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ABSTRACT
A lightweight logical approach to race-free sharing of heap
storage between concurrent threads is described, based on
the notion of permission to access. Transfer of permission
between threads, subdivision and combination of permission
is discussed. The roots of the approach are in Boyland’s
[3] demonstration of the utility of fractional permissions in
specifying non-interference between concurrent threads. We
add the notion of counting permission, which mirrors the
programming technique called permission counting. Both
fractional and counting permissions permit passivity, the
specification that a program can be permitted to access a
heap cell yet prevented from altering it. Models of both
mechanisms are described. The use of two different mech-
anisms is defended. Some interesting problems are acknow-
ledged and some intriguing possibilities for future develop-
ment, including the notion of resourcing as a step beyond
typing, are paraded.

Categories and Subject Descriptors
D.2.4 [Software/Program verification]: Correctness
proofs, Formal methods, Validation; F.3.1 [Specifying and
Verifying and Reasoning about Programs]: Logics of
programs
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Languages, theory, verification
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1. BACKGROUND
Separation logic has its roots in the observation by

Burstall in 1972 [7] that separate program texts which work
on separate sections of the store can be reasoned about in-
dependently. Reynolds, O’Hearn and Yang [20, 19, 14] and
others developed the logic to describe mutation of the heap
based on a notion of separate locations. In logical terms it’s
a particular model of BI [17, 18], but in programming terms
it’s a really cool hack with Hoare logic, making earlier at-
tempts to prove pointer-mutating programs (see [1] for ref-
erences) look ridiculously complicated and ad-hoc. Small
but intricate graph-manipulating programs can be specified
and proved with relatively little fuss [2].

The ambitions of the separation logic community extend
far beyond the description of graph-mutating programs. The
aim all along was to understand, specify and prove proper-
ties of fundamental programs, for example operating sys-
tems, written in low-level languages and running without
support on naked hardware. That requires an attack, first
of all, on the problems of concurrency (and, of course, there
will be many more problems to come: it’s too early to storm
the walls yet).

O’Hearn has shown [15] that separation logic can describe
ownership transfer, where concurrent program threads move
ownership of heap cells into and out of shared resources
which can be semaphores, conditional critical regions or
monitors. Breakthrough though it is, this isn’t enough by
itself. Separation logic deals with separation: exclusive own-
ership by one side or another of each heap cell. In prac-
tice heap cells, like variables in Dijkstra’s original descrip-
tions [9], can safely be shared between concurrent threads
provided they all promise only to read, never to write. This
has echoes of the notion of passivity which appears to be
necessary in a separation-logic treatment of sequential pro-
grams: we have to be able to say that a program has read
access to a heap cell but doesn’t have the right to change it.

The invention of ownership transfer began a change in
the way that separation logic assertions are read. The basic
assertion N 7→ E, pronounced N ‘points to’ E, is a predicate
of a heap asserting that it consists of a single cell with integer
address N and integer contents E. It can equally be read
as a permission asserting the right to read, write or dispose



READERS WRITER

P(m);
count := count + 1;
if count = 1 then P(write);

V(m); P(write);

... reading happens here ...; ... writing happens here ...

P(m); V(write)
count := count − 1;
if count = 0 then V(write);

V(m)

Figure 1: Readers and writers (from [8], with shortened names)

that particular cell. It’s the permission rather than the cell
that is transferred between threads in an ownership transfer.
The basic assertion emp is a predicate that the heap has
no cells; as a permission it means ‘without permission to
access any cell’. Nothing changes semantically, but for many
programmers the permission reading of separation logic is
easier to grasp than the predicate version.

Viewing ownership as total read/write/dispose permission
makes it possible to begin to see how heap cells might be
shared. A total permission can be split into as many read-
only permissions as needed and shared around as necessary.
Giving a read-only permission surely ought to guarantee
passivity (as it does, as we shall see). The only problem
is in gathering them back in. How many read permissions
make a total permission? Clearly, you need them all – but
how many is all? (Answer: it depends how many you made
when you started.) What if some of the read permissions we
handed out were split by their recipients? (Answer: if they
do that, then either you have to know about it or they have
to put them back together before handing them in.) How
can you keep account?

You surely need to keep account. Suppose there is a pro-
gram which has total ownership of cell N , and which tempor-
arily splits into two threads which concurrently read N but
don’t write to it or transfer it elsewhere. After the threads
recombine, you can harvest the permissions you gave them.
Now the program must have total access once more: if not,
where has the permission gone? To lose permissions is to
leak resource; accurate accounting is essential.

It’s the need for permission accounting which constrains
the treatment of permissions in separation logic. You have
to measure them out, and you have to measure them all
back in. The design choices are all about simplicity and
convenience of different kinds of measurement.

There are several oddities about permission accounting
as we currently understand it. One is immediately obvious:
there are at least two alternative accounting mechanisms.
Another is that it is proving difficult to extend the treat-
ment of heap cells to recursively-defined data structures.
Finally, exploration of permissions has clearly exposed a
deeper problem in the treatment of variables as resource.

Nevertheless we have come a considerable distance in the
eight months since we first heard Boyland’s laconic hint “ 1

2
+

1
2

= 1”. I hope that we are blazing a trail towards the goal
of resourcing, a step beyond program typing in which the

quantity as well as the kind of resource that is supplied to
a program or command must be described and verified.

My intention is to discover the principles of resourcing by
exploring resource properties of programs that can be spe-
cified and verified. Proof-theoretic exploration is dangerous:
you can go far out on very thin ice, and if it’s unsound you
get very cold and wet. On the other hand, sound but unex-
plored logics don’t necessarily make useful reasoning tools.
Surely there’s room in our subject for those who experiment
proof-theoretically as well as those who deal in certainty.
I’m interested in proof; I believe that it’s worth trying to
find logics that look so obviously useful that they deserve a
soundness proof.

Soundness matters, though, even to me. In this work I
haven’t gone very far from land: soundness, I hope and ex-
pect, will be a matter of building small bridges to previous
work, dotting is and crossing ts. In the meantime I’m search-
ing for ‘nice proofs’: proofs that can be understood, concise
proofs, proofs you can read. I’m hoping to prove programs
that people already think they understand but which don’t
yet have satisfying proofs. I’m aiming, in the end, for proofs
that a compiler could follow and, if I’m allowed to dream,
proofs that a compiler could guess.

