
Program logics, fourth lecture

Shared-memory concurrency:
concurrent separation logic

Xavier Leroy
2021-03-25

Collège de France, chair of software sciences
xavier.leroy@college-de-france.fr

Ilya Sergey

Ilya Sergey

Introduction:
Shared-memory parallel computing

Bonus Bureau, Computing Divison, 11/24/1924

Parallel computing

Use several processors (CPUs) together to perform a computation
more quickly.

Two main models of parallel computing:

shared memory distributed memory

bus
CPU CPU CPU CPU

RAM
network

CPU
RAM

CPU
RAM

CPU
RAM

CPU
RAM

Many implementation that combine both models:
multicore processors, multiprocessors, GPUs, clusters, grids,
cloud computing, . . .

3

Milestones in parallel computing

1962 First symmetric multiprocessor: Burroughs D825
(1 to 4 CPUs sharing 1 to 16 memory modules).

1965 Start of the Multics project, the first modern operating system with
multiprocessing support.

1973 Xerox PARC: Alto workstations + Ethernet network.
First large distributed computation (image rendering).

1999 Launch of SETI@home and of Folding@home, two huge
computations distributed over the Internet.

2006 First commonly-available multicore processors
(Intel Core Duo and AMD Athlon 64 X2).

2012 (circa) All processors for PCs, tablets and smartphones are
multicore.

4

Shared-memory concurrency

Features:

• Every processor has direct access to all the data.
• No need to duplicate data.
• Fast interprocess communications (through shared memory

areas).

Challenges:

• Risk of interference between the actions of the processors.
• In particular: race conditions.

5

Race conditions

Several simultaneous accesses to the same memory location,
including at least one write.

Case 1: two writes at the same time

set(`, 1) set(`, 2)

The program does not control which value ends up in location `.

Case 2: one write and one read at the same time

set(`, 1) let x = get(`)

The program does not control which value is read in x.

6

An example of race condition

x := x + 1 x := x + 1

Compiled to three instructions (read, compute, write):

let t = get(&x) in
let t = t+ 1 in
set(&x, t)

let t = get(&x) in
let t = t+ 1 in
set(&x, t)

7

An example of race condition

x := x + 1 x := x + 1

One possible execution:

let t = get(&x) in
let t = t+ 1 in
set(&x, t)

let t = get(&x) in
let t = t+ 1 in
set(&x, t)

With x = 0 initially, we end with x = 2.

7

An example of race condition

x := x + 1 x := x + 1

Another possible execution:

let t = get(&x) in
let t = t+ 1 in

let t = get(&x) in
set(&x, t)

let t = t+ 1 in
set(&x, t)

With x = 0 initially, we end with x = 1.

7

A more realistic example

The “producer” part of a producer/consumer device: each
process produces data x and stores them in a shared bu�er T (an
array of size N indexed by i).

while i ≥ N do pause();

T[i] := x;
i := i+ 1;

8

A more realistic example

With two producers in parallel:

while i ≥ N do pause();

while i ≥ N do pause();

T[i] := x1;

i := i+ 1;
T[i] := x2; 8

i := i+ 1;

An out-of-bound array access is possible (if i = N− 1 initially).

9

A more realistic example

With two producers in parallel:

while i ≥ N do pause();

while i ≥ N do pause();

T[i] := x1;

T[i] := x2;

i := i+ 1;
i := i+ 1;

One of the two datum x1, x2 is lost.

One entry of the bu�er (T[i− 1]) is not initialized.

9

Synchronization using critical sections

In Java: In C:

synchronized (obj) { pthread_mutex_lock(mut);

... ...

} pthread_mutex_unlock(mut);

Ensure mutual exclusion: at any time, at most one process is
running inside the critical section.

Example: a well-synchronized producer.

synchronized (buff) {

while (buff.i >= N) buff.wait();

buff.T [buff.i] = x;

buff.i ++ ;

}

10

Synchronization and program logics

Many synchronization mechanisms:

• mutual exclusion: semaphores, locks, mutexes, . . .
• barriers;
• message passing;
• atomic processor instructions (→ lock-free algorithms)

Which program logics to reason about interference and guarantee
correct synchronization, in particular absence of race conditions?

