash defined both on

transactions and blocks, a notion of a proof object necessary
for defining the validity of a block, and an implementation of

a Validator Acceptance Function (VAF) that is used to ensure

that a blockb is validwrt. to a proof object pf . Having a block
b and a proof object pf , one can check very fast whether

VAF b pf is true or false. What appears to be difficult is

to produce an instance of a proof object pf , as it requires
computing a pre-image of the hash function with respect

to the current state of the local ledger of a specific node.

The exact specifics of designing a VAF and a discipline for

minting blocks with VAF-valid proof objects, is a subject of

active research, which is far beyond the scope of this paper,

with the best known approaches being Proof-of-Work [9,

24] and Proof-of-Stake [3]. The computational hardness or

1
Hereafter, wewill be using the terms “(transaction) ledger” and “blockchain”

interchangeably.

1

https://doi.org/10.1145/3167086
https://doi.org/10.1145/3167086
https://www.acm.org/publications/policies/artifact-review-badging

CPP’18, January 8–9, 2018, Los Angeles, CA, USA George Pîrlea and Ilya Sergey

probabilistic rarity of minting valid blocks is what controls

the overall block population.

However, this setup by itself does not deliver a global

consensus between the nodes. Indeed, in an asynchronous

network, where messages can be rearranged, duplicated,

or arbitrarily delayed, two different nodes n1 and n2 can

receive different, or even conflicting, sets of valid blocks

and decide to adopt them in their local ledgers. Assuming

that initially all nodes share the same initial block (so-called

Genesis Block), at any further state of the network, each two

nodes’ ledgers can be in a fork relation, when neither of

them is a prefix of the other. The consensus is enabled by

fixing a globally known Fork Choice Rule (FCR) function,
that provides a decidable strict total order on all possible
chains of blocks and is transitive and irreflexive. Thus, upon

receiving a block, a node must check whether appending it

to its local ledger is going to increase the ledger’s “weight”,

and keep it if so, discarding it otherwise. Assuming every

node follows the same FCR-imposed discipline for chain

comparison, all participants will eventually share the same

blockchain/transaction ledger instance.

Alas, the reality is a bit more complicated than the descrip-

tion above. For example, in a realistic fault-tolerant system

implementation, nodes cannot afford to ignore blocks that

arrive “out of order”, which is not uncommon in an asyn-

chronous setting. Not registering such blocks in a node’s

local state would pose serious liveness problems, as such

nodes would be stuck with a “stale” local ledger, unable to

progress along with the rest of the world. Furthermore, some

nodes may not be active or known system-wide at the very

beginning of communication, so they will start by first mani-

festing themselves, interacting only with a small set of peers

they know. Finally, any node in the system should be able to

request from its peers the set of publicly announced blocks

these peers have witnessed in the past, so it would be pos-

sible for the node to “catch up” with the global state of the

system, if, for instance, it has joined the network late or has

been offline for some time.

In light of these and multiple other possible scenarios of

distributed interaction, we believe that having a clean and

principled model for rigorous formal reasoning about system-
wide properties of distributed blockchain-based protocols is of
paramount importance for gaining trust in the foundational

principles of algorithms underlying, in particular, implemen-

tations of modern cryptocurrencies, such as Bitcoin [24],

Ethereum [37] and Tezos [13].

In this work we provide such a model.

Our contributions. Weprovide formalmodel of a blockchain-

based consensus protocol, along with a set of necessary ref-

erence data structures and a network semantics, with an

agenda to formally study its properties, abstracting away the

implementation details of security-related primitives. Our

contributions include the following formal artifacts:

• A description of a minimal set of security primitives: hash,
VAF , FCR, along with a set of laws (axioms) they should

abide, and a discussion of these laws’ adequacy wrt. real-
world implementations;

• A reference implementation of block forests—a purely func-
tional data structure implementing the local state of a node

in the protocol in the presence of adopted out-of-order

blocks, as well as a library of theorems about block forests,

necessary for proving the consensus property;

• A definition of a replicated state-transition machinery, im-

plementing the per-node logic of the protocol, and seman-

tics of the asynchronous network used for establishing

protocol invariants;

• A formulated eventual consistency (global consensus) prop-

erty for a blockchain network with a clique topology, a

whole-system invariant implying the consensus in a qui-

escent state, and a proof of this invariant’s inductivity, i.e.,
preservation by the network semantics.

In this work, we focus exclusively on system safety prop-

erties, i.e., proving that “nothing goes wrong”. There are,

indeed, more facts to establish about blockchain-based pro-

tocols, involving liveness (aka chain growth), probabilistic

irrevocability, stronger notions of consistency, and various

security properties [11, 20]. We do not address any of them in

this paper, and consider statements and proofs of those prop-

erties as future applications of our formal model, discussing

some of them in Section 7.

Our Coq development is publicly available online [29]:

https://github.com/certichain/toychain

Paper outline. Weexplain, by example, behaviours of block-

chain networks in Section 2. We then describe the design and

implementation of the core data structures, such as block

forests, and their dependencies on the externally-provided

security primitives in Section 3. In Section 4, we define the

protocol machinery and the network semantics, elaborating

on the statement and the proof of the consensus property in

Section 5. We report on our mechanisation experience and

lessons learned in Section 6. We then discuss limitations of

our model in Section 7. We survey related verification and

formalisation efforts in Section 8, and conclude in Section 9.

2 Overview
We begin by walking through an example that demonstrates

interactions between nodes in a blockchain-based protocol

and shows how consensus is achieved.

The goal of the consensus protocol is to guarantee that

network participants agree wrt. the order in which transac-

tions happened. This is achieved not by ordering transac-

tions directly, but rather by grouping them into blocks and

then agreeing, via FCR—a comparison operation on block

sequences (chains), which resulting blockchain to adopt. As-

suming an agreement upon the rules of the protocol and

2

https://github.com/certichain/toychain

Mechanising Blockchain Consensus CPP’18, January 8–9, 2018, Los Angeles, CA, USA

(a) (b) (c) (d)

(d) (e) (f) (g)

GB

{ }

(1)

GB

{ }

(2)
GB

{ }

(3)

GB

{ }

(1)

GB

{ tx1 }

(2)
GB

{ }

(3)

tx1

tx1

GB

GB
GB

{ tx1 }

(1)

(2)
(3)

{ }

{ tx1 }

A

A

A

GB

{ tx1 }

(1)

GB

{ tx1 }

(2)
GB

{ tx1 }

(3)

GB

(1)

(3)

{ }

{ tx3 }

A

GB

A

(2)

{ tx2 }

GB

A

tx2

tx2

tx3
tx3

GB

(1)

(3)

{ tx3 }

{ }

A

GB

A

(2)

{ tx2, tx3 }

GB

A

tx2

B

BB

(1)

(3)

{ tx2 }

GB

A

GB

A

B

C

B

GB

A

B

{ }

(2)

C

C

{ }

GB

A

GB

A

B

B

(2)

C
{ }{ }

(1)

C

{ }

GB

A

B

(3)

C

GB GB GB GB

A
tx1

GB

A
tx1

GB

A
tx1

B
tx3

GB

A
tx1

B
tx3

C
tx2, tx3

GB

A
tx1

B
tx3

C
tx2, tx3

Figure 1. Progressive stages of interaction in a 3-node blockchain network, with “virtually shared” block-trees.

initial state of the system, (i.e., everyone has the same Gene-
sis Block GB in the local state, as shown in Figure 1(a)), and

provided everyone follows the rules, consensus is guaranteed

once all block-carrying messages are delivered.
The stages (b)–(g) of Figure 1 demonstrate further inter-

actions in a 3-node blockchain-based system. Each stage

also provides, in the top-right corner, the implicit “globally

shared” tree of blocks, which will eventually be replicated

in each of the participants and will serve to compute the

globally shared ledger, thus delivering the desired ledger

consensus. At any point in time, participants may issue trans-

actions, which they broadcast to all their peers. For instance,

a node (2) creates and announces a transaction tx1 to its

peers in (b). The messages containing the transactions prop-

agate throughout the network, and each node temporarily

stores them in its local transaction pool ({tx1} in stage (c)).