2. A PROGRAM IN NEED OF
RESOURCING

The readers and writers algorithm of Courtois et al. [8],
shown in figure 1, allows multiple readers concurrent access
to a shared variable, but restricts writers to exclusive access.
It would be possible to read the algorithm as a description
of two parallel processes, but it is far more concurrent than
that. There are various components which can be executed
concurrently, with varying degrees of mutual exclusion:

• the four uses of the binary mutex m;

• the reader prologue count := count + 1...;

• the reader action section;

• the reader epilogue count := count − 1...;

• the two uses of the binary mutex write;

• the writer action section.



A resourcing of this program must explain how that con-
currency is controlled. Further, it must explain how use of
variable count is restricted to reader prologue and epilogue.

All of these resourcing questions are addressed below. I
have answers to all but the dynamic restriction of the scope
of count applied by use of the mutex m (and in that case we
can provide an explanation of an alternative version of the
program).

3. BASICS
I give a brief description of separation logic. A more care-

ful treatment, particularly of critical regions and resource
bundles, is in [15] and [6], where there is also a discussion
of the relation to earlier work on concurrency.

In the original model of separation logic a heap is a partial
map from addresses to values. The simplest heaps are the
empty heap emp and the singleton heap with address E
and content E′, written as E 7→ E′. We write E 7→ as a
shorthand for ∃v ·E 7→ v. Two heaps can be combined, using
multiplicative conjunction (?) iff their (address) domains are
disjoint.

The frame property (section 11.3) of separation logic re-
quires that if a program doesn’t go wrong in a particular
stack/heap configuration s, h, then it will not go wrong in a
larger configuration s, (h?h′); its effect will still be to change
h, leaving the added heap h′ completely unaffected. As a
result, separation is policed and exploited by the frame rule

{Q}C{R}
{P ? Q}C{P ? R}

(modifies C ∩ vars P = ∅)
(1)

– if C can’t modify the variables of P , and if the heap it ma-
nipulates is disjoint from that of P , then we can reason about
C and its effects separately from P . The side-condition is
required because separation logic deals only with separation
of heap cells, not (stack) variables.

The language that separation logic treats includes new
and dispose, abstractions of similar Pascal or C library prim-
itives. new is a heap creator – it makes a singleton heap
– and dispose a matching heap destroyer. In the simplest
version of the language we don’t care what value is in the
heap that new creates or dispose destroys. Writing E for a
‘pure’ expression – one which doesn’t involve heap access –
we have:

{emp} x := new() {x 7→ }
{E 7→ } dispose E {emp} (2)

There is absolutely no way to make a heap other than with
new, or to destroy one other than with dispose.1 To make
the frame rule work, we know that new has to be magic, in
the sense of program refinement: it must always return an
address which is disjoint from the domain of any heap in
use at the time. Of course this is easy to implement using a
list of locations not yet handed out to the program, so it’s
really only stage magic.

Addresses received from new are integers, but all a pro-
gram can do with with the heap via an address is to access

1The axioms in (2) allocate and dispose a single cell, for
simplicity. Axioms which deal with any particular record
size are possible. A treatment which deals with computable
record sizes, unrecorded by the program but tracked by the
specification – that is, a treatment of C’s malloc and free
– is one aim of the work reported here.

or modify the addressed value. Writing [ ] for heap access,
we recognise three forms of assignment:

{Rx
E} x:=E {R}

{E′ 7→ } [E′]:=E {E′ 7→ E}
{E′ 7→ E} x:=[E′] {E′ 7→ E ∧ x = E}

(3)

The use of conventional Hoare logic in the first assignment
axiom gives rise to the proviso in the frame rule. I’d love to
get rid of that condition, but as you shall see (section 13.2)
that isn’t easy.

The other two axioms are presented as forward reasoning
steps (backward versions, using BI’s ‘magic wand’ operator
−? are possible, but I don’t give them here). The last rule,
as a forward step, requires a side-condition that x does not
occur free in E or E′.

3.1 Concurrency
Since Dijkstra [9] the description of safe concurrency has

been based on a separation of variables into distinct groups:

• read/write variables unique to each thread;

• read-only variables shared between threads;

• read/write shared variables accessible only in
mutually-exclusive critical sections of program code.

Other treatments – conditional critical regions, monitors –
have provided alternative linguistic expression of the same
fundamental notion. Our approach is in the same tradition,
but treating heap locations rather than variables.

The concurrency rule

{Q1}C1 {R1} · · · {Qn}Cn {Rn}
{Q1 ? · · · ? Qn}(C1 ‖ · · · ‖ Cn){R1 ? · · · ? Rn} (4)

describes how concurrent threads with ?-separable heap re-
sources can be treated separately. The side-condition, which
guarantees non-interference of variables, is that no variable
free in Qi or Ri is modified in Cj when j 6= i. It is re-
markable that such a simple rule is possible in our logic.
It holds out the promise that we might specify and verify
zero-execution-cost barriers between threads.

As a concurrent program executes, heap resources must
remain separated but the separation need not be fixed: own-
ership can be transferred between threads. Following [13]
our treatment is based on conditional critical regions. A
conditional critical region (CCR) [11] is a command

with b when G do C od

where b is a resource-bundle name.2 A bundle, like a
thread, may possess its own private read/write variables;
the boolean G and the command C in a CCR command
may refer to these variables. Execution of a CCR is in mu-
tual exclusion with all other CCRs for the same bundle. It
proceeds, rather like a monitor procedure execution, as fol-
lows:

2Hoare called resource bundles simply resources, but I want
that word to apply to the items – heap locations and vari-
ables at least, perhaps time and stack space and whatever
else we can manage – and the permissions that are owned
by, shared between or transferred between the threads of a
concurrent program. A resource bundle contains a bundle
of resources described by an invariant formula – hence the
nomenclature.