11

Concurrency without resource
sharing

Executing two commands in parallel

Commands:
c := . . .

| c1 ‖ c2 execute c1 and c2 in parallel

Semantics:: an interleaving of the reductions of c1 and c2.

(a1 ‖ a2)/h→ 0/h (or any combination of a1 and a2)

(c1 ‖ c2)/h→ (c′1 ‖ c2)/h′ if c1/h→ c′1/h′

(c1 ‖ c2)/h→ (c1 ‖ c′2)/h′ if c2/h→ c′2/h′

(c1 ‖ c2)/h→ err if c1/h→ err or c2/h→ err

12

Separation logic rule for parallel execution

{ P1 } c1 {λ . Q1 } { P2 } c2 {λ . Q2 }

{ P1 V P2 } c1 ‖ c2 {λ . Q1 V Q2 }

Intuition:
• the initial heap h can be decomposed as h1] h2

with h1 satisfying P1 and h2 satisfying P2;
• c1 executes in h1 without modifying h2;
• c2 executes in h2 without modifying h1;
• the final states h′1, h′2 satisfy Q1, Q2 and are disjoint.

13

Separation logic rule for parallel execution

{ P1 } c1 {λ . Q1 } { P2 } c2 {λ . Q2 }

{ P1 V P2 } c1 ‖ c2 {λ . Q1 V Q2 }

Alternate intuition: the precondition P1 V P2 guarantees that the
commands c1 and c2 execute without interference.
Therefore, the execution is equivalent to a sequential execution
c1; c2 or c2; c1.

{ P1 } c1 {λ . Q1 }

{ P1 V P2 } c1 {λ . Q1 V P2 }

{ P2 } c2 {λ . Q2 }

{Q1 V P2 } c2 {λ . Q1 V Q2 }

{ P1 V P2 } c1; c2 {λ . Q1 V Q2 }

13

Parallelism between disjoint sub-arrays

Example: Quicksort.

quicksort T l h =

if h− l ≤ 50 then

insertionsort T l h
else

let m = partition T l h in
quicksort T l m ‖ quicksort T (m+ 1) h

quicksort T l h modifies the sub-array T[l . . . h] of T.

The two recursive calls operate on disjoint sub-arrays:
T[l . . .m] and T[m+ 1 . . . h].

Therefore, we can do them in sequence as well as in parallel.

14

Parallelism between disjoint subtrees

tree(Leaf, p) = 〈p = NULL〉
tree(Node(t1, x, t2), p) = ∃p1, p2, p 7→ p1 V p+ 1 7→ x V p+ 2 7→ p2

V tree(t1, p1) V tree(t2, p2)

The representation predicate guarantees that the two subtrees
are disjoint, and can therefore be traversed and modified in
parallel.

incrtree t δ =
if t 6= NULL then

let l = get(t) and n = get(t+ 1) and r = get(t+ 2) in
set(t+ 1, n+ δ);

incrtree l δ ‖ incrtree r δ

15

Absence of race conditions

We add one reduction rule that signals an error when a race
condition occurs:

(c1 ‖ c2)/h→ err if Acc(c1) ∩ Acc(c2) 6= ∅

Acc(c) is the set of memory locations that command c can read or
write at the next reduction step:

Acc(get(a)) = Acc(set(a, a′)) = Acc(free(a)) = {a}
Acc(let x = c1 in c2) = Acc(c1)

Acc(c1 ‖ c2) = Acc(c1) ∪ Acc(c2)

16

Absence of race conditions

It is easy to show that

c/h 6→ err ⇒ Acc(c) ⊆ Dom(h)

Therefore, if c1/h1 6→ err and c2/h2 6→ err and h1 ⊥ h2,

Acc(c1) ∩ Acc(c2) ⊆ Dom(h1) ∩ Dom(h2) = ∅

and (c1 ‖ c2)/(h1] h2) cannot reduce to err because of a race.

The semantic soundness proof (at the end of this lecture)
formalizes this argument and shows that if { P } c {Q }, the
command c executes without race conditions.

17

Concurrency and resource sharing

The birth of concurrent separation logic

O’Hearn, Reynolds, Yang (2001), Local Reasoning about Programs that
Alter Data Structures. The modern presentation of (sequential)
separation logic.

O’Hearn (2001–2002), Notes on separation logic for shared-variable
concurrency, unpublished.

