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Motivation

* Concurrency introduce non-determinism
* Scheduling strategies are intentionally under-specified

* We cannot predict the exact order of concurrent commands

* State sharing between threads makes modular proofs difficult

* Disjointness / ownership helps to split proof obligations

* Surprising discovery: locks introduce invariants about ME accessed resources
e ME — mutual exclusion

* Somewhat similar to loop invariants
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Simple Language with Concurrency

* Programming language derived from Algol 60
* Syntactic notation

— r —a set of variables
— 5 - a statement

— B —a boolean condition
e Parallel execution statement:

resource ry,...,r,:

cobegin 5 || ... || §,, coend

e (ritical section statement:

with r when B do S



resource r(x): cobegin » Unable to proove that x is

with » when true do incremented by 2 using the
x:=x+ 1 ex1sting axioms.

with r when true do

x:=x+1
coend



resource r(x): cobegin « The solution: make use of

with » when true do auxiliary variables

x:i=x++1 — Auxiliary variable is a variable
| which is assigned, but never used

— Removing this variable doesn’t
change the program.

with r when true do

x:=x+1
coend



o If:

resource r(x): cobegin — AV is an auxiliary variable set
with » when true do for a statement 3.
= x4 1 — 8" obtained by deleting all

assignments to variables in AV.

| —{P} S {Q} is true

with r when true do — Pand Q don’t refer to variable

x:=x++1 any variables from AV.
coend  Then:
—{ P} 8" {0} is also true.



begin y :=0, z :=0;
resource r(x, y, z): cobegin
with » when true do

beginx:=x+1; y:=1end

with r when frue do

beginx:=x+1;z :=1end

coend

end

Each statement has:

— Pre-condition P

— Post-condition QO

Wrote as { P} S {0}

We assume that sequential execution is
simple to be proven.

y and z are auxiliary variables

I(r) — the invariant for the resource r

— Remains true at all times outside
critical sections for r



{x =0}
begin y :=0, z := 0;

resource r(x, y, z): cobegin

with » when rrue do

{y=0AI(r)}
beginx:=x+1;,y:=1end

y=1A1({r)}

with r when frue do

{z=0AI(r)}
beginx:=x+1;z :=1end

{z=1AIr)}

coend

end

Ir)={x=y+z}

Each statement has:

— Pre-condition P

— Post-condition QO

Wrote as { P} S {0}

We assume that sequential execution is
simple to be proven.

y and z are auxiliary variables

I(r) — the invariant for the resource r

— Remains true at all times outside
critical sections for r



{x =0}
begin y:=0, z := 0;

« The critical section axiom:

resource r(x, y, z): cobegin

{y=0} - It
with r when frue do o {I(I’) A PA B} S {I(I’) A Q}
Wy =0AI(r)) , , , :
begin x == x + 1; y == 1 end « I(r) is the invariant from the cobegin statement
(y=1AI(r) * No variable free in P or Q is changed in another thread
ly=1i — Then:
|| '
{z=0) « { P} with r when Bdo S {QO}
with » when frue do e For example, set:
{z=0AI(r)} " N
beginx:=x+1;z :=1end — P = Y=0
{iz=1AI(r)} . Q=ny= ln
iz =1}
coend — B = true

end



{x =0}

begin y:=0, z := 0;
ly=0Az=0AI(r)}
resource r(x, y, z): cobegin

* The parallel execution axiom:

{y =0 — If:
with r when rrue do . {pl} S, {0} .. {pn} S {0,}
Ww=0AI(r)} ‘ . . : : ;
bzginx —x+1:y:=1end » No variable free in P, or Q, is changed in .S, (i # j)
(y=1AI10) » All variables in I(r) belong to resource r
=1 — Then:
|
S s {PEA...AP AI(r)}
with » when 7rue do resource r: cobegin S,//...//S, coend {Ql A...NQ, A I(r)}
1z =0A 1) » For example, set:
beginx:=x+1;z :=1 end ol A
(z=1AI(r)) o Pl—"y—()“
(z=1) — P2 ="z=0
coend — Ql = "y = 1"
ly=1Az=1AI0r)} _ Q2:"Z=1"

end



{x =0}

begin y :=0, z := 0;
ly=0Az=0AI1(r)}
resource r(x, y, 2): cobegin

(y=0) » Using the invariant I(r),

with » when rrue do

(y =0 A I(r) we have the result:
beginx:=x+1;y:=1end x:2

ly=1A1(r)}
ty=1j
|
{z=0j
with » when frue do
{z=0AI(r)}
beginx:=x+1;z :=1end
{z=1AI(r)}
{z=1]
coend
{yzlAZzl/\I(r)}
end
{x =2}
Ir)={x=y+ z}