Bundle b : Vars full , buf ; buf := false;
Invariant if full then buf 7→ else emp fi0BBBBBBBBBBBBBBBBBBBBBBBBBBB@

{emp}
x := new()

{x 7→ }
with b when ¬full do
{(x 7→ ? if full then buf 7→ else emp fi) ∧ ¬full} ∴
{x 7→ ? emp} ∴
{x 7→ }

buf := x
{x 7→ ∧ buf = x}

full := true
{full ∧ x 7→ ∧ buf = x} ∴
{full ∧ buf 7→ } ∴
{if full then buf 7→ else emp fi ∧ full} ∴
{if full then buf 7→ else emp fi} ∴
{emp ? if full then buf 7→ else emp fi}

od
{emp}

{emp}
with b when full do
{(emp ? if full then buf 7→ else emp fi) ∧ full} ∴
{emp ? buf 7→ } ∴
{buf 7→ }

y := buf
{buf 7→ ∧ y = buf }

full := false
{¬full ∧ y 7→ } ∴
{y 7→ ? (¬full ∧ emp)} ∴
{y 7→ ? (¬full ∧ if full then buf 7→ else emp fi)} ∴
{y 7→ ? if full then buf 7→ else emp fi)}

od
{y 7→ }

dispose y
{emp}

1CCCCCCCCCCCCCCCCCCCCCCCCCCCA
Figure 2: Ownership transfer between concurrent threads using CCR commands

1. acquire bundle b;

2. evaluate the boolean guard G;

3. if G is true, execute the command C and release b;

4. if G is false, release b and try again.

Following [15], a mutex semaphore m is a bundle whose
CCRs are either

P: with m when m 6= 0 do m := 0 od, or

V: with m when true do m := 1 od.

A counting semaphore c is similar, but with commands c :=
c − 1 and c := c + 1. This is much more than a convenient
equivalence: it inverts the normal treatment of semaphores,
converting them from (negative) locks keeping you out to
(positive) stores of resource that you can use.

In our treatment each bundle must have an invariant for-
mula describing its resources in terms of its private variables,
(?)-separated from each other and from the resource of any
thread in a version of the concurrency rule. If the resource of
bundle b is described by invariant Ib, the conditional critical
region rule is

{(Q ? Ib) ∧G}C{R ? Ib}
{Q}with b when G do C od{R} (5)

The non-interference side condition is that processes cannot
refer to variables of the bundle outside a CCR command.

This approach has been proved sound by Brookes in [6]:
the result is that given invariant formulae for each bundle
and (?)-separation of bundle resources from each other and
from thread resources, we can reason sequentially about each
thread and the CCRs it employs. Brookes’s semantics allows
threads to share read-only variables and locations: I shall
return to that point.

4. OWNERSHIP
O’Hearn, in [13], gave an alternative reading of E 7→ E′ as

expressing ownership of a heap location. He used the con-
ditional critical region rule to transfer ownership between
threads. Figure 2 shows his example with assertions of own-
ership.

For separation logic users, O’Hearn’s alternative reading
of the 7→ relation was a breakthrough, a liberation. But
we needed help to take the next step towards permission
accounting and shareable resource.

5. FRACTIONAL PERMISSIONS
In order to reason about non-interference of concurrent

threads, Boyland [3] associates a rational z with each stack
variable and heap location. Like Brookes, he distinguishes
total control (dispose, read and write permission) from
shared access (read only: no thread can write or dispose).
z = 1 gives exclusive ownership and total control; 0 < z < 1
allows shared access. This enabled him to describe the al-
location of memory access rights to threads. He proved the
determinacy of disjoint concurrency with shared read access.
He pointed out, correctly, that separation logic couldn’t
match this: the concurrency rule only deals with exclusive
access. He suggested, however, that separation logic might
be modified to include the equivalent of P � εP ? (1 − ε)P
and thus be able to deal with shared heaps.

Boyland’s suggestion turns out to deal very nicely with
fork-join programs where permission splitting and combin-
ing is part of the program structure. Fractional permission
accounting, like program typing, is a compile-time discip-
line. The program does nothing to support the accounting:
everything happens in the specifications and the proof. The
magnitude of non-integral fractions don’t seem to matter: a
program can do exactly as well with 0.1 as with 0.9 (but see
section 13.1).

Those who, like me, would hesitate before mixing rational
arithmetic and logic need not be scared of its use in per-
mission accounting. The complexity of the arithmetic de-
ductions is only that required by a particular specification:



READERS WRITER

with read when true do
if count = 0 then P(write) else skip fi;
count +:= 1

od;

... reading happens here ...;

with read when count > 0 do
count − := 1;
if count = 0 then V(write) else skip fi

od

P(write);

... writing happens here ...

V(write)

Figure 3: Readers and writers: CCR version

typically, no more than observing that z+z′ = z′+z or that
two halves make a one. Fractions seem to be more conveni-
ent to use than history-based mechanisms like sets of binary
trees.

6. COUNTING PERMISSIONS
Not every program is suitable for fractional permission

accounting. Programs which keep a semaphore-protected
count of the number of permissions handed out need an
alternative treatment. A famous example is the readers-
and-writers problem; another example is pipeline processing
where permission to access a buffer is passed from an origin-
ator thread to a number of assistants, any of which may pass
it on further, and eventually dispose the permission without
the originator’s involvement.

To deal with permission counting we have counting per-
missions. A central “permissions authority” holds a source
permission, annotated with the number of read permissions
that have been split off from it; the split-off read permis-
sions can’t be split further; only a source with no split-off
children gives total read/write/dispose ownership. An ana-
logy is Neolithic flint knapping: arrowheads were split from
a stone that remained capable of providing more of the same.
In principle the arrowheads could be re-attached to re-create
the original stone.

Permission counting is not reference counting: it has noth-
ing to do with reachability. The number of permissions can
be many fewer than the number of reachable pointers. (Sep-
aration logic embraces the dangling pointer, yet again!)