Reynolds (2002), Separation Logic: A Logic for Shared Mutable Data
Structures. Shows the rule for disjoint parallelism and mentions
O’Hearn’s ongoing work.

O’Hearn (2004), Resources, Concurrency and Local Reasoning. The key
ideas + the main examples.

Brookes (2004), A Semantics for Concurrent Separation Logic. A
semantic and a soundness proof for O’Hearn’s logic.

18

Shared resources

A resource comprises

• one or several memory locations:
global variables, dynamically-allocated objects;

• a lock or other mutual exclusion device that regulates access
to the memory locations.

Example (shared counter)

class Counter { int val; }

Example (shared doubly-linked list)

class DList { DListCell first, last; }

class DListCell { Object data; DListCell prev, next; }

19

Shared resources in separation logic

O’Hearn’s wonderful idea: a shared resource can be described by
a separation logic assertion A.

• The footprint of A defines the set of memory locations that
belong to the resource.

• The assertion A specifies the structure of these locations
(e.g. “doubly-linked list”) and other relevant invariants.

Example (shared counter p)
∃n, p 7→ n V 〈n ≥ 0〉

Example (shared doubly-linked list p, q)
∃x, y,w, p 7→ x V q 7→ y V dlist(w, x, y)

20

Critical sections in separation logic

A shared resource r is accessed only in a critical section

with r do c

in mutual exclusion with the other processes.

Write RIr the assertion (the resource invariant) associated with r:

{RIr V P } c {RIr V Q }

{ P } with r do c {Q }

When entering the critical section, the process gains permission
to use the memory locations of the resource, as described by RIr.

Before leaving the critical section, the process must re-establish
the invariant RIr, because other processes are about to enter the
critical section. 21

Conditional critical sections in separation logic

O’Hearn’s original article considers conditional critical sections

with r when b do c

where c is executed only when the condition b is true.

The rule for c.c.s. is

{ 〈b〉 V RIr V P } c {RIr V Q }

{ P } with r when b do c {Q }

22

Example: decrementing a shared counter

The invariant is RIr = ∃n, p 7→ n V 〈n ≥ 0〉.

{ emp }
with r do

{ ∃n, p 7→ n V 〈n ≥ 0〉 }
let n = get(p) in

{ p 7→ n V 〈n ≥ 0〉 }
if n > 0 then set(p, n− 1)

{ ∃n′, p 7→ n′ V 〈n′ ≥ 0〉 }
done

{ emp }

23

Example: insertion in a shared list

The invariant is RIr = ∃q,w, p 7→ q V list(w, q).

{ emp }
with r do

{ ∃q,w, p 7→ q V list(w, q) }
let q = get(p) in

{ p 7→ q V ∃w, list(w, q) }
let a = cons(x, q) in

{ a 7→ x V a+ 1 7→ q V p 7→ q V ∃w, list(w, q) }
set(p, a)

{ p 7→ a V a 7→ x V a+ 1 7→ q V ∃w, list(w, q) }
⇒ {∃q,w, p 7→ q V list(w, q) }

done

{ emp }

24

Simplified formalization: atomic sections (Vafeiadis, 2011)

Commands:
c ::= . . .

| c1 ‖ c2 execute c1 and c2 in parallel
| atomic c execute c in one uninterruptible step

A “super-critical” section: during the execution of atomic c, all
other processes are blocked and perform zero computation steps.

Practical relevance:

• In case of time sharing on a monoprocessor:
atomic section ≈ block interrupts and prevent preemption

• A good model for the atomic instructions of the processor.

25

Modeling atomic instructions provided by the processor

Atomic swap and its special cases:

swap(p, n) def= atomic(let x = get(p) in set(p, n); x)

test and set(p) def= swap(p, 1)

read and clear(p) def= swap(p, 0)

Atomic increment / decrement:

fetch and add(p,d) def= atomic(let x = get(p) in set(p, x + d); x)

Compare and swap:

CAS(p, x, n) def= atomic(let c = get(p) in

if c = x then (set(p, n); 1) else 0)

26

Operational semantics for atomic sections

(atomic c)/h→ a/h′ if c/h ∗→ a/h′

(atomic c)/h→ err if c/h ∗→ err

Note: atomic c1 ‖ atomic c2 is equivalent to c1; c2 or c2; c1.
There is no interleaving between the reduction steps of c1 and
those of c2.