When “minting” (i.e., creating) a new block, nodes embed

the transactions they know of inside the block and broadcast

it to all participants in the network, as is done by node (3),

which creates the block A with the transaction tx1 in (d),

setting A’s “parent block” to be GB.
Since the system is distributed, multiple transactions can

be issued and propagated concurrently. As a result, when a

block is minted, the minter does not necessarily know of all

pending transactions, as themessages containing themmight

still be in transit. This is what happens in stage (e), where

the node (1), which creates block B, has yet no knowledge

of tx2. This delay in propagation also might cause certain

transactions to be included in different, “conflicting” blocks.

For example, in (f) the transaction tx3 has been included in

both block B, minted previously by node (1), and block C ,
which is newly-minted by node (2). As such, looking at the

global tree view in the top-right corner of (f), tx3 is part of
two blockchains: [GB,A,C] and [GB,A,B]. However, this is
not an issue for the global agreement: as FCR imposes a total
order on blockchains, it uniquely determines which of the

candidate chains is the correct one—in this case, [GB,A,C]
(we decide so for the sake of this example, indicating this by

the green colour in the “shared” tree). Thus, all transactions,

including tx3, appear only once within the correct chain.

As more messages propagate, more participants agree on

[GB,A,C] to be the “correct”, i.e., canonical blockchain (g),

until finally, everyone is agreement when the system is in a

quiescent state with no messages in transit.

In the illustrative example above, we have seen how the

system evolves over time and how it resolves conflicts by

using the globally known FCR function. It is crucial for the

purpose of eventually reaching a consensus that the FCR
imposes a total order on all possible blockchains, such that

conflicts are uniquely settled. Also note that FCR is computed

locally by all participants, with no communication needed.

Intuitively, these two properties put together imply that if

two participants have the same blocks in their local “block

forests”, they will agree wrt. what the correct global chain
is. Extended to an entire network, this means that when all
blocks have been delivered, all nodes decide upon the same

chain. That is, all nodes are in consensus.

In the following sections, we establish this formally.

3

CPP’18, January 8–9, 2018, Los Angeles, CA, USA George Pîrlea and Ilya Sergey

Time,Addr ≜ N
b ∈ Block ::= { prev : Hash; txs : Tx∗; pf : Proof }

c ∈ Chain ≜ Block∗

bf ∈ BForest ≜ Hash
fin

⇀ Block

tp ∈ TxPool ≜ P(Tx)

(a) Blocks, chains, and block forests

Hash,Proof, Tx : eqType
GB : Block

hashb : Block → Hash
hasht : Tx → Hash

mkProof : Addr → Chain → option Proof
VAF : Proof → Time → Chain → bool
FCR : Chain → Chain → bool

txValid : Tx → Chain → bool
txExtend : TxPool → Tx → TxPool

(b) Parameter primitive types and functions

Figure 2. Data structures and framework parameters.

3 Data Structures for Blockchains
We now present the data structures and primitives neces-

sary for implementing the logic of the blockchain consensus

protocol’s replicated state machines.

3.1 Parameters and Core Data Structures
The top part of Figure 2 shows the definitions of the main

data structures we are going to use. Some of the primitive

data types are left undefined (cf. Figure 2 (b)), as they serve

as parameters for the framework. For example, the types

of time-stamps Time, necessary for modelling disciplines

such as Proof-of-Stake, and network addresses Addr (ranged
over by τ and a, correspondingly) are isomorphic to natural

numbers N. At the same time, the types Hash of hash values,

proof objects Proof and transactions Tx (ranged over by h,
pf , and tx, correspondingly) can be arbitrary (e.g., natural
numbers, strings, etc) as long as they come with decidable

equality checking, which is indicated by the eqType type

class annotation.

Blocks are represented as records with three fields. The

first one, prev, stores the hash of some block (even the very

same one, although in most cases such blocks will be deemed

ill-formed). The field txs stores a sequence of transactions,
contained within this block, in the order they are supposed to

take place.
2
Finally, the proof object in pf is used to validate

the block.

Two functions, hasht and hashb, for computing hash-values

of transactions and blocks correspondingly, are provided by

2
For simplicity, we consider transactions located in the same block to be

non-conflicting with each other.

hash_inj : ∀x y, #x = #y =⇒ x = y

GB_hash : prev GB = #GB
GB_txs : txs GB = []

VAF_nocycle : ∀b τ c,VAF (pf b) τ c =⇒ b < c

FCR_rel : ∀c1 c2, c1 = c2 ∨ c1 > c2 ∨ c2 > c1

FCR_trans : ∀c1 c2 c3, c1 > c2 ∧ c2 > c3 =⇒ c1 > c3

FCR_nrefl : ∀c, c > c =⇒ False
FCR_ext : ∀c1 c2 b, c1 ++ (b :: c2) > c1

FCR_subch : ∀c1 c2, c1 ≺ c2 =⇒ c2 ≥ c1

txValid_nil : ∀tx, txValid tx [] = true

Figure 3. Axioms of the framework parameters.

the client of the framework. For the sake of brevity, in the re-

mainder of the paper, we will use the overloaded notation #x
for computing the hash of a value x , which is either a block

or a transaction, using the corresponding hash-function. The

only requirement imposed on the hash function is it being

injective, as stated by the axiom hash_inj in Figure 3.

We require the client of the framework to provide a dedi-

cated Genesis Block GB, which is going to serve as an initial

“seed” for all local ledgers, and is globally known in the sys-

tem. This block is slightly different from other blocks we

will observe in the system, as it is a subject of the first two

hypotheses (axioms) we impose, which are shown in Fig-

ure 3. First, the hash of GB should be equal to GB’s prev
value (GB_hash). This requirement seems quite artificial, but

it is easy to achieve in practice by redefining the result of

a typical hash-function for just one value, and it simplifies

reasoning about forests, essentially ensuring that there can

be no parent block of GB, in the presence of possible cycles

between other (ill-formed) blocks referring to each other. An

alternative to this construction would be to make a block’s

prev field optional, and ensure the GenesisBlock has no par-

ent. The second axiom GB_txs ensures that the genesis block
contains an empty transaction sequence [].

Blockchains (or simply chains) are defined as sequences

of blocks, and block forests (or forests) are encoded as partial
finite maps from hashes to blocks. The notions of “valid”

chains and forests will follow below.

The next two parameter functionsmkProof and VAF work

in tandem: the former is used to obtain a proof object for a

specific node and on top of a particular chain, and it might

fail, hence the option result type. In real-world blockchain

implementations, computing a value ofmkProof is an expen-

sive operation, as it controls the number of valid blocks in the

system, but here we do not model computational complex-

ity, as it is irrelevant for establishing consensus, which is a

safety, not a liveness property. Dually, VAF is used to validate
proof objects for a chain and it also takes a system-provided

time-stamp as an additional parameter. The only VAF-related
axiom we need, VAF_nocycle, ensures that a freshly “minted”

4

Mechanising Blockchain Consensus CPP’18, January 8–9, 2018, Los Angeles, CA, USA

(i.e., created) block b, for which a proof has been obtained

wrt. to an “underlying” chain c , cannot be contained in the

same c . An opposite situation would be an anomaly, and

does not occur in real situations, in part due to the practical

rareness of hash collisions.

The client-provided function FCR allows one to compare

the weights of two chains. From now on, we will abbrevi-

ate (FCR c1 c2) as c1 > c2. The axioms FCR_rel, FCR_trans,
FCR_nrefl ensure that the order FCR imposes on chains is to-

tal, transitive, and irreflexive. The axiom FCR_ext states that
any non-empty extension of a chain c1 produces a strictly
“heavier” chain. In turn, FCR_subch postulates that if a chain

c1 is a subchain of c2 (i.e., c1 ≺ c2 ≜ c2 = c ′ ++ c1 ++ c
′′
for

some, possibly empty, c ′, c ′′), then c2 is at least as “heavy”
as c1.

Finally, the transaction validation function txValid ensures
the absence of conflicts between a transaction tx and a pre-

ceding chain c , being always true for an empty chain (as as-

serted by txValid_nil), and txExtend, which we did not have

to constrain, is used to change a pool of pending transactions

held by a particular node.