7. FRACTIONAL PERMISSIONS
IN DETAIL

We modify the model of separation logic (see section 10
for more detail). A heap is now a partial map from addresses
to values with permissions. We use Boyland’s [3] numerical
scheme: a permission is z, where 0 < z ≤ 1; z = 1 allows
dispose, write and read; any other value is read access only.
We annotate the 7→ relation to show the level of permission
it carries:

x 7−→
z

E =⇒ 0 < z ≤ 1 (6)

Heaps can be combined with (?) iff, where their addresses
coincide, they agree on values and their permissions combine
arithmetically. Reading in the other direction, an existing

{emp}
x := new();
{x 7−→

1
}

[x] := 7;
{x 7−→

1
7} ∴ {x 7−−−→

0.5
7 ? x 7−−−→

0.5
7}0@{x 7−−−→0.5

7}
y := [x]− 1
{x 7−−−→

0.5
7 ∧ y = 6}

{x 7−−−→
0.5

7}
z := [x] + 1
{x 7−−−→

0.5
7 ∧ z = 8}

1A ;

{x 7−−−→
0.5

7 ? x 7−−−→
0.5

7 ∧ y = 6 ∧ z = 8} ∴
{x 7−→

1
7 ∧ y = 6 ∧ z = 8}

dispose x;
{emp ∧ y = 6 ∧ z = 8}

Figure 4: Fractions are easy

permission can always be split in two.

x 7−→
z

E ? x 7−−→
z′ E ⇐⇒ x 7−−−−→

z+z′ E ∧ z > 0 ∧ z′ > 0 (7)

We require positive z and z′ to avoid silly nonsense like 2 ?
−1 ⇐⇒ 1: otherwise, the fractions we choose are arbitrary,
an aide-memoire for future recombination. Reasoning about
their magnitudes would seem to be like reasoning about the
identity of the names we use for the parameters of a theorem.

new and dispose deal only in full permissions:

{emp} x := new() {x 7−→
1

}
{E 7−→

1
} dispose E {emp} (8)

Assignment needs full access for writing, any access at all
for reading:

{Rx
E} x:=E {R}

{x 7−→
1

} [x]:=E {x 7−→
1

E}
{E′ 7−→

z
E} x:=[E′] {E′ 7−→

z
E ∧ x = E′}

(9)

(the side-condition on the last rule is once again x not free
in E or E′). It’s then completely straightforward to check
the correctness of the program in figure 4, in which parallel
threads require simultaneous read access to location [x].

Most fractional problems are as simple as this. It really
is that easy. Section 9 discusses a larger example.

7.1 Passivity
Passivity is a property of a command which has access to a

heap cell but leaves it unchanged. Any fractional permission
less than 1 prescribes passivity, by the following argument.



{emp}

P(write) :

0BBBB@
{(emp ? if write = 0 then emp else y 07−→ fi) ∧ write = 1} ∴
{(emp ? y 07−→ ) ∧ write = 1}

write := 0

{y 07−→ ? (emp ∧ write = 0)} ∴
{y 07−→ ? (if write = 0 then emp else y 07−→ fi ∧ write = 0)}

1CCCCA
{y 07−→ }

{y 07−→ }

V(write) :

0BBBB@
{y 07−→ ? if write = 0 then emp else y 07−→ fi} ∴
{y 07−→ ? (emp ∧ write = 0)}

write := 1

{emp ? (y 07−→ ∧ write = 1)} ∴
{emp ? (if write = 0 then emp else y 07−→ fi ∧ write = 1)}

1CCCCA
{emp}

Figure 5: Proof of pre- and post-condition of P(write) and V(write)

Commands in our language obey the frame property. In
the sequential sub-language they also display termination
monotonicity (section 11.3): if a command terminates in
a particular heap, then it terminates in any larger heap.
Suppose that C is a command which is given fractional per-
mission to access cell 10, and which manages to change that
cell somehow – say to increase its value. That is, it obeys

{10 7−−−→
0.5

N}C{10 7−−−→
0.5

N + 1}

and it terminates. It must therefore terminate in any larger
heap. Using the frame rule you can show

{10 7−−−→
0.5

N ? 10 7−−−→
0.5

N}C{10 7−−−→
0.5

N ? 10 7−−−→
0.5

N + 1}

– but the postcondition is false, so C can’t terminate in the
larger heap, so it can’t be a command of the sequential sub-
language since it doesn’t exhibit termination monotonicity.

That proof, and its conclusion, must be treated with care
in the non-sequential case, because a command can apply
to a bundle for additional resource. Suppose

Ib ≡ 10 7−−−→
0.5

C ≡ with b when true do [10] := 3 od

then you can show with the CCR rule that

{10 7−−−→
0.5

2}C{10 7−−−→
0.5

3}

Using the frame rule you can prove

{10 7−−−→
0.5

2 ? 10 7−−−→
0.5

2}C{10 7−−−→
0.5

2 ? 10 7−−−→
0.5

3}

But the proof is useless, because to use this triple in parallel
with the resource bundle b the conclusion of the concurrency
rule must be

{Ib ? 10 7−−−→
0.5

2 ? 10 7−−−→
0.5

2}C{Ib ? 10 7−−−→
0.5

2 ? 10 7−−−→
0.5

3}

The precondition is false; there is no such heap; the conclu-
sion is vacuous.

In practice you can constrain a command to passivity by
passing it only a proportion of the permission you hold.
Then it cannot possibly acquire a total permission from any-
where, and you can be sure of its passivity.

8. COUNTING PERMISSIONS IN DETAIL
To model permission counting we have to distinguish

between the “source permission”, from which read permis-
sions are taken, and the read permissions themselves. We
also have to distinguish a total permission from one which
lacks some split-off parts.

A total permission is written E 07−→ E′. A source from
which n read permissions have been split is written E n7−−→ E′.
A read permission is written E � E′.3

E n7−−→ E′ → n ≥ 0

E n7−−→ E′ ∧ n ≥ 0 ⇐⇒ E n+17−−−−→ E′ ? E � E′ (10)

The assignment and new/dispose axioms are very like (8).

Only a total permission, E 07−→ E′, allows write and dispose.

{emp} x:=new(E) {x 07−→ E}
{E′ 07−→ } dispose E′ {emp}

{Rx
E} x:=E {R}

{E′ 07−→ } [E′]:=E {E′ 07−→ E}
{E′ � E} x:=[E′] {E′ � E ∧ x = E}

(11)

Read permissions (�) guarantee passivity in just the
same way as non-integral fractional permissions.

8.1 A counting permission example
I can’t yet treat the original version of the readers-and-

writers algorithm because I can’t yet deal formally with per-
mission to access stack variables (see section 13.2). I can
deal with it,though, if I transform the readers prologue and
epilogue, both mutex-protected critical sections, into CCRs,
as shown in figure 3. I’ve added a guard (count > 0) on the
reader epilogue, and made some insignificant changes which
make the proof presentation easier.