Note: if c/h diverges, (atomic c)/h is stuck.
In practice, c contains no loops and always terminates.

27

A “triple” for concurrency with critical sections

J ` { P } c {Q }

The assertion J is an invariant on the shared memory
(accessible only inside atomic sections atomic c).

The precondition P and the postcondition Q describe the private
memory for the command c.

28

The rules for atomic sections

Executing an atomic section:

emp ` { P V J } c {λv. Q v V J }

J ` { P } atomic c {Q }

Sharing a resource J′ : Framing the invariant:

J V J′ ` { P } c {Q }

J ` { P V J′ } c {λv. Q v V J′ }

J ` { P } c {Q }

J V J′ ` { P } c {Q }

29

The rules for control structures (reminder)

P⇒ Q [[a]]

J ` { P } a {Q }

J ` { P } c {R } ∀v, J ` {R v } c′[x← v] {Q }

J ` { P } let x = c in c′ {Q }

J ` { 〈b〉 V P } c1 {Q } J ` { 〈¬b〉 V P } c2 {Q }

{ P } if b then c1 else c2 {Q }

J ` { P1 } c1 {λ . Q1 } J ` { P2 } c2 {λ . Q2 }

J ` { P1 V P2 } c1 ‖ c2 {λ . Q1 V Q2 }

30

The “small rules” for heap operations (reminder)

J ` { emp } alloc(N) {λ`. ` 7→ V · · · V `+ N− 1 7→ }

J ` { [[a]] 7→ x } get(a) {λv. 〈v = x〉 V [[a]] 7→ x }

J ` { [[a]] 7→ } set(a, a′) {λv. [[a]] 7→ [[a′]] }

J ` { [[a]] 7→ } free(a) {λv. emp }

31

The structural rules (watch out! there’s a catch!)

J ` { P } c {Q }
(frame)

J ` { P V R } c {λv. Q v V R }

P⇒ P′ J ` { P′ } c {Q′ } ∀v, Q′ v ⇒ Q v
(consequence)

J ` { P } c {Q }

J ` { P } c {Q } J ` { P′ } c {Q′ }
(disjunction)

J ` { P ∨ P′ } c {λv. Q v ∨ Q′ v }

J precise J ` { P } c {Q } J ` { P′ } c {Q′ }
(conjunction)

J ` { P ∧ P′ } c {λv. Q v ∧ Q′ v }

32

The conjunction rule and Reynold’s counterexample

Take J = true (the assertion λh.> true for all heaps). Take
one = 1 7→ . We have one V true⇒ true, hence

emp ` { one V true } 0 {λ .emp V true }
emp ` { one V true } 0 {λ .one V true }

and, by application of the atomic rule,

J ` { one } atomic 0 {λ .emp }
J ` { one } atomic 0 {λ .one }

If the conjunction rule was true for all J, we could conclude

J ` { one ∧ one } atomic 0 {λ .emp ∧ one }

yet the postcondition emp ∧ one is always false.

33

Precise assertions

Intuitively: an assertion P is precise if its memory footprint is
uniquely defined.

Formally: if P cuts a sub-heap h1 out of a given heap h, this
sub-heap is uniquely determined:

h = h1] h2 = h′1] h′2 ∧ P h1 ∧ P h′1 ⇒ h1 = h′1

34

Examples of precise / imprecise assertions

Precise assertions Imprecise assertions

emp true

` 7→ ∃`, ` 7→

` 7→ v ∃`, ` 7→ v

∃v, ` 7→ v V R(v)

P V Q P V true

〈b〉 V P ∨ 〈¬b〉 V Q emp ∨ ` 7→

(assuming P, Q, R(v) to be precise)

35

Binary semaphores and applications

Implementing binary semaphores

A binary semaphore = a memory location p containing
0 (meaning “busy”) or 1 (meaning “available”).

The operations P (take) and V (release):

V(sem) = atomic(set(sem, 1))
P(sem) = let x = swap(sem, 0) in

if x = 1 then 0 else P(sem)

where

swap(p, n) = atomic(let x = get(p) in set(p, n); x)

Note: P(sem) is busy-waiting and can fail to terminate, but the
loop is outside the atomic section.