3.2 Largest Chains and Block Forest Evolution
Block forests are the main data structures nodes use to store

incoming and locally minted blocks, and to reconstruct the

actual ledger of transactions. The ledger of a forest bf , typeset
as ⌈bf ⌉, is defined as the largest (wrt. FCR) chain starting at

GB and endingwith some blockb, which has a corresponding
entry in bf .
How do we construct such a chain? To do so, we should

restrict the class of forests bf we are working with to those

satisfying the following three properties:

1. ∀h1,h2 ∈ dom(bf),h1 = h2 ⇒ bf (h1) = bf (h2);
2. ∀h b, bf (h) = b ⇒ h = #b;

3. bf (#GB) = GB.
(1)

The first property states that every key in bf uniquely iden-

tifies its entry; the second ensures that for every block-entry

in bf , its key is a hash of the corresponding block; finally,

the third property makes sure that bf contains the Genesis

Block with its key. We define a forest bf satisfying 1–3 as

valid(bf) and will denote a block b having a corresponding

entry #b 7→ b in a valid forest bf as b ∈ bf , slightly abusing

the ∈-notation.

In the beginning of a system interaction, each node holds

the same forest bf
0
= {#GB 7→ GB}, which is trivially valid.

As the nodes start minting new blocks and broadcast them,

local forests might be extended with new blocks, for which

we define the following operation:

bf ◁ b ≜ if #b ∈ dom(bf) then bf else bf ⊎ {#b 7→ b}
(2)

That is, for any block, the result of bf ◁b is valid, if so was bf .
Thus, fixing · ◁ · as the only way to add a new block to a

forest, in the rest of the paper we will be only dealing with

valid forests, unless said otherwise.

Let us now compute the largest chain in a forest bf . Indeed,
even a valid forest might not be a tree, due to gaps and

possible cycles in the partial map that encodes it. We model

cycles, even though they are implausible in a real-world

setting, to account for the possibility that the hash functions

used by the protocol might not be cryptographic. “Gaps“, on

the other hand, will appear frequently, as they correspond

to blocks received out-of-order. To be considered a ledger

candidate, a chain c should satisfy the following conditions:

1. It should contain no duplicate blocks;

2. For any block b ∈ c , b = GB or prev b = b ′, where b ′

is the block preceding b in c;
3. The first block of c should be GB (gb-founded c);
4. For any block b ∈ c , and any transaction tx ∈ txs b,

txValid tx c ′ should be True, where c ′ is a prefix of c ,
preceding b (tx-valid c).

To deliver such a candidate, we first construct a total function

chain(bf ,b) that returns a chain c , ending with a block b (or

just one-element chain [GB] if #b < dom(bf)) satisfying the

conditions 1 and 2 above by implementing a “backwards

walk” by prev-links from b in bf and ensuring that we do

not visit the same block twice. Such a walk terminates if

we encounter a cycle in bf or we reach GB, which is its

own previous block. The exact code of chain can be found in

our supplementary Coq sources. Using chain, we construct
candidates considering all blocks in bf and choose the largest
one from those that satisfy conditions 3 and 4. In set notation,

for a valid bf , ⌈bf ⌉ is defined as follows:

⌈bf ⌉ ≜ maxFCR

{
c

���� c = chain(bf ,b),b ∈ bf ,
gb-founded c ∧ tx-valid c

}
(3)

The function ⌈bf ⌉ is implemented to be total so it returns

[GB] as a default ledger, if no better one is found.

To get a better intuition on the dynamics of ⌈bf ⌉ as the
forest bf keeps being extended with new blocks, let us take a

look at Figure 4, which shows several states of a valid block

forest with prev-links depicted by gray arrows. The stage (a)
depicts a valid forest whose ledger is c = [GB,A,B,C], with
all other chains being less heavy or prefixes of c . In stage

(b), due to out-of-order arrival, a block G has been added to

the forest, but at that moment it is orphaned, hence a chain

built from it is not gb-founded. Once the missing block F
arrives in stage (c), a the forest gets a new ledger, namely

[GB,D,E, F ,G], as it is more FCR-heavy than [GB,A,B,C].
Stages (d) and (e) show block forests that we account for in

our implementation, but that will not correspond to local

states of the protocol participants during a normal, non-

Byzantine execution (we discuss Byzantine cases in Sec-

tion 7). Specifically, the forest in (d) has a blockM , which is

non-tx-valid wrt. [GB,A,B,C], and therefore does not con-

tribute a ledger candidate, preventing all further chains in the

5

CPP’18, January 8–9, 2018, Los Angeles, CA, USA George Pîrlea and Ilya Sergey

`
GB

A

B

C

C

D

F

`
GB

A

B

C

C

D

E

F

GB

A

B

C

C

D

E

M

`
GB

A

B

C

D

E

G

GB

A

B

C

D

E

FG

`
GB

A

B

C

D

E

F G

GB

A

B

C

D

E

F

M
N

`

G

GB

A

B

C

D

E

F

X

Y

`

(a) (b) (c) (d) (e)

Figure 4. Different states of a valid block forest and its ledger chain (green) when extended with more blocks.

forest that include it from being considered for the largest

ledger. Finally, the case (e) demonstrates a cycle between

two blocks, X and Y , so neither of them is included into any

chain to be considered a ledger candidate. In Section 4, we

will show how the protocol prevents cases (d) and (e) from

happening, when all participants are faithful.

3.3 Local Forests and System-Wide Union
The cases (a)–(c) from Figure 4 depict possible configura-

tions of local forests, owned by particular participants of a

blockchain protocol in the middle of a system’s execution,

when some of the blocks have already been received, while

some others are in “in-flight” messages, i.e., yet to be deliv-

ered. Furthermore, in the absence of Byzantine participants,

a system-wide union b̂f of all locally owned forests will be

defined, valid, and furthermore satisfy the following property,

dubbed good(b̂f):

good(bf) ≜ ∀b ∈ bf ,
gb-founded(chain(bf ,b)) ∧ tx-valid(chain(bf ,b))

(4)

In other words, a good forest is a tree, such that GB is its

root, and a chain built from any of its blocks starts with

GB and has no blocks with invalid transactions. A pleasant

consequence of the fact gb-founded(chain(bf ,b)) is that the
chain has no gaps, i.e., the result of chain(bf ,b) will not be
affected by adding new blocks to bf , which is stated formally

by the following lemma:

Lemma 3.1. For a valid forest bf and a block b, if
gb-founded(chain(bf ,b)) then for any block b ′,
chain(bf ◁ b ′,b) = chain(bf ,b).

The following theorem is key for showing that locally mint-

ing a new block, when done right, always increases the local
ledger, and, thus, has a chance to increase the global one, i.e.,
the ledger of a system-wide forest union.

Theorem 3.2. If a forest bf is valid and a block b is such that
1. tx-valid(⌈bf ⌉,b),
2. prev b = #(last ⌈bf ⌉), and
3. VAF (pf b) τ (⌈bf ⌉) for some τ ,

then ⌈bf ◁ b⌉ > ⌈bf ⌉.

That is, if a block b is minted to extend the current bf ’s
ledger, adding b will deliver a heavier one.

For a (multi-)set of blocks bs = {b1,b2, . . . ,bn} and a forest
bf , we define the operator bf ◁◁ bs as follows:

bf ◁◁ {b1,b2, . . . ,bn} ≜ (. . . ((bf ◁ b1) ◁ b2) . . .) ◁ bn (5)

The definition (2) of ◁ implies that reordering or duplication

of blocks in bs does not affect the result of · ◁◁ bs. We define

the partial order ⊑ on valid forests as follows:

bf
1
⊑ bf

2
≜ ∃bs, bf

2
= bf

1
◁◁ bs (6)

We conclude this section with two theorems that are cru-

cial for relating changes in a “node-local” ledger, due to mint-

ing a new block wrt. a node-local forest bf , and a “global”

ledger built from the system-wide union of forests b̂f , such
that bf ⊑ b̂f . The first theorem states that, if a new block

is global goodness-preserving, and if the new local ledger is

heavier than the old global one, then the new local ledger is
the new global one:

Theorem3.3. For valid forests bf , b̂f and a blockb, if good(b̂f),
and good(b̂f ◁ b), and ⌈bf ◁ b⌉ > ⌈b̂f ⌉, and bf ⊑ b̂f , then
⌈bf ◁ b⌉ = ⌈b̂f ◁ b⌉.

