
Program logics, third lecture

Pointers and data structures:
separation logic

Xavier Leroy
2021-03-18

Collège de France, chair of software sciences
xavier.leroy@college-de-france.fr

Ilya Sergey

Ilya Sergey

Prologue:
arrays in Hoare logic

Arrays

Adding arrays to IMP

Expressions: a ::= . . . | T[a] reading from array T

Commands: c ::= . . . | T[a] := a′ writing to array T

Convention: uppercase variables T, U, are arrays.

2

A Hoare logic for arrays

Which rule for array writes?

Wrong: {Q[T[a]← a′] } T[a] := a′ {Q } 8

It’s not just T[a] that is modified, but also T[a1] for every
expression a1 that has the same value as a. Example:

{ 0 = 0 ∧ T[i] = 1 } T[0] := 0 { T[0] = 0 ∧ T[i] = 1 }

is false if i = 0.

Correct: {Q[T ← (T + a 7→ a′)] } T[a] := a′ {Q } 4

The expression T + a 7→ a′ denotes a functional update:
an array equal to T except that index a has value a′.

3

Reasoning about arrays

We reason about these functional updates with the equation

(T + a 7→ a′) [i] =

a′ if i = a

T[i] if i 6= a

Example (verifying a write to T[0])

{ i 6= 0 ∧ T[i] = 1 } ⇐⇒
{ 0 = 0 ∧ (i = 0 ? 0 : T[i]) = 1 } ⇐⇒
{ (T+ 0 7→ 0)[0] = 0 ∧ (T+ 0 7→ 0)[i] = 1 }

T[0] := 0
{ T[0] = 0 ∧ T[i] = 1 }

4

Example: array initialization

i := 0;
{ i = 0 }

while i < N do

{ ∀j, 0 ≤ j < i⇒ T[j] = j× 2 } ⇒
{∀j, 0 ≤ j < i + 1⇒ (T+ i 7→ i× 2)[j] = j× 2 }

T[i] := i× 2;
{ ∀j, 0 ≤ j < i + 1⇒ T[j] = j× 2 }

i := i + 1
{ ∀j, 0 ≤ j < i⇒ T[j] = j× 2 }

done

5

Example: insertion sort

i

j i

i := 1;
while i < N do

{ 0 < i < N ∧ ∀p, q, 0 ≤ p ≤ q < i⇒ T[p] ≤ T[q] }
j := i;
while j > 0 ∧ T[j− 1] > T[j]

{ 0 ≤ j ≤ i ∧ ∀p, q, 0 ≤ p ≤ q ≤ i ∧ q 6= j⇒ T[p] ≤ T[q] }
swap(T, j, j− 1);
j := j− 1

done

i := i + 1
done

Plus an invariant: T is a permutation of the initial array T0

6

Pointers
and the Burstall-Bornat model

Pointers

Pointers: explicit (Algol-W, Pascal, C, C++) or implicit via objects
passed by reference (Java, Lisp, Python, OCaml, . . .).

Used to represent and operate on graphs and linked data
structures (lists, trees, . . .).

7

Example: singly-linked lists

class List { typedef struct cell * list;

int head; struct cell { int head; list tail; };

List tail;

}

The lists [1; 2; 3] and [4; 5] :

1 2 3 × 4 5 ×

In-place concatenation of lists l1 and l2:

p = l1;

while (p->tail != NULL) p = p->tail;

p->tail = l2;

8

Example: singly-linked lists

class List { typedef struct cell * list;

int head; struct cell { int head; list tail; };

List tail;

}

The lists [1; 2; 3] and [4; 5] :

1 2 3 4 5 ×

In-place concatenation of lists l1 and l2:

p = l1;

while (p->tail != NULL) p = p->tail;

p->tail = l2;

8

Sharing memory cells

Sharing (having several pointers to the same cell) is essential to
represent graphs, but problematic for simpler data structures.

1 2 3

1 2 3

4 5

8 9

×

l1

l2

l3

Left:: l1 is a cyclic (infinite) list 1, 2, 3, 1, 2, 3, . . .

Right: l2 and l3 share a su�x “4, 5”.

9

Problem with sharing

p = l1;

while (p->tail != NULL) p = p->tail;

p->tail = l2;

If l1 is cyclic, concatenation does not terminate.