36

The rules for binary semaphores

Let RI be the assertion describing the resources associated with
the semaphore. We assume RI precise.

As invariant on the shared memory, take

J(sem,RI) def
= ∃n. sem 7→ n V (〈n = 0〉 ∨ 〈n = 1〉 V RI)

that is: “if the semaphore is available, the resources RI are in the
shared memory”. We can then derive:

J(sem,RI) ` {RI } V(sem) { emp }
J(sem,RI) ` { emp } P(sem) {RI }

In other words: releasing p is putting RI in the shared memory,
and taking p is getting RI from the shared memory.

37

Synchronization with a semaphore

Consider the assertion RI = ∃n, x 7→ n V 〈n premier〉,
“variable x contains a prime number”.

{ sem 7→ 0 V x 7→ }

{ x 7→ }
set(x, 53);

{ x 7→ 53 } ⇒ {RI }
V(sem)

{ emp }

{ emp }
P(sem);

{RI }
let n = get(x) in
{ x 7→ n V 〈n prime〉 }

print(n)

The P and V operations ensure that the right process never reads
x before the left process has initialized. They transfer the
permission to access x from the left process to the right process.

38

Synchronization and resource transfer with a semaphore

Consider the assertion RI = ∃p, x 7→ p V p 7→
“variable x points to a valid memory location”.

{ sem 7→ 0 V x 7→ }

{ x 7→ }
let p = alloc(1) in

{ x 7→ V p 7→ }
set(x, p);

{ x 7→ p V p 7→ } ⇒ {RI }
V(sem)

{ emp }

{ emp }
P(sem);

{RI }
let p = get(x) in
{ x 7→ p V p 7→ }

free(p)
{ x 7→ }

The memory location that was allocated by the left process is
transferred and safely deallocated by the right process.

39

Derivation of the rule for P

Recall the invariant on the shared memory:

J(sem,RI) def
= ∃n. sem 7→ n V (〈n = 0〉 ∨ 〈n = 1〉 V RI)

For swap(sem, 0), we have the triple

J(sem,RI) ` { emp } swap(sem, 0) {λn. 〈n = 0〉 ∨ 〈n = 1〉 V RI }

P(sem) iterates swap(sem, 0) until the result is 1, hence

J(sem,RI) ` { emp } P(sem) {RI }

40

Derivation of the rule for V

J(sem,RI) def
= ∃n. sem 7→ n V (〈n = 0〉 ∨ 〈n = 1〉 V RI)

It su�ces to show

emp ` {RI V J(sem,RI) } set(sem, 1) { sem 7→ 1 V RI }

to obtain emp ` {RI V J(sem,RI) } set(sem, 1) { J(sem,RI) }
and therefore J(sem,RI) ` {RI } V(sem) { emp }.

But we do not know the status of the semaphore (busy or
available):

emp ` {RI V sem 7→ 0 } set(sem, 1) { sem 7→ 1 V RI } (available)
emp ` {RI V sem 7→ 1 V RI } set(sem, 1) { sem 7→ 1 V RI } (busy)

In the second case, we need RI V RI⇒ RI, which is true if RI is
precise.

41

Implementing critical sections

We can use a semaphore as a lock:
P acquires the lock, V releases the lock.

This gives a simple implementation of critical sections:

with r do c def
= P(r); c; V(r)

where each critical section r is identified by the location of a
semaphore, initialized to 1.

42

Implementing critical sections

If RIr is the resource invariant for r, the shared memory invariant
is the conjunction of the invariants of the associated semaphores:

JR = V
r∈R

J(r,RIr)

This implementation validates the rule for critical sections:

r ∈ R JR\{r} ` {RIr V P } c {RIr V Q }

JR ` { P } with r do c {Q }

43

Implementing conditional critical sections

In our PTR language, the condition cb of a c.c.s. is necessarily a
command that evaluates to a Boolean.

with r when cb do c
def
= P(r); wait(r, cb); c; V(r)

where wait is the following busy-waiting loop:

wait(r, cb) = let b = cb in
if b then 0 else (V(r); P(r); wait(r, cb))

We can derive the following rule:

r ∈ R
JR\{r} ` {RIr V P } cb {λb. 〈b〉 V B ∨ 〈¬b〉 V RIr V P }

JR\{r} ` {B } c {RIr V Q }

JR ` { P } with r when cb do c {Q }

44

The producer/consumer device

A generalization of the “synchronization and resource transfer”
example, where several resources are transferred one after the
other.

while true do

compute x;
produce(x);

done

while true do

let y = consume() in
use y

done

The already produced but not yet consumed resources are stored
in a bu�er in shared memory.