The second theorem states that a correctly locally minted

block b, if it does not contribute to create a ledger heavier

than the current global one, will not change the global ledger
even when added to the global forest:

Theorem3.4. For valid forests bf , b̂f and a blockb, if good(b̂f),
and good(b̂f ◁ b), and tx-valid(⌈bf ⌉,b), and prevb = #(last ⌈bf ⌉),
and VAF (pf b) τ (⌈bf ⌉), and bf ⊑ b̂f , and ⌈b̂f ⌉ ≥ ⌈bf ◁ b⌉,
then ⌈b̂f ◁ b⌉ = ⌈b̂f ⌉.

In a foresight of the development to be presented in the

following sections, it should be intuitively clear that a ledger

⌈b̂f ⌉ of a system-wide forest union is what consensus is

going to be reached upon. That is, each node, if it follows the

rules of minting and adopting blocks, will eventually “align”

its local ledger with ⌈b̂f ⌉.
6

Mechanising Blockchain Consensus CPP’18, January 8–9, 2018, Los Angeles, CA, USA

4 The Protocol and its Semantics
From the description of the core data structures, we proceed

to outline the logic of the protocol itself, represented as a

family of replicated state-transition systems which commu-

nicate by asynchronously exchanging packets.

4.1 System State-Space
Figure 5 shows all state-space components of our system

encoding. System configurations σ are pairs of a global state
∆ and a packet soup P . The former is a finite partial mapping

from node addresses to their local states; described further

below, while the latter is a (multi-)set of packets.
3
Packets are

simply triples, with the first component being the message

sender, the second is the address of the destination, and the

third one is the message content. We will further refer to the

destination address of a package p as dest p.
A local state δ of a node is a quadruple ⟨this, as, bf , tp⟩. Its

first component this is the address of the node itself, which
coincides with the key of this node in the system’s global

state; the second component is a set of addresses as repre-
senting the peers the node is aware of; the third component

is a block forest bf , described in detail in Section 3, used to

store the minted and received blocks; finally, the last compo-

nent is a pool of transactions tp, storing locally created or

received transactions to be included into minted blocks in

the future.

Specific contents of the messages the nodes can send are

defined by the data type Msg and include: NullMsg, which
has no effect and is a message-passing analogue of the im-

perative skip command; ConnectMsg used by a node to an-

nounce itself to its peers; AddrMsg as used to propagate

the set of peers as further into the system. TxMsg tx is

used to announce or propagate a new transaction tx, and
BlockMsg b serves the same purposes wrt. announcing a

block b. InvMsg hs is sent to inform others of the transac-

tions and blocks a node holds locally (represented by their

hashes hs); GetDataMsg h is a request for a transaction or a

block with a hash h, sent after having received an InvMsg.
In addition to emitting messages, nodes can perform inter-

nal operations, and we only capture the two that are relevant

to the protocol in our semantics: creating and announcing

a transaction, and minting a new block. A data type Instr
for instructions serves to encode these two operations. We

will use instructions to encode node-specific internal choices

for modeling non-determinism in global network executions

(described in Section 4.3) by parameterising them with sched-
ules—finite sequences of selectors determining which node

should act next and what is going to be its move.

3
Our semantics is resilient with respect to packet duplication, so here for

simplicity we assume packet soups to be sets, while in or mechanisation

they are modeled as multi-sets.

System configurations
∆ ∈ GlobState ≜ Addr

fin

⇀ δ

P ∈ PacketSoup ≜ P(Packet)
σ ∈ Conf ≜ GlobState ×MessageSoup

Local states

δ ∈ LocState ≜ Addr × P(Addr) × BForest × TxPool

Messages, instructions and schedules

p ∈ Packet ≜ Addr × Addr ×Msg

m ∈ Msg ::= NullMsg
| ConnectMsg
| AddrMsg (as ∈ P(Addr))
| TxMsg (tx : Tx)
| BlockMsg (b : Block)
| InvMsg (hs ∈ P(Hash))
| GetDataMsg (h : Hash)

i ∈ Instr ::= DoTx (tx : Tx)
| DoMint

s ∈ Selector ::= SelIdl
| SelRcv (a : Addr)
| SelInt (a : Addr) (τ : Time) (i : Instr)

sc ∈ Schedule ≜ Selector∗

Figure 5. System state-space and schedules.

4.2 Local Node Semantics
Figures 6 and 7 show the per-node transitions. While in our

implementation they are encoded as executable Coq func-

tions, in this paper we follow a more traditional relational

style of presenting an operational semantics.

We split the semantics into receive-transitions and internal

transitions. The former ones are of the form δ
p
−−→ρ (δ ′, ps)

taking a node from a state δ and to δ ′
when processing a

package p, also emitting a new set of packages ps. The latter

ones, δ
⟨i,τ ⟩

−−−−−→ι (δ
′, ps), describe change of a state from δ and

δ ′
with emission of packages ps as a result of executing the

instruction i at a globally synchronised time τ .
The receive-transitions (Figure 6) follow the intuition of

the corresponding messages, and are mostly straightforward,

so we only describe a few in prose. When taking a RcvAddr

step, a node not only adds the new addresses to its local pool,

but also sends a ConnectMsg-request to the new peers it has

learned about (ps
1
) and propagates the new information to

its current peers (ps
2
), which will then themselves connect

to the new peers (if they hadn’t already). When receiving

a new transaction or a block (via RcvTx or RcvBlock), a

node adds it to its local state and informs its peers of now

possessing it by sending an InvMsg, potentially causing a

lot of redundant messages, which are nevertheless handled

7

CPP’18, January 8–9, 2018, Los Angeles, CA, USA George Pîrlea and Ilya Sergey

Receive-step transitions: δ
p
−−→ρ (δ ′, ps)

RcvNull δ
⟨from, this, NullMsg⟩

−−−−−−−−−−−−−−−−−−→ρ (δ, ∅)

RcvConnect

as′ = as ∪ {from} hs = dom(bf) ∪ {#tx | tx ∈ tp}
ps = { ⟨this, from, InvMsg hs ⟩ }

⟨this, as, bf , tp⟩
⟨from, this, ConnectMsg⟩

−−−−−−−−−−−−−−−−−−−−−→ρ (⟨this, as′, bf , tp⟩, ps)

RcvAddr

as1 =
{
a | a ∈ as′ ∧ a < as

}
as2 = as ∪ as1

ps
1
= { ⟨this, a, ConnectMsg⟩ | a ∈ as1 }

ps
2
= { ⟨this, a, AddrMsg as2 ⟩ | a ∈ as} ps = ps

1
∪ ps

2

⟨this, as, bf , tp⟩
⟨from, this, AddrMsg as′⟩

−−−−−−−−−−−−−−−−−−−−−→ρ (⟨this, as2, bf , tp⟩, ps)

RcvTx

tp′ = txExtend tp tx hs = dom(bf) ∪
{
#tx′ | tx′ ∈ tp′

}
ps = { ⟨this, a, InvMsg hs ⟩ | a ∈ as}

⟨this, as, bf , tp⟩
⟨from, this, TxMsg tx⟩

−−−−−−−−−−−−−−−−−−→ρ (⟨this, as, bf , tp′⟩, ps)

RcvBlock

bf ′ = bf ◁ b tp′ =
{
tx | tx ∈ tp ∧ txValid tx ⌈bf ′⌉

}
hs = dom(bf ′) ∪

{
#tx | tx ∈ tp′

}
ps = { ⟨this, a, InvMsg hs ⟩ | a ∈ as}

⟨this, as, bf , tp⟩
⟨from, this, BlockMsg b⟩

−−−−−−−−−−−−−−−−−−−−−→ρ (⟨this, as, bf ′, tp′⟩, ps)

RcvInv

hs1 = dom(bf) ∪ {#tx | tx ∈ tp}
hs′ = hs \ hs1 ps =

{
⟨this, from, GetDataMsg h ⟩ | h ∈ hs′

}
⟨this, as, bf , tp⟩

⟨from, this, InvMsg hs⟩
−−−−−−−−−−−−−−−−−−−−→ρ (⟨this, as, bf , tp⟩, ps)