If l1 and l2 share cells, a cyclic list is created.

Any list l3 that shares cells with l1 is modified as a side e�ect.

1 2 3 1 2 3 4 5

6l1 l2 l1

l3

l2

×

10

Modeling pointers and the memory heap

Naive model:

• The memory heap = one big global array M.
• A pointer p = an index in M.
• An access p→ f = an access M[p + offset(f)].

The Burstall-Bornat model:

• The memory heap = one global array per field F1, F2, . . .
• A pointer p = an index in the arrays Fi.
• An access p→ f = an access F[p].
• A write p→ f := a modifies F[p] but the other arrays F′ 6= F

are unchanged.

11

Graphs in the Burstall-Bornat model

struct node {

bool mark;

int arity;

struct node * child[arity];

}

Three global arrays MARK[p], ARITY[p], CHILD[p][i].

The reachability relation path(p, q),
“node q is reachable from node p”.

path(p, p)
p 6= 0 0 ≤ i < ARITY[p] path(CHILD[p][i], q)

path(p, q)

12

A generic algorithm for graph traversals

Mark all nodes reachable from a root r.
{ ∀x, MARK[x] = 0 }

W := {r}
while W 6= ∅ do

{ ∀x, path(r, x)⇐⇒ MARK[x] = 1 ∨ ∃p ∈ W, path(p, x) }
pick p ∈ W; W := W \ {p};
if MARK[p] = 0 then begin

MARK[p] := 1;
W := W ∪ {CHILD[p][i] | 0 ≤ i < ARITY[p]}

end

done

{ ∀x, path(r, x)⇐⇒ MARK[x] = 1 }

(Note: the write MARK[p] := 1 leaves unchanged the arrays CHILD and
ARITY, and therefore preserves the relation path.) 13

Singly-linked lists in the Burstall-Bornat model

Two global arrays HEAD and TAIL.

A representation predicate: lseg(w, p, q),
“between pointers p and q lies the representation of the
(mathematical) list w”.

lseg(ε, p, p)
p 6= 0 HEAD[p] = n lseg(w, TAIL[p], q)

lseg(n · w, p, q)

p points to a well-formed list (without cycles) =
∃w, lseg(w, p, NULL).

p and q point to disjoint lists (no sharing) =
∀r,w,w′, lseg(w, p, r) ∧ lseg(w′, q, r)⇒ r = NULL

14

A specification for list concatenation

Define list(w, p) def
= lseg(w, p, NULL), “pointer p represents list w”.

{w 6= ε ∧ list(w, l1) ∧ list(w′, l2) ∧ disjoint(l1, l2) }
concat(l1, l2)

{ list(w · w′, l1) ∧ list(w′, l2) }

A reasonable specification, but still incomplete: we miss the fact
that any list l3 initially disjoint from l1 is not modified.

The verification proofs are quite long for such a simple mat-
ter and very boring. We will not weary the reader with them;
instead we will try to do better.

(R. M. Burstall, 1972)

15

Local reasoning
and memory footprints

Local reasoning

A common-sense principle:
Everything that is not explicitly mentioned in { P } c {Q }
is preserved during the execution of c.

In Hoare logic, this principle is expressed by the frame rule:

{ P } c {Q }
no variable modified by c appears in R

{ P ∧ R } c {Q ∧ R }

Example: { x = 0 } x := x + 1 { x = 1 }, therefore
{ x = 0 ∧ y = 8 } x := x + 1 { x = 1 ∧ y = 8 }.

16

Pointers + sharing = no more local reasoning?

1 2 3 4 5

6l1

l3

l2

×

Consider
P = list(1.2.3.ε, l1) ∧ list(4.5.ε, l2) ∧ disjoint(l1, l2)
Q = list(1.2.3.4.5.ε, l1)
R = list(6.3.ε, l3)

We do have { P } concat(l1, l2) {Q }
but not { P ∧ R } concat(l1, l2) {Q ∧ R } (R is false “after”).

17

Towards a better frame rule

{ P } c {Q }
no variable modified by c appears in R

no memory location modified by c is mentioned in R

{ P ∧ R } c {Q ∧ R }

This rule is plausible, but the condition “no memory location
modified by c is mentioned in R” is not syntactic.

