Owicki-Gries Logic
for Concurrent Programs

Motivation

* Concurrency introduce non-determinism
* Scheduling strategies are intentionally under-specified

* We cannot predict the exact order of concurrent commands

* State sharing between threads makes modular proofs difficult

* Disjointness / ownership helps to split proof obligations

* Surprising discovery: locks introduce invariants about ME accessed resources
e ME — mutual exclusion

* Somewhat similar to loop invariants

Extending Hoare Logic for Concurrency: 1976

Operating R.S. Gaines
Systems Editor

Veritying Properties of
Parallel Programs: An
Axiomatic Approach

Susan Owicki and David Gries
Cornell University

An axiomatic method for proving a number of
properties of parallel programs is presented. Hoare has
given a set of axioms for partial correctness, but they
are not strong enough in most cases. This paper defines
a more powerful deductive system which is in some
sense complete for partial correctness. A crucial
axiom provides for the use of auxiliary variables, which
are added to a parallel program as an aid to proving it
correct. The information in a partial correctness
proof can be used to prove such properties as mutual
exclusion, freedom from deadlock, and program
termination. Techniques for verifying these properties
are presented and illustrated by application to the
dining philosophers problem.

Key Words and Phrases: structured multiprogram-
ming, correctness proofs, program verification,

concurrent processes, synchronization, mutual exclusion,
deadlock

https://en.wikipedia.org/wiki/David_Gries CR Categories: 4.32, 4.35, 5.21, 5.24

https://en.wikipedia.org/wiki/Susan_Owicki
https://en.wikipedia.org/wiki/David_Gries

Simple Language with Concurrency

* Programming language derived from Algol 60
* Syntactic notation

— r —a set of variables
— 5 - a statement

— B —a boolean condition
e Parallel execution statement:

resource ry,...,r,:

cobegin 5 || ... || §,, coend

e (ritical section statement:

with r when B do S

resource r(x): cobegin » Unable to proove that x is

with » when true do incremented by 2 using the
x:=x+ 1 ex1sting axioms.

with r when true do

x:=x+1
coend

resource r(x): cobegin « The solution: make use of

with » when true do auxiliary variables

x:i=x++1 — Auxiliary variable is a variable
| which is assigned, but never used

— Removing this variable doesn’t
change the program.

with r when true do

x:=x+1
coend

o If:

resource r(x): cobegin — AV is an auxiliary variable set
with » when true do for a statement 3.
= x4 1 — 8" obtained by deleting all

assignments to variables in AV.

| —{P} S {Q} is true

with r when true do — Pand Q don’t refer to variable

x:=x++1 any variables from AV.
coend Then:
—{ P} 8" {0} is also true.

begin y :=0, z :=0;
resource r(x, y, z): cobegin
with » when true do

beginx:=x+1; y:=1end

with r when frue do

beginx:=x+1;z :=1end

coend

end

Each statement has:

— Pre-condition P

— Post-condition QO

Wrote as { P} S {0}

We assume that sequential execution is
simple to be proven.

y and z are auxiliary variables

I(r) — the invariant for the resource r

— Remains true at all times outside
critical sections for r

{x =0}
begin y :=0, z := 0;

resource r(x, y, z): cobegin

with » when rrue do

{y=0AI(r)}
beginx:=x+1;,y:=1end

y=1A1({r)}

with r when frue do

{z=0AI(r)}
beginx:=x+1;z :=1end

{z=1AIr)}

coend

end

Ir)={x=y+z}

Each statement has:

— Pre-condition P

— Post-condition QO

Wrote as { P} S {0}

We assume that sequential execution is
simple to be proven.

y and z are auxiliary variables

I(r) — the invariant for the resource r

— Remains true at all times outside
critical sections for r

{x =0}
begin y:=0, z := 0;

« The critical section axiom:

resource r(x, y, z): cobegin

{y=0} - It
with r when frue do o {I(I’) A PA B} S {I(I’) A Q}
Wy =0AI(r)) , , , :
begin x == x + 1; y == 1 end « I(r) is the invariant from the cobegin statement
(y=1AI(r) * No variable free in P or Q is changed in another thread
ly=1i — Then:
|| '
{z=0) « { P} with r when Bdo S {QO}
with » when frue do e For example, set:
{z=0AI(r)} " N
beginx:=x+1;z :=1end — P = Y=0
{iz=1AI(r)} . Q=ny= ln
iz =1}
coend — B = true

end

{x =0}

begin y:=0, z := 0;
ly=0Az=0AI(r)}
resource r(x, y, z): cobegin

* The parallel execution axiom:

{y =0 — If:
with r when rrue do . {pl} S, {0} .. {pn} S {0,}
Ww=0AI(r)} ‘ . . : : ;
bzginx —x+1:y:=1end » No variable free in P, or Q, is changed in .S, (i # j)
(y=1AI10) » All variables in I(r) belong to resource r
=1 — Then:
|
S s {PEA...AP AI(r)}
with » when 7rue do resource r: cobegin S,//...//S, coend {Ql A...NQ, A I(r)}
1z =0A 1) » For example, set:
beginx:=x+1;z :=1 end ol A
(z=1AI(r)) o Pl—"y—()“
(z=1) — P2 ="z=0
coend — Ql = "y = 1"
ly=1Az=1AI0r)} _ Q2:"Z=1"

end

{x =0}

begin y :=0, z := 0;
ly=0Az=0AI1(r)}
resource r(x, y, 2): cobegin

(y=0) » Using the invariant I(r),

with » when rrue do

(y =0 A I(r) we have the result:
beginx:=x+1;y:=1end x:2

ly=1A1(r)}
ty=1j
|
{z=0j
with » when frue do
{z=0AI(r)}
beginx:=x+1;z :=1end
{z=1AI(r)}
{z=1]
coend
{yzlAZzl/\I(r)}
end
{x =2}
Ir)={x=y+ z}