RcvGetData

bs = {b | b = bf (h)} txs = {tx | tx ∈ tp ∧ #t = h }

m =
(
if bs = {b } then BlockMsg b else

if txs = {tx } then TxMsg tx else NullMsg

)
ps = { ⟨this, from,m ⟩ }

⟨this, as, bf , tp⟩
⟨from, this, GetDataMsg h⟩

−−−−−−−−−−−−−−−−−−−−−−−→ρ (⟨this, as, bf , tp⟩, ps)

Figure 6. Local semantics, Part I: receive-transitions.

without any concerns for safety. Note that RcvBlock does

not check whether the block it receives is valid before adding

it to the local block forest. This seems unusual, but in reality

is the only possible option, because a block’s validity depends

on the blocks that precede it, which the node may not yet

have. Finally, the last two transitions serve to inform a node

of new transactions and blocks in the system (via RcvInv),

so it could request them by sending a GetDataMsg message,

and the response to it will be sent (via RcvGetData) in the

form of TxMsg or BlockMsg.
It is perhaps slightly non-obvious, but the rules allow to

model the possibility of a node “joining late” and eventu-

ally “catching up” with the rest of the system, thanks to

Internal step transitions: δ
⟨i,τ ⟩

−−−−−→ι (δ
′, ps)

IntTx

ps = {⟨this,a, TxMsg tx⟩ | a ∈ as}

⟨this, as, bf , tp⟩
⟨DoTx tx,τ ⟩

−−−−−−−−−−−→ι (⟨this, as, bf , tp⟩, ps)

IntMint

mkProof this ⌈bf ⌉ = Some pf VAF pf τ ⌈bf ⌉ = true

b =

prev := #(last ⌈bf ⌉);
txs := [tx | tx ∈ tp ∧ txValid t ⌈bf ⌉];
pf := pf

bf ′ = bf ◁ b ps = {⟨this,a,BlockMsg b⟩ | a ∈ as}

tp′ =
{
tx | tx ∈ tp ∧ txValid tx ⌈bf ′⌉

}
\ (txs b)

⟨this, as, bf , tp⟩
⟨DoMint,τ ⟩

−−−−−−−−−−−→ι (⟨this, as, bf ′, tp′⟩, ps)

Figure 7. Local semantics, Part II: internal transitions.

RcvConnect and other transitions that send known infor-

mation about blocks transactions to the package origin from,

so it could request them via RcvInv.

Figure 7 shows the two internal transitions that are trig-

gered by the corresponding instructions. The IntTx simply

adds a new transaction to the local pool, so it could be in-

cluded into a block later, and announces it to the node’s peers.

The IntMint transition relies on the block forest machin-

ery and related primitives described in the previous section.

Specifically, we (rather optimistically) assume that a node

locally checks the new minted block b with respect to its

prefix chain, before adding it to its local forest and sending

it to its peers.

With the rules in Figures 6 and 7, we intentionally define

a non-optimal version of the protocol, such that nodes exe-

cuting the transitions populate the packet soup with a lot of

redundant messages. Yet, as we will show in Section 5, this

does not pose problems for establishing consensus on the

state of the global ledger.

4.3 Network Semantics
The network semantics rules, parameterised by a selector s ,
are shown in Figure 8. They are standard for modeling inter-

leaved concurrency with non-deterministic internal choices

and message delivery. The three rules account for a possi-

bility of delivering a randomly picked package p from the

soup P to a destination a (NetDeliver), a node a taking an

internal step with an instruction i (NetInternal) or doing
nothing (NetIdle).

While the rules do not change the global set of node ad-

dresses, we nevertheless can model a scenario of a node

“joining” the network, assuming that it already has a pre-

defined address and a correctly initialised initial state, so it

8

Mechanising Blockchain Consensus CPP’18, January 8–9, 2018, Los Angeles, CA, USA

Network transitions: ⟨∆, P⟩
s
==⇒ ⟨∆′, P ′⟩

NetDeliver

p ∈ P dest p = a ∆(a) = δ δ
p
−−→ρ (δ ′, ps)

⟨∆, P⟩
SelRcva
=======⇒ ⟨∆[a 7→ δ ′], P \ {p} ∪ ps⟩

NetInternal

∆(a) = δ δ
⟨i,τ ⟩

−−−−−→ι (δ
′, ps)

⟨∆, P⟩
SelInta τ i
=========⇒ ⟨∆[a 7→ δ ′], P ∪ ps⟩

NetIdle ⟨∆, P⟩
SelIdl
=====⇒ ⟨∆, P⟩

Figure 8. Network semantics.

only needs to announce itself to its peers and requests the

information about transactions and blocks.
4

We conclude this section by defining the notion of reach-
ability (⇝) between two configurations as follows:

σ ⇝ σ ′ ≜ σ = σ ′ ∨

∃sc = [s1, . . . , sn], [σ1, . . . ,σn−1], s.t.

σ
s1
==⇒ σ1 ∧ . . . ∧ σn−1

sn
==⇒ σ ′.

(7)

5 System Safety and Consensus
With the definitions of the protocol and a library of theorems

about block forests at hand, we are now ready to establish

several important safety properties, including the eventual

consistency (i.e., the consensus) of our system. It is customary

to formulate safety properties as inductive system invariants,
defined as follows:

Definition 5.1. The property I : Conf → Prop is an induc-
tive invariant of a system if for the system’s initial configu-

ration σ0, I (σ0) holds, and for any σ ,σ ′
and s , such that I (σ)

holds, σ
s
=⇒ σ ′

implies I (σ ′).

Therefore, by induction, an inductive property I will hold
for any system configuration σ , such that σ0 ⇝ σ . Indeed,
what can be proven inductive depends on the choice of the

initial system state, which we have not specified so far. For

the rest of this section, we will consider only the initial

configurations of the form σ0 = ⟨GlobState0, ∅⟩, where for
any node a ∈ dom(GlobState0), GlobState0(a) is equal to
⟨a, asa , {#GB 7→ GB} , { }⟩, i.e., leaving only the node-specific
sets of peers asa unconstrained.

4
We could have added another internal transition rule for emitting a

ConnectMsg, but this is orthogonal to our study of system safety.

5.1 System State Coherence
Before moving to the interesting (and, hence, complex) sys-

tem safety properties, we start by establishing the inductivity

of global state coherence, i.e., proving that interaction be-

tween nodes does not violate the validity of the components

of each node’s local state. We thus define the global system

state coherence as follows:

Coh(⟨∆,−⟩) ≜ ∀a ∈ dom(∆),∃as bf tp,
∆(a) = ⟨a, as, bf , tp⟩ ∧ valid(bf)

(8)

The validity of each local forest bf is via the definition (1).

Any of the σ0 we consider satisfies it, and the property Coh
is inductive, because all manipulations with node-local block

forests are done using the ◁ operation (2).

5.2 Eventual Ledger Consistency
Let us now formulate the eventual consistency of the system.

Informally, it says that when there are no in-flight messages

between any of the nodes, they all should agree on the local

ledger, which can be, thus, thought of as a globally shared
log of accepted transactions [33].

In practice, however, communication between nodes never

stops. Our protocol features many “modes of communica-

tion” (announcing a block, requesting hashes, etc), and, as
it turns out, not all of them should be ceased for reaching

consensus on ledgers. What is essential is to have no in-flight
instances of BlockMsg. 5 Having no in-flight block-messages,

however, is not the only requirement for the universality of

the consensus (i.e., ensuring that each two nodes have the

same ledger): it might be the case that some nodes joined

late, and due to the delays in updating the topology, have

not yet requested all missing data from their peers. Charac-

terising consistency conditions in this case would require

us to take the “late joiners” into account. While not impossi-

ble, this would make the whole consistency statement quite

complicated. To avoid this, in this paper we decided to for-

mulate the consistency in a simpler setting: a clique network
topology, restricting the initial configurations to those where
every node’s known peers include all addresses in the global

system state.
6

We embed the clique topology assumption into the whole-

system property Cliq, whose formal definition we postpone

until Section 5.3. For now, let us present the eventual con-

sistency result it implies. For this, we introduce two auxil-

iary definitions. The first one extracts a ledger for a node

a ∈ dom(∆) from a global state ∆.

ledger(∆,a) ≜ ⌈bf ⌉, s.t. ⟨a,−, bf ,−⟩ = ∆(a) (9)

The second returns all in-flight blocks for a in a soup P :

blocksFor(P ,a) ≜ {b | ⟨−,a,BlockMsg b⟩ ∈ P} (10)

5
The version we present is a form of quiescent consistency [2, 5].

6
This situation is quite common for corporate blockchain-based protocols,

where all peers know each other from the very beginning.