It would be great if the program logic itself was able to verify this
condition!

18

Memory footprints

To a logical assertion P,Q we associate a memory footprint:
the set of memory locations (pointers) whose contents are
described by the assertion.

Example
The assertion p 7→ 0, “location p contains value 0”,
has footprint {p}.

The assertion p 7→ 0 ∧ q 7→ 1 has footprint {p, q}.

The assertion (b ∧ p 7→ 0) ∨ (¬b ∧ q 7→ 1)
has footprint {p} if b is true, {q} if b is false.

19

Towards a better frame rule

Intuition (almost true): if { P } c {Q }, the memory locations
modified during the execution of c are mentioned in P or in Q,
and therefore belong to their footprints.

{ P } c {Q }
no variable modified by c appears in R

footprint(P) ∩ footprint(R) = ∅
footprint(Q) ∩ footprint(R) = ∅

{ P ∧ R } c {Q ∧ R }

20

Separating conjunction

The statement “P and R are true and their footprints are disjoint”
occurs so often that we give it a name: separating conjunction,
written P V R.

Formally: (assertions = predicates on the heap h)

(P V R) h def
= ∃h1, h2, P h1 ∧ R h2 ∧ h = h1] h2 (disjoint union)

Example

p 7→ 0 V p 7→ 0 is always false.

p 7→ 0 V q 7→ 0 implies p 6= q.

21

Separating conjunction and the frame rule

The frame rule from separation logic:

{ P } c {Q }
no variable modified by c appears in R

{ P V R } c {Q V R }

Captures elegantly the notion of local reasoning:
P, Q describe the parts of memory relevant for the execution of c;
R describes other parts of memory.

22

Separation logic

The path to separation logic

Burstall (1972): Distinct Nonrepeating List Systems
≈ singly-linked structures without any sharing
+ ad-hoc reasoning rules.

Reynolds (1999), Intuitionistic Reasoning about Shared Mutable
Data Structures. Introduces the notion of separating conjunction.

O’Hearn and Pym (1999), The Logic of Bunched Implications.
Reasoning about resources that are used linearly.

O’Hearn, Reynolds, Yang (2001), Local Reasoning about Programs
that Alter Data Structures. The modern presentation of
separation logic.

Reynolds (2002), Separation Logic: A Logic for Shared Mutable
Data Structures. The paper that gave separation logic its name.

23

Which language with pointers?

Classic approach: IMP + operations alloc, get, set, free.

Two degrees of mutability: variables and memory locations.

Assertions = predicates on the state of variables (the store s)
and on the memory state (the heap h)

In this lecture: mini-ML + references
in other words: lambda-calculus + state monad.

Immutable variables that contain references (pointers) to
mutable memory locations.

Assertions = predicates on the memory state (the heap h).

24

The PTR language

Commands (expressions with e�ects):
c ::= a pure expression
| let x = c in c′ sequencing and binding
| if b then c1 else c2 conditional
| choose(N) nondeterministic choice
| alloc(N) allocate N memory locations
| get(a) read from location a
| set(a, a′) write to location a
| free(a) free location a

In examples, we will also use recursive functions
def f x1 · · · xn = c.

25

Examples of PTR programs

Allocation and initialization of a list cell:

def cons hd tl =

let a = alloc(2) in

let _ = set(a, hd) in

let _ = set(a + 1, tl) in a

Note: locations are integers; pointer arithmetic is supported.

In-place concatenation of two lists:

def concat_rec l1 l2 =

let tl = get(l1 + 1) in

if tl = 0 then set(l1 + 1, l2) else concat_rec tl l2

def concat l1 l2 =

if l1 = 0 then l2 else let _ = concat_rec l1 l2 in l1

26

Assertions

Assertions are predicates on the heap h.

Pure assertions (P is a proposition):

〈P〉 def
= λh. P ∧ Dom(h) = ∅

“The memory is empty”

emp def
= 〈>〉 = λh. Dom(h) = ∅

“Location ` contains value v”

` 7→ v def
= λh. Dom(h) = {`} ∧ h(`) = v

“Location ` is valid”

` 7→ def
= ∃v, ` 7→ v = λh. Dom(h) = {`}

27

Separating conjunction

The separating conjunction P V Q says that we can split the heap
in two parts, one satisfying P and the other satisfying Q.