Suppose the shared resource is a cell pointed to by y and
the two bundles have invariants

write: if write = 0 then emp else y 07−→ fi

read : if count = 0 then emp else y count7−−−−−→ fi
(12)

3In terms of the model (section 10.2), it should be written

E −17−−−→ E′, but it simplifies the proof theory if I use a special
arrow and reserve the annotation of permissions for positive
integers.



{emp}
with read when true do

{if count = 0 then emp else y count7−−−−−→ fi ? emp}
if count = 0 then {emp} P(write) {y 07−→ }

else {y count7−−−−−→ } skip {y count7−−−−−→ }
fi

{y count7−−−−−→ }
count +:= 1

{y count−17−−−−−−−→ } ∴ {y count7−−−−−→ ? z � }
od

{z � N}

{z � N}
with read when count > 0 do

{if count = 0 then emp else y count7−−−−−→ fi ? z � N ∧ count > 0}
count − := 1

{if count + 1 = 0 then emp else y count+17−−−−−−−→ fi ? z � N ∧ count + 1 > 0} ∴
{y count+17−−−−−−−→ ? z � N ∧ count ≥ 0} ∴ {y count7−−−−−→ ∧ count ≥ 0}

if count = 0 then {y 07−→ } V(write) {emp}
else {y count7−−−−−→ } skip {y count7−−−−−→ }

fi

{if count = 0 then emp else y count7−−−−−→ fi ? emp}
od

{emp}

Figure 6: Resource release in readers prologue and reclamation in epilogue

The write semaphore-bundle owns a total permission which
it releases on P and claims on V. It’s easy to prove that
using the CCR rule, as shown in figure 5. From the proofs
you can see that it would be impossible to P the semaphore
if you already own the permission, and wrong to V it if you
don’t.

Then a proof that the readers prologue releases a read
permission into the surrounding program goes as in figure
6. The epilogue reverses the action, with the additional re-
quirement that count must be non-zero on entry to ensure
that the resource-bundle invariant is preserved. (Investiga-
tions are underway to eliminate this infelicity in our treat-
ment: if the readers and/or writers don’t do anything silly,
of course count > 0 on entry to the epilogue.)

8.2 No more critical sections?
When Dijkstra [9] introduced semaphores, the name re-

ferred to those mechanical railway signals which let only one
train at a time onto a critical (signal-controlled) section of
track. This block signalling technique provides mutual ex-
clusion in the critical section. Hardware provides mutual
exclusion only between executions of the test-and-set / in-
crement instructions which implement the semaphore and
we must rely on proof techniques to show mutual exclusion
in critical sections. Sometimes the critical sections of a pro-
gram are hard to identify or non-existent. Brinch Hansen,
arguing for the use of monitors instead of semaphores, stated
the problem:

Since a semaphore can be used to solve arbitrary
synchronizing problems, a compiler cannot con-
clude that a pair of wait and signal operations on
a given semaphore initialized to 1 delimits a crit-

ical region, nor that a missing member of such a
pair is an error. [4]

Our treatment (following [15]) inverts Dijkstra’s view by
focussing on permission rather than prohibition. A thread in
possession of a permission can use it at any time. Separation
guarantees absence of races even while permitting sharing.
Semaphores are resource-holders which can be unlocked, not
guardians of critical sections.

In figure 3 there is mutual exclusion between the readers
prologue and epilogue and between the four uses of the write
semaphore, but otherwise it is unnecessary to invoke the
notion of critical section. I can write a silly but perfectly
verifiable pattern use of read permissions:

prologue; prologue; prologue;„
reader1;
epilogue

reader2 reader3

«
;

epilogue; reader4; epilogue

and an even sillier use of total permission:

P(write);writer1;
`
reader5 reader6

´
;writer2; V(write)

If the count variable of figure 1 were in the heap, I could
apply resourcing to a version of the algorithm which uses
a mutex m instead of the CCRs of figure 3, and produce a
proof entirely free of the notion of critical section (but see
also section 13.2).

9. WHY TWO MECHANISMS?
The most striking feature of our presentation is that there

are two distinct models and two distinct logics. That’s be-
cause proof requires two distinct and somewhat incompat-



ible properties: unbounded divisibility suits some problems;
unbounded counting suits others.

Problems which can exploit fractional permissions exhibit
symmetrical splitting, indefinite subdivision, and simple and
predictable split/combine behaviour. Those which need
counting permissions have asymmetrical splitting with an
authority and a user, counting in the program, and split /
combine as actions of the program rather than properties of
its structure.

It should be clear already that some problems don’t
suit the notion of fractional permissions. It would be ex-
tremely difficult, perhaps impossible, to specify and prove
the readers-and-writers program using that technique. The
read permissions are all given out from the same point and
are all identical: they can be given back in any order, and
anything other than counting-accounting would be absurdly
over-complicated.

Since counting is so clearly sometimes necessary, I have to
make a similar case for fractions. I do so by example.

9.1 Lambda-term substitution
Our example is substitution on a lambda term, performed

in parallel for the sub-terms of a function application.
The syntax of lambda terms is

T ::= Lam v T | App T T | Var v (13)

I define substitution (for simplicity, allowing variable cap-
ture) in the obvious way

(Lam v′ β)[τ/v] =

(
Lam v′ (β[τ/v]) v 6= v′

Lam v′ β v′ = v

(App φ α)[τ/v] = App (φ[τ/v]) (α[τ/v])

(Var v′)[τ/v] =

(
Var v′ v 6= v′

τ v = v′

A possible heap representation predicate for a lambda
term pointed to by x with access permission z is

AST x (Lam v β) z =̂ ∃b.(x z7−→ 0, v, b ? AST b β z

AST x (App φ α) z =̂ ∃f, a.

„
x z7−→ 1, f, a ? AST f φ z ?
AST a α z

«
AST x (Var v) z =̂ x z7−→ 2, v

For simplicity, variables are represented by integers; the
0/1/2 tags which distinguish different kinds of nodes in the
heap are arbitrarily chosen.

The substitution function is given in Figure 7 (the pro-
gram is abbreviated: some of the calculations and assign-
ments in the figure represent sequences of correct separation-
logic assignments). The algorithm reads the node type from
the heap: for a lambda abstraction it checks if the bound
variable is the same variable as the substitution and if not
substitutes on the body; for an application it performs the
substitution on each sub-term concurrently; and for a vari-
able if it is the variable being replaced it calls a copy function
and returns a pointer to that copy.