9

CPP’18, January 8–9, 2018, Los Angeles, CA, USA George Pîrlea and Ilya Sergey

Cliq(⟨∆, P⟩) ≜
Coh(⟨∆, P⟩) ∧
∀a ∈ dom(∆), dom(∆) ⊆ peers(∆,a) ∧

∃c, b̂f , â ∈ dom(∆), such that

(i) ∀a ∈ dom(∆), b̂f = forest(∆,a) ◁◁ blocksFor(P ,a) ∧

(ii) valid(b̂f) ∧ good(b̂f) ∧ c = ⌈b̂f ⌉ ∧

(iii) ∀a ∈ dom(∆), c ≥ ledger(∆,a) ∧

(iv) ledger(∆, â) = c

where peers(∆,a) ≜ as, s.t. ⟨a, as,−,−⟩ = ∆(a)

forest(∆,a) ≜ bf , s.t. ⟨a, bf ,−,−⟩ = ∆(a)

Figure 9. Cliq system property.

The desired theorem is as follows:

Theorem 5.2 (Consensus in a clique topology). For σ =
⟨∆, P⟩, ifCliq(σ) holds, then there exists a chain c , such that for
any node a ∈ dom(σ), c ≥ ledger(∆,a) and blocksFor(P ,a) =
∅ implies ledger(∆,a) = c .

The chain c from Theorem 5.2 statement is a globally
shared ledger, and in a quiescent state, all nodes have it.

5.3 Clique Invariant
We now show the statement of the Cliq property, highlight

its key insights, and convey the intuition of the proof that it

is indeed inductive for systems that start in initial configura-

tions σ0 with a clique network topology.

The formal definition of Cliq, with the most important

conjuncts labelled (i)–(iv) is given in Figure 9. The first two

non-labelled conjuncts ensure that the property holds over

configurations that are coherent (8) and have a clique topol-

ogy, as discussed above. The rest of the definition is more in-

teresting, as it exhibits an important property of blockchain-

based protocols, which we call the law of block conservation.
The “conservation” is expressed via the existence of a global

forest b̂f (foreshadowed as a system-wide forest union in

Section 3.3), which is a superset of the local forest of any

node a, as stated by conjunct (i), and can be obtained by

adding all blocks currently in-flight towards a to a’s local

forest. The global forest b̂f is also valid (1), good (4) and has

the “canonical” ledger c (ii), which is larger or equal than any
local ledger (iii). Finally, there is always a node â ∈ dom(∆)
that has the canonical ledger c , even though â’s local forest

might be a strict subset of b̂f (iv).
The statement of Theorem 5.2 trivially follows from (i)–(ii)

as then the subject node’s forest is exactly b̂f .

Why is Cliq inductive? In our Coq development, we have

proved that Cliq is preserved by the network semantics. The

proof is of interest, as it heavily relies on the idempotence of

the ◁ operation, and the “goodness” of the global forest b̂f ,
whose ledger c (owned by at least one node in the network)

serves as the constructive witness of what the consensus is
going to be reached upon. The trickiest parts of the proof

concern “restoring” conjuncts (ii) and (iv) when an arbitrary

node takes the IntMint transition, with a chance of either

(a) becoming the new owner â of the global ledger c , or (b)

minting a block that is already in b̂f or simply does not de-

liver a heavier chain. The case (a) is handled by Theorem 3.3,

while the case (b) is what is delivered by Theorem 3.4. The

following theorem therefore holds:

Theorem 5.3. For systems that initially have a clique net-
work topology, Cliq is an inductive invariant.

On the clique assumption. What would the invariant and

the eventual consistency statements look like without the

clique assumption? At the moment, the definition of Cliq
ensures that for any node a and any block b in the system, b
is either already in a’s local forest or is “flying towards” it.

With this assumption, our proofs do not rely on the more

advanced features of the protocol, such as peer-exchange (via

AddrMsg and ConnectMsg) and on-demand data exchange

(via InvMsg and GetDataMsg). These features will become

useful in the future, when we want to prove more interesting

invariants. To illustrate this, let us consider a case of a node

a′ that has joined late, announcing itself (via ConnectMsg)
only to a few other participants. Then, a′ might not have

yet requested or has not yet been forwarded all the blocks

already minted in the system. Therefore, in order to relate

its local state to b̂f , we would have to enhance the invariant

with a conjunct for ongoing “propagation” of the known

peers in the system, and replace (i) by it. In addition to that,

we would need to consider situations when the topology

is not a connected graph, in which case several “canonical”

chains would co-exist without ever being reconciled. Stating

the consensus property in such settings is our future work.

6 Elements of our Mechanisation
We mechanised all results described in this paper in Coq,

making use of the Ssreflect/MathComp libraries [23, 31].

Our implementation of block forests builds on the library of

partial finite maps by Nanevski et al. [25]. The size of our
contributed codebase is pleasantly small, as demonstrated

by the lines of code figures in Table 1.

In the proofs, we heavily relied on the small-scale reflec-

tion and rewriting machinery provided by Ssreflect [12]. For

instance, our implementation of block forests features both

constructive and computable definitions of prefix/fork rela-

tions on chains, as well as the corresponding reflect-view
lemmas, to switch between the two representations. The defi-

nitions of all operations and predicates on block forests, such

as (1)–(3), and on network configurations, such as (9) and

(10), are also made decidable/computable. This design choice

has paid off not only in reducing proof sizes, but also in the

robustness of our proof scripts in the face of changes made

10

Mechanising Blockchain Consensus CPP’18, January 8–9, 2018, Los Angeles, CA, USA

Table 1. Sizes of definitions and proofs (LOC).

Definitions Proofs

Block Forests 579 1406

Protocol and Network 409 263

Consensus Properties 241 273

in the definitions, which is surprising given how modest the

amount of automation we used in the project was.

As an anecdote from our experience, while preparing this

submission, a few days before the CPP’18 deadline and al-

ready after having completed proofs of all invariants, we

have noticed an odd encoding of the rule RcvConnect. In

our mechanisation to date, the corresponding transition was

only adding the sender from to the local list of peers, but,

rather selfishly, did not send a list of available hashes back

as an InvMsg. We have changed the implementation so it

would precisely match the rule from Figure 6, and, to our

surprise, no proofs of invariants broke. We consider this an

encouraging sign to investigate domain-specific automation

for proofs about replicated state-transition systems.

7 Discussion
We now discuss the limitations of our protocol model and

the implications of the assumptions we made.

Network semantics and system faults. As defined in Sec-

tion 4, our network semantics is quite restricted. For instance,

it does not include notions of packets being dropped or of

participant faults. In practice, the clique assumption means

that we can largely ignore crash faults, as we do not need

other participants to relay our messages and we do not ex-

pect to receive any responses.

A possible complication arises when a participant crashes

while in the process of broadcasting a newly-minted block,

such that some peers receive it and others do not. This sce-

nario, which is very similar to that of dropped packets, is

difficult to accommodate in the current invariant. However,

the problem with dropped packets would essentially disap-

pear once we start making use of the protocol’s peer-to-peer

facilities, as they a provide a large amount of communication

redundancy. That is, participants in the network advertise

their entire knowledge every time they update it, and they

request information they do not have from all peers that
have advertised it. For reaching the consensus eventually,

it is sufficient that one of these messages gets delivered. If

none of them is, the process repeats the next time a peer

updates its state and advertises.