P V Q def
= λh. ∃h1, h2, P h1 ∧ Q h2 ∧ h = h1] h2

Some properties:

P V Q = Q V P (P V Q) V R = P V (Q V R)

emp V P = P V emp = P 〈A〉 V 〈B〉 = 〈A ∧ B〉

28

The rules of separation logic

The rules define triples { P } c {Q }.

Since commands return values, the postcondition is a function
λv . . . from values to assertions.

P⇒ Q [[a]]

{ P } a {Q }

∀n ∈ [0,N), P⇒ Q n

{ P } choose(N) {Q }

{ P } c {R } ∀v, {R v } c′[x← v] {Q }

{ P } let x = c in c′ {Q }

{ 〈b〉 V P } c1 {Q } { 〈¬b〉 V P } c2 {Q }

{ P } if b then c1 else c2 {Q }

29

Structural rules

{ P } c {Q }
(frame)

{ P V R } c {λv. Q v V R }

P⇒ P′ { P′ } c {Q′ } ∀v, Q′ v ⇒ Q v
(consequence)

{ P } c {Q }

A⇒ { P } c {Q }
(pure-elim)

{ 〈A〉 V P } c {Q }

∀x. { P } c {Q }
(∃-elim)

{ ∃x.P } c {Q }

30

The “small rules” for heap operations

“Small” means “with the smallest footprint”.

{ emp } alloc(N) {λ`. ` 7→ V · · · V `+ N− 1 7→ }

{ [[a]] 7→ x } get(a) {λv. 〈v = x〉 V [[a]] 7→ x }

{ [[a]] 7→ } set(a, a′) {λv. [[a]] 7→ [[a′]] }

{ [[a]] 7→ } free(a) {λv. emp }

“Large” rules are obtained by framing, e.g.

{ P } alloc(2) {λ`. P V ` 7→ V `+ 1 7→ }

31

Data structures and
representation predicates

Singly-linked lists

Representation predicates:

lseg(ε, p, q) = 〈p = q〉
lseg(x · w, p, q) = ∃p′, p 7→ x V p + 1 7→ p′ V lseg(w, p′, q)

list(w, p) = lseg(w, p, NULL)

Example

1 2 3 4 5qp : ×q :

We have lseg(1.2.3.ε, p, q) V list(4.5.ε, q) or, equivalently,
list(1.2.3.4.5.ε, p).

32

Specifying functions on singly-liked lists

{ list(w, p) } length(p) {λr. 〈r = |w|〉 V list(w, p) }

{ list(w, p) } copy(p) {λr. list(w, r) V list(w, p) }

{ list(w, p) } dispose(p) {λr. emp }

{ list(w, p) V list(w′, q) } concat(p, q) {λr. list(w · w′, r) }

{ list(w, p) } reverse(p) {λr. list(rev(w), r) }

33

Specifying functions on singly-liked lists

{ list(w, p) } length(p) {λr. 〈r = |w|〉 V list(w, p) }

{ list(w, p) } copy(p) {λr. list(w, r) V list(w, p) }

{ list(w, p) } dispose(p) {λr. emp }

{ list(w, p) V list(w′, q) } concat(p, q) {λr. list(w · w′, r) }

{ list(w, p) } reverse(p) {λr. list(rev(w), r) }

Control of sharing:

• For copy(p), the postcondition list(w, r) V list(w, p) guarantees
that the result and the argument are disjoint.

• For concat(p, q), the precondition list(w, p) V list(w′, q) requires
that the two arguments are disjoint.