The copy function has the specification

{AST y τ z} x := copy y {AST y τ z ? AST x τ 1}

The substitution function is specified as

{AST x τ 1 ? AST y τ ′ z}
z := subst x y v

{AST z (τ [τ ′/v]) 1 ? AST y τ ′ z}

The interesting part of the proof is the application case
([x] = 1).

{AST x (App φ α) 1 ? AST y τ ′ z}
[x+1] := subst [x+1] y v ||

[x+2] := subst [x+2] y v

{AST x (App (φ[τ ′/v]) (α[τ ′/v])) 1 ? AST y τ ′ z}

The proof requires the substituted lambda term to be split
into two pieces, and needs the equivalence

AST y τ (z + z′) ⇔ AST y τ z ? AST y τ z′

This equivalence is proved by induction on the structure
of τ .4 Using the Hoare-logic rule of consequence with this
equivalence and the definition of AST, followed by an ap-
plication of the frame rule, I can derive the following proof
obligation

x 7→ 1, f, a ? AST f φ 1 ? AST y τ ′ (z/2) ?
AST a α 1 ? AST y τ ′ (z/2)

ff
[x+1] := subst [x+1] y v ||

[x+2] := subst [x+2] y v
x 7→ 1, f ′, a′ ? AST f ′ (φ[τ ′/v]) 1 ? AST y τ ′ (z/2) ?
AST a′ (α[τ ′/v]) 1 ? AST y τ ′ (z/2)

ff
The proof is straightforward from the specification of subst.
But – and this is the point which justifies fractional rather
than counting permissions – because the proof uses frac-
tions I don’t need to know how many times the permission
AST y τ ′ (z/2) will have to be split to complete either of
the parallel threads (i.e. how many application nodes there
are altogether in φ and α). The split is genuinely symmet-
rical; both sides may need to split further; there isn’t any
machinery in the program which corresponds to a splitting
authority.

This example illustrates a situation in which fractional
permissions lead to simpler and more usable proofs than
counting. Counting fits problems where a thread or a library
module is used as an authority to give out ownership. Either
approach can conceivably be used in the other’s domain, but
at an unnecessary cost.

10. MODELS
Although there are two logical mechanisms, their models

are very similar.

10.1 General structure of models
We will consider models where heaps are partial functions

Heaps = L ⇀ (V ×M)

where L and V are the sets of locations and values respect-
ively, and M is equipped with a partial commutative semig-
roup structure, where the binary operator is denoted ?. The
idea is that ? adds permissions together, and the order in
which permissions are combined does not matter. We ex-
tend ? to the set V ×M as follows:

(v, m) ? (v′, m′) =

8<: (v, m ? m′)
if v = v′ and
m ? m′ defined

undefined otherwise

4But see section 13.1.



subst x y v =

if [x] = 0 then

if [x+1] != v then

[x+2] := subst [x+2] y v

else skip fi;

x

elsf [x] = 1 then

([x+1] := subst [x+1] y v ||

[x+2] := subst [x+2] y v);

x

elsf [x+1] = v then

dispose x; dispose (x+1);

new(2, copy y)

else

x

fi

Figure 7: Substitution Source

and correspondingly to the set Heaps:

• h?h′ defined iff h(l)?h′(l) defined for each l ∈ dom(h)∩
dom(h′)

• (h ? h′)(l) =

8<: h(l) if h′(l) undefined
h′(l) if h(l) undefined
h(l) ? h′(l) otherwise

Given a choice of M , the syntax and semantics of the (7→)
predicate is

s, h � E m7−−→ E′ iff

„
dom(h) = [[E]]s and
h([[E]]s) = ([[E′]]s, m)

«
A model (M, mW ) is given by a concrete M , together with

a distinguished element mW ∈ M , the write permission,
such that:

mW ? m′ undefined for any m′ ∈ M (14)

for all m′ ∈ M there exists m′′ ∈ M
such that m′ ? m′′ = mW

(15)

Intuitively, the two conditions say that mW is the maximal
permission, and any permission can be extended to obtain
the maximal one.

10.2 Model of counting permissions
We distinguish read permissions from others. We count

the number of read permissions that have been flaked off a
source permission. You can’t combine two source permis-
sions. You can’t combine a source permission with more
read permissions than it’s generated. Given that, you can
record permission to access a heap cell is represented by an
integer: 0 for a total permission, −1 for a read permission,
+k for a source permission from which k read permissions
have been taken.

Formally, the model is (Z, ?1), where Z is the set of in-
tegers and ?1 is defined as follows:

i ?1 j =

8<: undefined if i ≥ 0 and j ≥ 0
undefined if (i ≥ 0 or j ≥ 0) and i + j < 0
i + j otherwise

The write permission is 0. The following properties hold:

E n7−−→ E′ ⇐⇒ E n+m7−−−−−→ E′ ? E −m7−−−−→ E′

when n ≥ 0 and m > 0

E
−(n+m)7−−−−−−−→ E′ ⇐⇒ E −n7−−−→ E′ ? E −m7−−−−→ E′

when n, m > 0

(16)

10.3 Model of fractional permissions
Fractions are easy: just add them up, make sure you don’t

go zero, negative or greater than 1.

The model is ({q ∈ Q | 0 < q ≤ 1}, ?2), where Q is the set
of rational numbers and ?2 is defined as follows:

q ?2 q′ =


undefined if q + q′ > 1
q + q′ otherwise

The write permission is 1. The following property holds:

E q+q′
7−−−−→ E′ ⇐⇒ (E q7−→ E′ ? E q′

7−−→ E′) ∧ q + q′ ≤ 1 (17)

10.4 Combined Model
By making read permissions divisible, it’s possible to com-

bine the properties of fractional and counting permissions.
You finish up with an asymmetrical fractional model. Des-
pite the fact that there is only one model, there are still two
ideas – proliferation and divisibility – each of which seems
to be necessary, neither of which is subservient to the other.
The proofs sketched above are all supportable in the com-
bined model. The only significant difference is that it is
impossible in the combined model to set up a logic in which
read permissions cannot be split once issued, and control is
entirely with the splitting authority – a programming dis-
cipline which may prove to be useful in certain situations.

The model (Q, ?3) combines counting and fractional per-
missions, where Q is the set of rational numbers and ?3 is
defined as follows:

q ?3 q′ =

8<: undefined if q ≥ 0 and q′ ≥ 0
undefined if (q ≥ 0 or q′ ≥ 0) and q + q′ < 0
q + q′ otherwise

The write permission is 0. The following properties hold:

E q7−→ E′ ⇐⇒ E q+q′
7−−−−→ E′ ? E −q′

7−−−→ E′

when q ≥ 0 and q′ > 0

E
−(q+q′)7−−−−−−−→ E′ ⇐⇒ E −q7−−−→ E′ ? E −q′

7−−−→ E′

when q, q′ > 0

(18)

11. SEQUENTIAL SEMANTICS
If we restrict attention to the sequential case, the se-

mantics of commands in the permissions model is a minor
modification of the usual semantics. It is then possible to
show all the usual results about locality, weakest precondi-
tions etc.



11.1 Semantics of commands
Given a model we define the semantics of atomic com-

mands as follows

[[E]]s = v

x := E, s, h ; (s | x 7→ v), h

[[E′]]s = l [[E]]s = v h(l) = ( , mW )

[E′] := E, s, h ; s, (h | l 7→ (v, mW ))

[[E′]]s = l h(l) = (v, m)

x := [E′], s, h ; (s | x 7→ v), h

l ∈ L− dom(h) [[E]]s = v

x := new(E), s, h ; (s | x 7→ l), (h | l 7→ (v, mW ))

[[E′]]s = l h(l) = ( , mW )

dispose(E′), s, h ; s, (h− l)

(19)

We observe that this is the usual standard semantics of these
commands, plus runtime checks on permissions.

11.2 Small Axioms
We give small axioms for the atomic commands, in the

style of [14]; the frame rule can be used to infer complex
specifications from these simple ones.

The assignment and new/dispose axioms are as you would
expect. Only the total permission, mW , gets write and dis-
pose access. In contrast, any permission m grants read ac-
cess.

{Rx
E} x:=E {R}

{E′ mW7−−−−→ } [E′]:=E {E′ mW7−−−−→ E}
{E′ m7−−→ E} x:=[E′] {E′ m7−−→ E ∧ x = E}

{emp} x:=new(E) {x mW7−−−−→ E}
{E′ mW7−−−−→ } dispose E′ {emp}

(20)

The side condition on the third axiom is that x does not
occur free in E or E′.

11.3 Frame Property, termination and safety
monotonicity

Soundness of the frame rule depends on the local beha-
viour of commands. The locality of commands was formal-
ized in [21] with three properties:

• Safety Monotonicity: if C, s, h is safe and h ? h′ is
defined, then C, s, h ? h′ is safe.

• Termination Monotonicity: if C, s, h must terminate
normally and h ? h′ is defined, then C, s, h ? h′ must
terminate normally.

• Frame Property: if C, s, h0 is safe, and C, s, h0 ?h1 ;?

s′, h′ then there is h′0 such that C, s, h0 ;? s′, h′0 and
h′ = h′0 ? h1.

The same properties hold when heaps are built using per-
mission models. In particular, condition (14) ensures that
Safety Monotonicity and Frame Property hold for the com-
mands in (19). A simple proof of soundness of the Frame
Rule follows.

11.4 Weakest preconditions
Weakest preconditions are obtained as a variation of the

usual definitions by decorating the 7→ assertions. Weakest
preconditions are derivable, as usual, from the small axioms.

12. SOUNDNESS
The soundness of our logics would appear to be shown

by adapting the proof presented in [6] to each of our ver-
sions of resource permission and separation. Adaptation is
not a daunting task because of the framework of that proof.
We intend, however, to take an alternative route: work is
already in progress on the soundness of a general model
which can be instantiated with a range of different defini-
tions.

13. FUTURE WORK
The notion of permission is a strong fertiliser for novel

ideas about interesting problems. We already have more
than we can deal with. Some of those closest to a solution are
variables as resource, existence permissions and semaphores
in the heap.

13.1 Oddities of inductive definitions
A separation-logic heap predicate for a tree (e.g. in [2]:

versions differ according to whether they have explicit Tips
or store values at Nodes) is

tree nil Empty =̂ emp
tree t (Tip α) =̂ t 7→ 0, α

tree t (Node λ ρ) =̂ ∃l, r ·
„

t 7→ 1, l, r ?
tree l λ ? tree r ρ

« (21)

It’s tempting to define a ztree as a tree whose pointers are
all decorated with a fractional permission:

ztree z nil Empty =̂ emp
ztree z t (Tip α) =̂ t 7−→

z
0, α

ztree z t (Node λ ρ) =̂ ∃l, r ·
„

t 7−→
z

1, l, r ?

ztree z l λ ? ztree z r ρ

«
(22)

(cf. the AST predicate in the term-rewriting example
above).

We do now have ztree (z + z′) t τ ⇐⇒ ztree z t τ ?
ztree z′ t τ , but sometimes only vacuously! (?) no longer
guarantees disjointness of domains, because of (7), so I can
demonstrate some peculiarities. Consider the following ex-
ample (heavily abbreviated, in particular using ∧∧ for con-
ditional conjunction, like C’s &&):

if t 6= nil ∧∧ [t] = 1 ∧∧ [t + 1] = [t + 2] ∧∧
[t + 1] 6= nil ∧∧ [[t + 1]] = 0

then [[t + 1] + 1] := [[t + 1] + 1] + 1 else skip fi
(23)

This program checks if it has been given a heap consisting
of a Node in which left and right pointers are equal and point
to a Tip ; it then attempts to increment the value in that tip.
Such a heap contains a DAG, not a tree: I would have hoped
that the ztree predicate enforced tree structure just as tree
does. Sharing can occur in ztrees when z ≤ 0.5, because
nothing in the definition provides against the possibility that
part or all of the l heap isn’t then shared with the r heap.

That’s not all. The heap

x 7−−−→
0.5

1, l, l ? l 7−−−→
0.5

0, 3 ? l 7−−−→
0.5

0, 3

satisfies

ztree 0.5 x (Node (Tip 3) (Tip 3))

Program (23)) will change it so that

ztree 0.5 x (Node (Tip 4) (Tip 4))



Given

x 7−−−−→
0.25

1, l, l ? l 7−−−−→
0.25

0, 3 ? l 7−−−−→
0.25

0, 3

– the same locations with a different fractional permission –
the same program will abort. It’s impossible to have

x 7−−−−→
0.75

1, l, l ? l 7−−−−→
0.75

0, 3 ? l 7−−−−→
0.75

0, 3

– there’s no sharing in a ztree when z > 0.5.
This is all very peculiar. We don’t have passivity in ztrees

as we did with single cells and the values of fractions seem
to matter: has everything gone horribly wrong? Well no,
it hasn’t: not quite. You can use the technique suggested
in section 7.1: pass subprograms only a part of the per-
mission you hold. The term-rewriting example above isn’t
scuppered if the AST you pass in is a DAG, because the
copy rule makes a new copy with 1.0 permission, and it’s a
sequential program so parallel subprograms can’t conspire
to accumulate total permission. In effect we can rely on
passivity and there’s no paradox, after all.

Inductive definitions can be similarly confusing us-
ing counting read-only permissions rather than fractions:
there’s no possibility of modification by coincidence of sub-
trees, but once again DAGs are allowed where we’d like to
have only trees. Separation logic isn’t broken by this discov-
ery, but we don’t yet know how to write inductive definitions
which combine obvious separation with obvious reduction of
permission.

13.2 Variables as resources
Separation logic’s success with the heap is partly good

luck. Hoare logic’s variable-assignment rule finesses the
distinction between program variables and logical variables
and assumes an absence of program-variable aliasing. The
price for that sleight of hand is paid in the array-element-
assignment rule, which has to deal with aliasing of integer
indices using arithmetic in the proof.

In programming languages a little more developed than
that treated by Hoare logic, Strachey’s distinction of rvalue
(variable address) and lvalue (variable contents) is made ex-
plicit and can be exploited. Because heap rvalues and lvalues
alike are integers, separation logic can ignore the distinction
and use the conventional Hoare logic variable assignment
rule. The use of ‘pure’ expressions (constants and variable
names) not referring to the heap, and the restriction to par-
ticular forms of assignment that essentially constrain us to
consider single transfers between the ‘stack’ (registers) and
the heap, make it all work. Descriptions of the heap are es-
sentially pictures of separation; issues of aliasing then rarely
arise, and we can regard separation as the problem.

Separation logic treats heap locations and variables quite
differently. Heap locations are localised resources whose al-
location can be reasoned about, for example in the frame
rule. But stacks are global: that fact shows up in the frame
rule’s proviso, which requires extra-logical syntactic separ-
ation between resource formula P and the set of variables
assigned to in C. I’d much prefer to be able to integrate de-
scriptions of variables as resources into the frame rule, make
(?) do all the work, and eliminate the proviso.

The most obvious solution puts the stack in the heap.
This naive approach doesn’t work – or rather, it doesn’t
work conveniently, because it destroys the main advant-
age of Hoare logic, which is the elegant simplicity of the
variable-assignment rule. Drawing pictures of separation in

the stack necessarily exposes the rvalue/lvalue distinction
and the pun between logical and program variables which
lies behind Hoare logic’s use of straightforward substitution
no longer makes sense.

The problems of reasoning about concurrent programs
make treatment of variables-as-resources more than a matter
of aesthetics, more than a desire to eliminate ugly provisos.
I would like to be able to describe transfer of ownership of
variables into and out of resource bundles. I can explain the
original readers and writers algorithm (figure 1) if the count
variable is locked away in the m mutex, released by P and
reclaimed by V. Semantically the notion isn’t very difficult,
but integrating it into a useful proof theory is proving diffi-
cult. It’s crucial that this step is made so that we can have
an effective logic of storage-resource in concurrent programs
(and, by the by, eliminate any logical dependence on crit-
ical sections and split binary semaphores, and maybe even
provide a Hoare logic that deals with variable aliasing).

13.3 Existence permissions
The treatments above separate total permission from read

permission. This is not the only distinction it is useful to
draw. A semaphore, for example, has permission to read and
write its own variable. A concurrent thread has no access
to that variable but can P or V it. Existence permissions
provide evidence of a resource’s existence, but no access to
its contents. They allow us to separate total from read/write
permissions. A user knows that a semaphore exists, but can-
not read it. The semaphore can’t dispose itself (see below)
unless its permission is total – that is, unless there are no
users with existence permissions.

The proof theory of existence permissions seems to be a
variation on fractional permissions. We don’t yet have a
satisfying and elegant model.

13.4 Semaphores in the heap
I first encountered permission counting in the context of

pipeline processing in the Intel IXP network processor chip
[12]. A read thread waits for packet data to arrive on a par-
ticular network port, and assembles packet fragments into
a newly-allocated packet buffer. It then immediately passes
the buffer, through an inter-thread queue, to the first pro-
cessing thread, and turns to wait for the next packet. The
processing thread does some work on the buffer and passes
it on to the next processing thread, and so on until even-
tually it arrives at a write thread which disassembles the
processed packet, transmits the pieces of data through its
network port, and disposes the buffer.

This is single-casting, in which every packet has a single
destination address, and it’s a beautiful example of the
power of ownership transfer. Each thread owns the buffer
until it transfers it into an inter-thread queue, an example
of a shared resource bundle. Each thread has a loop invari-
ant of emp, so if there are any space leaks it can only be
that a queue is overlooked and never emptied. The most im-
portant feature of the technique is its simplicity – the read
thread, which allocates the buffer, has nothing to do with
its disposal – and efficiency – no need for accounting in the
program, only in the proof.

In multicasting a single packet can be distributed to sev-
eral destinations at once. An obvious technique would be
to copy the incoming packet into several buffers, but the
desire for efficiency and maximum packet throughput com-



pels sharing. The solution adopted is to use a semaphore-
protected count of access permissions to determine when
everybody has finished and the buffer can be disposed. In
principle it’s not much more difficult to program, but there’s
many a slip, so it would be good to be able to formalise it
[10].

The obstacles to a proof don’t seem unsurpassable but I
cannot claim that they are conquered already. The program
must dynamically allocate semaphores as well as buffers,
and the idea of semaphores in the heap makes theoreticians
wince. The semaphore has to be available to a shared re-
source bundle: that means a bundle will contain a bundle
which contains resource, a notion which makes everybody’s
eyes water. None of it seems impossible, but it’s a significant
problem, and solving it will be a small triumph.
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