Note: we can have several producer processes and several
consumer processes running concurrently.

45

A solution with a bu�er of size 1 and two semaphores

Three variables in shared memory:

• b: location of the bu�er (one memory cell)
• s1: a semaphore that is 1 when the bu�er is full

(the bu�er contains a produced but not yet consumed
datum)

• s0: a semaphore that is 1 when the bu�er is empty
(contains no produced but not yet consumed datum)

Implementation:

produce(b, s0, s1, x) = P(s0); set(b, x); V(s1)

consume(b, s0, s1) = P(s1); let x = get(b) in V(s0); x

46

Specification and verification of producer/consumer

Write RI(x) the resource invariant associated with datum x.

Specification of produce and consume:

J(b) ` {RI(x) } produce(b, s0, s1, x) { emp }
J(b) ` { emp } consume(b, s0, s1) {λx. RI(x) }

The verification goes through by taking J as shared memory
invariant:

J(b) def
= J(s0, b 7→) V J(s1, ∃x, b 7→ x V RI(x))

In other words: when semaphore s0 is 1, b is valid (we can write
into it); when semaphore s1 is 1, b contains a datum x such that
RI(x) holds.

47

Semantic soundness

Semantic soundness of concurrent separation logic

The original proof of Brookes (2004):

• Denotational semantics for commands, as action traces.
• A “local” semantics for actions and traces that identifies resource

ownership and resource transfers at critical sections.
• An hypothesis: all resource invariants are precise.

The simplified proof of Vafeiadis (2011):

• Direct, elementary reasoning about reduction sequences,
using a step-indexed predicate Safen c h.

• The conjunction rule is the only one that demands precise
resource invariants.

48

Some intuitions

J ` { P } c {Q }

Deductive intuition: it’s like { P V J } c {Q V J }
plus invariance of J, that is, all triples appearing in the derivation
have the shape above.

Operational intuition: at every step of the evaluation, the current
heap h decomposes in three disjoint parts:

h = h1] hj] hf

h1 is the private memory for c.
hj is the shared memory accessible to atomic sections.
hf is the “frame” memory, including the private memories of the
processes that execute in parallel with c.

49

A weak semantic triple with step indexing

Define the semantic triple J |= {{ P }} c {{Q }} by

J |= {{ P }} c {{Q }} def
= ∀n, h, P h⇒ Safen c h Q J

The inductive predicate Safen c h Q J means that the executions
of c in the private memory h
– do not cause errors in the first n execution steps;
– satisfy Q if they terminate in at most n steps;
– preserve the shared-memory invariant J.

Safe0 c h Q J
Q [[a]] h

Safen+1 a h Q J

(∀a, c 6= a) · · ·

Safen+1 c h Q J

50

A weak semantic triple with step indexing

∀a, c 6= a

∀hj, hf , J hj ⇒ c/h1] hj] hf 6→ err

∀hj, hf , c′, h′, J hj ∧ c/h1] hj] hf → c′/h′ ⇒
∃h′1, h′j, h

′ = h′1] h′j] hf ∧ J h
′
j ∧ Safe

n c′ h′1 Q

Safen+1 c h1 Q

The inductive case: c in h1 is safe for n+ 1 steps if

• in every heap h of the shape h1] hj] hf with hj satisfying J,
c/h causes no errors, and . . .

• for every reduction c/h→ c′/h′, the heap h′ decomposes as
h′1] h′j] hf with h′j satisfying J,
and moreover c′ in h′1 is safe for the remaining n steps.

51

A weak semantic triple with step indexing

∀a, c 6= a

∀hj, hf , J hj ⇒ c/h1] hj] hf 6→ err

∀hj, hf , c′, h′, J hj ∧ c/h1] hj] hf → c′/h′ ⇒
∃h′1, h′j, h

′ = h′1] h′j] hf ∧ J h
′
j ∧ Safe

n c′ h′1 Q

Safen+1 c h1 Q

The inductive case: c in h1 is safe for n+ 1 steps if
• in every heap h of the shape h1] hj] hf with hj satisfying J,
c/h causes no errors, and . . .