33

Specifying functions on singly-liked lists

{ list(w, p) } length(p) {λr. 〈r = |w|〉 V list(w, p) }

{ list(w, p) } copy(p) {λr. list(w, r) V list(w, p) }

{ list(w, p) } dispose(p) {λr. emp }

{ list(w, p) V list(w′, q) } concat(p, q) {λr. list(w · w′, r) }

{ list(w, p) } reverse(p) {λr. list(rev(w), r) }

Resource management:

• Some lists are preserved (length, copy)

• Some lists are allocated (copy) or destroyed (dispose)

• Some lists are recycled into new lists (concat)

33

Specifying functions on singly-liked lists

{ list(w, p) } length(p) {λr. 〈r = |w|〉 V list(w, p) }

{ list(w, p) } copy(p) {λr. list(w, r) V list(w, p) }

{ list(w, p) } dispose(p) {λr. emp }

{ list(w, p) V list(w′, q) } concat(p, q) {λr. list(w · w′, r) }

{ list(w, p) } reverse(p) {λr. list(rev(w), r) }

Permissions:

• After dispose(p) or concat(p, q), we lose the right to access p
and q as well-formed lists.

• After concat(p, q), we gain the right to access the result value as a
well-formed list.

33

An example of verification

{ list(w, p) V list(w′, q) }
def rev append p q =

if p = NULL then // w = ε

q
else // w = x · w1 for some x and w1

let t = get(p + 1) in

let = set(p + 1, q) in

rev append t p

{λr. list(rev(w) · w′, r) }
34

An example of verification

{ list(w, p) V list(w′, q) }
def rev append p q =

if p = NULL then // w = ε

{ 〈p = NULL〉 V list(w′, q) }
q

else // w = x · w1 for some x and w1

{ ∃p′, p 7→ x V p + 1 7→ p′ V list(w1, p′) V list(w′, q) }
let t = get(p + 1) in

{ p 7→ x V p + 1 7→ t V list(w1, t) V list(w′, q) }
let = set(p + 1, q) in

{ list(w1, t) V p 7→ x V p + 1 7→ q V list(w′, q) }
rev append t p

{λr. list(rev(w1) · x · w′, r) }
{λr. list(rev(w) · w′, r) }

34

Circular lists

1

2

3

4

5

8

7

6

Representation predicates:

circlist(w, p) = 〈w 6= ε〉 V lseg(w, p, p)

In-place concatenation:

{ circlist(w, p) V circlist(w′, q) }
swap(p, q); swap(p + 1, q + 1)

{ circlist(w · w′, q) }

35

Circular lists

5

2

3

4

1

8

7

6

Representation predicates:

circlist(w, p) = 〈w 6= ε〉 V lseg(w, p, p)

In-place concatenation:

{ circlist(w, p) V circlist(w′, q) }
swap(p, q); swap(p + 1, q + 1)

{ circlist(w · w′, q) }

35

Doubly-linked lists

1 2 3 4 abp : : q

Forward chaining from p to a + backward chaining from q to b.

dlseg(ε, p, a, q, b) = 〈p = a ∧ q = b〉
dlseg(x · w, p, a, q, b) = ∃p′, p 7→ x V p + 1 7→ p′ V p + 2 7→ b

V dlseg(w, p′, a, q, p′)

dlist(w, p, q) = dlseg(w, p, NULL, q, NULL)

36

Ilya Sergey

Ilya Sergey

The “xor” trick

1 2 3p : q : r :b⊕ q p⊕ r q⊕ a

In each cell we store the “exclusive or” of the forward pointer and
the backward pointer.

Forward traversal: we have p and q, we recover r = (p⊕ r)⊕ p.

Backward traversal: we have r and q, we recover p = (p⊕ r)⊕ r.

dlseg(ε, p, a, q, b) = 〈p = a ∧ q = b〉
dlseg(x · w, p, a, q, b) = ∃p′, p 7→ x V p + 1 7→ b⊕ p′ V

V dlseg(w, p′, a, q, p′)

dlist(w, p, q) = dlseg(w, p, NULL, q, NULL)

37

Binary trees

4

2

× 1 × × 3 ×

5

× 6 ×

×

Representation predicate:

tree(Leaf, p) = 〈p = NULL〉
tree(Node(t1, x, t2), p) = ∃p1, p2, p 7→ p1 V p + 1 7→ x V p + 2 7→ p2

V tree(t1, p1) V tree(t2, p2)

Note: no internal sharing is allowed, the subtrees must be
disjoint.