Byzantine behaviours. A special case of faults is that of

Byzantine faults, in which participants exhibit arbitrary be-

haviour [21]. Thesemay arise due to software bugs, hardware

malfunctions or through the actions of malicious actors. Our

invariant is not resistant to Byzantine faults. For example,

the proof relies on the fact that all blocks in the canonical

block forest are tx-valid. This is true under normal operation,

but can be invalidated at will by a malicious actor. In order

to reason about the ineffectiveness of Byzantine faults, we

will have to introduce to the invariant some notion of honest
participants being in the majority and in communication

with each other, and to find a way of accommodating within

the proofs the presence of “bad” blocks.

It is important to stress that these invalid blocks, as seen

in cases (d) and (e) of Figure 4, do not in any way prevent

the protocol from operating correctly (from the perspective

of faithful participants), but merely make it more difficult to

prove that it does.

Other protocol properties. In this work, we have focused

exclusively on the safety of the system, i.e., the property that
all correct nodes agree wrt. which ledger they adopt. Other

properties, such as liveness and various security properties,

depend on the choice of system parameters hash, VAF , and
FCR. For example, system security almost certainly requires

that we use a cryptographic hash function, i.e., a hash func-

tion that is both collision-resistant (approx. injective) and

pre-image resistant (given h(m), findingm is computation-

ally hard). For liveness, we will at the very least need to

ensure, in the form of a new axiom, that hashes for blocks do

not collide with hashes for transactions. Otherwise, informa-

tion might not propagate correctly throughout the network.

Moreover, we likely want VAF to impose a reasonable delay

between consecutive block mintings, such that messages

have time to propagate throughout the network—this would

provide an adequate quiescent state, and thus consensus

can be reached. Studying the full implications of different

framework parameters is left for future work.

Towards a verified blockchain implementation. Our im-

plementation of the protocol is intentionally non-optimal.

Whenever faced with a decision of how to implement a func-

tion, we always chose simplicity over efficiency. That being

said, all of our functions of, e.g., processing block forests,

are pure, so that they can be replaced with more efficient

functional or imperative equivalents. For example, the refer-

ence implementation of chain performs a lot of redundant

computation and would greatly benefit from a memoization

strategy. Similarly, the message propagation strategy is very

inefficient, and could be replaced with a more sensible one.

Because our mechanisation of the protocol is encoded as

a library of computable Coq functions that implement state

transformers and message handlers, it should be possible

to extract it to OCaml and run on top of a trusted shim im-

plementation, thus providing a formally verified blockchain

implementation, in the same way it has been done in the

recent work on the Disel framework [32, 35]. This setup,

however, appears quite naïve and would be problematic in

a realistic case of Byzantine faults, as the safety results es-

tablished in this work hold only as long as all participants

11

CPP’18, January 8–9, 2018, Los Angeles, CA, USA George Pîrlea and Ilya Sergey

follow the protocol and use exactly the same version of the

shim, which is hard to guarantee in an adversarial distributed

environment.

8 Related Work
The results we presented in this paper are related to the latest

advances in the areas of computer security, formal methods,

and distributed systems.

Consistency of BlockchainProtocols. In the past few years,

there has been a lot of interest within the security and pri-

vacy community for notions of consistency in application to

blockchain protocols.

Garay et al. considered the core protocol underlying Bit-

coin [24], focusing on its two properties, dubbed Common
Prefix andChain Quality [11]. The common prefix property is

a probabilistic version of the notion of eventual consistency

we have established in Section 5 of this paper. Specifically,

they establish that all honest parties in the system agree on

a common ledger prefix up to k last blocks, where k is a

parameter of the system. The chain quality property tackles

a Byzantine setting in which malicious participants may con-

tribute ill-formed blocks, and states that the number of such

blocks in the system in not very large, given that the ma-

jority of participants remain honest and follow the protocol.

Unlike our formalization, the work by Garay et al. takes into
the account possible adversarial behaviours of the protocol

participants, but restricts the communication to fully syn-

chronous, i.e., messages in the system are instantly delivered

without delays, whereas we allow for arbitrary delays and

permutations in message delivery.

While that work focuses on proving the properties of

Nakamoto’s consensus based on Proof-of-Work [24], in a

follow-up to that result, Kiayias et al. propose a blockchain
consensus protocol based on Proof-of-Stake [3] and possess-

ing the same properties, and also a new one, Chain Growth,
which ensures overall liveness for the honest parties [20], un-

der the assumption of synchronous message delivery in the

network. Finally, in a recent work, Pass et al. provided proba-
bilistic boundaries with respect to chain growth and quality,

as well as the analysis of other consistency and liveness

properties of blockchain consensus in a fully asynchronous

environment [27].

In contrast with those and many other works [7, 11, 20, 27]

that analyse blockchain consensus from the perspective of

security properties, thus, focusing on probabilistic reasoning

about a protocol modeled as a composition of distributions,

we present a simple operational model that immediately

provides an executable semantics of the system, but only

allows us to prove “coarse-grained” correctness conditions,

such as eventual consistency.

None of the proofs of security properties of blockchain

consensus we are aware of were mechanised.

Formal Methods for Blockchain Applications. To date,

the interest of the formalmethods communitywrt. blockchain-
based systems is predominantly in applications of the tech-

nology, rather than reasoning about properties and invari-

ants of the underlying protocols.

In the past two years, a number of works have been pub-

lished on formal modeling and verification of smart con-
tracts—a mechanism to associate executable code with cer-

tain blockchain transactions, providing amachinery for trusted

decentralised arbitration, which gained a lot of attention

thanks to its highly influential implementation in Ethereum [37].

Various formal semantics of EthereumVirtualMachine (EVM)

and its contract language Solidity were implemented in

Coq [18], Isabelle/HOL [1, 17], F
⋆
[4], K [15], Idris [28],

Why3 [10], and in custom tools for static and dynamic anal-

ysis of smart contract behaviours [22].

An implementation of an efficient data structure for trans-

action ledgers has been developed and verified in Coq by

White [34], yet it has not been used in the context of verify-

ing a protocol that employs this structure.

At the level of reasoning about protocols, Hirai has for-

malised a simple variant of a Proof-of-Stake protocol in Is-

abelle [16], proving a version of the protocols’ accountable
safety: if two conflicting blocks get adopted in a shared block

tree, then at least
1

3
of participants may lose their entire de-

posits (stakes). This property is specific to Ethereum’s Casper

protocol [6] and is orthogonal to the consensus result we

established in this work.

Verification of Distributed Consensus. Several recent

major efforts have fully mechanised and verified implemen-

tations of more traditional consensus protocols, such as ver-

sions of Paxos [8, 14, 19, 26, 30], Raft [36, 38], or the classical

Two-Phase Commit [32, 35]. Even though none of those

works consider blockchain consensus, we believe, many of

those frameworks can handle it, as long as they can adopt

our model and support reasoning about block forests. There-

fore, we see our main conceptual contribution in distilling

the protocol semantics and outlining the proof layout for

blockchain consensus.

9 Conclusion and Future Work
In this work, we have presented a formal operational model

of a distributed blockchain-based consensus protocol, imple-

mented its core data structures, characterised the primitives

it relies upon, and mechanically proved a form of the proto-

col’s eventual consistency, i.e., that a system that implements

it does indeed reach a consensus.

In the future, we are going to enhance our mechanisation

for reasoning about relevant security properties [20], model-

ing schedule-providing oracles as probabilistic distributions.

We also plan to define an operational semantics for transac-

tions run on top of the protocol, using it as a foundational

platform for verified smart contracts.

12

Mechanising Blockchain Consensus CPP’18, January 8–9, 2018, Los Angeles, CA, USA

Acknowledgments
We thank the CPP’18 reviewers for the careful reading and

constructive suggestions on the paper and the formalisation.

We also thank June Andronick and Amy Felty for their efforts

as CPP’18 Program Co-Chairs.

Sergey’s research was supported by EPSRC First Grant

EP/P009271/1 “Program Logics for Compositional Specifica-

tion and Verification of Distributed Systems”.

References
[1] Sidney Amani, Myriam Bégel, Maksym Bortin, and Mark Staples. 2018.

Towards Verifying Ethereum Smart Contract Bytecode in Isabelle/HOL.

In CPP. ACM. To appear.

[2] James Aspnes, Maurice Herlihy, and Nir Shavit. 1994. Counting Net-

works. J. ACM 41, 5 (1994), 1020–1048.