• for every reduction c/h→ c′/h′, the heap h′ decomposes as
h′1] h′j] hf with h′j satisfying J,
and moreover c′ in h′1 is safe for the remaining n steps.

51

A weak semantic triple with step indexing

∀a, c 6= a

∀hj, hf , J hj ⇒ c/h1] hj] hf 6→ err

∀hj, hf , c′, h′, J hj ∧ c/h1] hj] hf → c′/h′ ⇒
∃h′1, h′j, h

′ = h′1] h′j] hf ∧ J h
′
j ∧ Safe

n c′ h′1 Q

Safen+1 c h1 Q

The inductive case: c in h1 is safe for n+ 1 steps if
• in every heap h of the shape h1] hj] hf with hj satisfying J,
c/h causes no errors, and . . .

• for every reduction c/h→ c′/h′, the heap h′ decomposes as
h′1] h′j] hf with h′j satisfying J,
and moreover c′ in h′1 is safe for the remaining n steps.

51

Semantic soundness and heap decompositions

It is relatively easy to show that this semantic triple
J |= {{ P }} c {{Q }} validates the rules of concurrent separation
logic.

Below, we illustrate the decomposition h = h1] hj] hf to be
used for validating the main rules:

emp ` { P V J } c {Q V J }

J ` { P } atomic c {Q }

(h1] hj)] ∅] hf

h1] hj] hf

J V J′ ` { P } c {Q }

J ` { P V J′ } c {λv. Q v V J′ }

h1] (hj] h2)] hf

(h1] h2)] hj] hf

52

Semantic soundness and heap decompositions

J ` { P1 } c1 {λ . Q1 }
J ` { P2 } c2 {λ . Q2 }

J ` { P1 V P2 } c1 ‖ c2 {λ . Q1 V Q2 }

h1] hj] (hf] h2)

or h2] hj] (hf] h1)

(h1] h2)] hj] hf

J ` { P } c {Q }

J V J′ ` { P } c {Q }

h1] hj] (hf] h′j)

h1] (hj] h′j)] hf

J ` { P } c {Q }

J ` { P V R } c {λv. Q v V R }

h1] hj] (hf] h2)

(h1] h2)] hj] hf

53

Ilya Sergey

Ilya Sergey

Absence of race conditions

(c1 ‖ c2)/h→ err if Acc(c1) ∩ Acc(c2) 6= ∅

If we add the error rule above and take

Acc(atomic c) = ∅,

the proof of semantic soundness still works. This shows:

Every command c provable in concurrent separation logic
contains no race conditions
between non-atomic memory accesses.

Note: atomic(set(p, 1)) ‖ atomic(set(p, 2)) is provable but is
not considered as a race condition.

54

Summary

Summary

After the lightning strike that was separation logic in 2001,
concurrent separation logic in 2004 was a resounding
thunderclap.

Compared with earlier logics for concurrency (e.g. Owicki & Gries,
1976), concurrent separation logic was a huge step forward to
prove safety properties of parallel computations:

• absence of race conditions;
• memory safety (no use after free, no double free);
• integrity of data structures;
• data transfers between processes.

Still not obvious how to prove functional correctness. . .

{ x = 0 } atomic(x := x + 1) ‖ atomic(x := x + 1) { x = 2 }
55

References

References

A reference book on shared-memory concurrency:

• M. Herlihy, N. Shavit. The Art of Multiprocessor Programming,
Morgan Kaufman, 2012.

The paper that introduced concurrent separation logic (revised version):

• P. O’Hearn, Resources, Concurrency and Local Reasoning,
Theor. Comp. Sci, 2007.

The simple proof of semantic soundness:

• V. Vafeiadis, Concurrent separation logic and operational semantics,
MFPS 2011

Mechanizations:

• The companion Coq development for this lecture:
https://github.com/xavierleroy/cdf-program-logics

• The Iris framework: https://iris-project.org/
56

https://github.com/xavierleroy/cdf-program-logics
https://iris-project.org/

	Introduction: Shared-memory parallel computing
	Concurrency without resource sharing
	Concurrency and resource sharing
	Binary semaphores and applications
	Semantic soundness
	Summary
	References