38

Binary trees with internal sharing (≈ dags)

4

2

× 1 × × 3 ×

Possible if we use an overlapping conjunction: (Hobor and Villard,

2013)

(P ∪V Q) h = ∃h1, h2, h3, h = h1] h2] h3 ∧ P (h1] h2) ∧ Q (h1] h3)

tree(Leaf, p) = 〈p = NULL〉
tree(Node(t1, x, t2), p) = ∃p1, p2, p 7→ p1 V p + 1 7→ x V p + 2 7→ p2

V (tree(t1, p1) ∪V tree(t2, p2))39

Semantic soundness
of separation logic

Semantic soundness of separation logic

We gave rules that define triples { P } c {Q }.

If { P } c {Q } can be derived by these rules, does all possible
executions of c respect the contract stated by this triple?

40

Reduction semantics for PTR

We reduce configurations c/h where h : locations fin→ values is the
current heap.

The rules for the pure constructs:

(let x = a in c)/h→ c[x← [[a]]]/h

(let x = c1 in c2)/h→ (let x = c′1 in c2)/h′ if c1/h→ c′1/h′

(let x = c1 in c2)/h→ err if c1/h→ err

(if b then c1 else c2)/h→ c1/h if [[b]] is true
(if b then c1 else c2)/h→ c2/h if [[b]] is false

choose(N)/h→ n/h for any n ∈ [0,N)

41

Reduction semantics for PTR

The rules for the imperative constructs:

alloc(N)/h→ `/h[`← 0, `+ 1← 0, . . . , `+ N− 1← 0]
for any ` such that {`, . . . , `+ N− 1} ∩ Dom(h) = ∅

get(a)/h→ h([[a]])/h if [[a]] ∈ Dom(h)

set(a, a′)/h→ 0/h[[[a]]← [[a′]]] if [[a]] ∈ Dom(h)

free(a)/h→ 0/(h \ [[a]]) if [[a]] ∈ Dom(h)

Error rules:

get(a)/h→ err if [[a]] /∈ Dom(h)

set(a, a′)/h→ err if [[a]] /∈ Dom(h)

free(a)/h→ err if [[a]] /∈ Dom(h)

42

Statement of semantic soundness

Same approach as for strong Hoare logic.

We define the inductive predicate Term c h Q, “command c
started in state h always terminates without errors, in a state that
satisfies Q”.

Q [[a]] h

Term a h Q

(∀a, c 6= a) c/h 6→ err (∀c′, h′, c/h→ c′/h′ ⇒ Term c′ h′ Q)

Term c h Q

43

Semantic soundness

The semantic tripe: “if the initial state satisfies P, command c
terminates in a state that satisfies Q”

{{ P }} c {{Q }} def
= ∀h, P h⇒ Term c h Q

We show that this definition validates the axioms and the
inference rules of separation logic:

• If P⇒ Q [[a]] then {{ P }} a {{Q }}
• {{ [[a]] 7→ }} set(a, a′) {{λv. [[a]] 7→ [[a′]] }}
• etc.

Theorem (Semantic soundness of separation logic)

If { P } c {Q } is derivable, then {{ P }} c {{Q }} holds.

44

Soundness of the frame rule

The main di�culty is to show that the frame rule is semantically
valid:

If {{ P }} c {{Q }} then {{ P V R }} c {{λv. Q v V R }}.

To this end, we need a frame lemma for the Term predicate:

If Term c h1 Q and R h2 then Term c (h1] h2) (λv. Q v V R).

This holds because of a nice property of the operational
semantics: if a command runs without errors in a “small” heap,
every reduction step in a larger heap is simulated by a reduction
step in the small heap.

45

Framing reductions

c/h1

c/h c′/h′

framing
h = h1] h2

reduction

err

\

err

\

c′/h′
1

framing
h′ = h′

1] h2

reduction

If c/h1 6→ err, then c/h1] h2 6→ err. If, moreover,
c/h1] h2 → c′/h′, there exists h′

1 such that h′ = h′
1] h2 and

c/h1 → c′/h′
1.

46

Framing reductions

c/h1

c/h c′/h′

framing
h = h1] h2

reduction

err

\

err

\

c′/h′
1

framing
h′ = h′

1] h2

reduction

If c/h1 6→ err, then c/h1] h2 6→ err. If, moreover,
c/h1] h2 → c′/h′, there exists h′

1 such that h′ = h′
1] h2 and

c/h1 → c′/h′
1.