[3] Iddo Bentov, Ariel Gabizon, and Alex Mizrahi. 2014. Cryptocurrencies

without Proof of Work. CoRR abs/1406.5694 (2014).

[4] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet,

Anitha Gollamudi, Georges Gonthier, Nadim Kobeissi, Natalia Kula-

tova, Aseem Rastogi, Thomas Sibut-Pinote, Nikhil Swamy, and Santi-

ago Zanella-Béguelin. 2016. Formal Verification of Smart Contracts:

Short Paper. In PLAS. ACM, 91–96.

[5] Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and Marek

Zawirski. 2014. Replicated data types: specification, verification, opti-

mality. In POPL. ACM, 271–284.

[6] Vitalik Buterin and Virgil Griffith. 2017. Casper the Friendly Finality

Gadget. CoRR abs/1710.09437 (2017).

[7] Phil Daian, Rafael Pass, and Elaine Shi. 2017. Snow White: Robustly
reconfigurable consensus and applications to provably secure proofs of
stake. Technical Report. Cryptology ePrint Archive, Report 2016/919.

[8] Cezara Dragoi, Thomas A. Henzinger, and Damien Zufferey. 2016.

PSync: a partially synchronous language for fault-tolerant distributed

algorithms. In POPL. ACM, 400–415.

[9] Cynthia Dwork and Moni Naor. 1992. Pricing via Processing or Com-

batting Junk Mail. In CRYPTO (LNCS), Vol. 740. Springer, 139–147.
[10] Jean-Christophe Filliâtre and Andrei Paskevich. 2013. Why3 - Where

Programs Meet Provers. In ESOP (LNCS), Vol. 7792. Springer, 125–128.
[11] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. 2015. The

Bitcoin Backbone Protocol: Analysis and Applications. In EUROCRYPT
(Part 2) (LNCS), Vol. 9057. Springer, 281–310.

[12] Georges Gonthier, Assia Mahboubi, and Enrico Tassi. 2009. A Small
Scale Reflection Extension for the Coq system. Technical Report 6455.

Microsoft Research – Inria Joint Centre.

[13] L.M. Goodman. 2014. Tezos: A Self-Amending Crypto-Ledger. Position

Paper. https://www.tezos.com/static/papers/position_paper.pdf.
[14] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan

Parno, Michael L. Roberts, Srinath T. V. Setty, and Brian Zill. 2015.

IronFleet: proving practical distributed systems correct. In SOSP. ACM,

1–17.

[15] Everett Hildenbrandt, Manasvi Saxena, Xiaoran Zhu, Nishant Ro-

drigues, Philip Daian, Dwight Guth, and Grigore Rosu. 2017. KEVM:
A Complete Semantics of the Ethereum Virtual Machine. Technical

Report.

[16] Yoichi Hirai. 2017. A mechanized safety proof for PoS with dynamic

validators. Published online on 18 March 2017.

[17] Yoichi Hirai. 2017. Defining the Ethereum Virtual Machine for Inter-

active Theorem Provers. In 1st Workshop on Trusted Smart Contracts.
[18] Yoichi Hirai. 2017. Ethereum Virtual Machine for Coq (v0.0.2). Pub-

lished online on 5 March 2017.

[19] Mauro Jaskelioff and Stephan Merz. 2005. Proving the Correctness of

Disk Paxos. Archive of Formal Proofs 2005 (2005).
[20] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman

Oliynykov. 2017. Ouroboros: A Provably Secure Proof-of-Stake Block-

chain Protocol. In CRYPTO (Part 1) (LNCS), Vol. 10401. Springer, 357–
388.

[21] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. 1982. The

Byzantine Generals Problem. ACM Trans. Program. Lang. Syst. 4, 3
(1982), 382–401.

[22] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas

Hobor. 2016. Making Smart Contracts Smarter. In CCS. ACM, 254–269.

[23] Assia Mahboubi and Enrico Tassi. 2017. Mathematical Components.
Available at https://math-comp.github.io/mcb.

[24] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash sys-

tem. http://bitcoin.org/bitcoin.pdf.
[25] Aleksandar Nanevski, Viktor Vafeiadis, and Josh Berdine. 2010. Struc-

turing the verification of heap-manipulating programs. In POPL. ACM,

261–274.

[26] Oded Padon, Giuliano Losa, Mooly Sagiv, and Sharon Shoham. 2017.

Paxos made EPR: decidable reasoning about distributed protocols.

PACMPL 1, OOPSLA (2017), 108:1–108:31.

[27] Rafael Pass, Lior Seeman, and Abhi Shelat. 2017. Analysis of the Block-

chain Protocol in Asynchronous Networks. In EUROCRYPT (Part 2)
(LNCS), Vol. 10211. Springer, 643–673.

[28] Jack Pettersson and Robert Edström. 2016. Safer Smart Contracts
through Type-Driven Development. Master’s thesis. Chalmers Univer-

sity of Technology, Sweden.

[29] George Pîrlea and Ilya Sergey. 2017. Toychain: a Coq implementa-

tion of a minimalistic blockchain-based consensus protocol. A ver-

sion accepted at CPP’18 is available at https://github.com/certichain/
toychain/tree/cpp2018.

[30] Vincent Rahli, David Guaspari, Mark Bickford, and Robert L. Constable.

2015. Formal Specification, Verification, and Implementation of Fault-

Tolerant Systems using EventML. In AVOCS. EASST.
[31] Ilya Sergey. 2014. Programs and Proofs: Mechanizing Mathematics with

Dependent Types. Lecture notes with exercises. Available at

http://ilyasergey.net/pnp.
[32] Ilya Sergey, James R. Wilcox, and Zachary Tatlock. 2018. Programming

and Proving with Distributed Protocols. PACMPL 2, POPL (2018), 28:1–
28:30.

[33] Douglas B. Terry, Marvin Theimer, Karin Petersen, Alan J. Demers,

Mike Spreitzer, and Carl Hauser. 1995. Managing Update Conflicts

in Bayou, a Weakly Connected Replicated Storage System. In SOSP.
ACM, 172–183.

[34] Bill White. 2015. A Theory for Lightweight Cryptocurrency

Ledgers. Unpublished draft. Code available at https://github.com/
input-output-hk/qeditas-ledgertheory, accessed on 10 October 2017.

[35] James R. Wilcox, Ilya Sergey, and Zachary Tatlock. 2017. Programming

Language Abstractions for Modularly Verified Distributed Systems.

In SNAPL (LIPIcs), Vol. 71. Schloss Dagstuhl - Leibniz-Zentrum fuer

Informatik, 19:1–19:12.

[36] James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi

Wang, Michael D. Ernst, and Thomas E. Anderson. 2015. Verdi: a frame-

work for implementing and formally verifying distributed systems. In

PLDI. ACM, 357–368.

[37] Gavin Wood. 2014. Ethereum: A secure decentralised generalised

transaction ledger. http://gavwood.com/paper.pdf.
[38] DougWoos, James R.Wilcox, Steve Anton, Zachary Tatlock, Michael D.

Ernst, and Thomas E. Anderson. 2016. Planning for change in a formal

verification of the Raft Consensus Protocol. In CPP. ACM, 154–165.

13

https://www.tezos.com/static/papers/position_paper.pdf
https://math-comp.github.io/mcb
http://bitcoin.org/bitcoin.pdf
https://github.com/certichain/toychain/tree/cpp2018
https://github.com/certichain/toychain/tree/cpp2018
http://ilyasergey.net/pnp
https://github.com/input-output-hk/qeditas-ledgertheory
https://github.com/input-output-hk/qeditas-ledgertheory
http://gavwood.com/paper.pdf

	Abstract
	1 Introduction
	2 Overview
	3 Data Structures for Blockchains
	3.1 Parameters and Core Data Structures
	3.2 Largest Chains and Block Forest Evolution
	3.3 Local Forests and System-Wide Union

	4 The Protocol and its Semantics
	4.1 System State-Space
	4.2 Local Node Semantics
	4.3 Network Semantics

	5 System Safety and Consensus
	5.1 System State Coherence
	5.2 Eventual Ledger Consistency
	5.3 Clique Invariant

	6 Elements of our Mechanisation
	7 Discussion
	8 Related Work
	9 Conclusion and Future Work
	Acknowledgments
	References

