
CS6217: Topics in Programming Languages
& Software Engineering

Ilya Sergey

ilyasergey.net/CS6217

Introduction

Why taking this class?

Our goal:
make sure that

software behaves correctly.

Conventional Methods

• Carefully proofread the code, the tests, the design documents, . . .

Review

• Mathematical study of some aspects of the program: numerical
precision, time or space complexity, etc.

• Pencil and paper, or with machine assistance (static analysis tools).

Code Analysis

Test
• Run the program on well-chosen inputs.

• Compare observed behaviours with expected behaviours.

slide content credit: Xavier Leroy

Limitations of Testing

We test a small number of all possible behaviours of the program.
Some bugs trigger very rarely!

Testing shows the presence, not the absence of bugs.
(E. W. Dijkstra, 1969)

Limitations of testing

Testing shows the presence, not the absence of bugs.
(E. W. Dijkstra, 1969)

We test a small number of all possible behaviors of the program.
Some bugs trigger very rarely!

Example (carry propagation in a cryptographic library)

Add 2 * ta * tb to c2:c1:c0 while “optimizing” carry propagation.

BN_UMULT_LOHI(t0,t1,ta,tb);

t2 = t1+t1; c2 += (t2<t1)?1:0;

t1 = t0+t0; t2 += (t1<t0)?1:0;

c0 += t1; t2 += (c0<t1)?1:0;

c1 += t2; c2 += (c1<t2)?1:0;

3
slide content credit: Xavier Leroy

Limitations of Code Review

Reviewers are tired or distracted.

Some codes such as hot fixes are not reviewed much.

Given enough eyeballs, all bugs are shallow.
(Eric Raymond, 1999)

Limitations of code review

Given enough eyeballs, all bugs are shallow.
(Eric Raymond, 1999)

Reviewers are tired or distracted.

Some codes such as hot fixes are not reviewed much.

Example (the goto fail bug)

if ((err=SSLHashSHA1.update(&hashCtx,&signedParams)) != 0)

goto fail;

goto fail;

if ...

...

fail: return err;

4
slide content credit: Xavier Leroy

Limitations of Code Analysis

Risk of errors in pencil-and-paper analyses and of unsoundness in
static analysis tools.

Possible gap between the analysis and the actual program or its
actual execution context.

Beware of bugs in the above code; I have only proved it correct, not tried it.
(Donald E. Knuth, 1977)

Limitations of code analysis

Beware of bugs in the above code;
I have only proved it correct, not tried it.

(Donald E. Knuth, 1977)

Risk of errors in pencil-and-paper analyses
and of unsoundness in static analysis tools.

Possible gap between the analysis and the actual program or its
actual execution context.

Example (Ariane 501)
Overflow in a conversion 64-bit FP number! 16-bit integer.

An analysis conducted in the context of Ariane 4 proved that the
converted quantity, called BH, always fits in 16 bits. The analysis was
invalid in the context of Ariane 5.

5
slide content credit: Xavier Leroy

Deductive Verification
(aka Program Proof)

Logical reasoning that establishes properties that hold for all possible executions
of the program.

Unlike other “formal methods”, the properties established go all the way up to
full functional correctness wrt a specification.

Practical interest:

• Obtaining guarantees stronger than those we can get using testing and review.

• Finding bugs we cannot find by other means (e.g., via static analysis).

slide content credit: Xavier Leroy

Program Logics
A program logic provides us with a specification language and
reasoning principles to reason about program behaviours.

Specifications generally consist in logical assertions about the program:

• preconditions: hypotheses on inputs
 (function parameters; initial values of variables)

• postconditions: guarantees on outputs
 (function results; final values of variables)

• invariants: guarantees on the states at a program point
 (loop invariants, data structure invariants, . . .)

slide content credit: Xavier Leroy

Program Logics and Deductive VerificationProgram logics and deductive verification

Program Assertions

program
logic

Verification
conditions

proofs: pencil-and-paper,
automated, or interactive

OK / alarm

8
slide content credit: Xavier Leroy

Hunting for Bugs:
Binary Search

Binary search

l = 0; h = a.length - 1;

while (l <= h) {

m = (l + h) / 2;

if (a[m] == v) return m;

if (a[m] < v) h = m - 1; else l = m + 1;

}

return -1; 9

Binary search

l = 0; h = a.length - 1;

while (l <= h) {

m = (l + h) / 2;

if (a[m] == v) return m;

if (a[m] < v) h = m - 1; else l = m + 1;

}

return -1; 9

Binary Search

slide content credit: Xavier Leroy

Binary search

l = 0; h = a.length - 1;

while (l <= h) {

m = (l + h) / 2;

if (a[m] == v) return m;

if (a[m] < v) h = m - 1; else l = m + 1;

}

return -1; 91946: John Mauchly, Moore School Lectures

1960: Derrick H. Lehmer publishes the modern algorithm

1986: Jon Bentley, Programming pearls, chapter 4

2004: Bug report: java.util.Arrays.binarySearch() will throw an

ArrayIndexOutOfBoundsException if the array is large.

2006: Joshua Bloch, Nearly All Binary Searches and Mergesorts are Broken.

Long History…

slide content credit: Xavier Leroy

The source of the bug: an arithmetic overflow

We have 0 ≤ l ≤ h < a.length.

l + h can overflow if a.length is large enough.

In Java, l + h becomes negative, as well as m,
hence a[m] raises an “out of bounds” exception.

In C, we have a so-called undefined behaviour.
Often, the program continues with the wrong value of m.
Worse things can happen (??).

A simple fix: m = l + (h - l) / 2;

m = (l + h) / 2;

slide content credit: Xavier Leroy

This bug is hard to find

• The formula (l + h)/2 is so familiar as to raise no suspicion.