46

Framing reductions

c/h1

c/h c′/h′

framing
h = h1] h2

reduction

err

\

err

\

c′/h′
1

framing
h′ = h′

1] h2

reduction

If c/h1 6→ err, then c/h1] h2 6→ err. If, moreover,
c/h1] h2 → c′/h′, there exists h′

1 such that h′ = h′
1] h2 and

c/h1 → c′/h′
1.

46

Framing reductions

This property holds in our PTR language because the reduction
rule for allocations is nondeterministic: the allocated location `
can be chosen among all free locations.

alloc(N)/h→ `/h[`← 0, `+ 1← 0, . . . , `+ N− 1← 0]
for any ` such that {`, . . . , `+ N− 1} ∩ Dom(h) = ∅

This would not be the case if ` was a function of the heap:

alloc(N)/h→ `/h[`← 0, `+ 1← 0, . . . , `+ N− 1← 0]
with ` = firstfree(h,N)

because, in general, firstfree(h1] h2,N) 6= firstfree(h1,N).

47

Plan B: validate the frame rule by construction

If allocation is deterministic, or if we would rather not prove the
frame property for reductions, here is an alternative.

1. Define the usual semantic Hoare triple:

{{ P }} c {{Q }}Hoare
def
= ∀h, P h⇒ Term c h Q

2. Define the semantic separation triple by quantifying over all
possible framings:

{{ P }} c {{Q }}Sep
def
= ∀R, {{ P V R }} c {{λv. Q v V R }}Hoare

48

Properties of the semantic Hoare triple

3. Show that the semantic Hoare triple {{ P }} c {{Q }}Hoare

validates

• the “large rules” for the imperative constructs
{{ P }} alloc(N) {{λ`. ` 7→ V · · · V `+ N− 1 7→ V P }}Hoare

{{ [[a]] 7→ x V P }} get(a) {{λv. 〈v = x〉 V [[a]] 7→ x V P }}Hoare

{{ [[a]] 7→ V P }} set(a, a′) {{λv. [[a]] 7→ [[a′]] V P }}Hoare

{{ [[a]] 7→ V P }} free(a) {{λv. P }}Hoare

• the usual rules for the control structures:
• if P⇒ Q [[a]] then {{ P }} a {{Q }}Hoare

• if {{ P }} c {{R }}Hoare and ∀v, {{Rv }} c′[x← v] {{Q }}Hoare

then {{ P }} let x = c in c′ {{Q }}Hoare

• etc.
• but not the frame rule.

49

Properties of the semantic separation triple

{{ P }} c {{Q }}Sep
def
= ∀R, {{ P V R }} c {{λv. Q v V R }}Hoare

4. Notice that the semantic separation triple validates

• the “small rules” for the imperative constructs;
• the usual rules for the control structures;
• the frame rule.

5. Conclude that { P } c {Q } entails {{ P }} c {{Q }}Sep and
therefore {{ P }} c {{Q }}Hoare.

50

Summary

Summary so far

The emergence of separation logics in the early 2000’s renewed
the field of program logics and deductive verification entirely.

A great many extensions, (→ lecture #5)

especially towards concurrency (→ lectures #4 and #6)

Various implementations:

• deductive verification + automated theorem proving
(Smallfoot, Infer, VeriFast) (→ seminar #3)

• embeddings inside proof assistants
(CFML, VST, Bedrock, IRIS) (→ seminars #4 and #5)

• type systems such as that of the Rust language.

51

Ilya Sergey

Ilya Sergey

References

References

An overview of separation logic:

• Peter O’Hearn, Separation Logic, Comm. ACM 62(2), 2019.

One of the seminal papers, still a great reference today:

• John C. Reynolds, Separation Logic: A Logic for Shared Mutable
Data Structures, LICS 2002.

Mechanizing separation logic:

• The companion Coq development for this lecture
https://github.com/xavierleroy/cdf-program-logics

• A. Charguéraud, Foundations of Separation Logic, 2021,
https://www.chargueraud.org/teach/verif/

52

https://github.com/xavierleroy/cdf-program-logics
https://www.chargueraud.org/teach/verif/

	Arrays
	Pointers
	Local reasoning
	Separation logic
	Representation predicates
	Semantic soundness
	Summary
	References