• Reviewers are likely to suggest “optimising” l + (h − l)/2 as (l + h)/2.

Review

• A variation interval analysis can detect the problem, but such
analyses are considered too slow to run in production.

Code Analysis

Test
• We rarely test on very big inputs.

• A 64-bit machine and several Gb of RAM are required to trigger this bug.

slide content credit: Xavier Leroy

Demo

Deductive verification of binary search
using the Dafny tool.

https://github.com/cs6217/binary-search-dafny

Separation Logic: A Logic for Shared Mutable Data Structures

John C. Reynolds∗

Computer Science Department
Carnegie Mellon University
john.reynolds@cs.cmu.edu

Abstract

In joint work with Peter O’Hearn and others, based on
early ideas of Burstall, we have developed an extension of
Hoare logic that permits reasoning about low-level impera-
tive programs that use shared mutable data structure.

The simple imperative programming language is ex-
tended with commands (not expressions) for accessing and
modifying shared structures, and for explicit allocation and
deallocation of storage. Assertions are extended by intro-
ducing a “separating conjunction” that asserts that its sub-
formulas hold for disjoint parts of the heap, and a closely
related “separating implication”. Coupled with the induc-
tive definition of predicates on abstract data structures, this
extension permits the concise and flexible description of
structures with controlled sharing.

In this paper, we will survey the current development of
this program logic, including extensions that permit unre-
stricted address arithmetic, dynamically allocated arrays,
and recursive procedures. We will also discuss promising
future directions.

1. Introduction

The use of shared mutable data structures, i.e., of struc-
tures where an updatable field can be referenced from more
than one point, is widespread in areas as diverse as systems
programming and artificial intelligence. Approaches to rea-
soning about this technique have been studied for three
decades, but the result has been methods that suffer from ei-
ther limited applicability or extreme complexity, and scale
poorly to programs of even moderate size. (A partial bibli-
ography is given in Reference [28].)

The problem faced by these approaches is that the cor-
rectness of a program that mutates data structures usually

∗Portions of the author’s own research described in this survey were
supported by National Science Foundation Grant CCR-9804014, and by
the Basic Research in Computer Science (http://www.brics.dk/)
Centre of the Danish National Research Foundation.

depends upon complex restrictions on the sharing in these
structures. To illustrate this problem, and our approach to
its solution, consider a simple example. The following pro-
gram performs an in-place reversal of a list:

j := nil ; while i != nil do

(k := [i + 1] ; [i + 1] := j ; j := i ; i := k).

(Here the notation [e] denotes the contents of the storage at
address e.)

The invariant of this program must state that i and j are
lists representing two sequences α and β such that the re-
flection of the initial value α0 can be obtained by concate-
nating the reflection of α onto β:

∃α, β. list α i ∧ list β j ∧ α†
0 = α†·β,

where the predicate list α i is defined by induction on the
length of α:

list ε i
def= i = nil list(a·α) i

def= ∃j. i ↪→ a, j ∧ list α j

(and ↪→ can be read as “points to”).
Unfortunately, however, this is not enough, since the pro-

gram will malfunction if there is any sharing between the
lists i and j. To prohibit this we must extend the invariant to
assert that only nil is reachable from both i and j:

(∃α, β. list α i ∧ list β j ∧ α†
0 = α†·β)

∧ (∀k. reach(i, k) ∧ reach(j, k) ⇒ k = nil),
(1)

where

reach(i, j) def= ∃n ≥ 0. reachn(i, j)

reach0(i, j)
def= i = j

reachn+1(i, j)
def= ∃a, k. i ↪→ a, k ∧ reachn(k, j).

Even worse, suppose there is some other list x, repre-
senting a sequence γ, that is not supposed to be affected by

Deductive Verification in Academia and Industry

What you will learn in this course

• Understanding specifications in terms of program logics

• Understanding proofs of program correctness in program logics

• Grasp new concepts in program logics and formal reasoning

• Design invariants for program verification

• (Optional) Using tools for logic-based program verification

Course Logistics

Lectures and Presentations
• Weeks 1-7: lectures covering the following topics (tentatively)

• Floyd-Hoare Style reasoning. Loop invariants. Weakest Precondition Calculus.
• Separation Logic and reasoning about programs with pointers.
• Verification of Concurrent Programs. Concurrent Separation Logic
• Mechanically verifying OCaml programs with Separation Logic in Coq proof assistant
• Program logics for fine-grained concurrency and distributed systems
• Reasoning about Hypersafety properties. Relational Program Logics
• Over- and Under-approximate reasoning. Incorrectness Logic

• Weeks 8-11: Paper-based presentations and quizzes
• Weeks 12-13: Project presentations

Paper-based presentations

• Choosing a topic (not a single paper!) and prepare a 45-min talk on it.
• In addition, prepare a 5-question quiz to test understanding
• How to make good presentations:

• Provide motivation
• Include one or several examples
• Prepare questions for the audience

• More on how to prepare good paper-based talks:
• “How to give talks that people can follow” by Derek Dreyer
• https://youtu.be/TCytsY8pdsc

https://youtu.be/TCytsY8pdsc

Research Projects

• Select a “tricky” program you’d like to verify
• Formulate its correctness specification
• Come up with a “client” program that makes use of the specification

• Choose a logic to do that in and formalise the full proof
• Both “paper-and-pencil” and mechanised proofs are acceptable

• Working in teams of one or two
• For teams of two, I expect a mechanised proof
• Teams of one can deliver a hand-written proof typeset in LaTeX

Next in This Lecture

• Formal reasoning about software

• The discovery of program logics

