
Owicki-Gries Logic  
for Concurrent Programs



• Concurrency introduce non-determinism 
• Scheduling strategies are intentionally under-specified 
• We cannot predict the exact order of concurrent commands 

• State sharing between threads makes modular proofs difficult 
• Disjointness / ownership helps to split proof obligations 

• Surprising discovery: locks introduce invariants about ME accessed resources  
• ME — mutual exclusion 
• Somewhat similar to loop invariants

Motivation



Extending Hoare Logic for Concurrency: 1976

https://en.wikipedia.org/wiki/Susan_Owicki 

https://en.wikipedia.org/wiki/David_Gries 

https://en.wikipedia.org/wiki/Susan_Owicki
https://en.wikipedia.org/wiki/David_Gries


Simple Language with Concurrency

• Programming language derived from Algol 60 
• Syntactic notation 

–  – a set of variables 
–  – a statement 
–  – a boolean condition 

• Parallel execution statement: 
 
  resource ,…, : 

  cobegin  || … ||  coend 

• Critical section statement: 
 
   with r when  do 

𝑟
𝑆
𝐵

𝑟1 𝑟𝑚

𝑆1 𝑆𝑛

𝐵 𝑆



• Unable to proove that x is 
incremented by 2 using the 
existing axioms. 

resource r(x): cobegin  

with  when true do  

|| 
with r when true do  

coend

𝑟
𝑥 ≔ 𝑥 + 1

𝑥 ≔ 𝑥 + 1



• The solution: make use of 
auxiliary variables 
– Auxiliary variable is a variable 

which is assigned, but never used 
– Removing this variable doesn’t 

change the program.

resource r(x): cobegin  

with  when true do  

|| 
with r when true do  

coend

𝑟
𝑥 ≔ 𝑥 + 1

𝑥 ≔ 𝑥 + 1



• If: 
– AV is an auxiliary variable set 

for a statement . 
–  obtained by deleting all 

assignments to variables in AV. 
–  is true 
–  and  don’t refer to variable 

any variables from AV. 
• Then: 
–  is also true.

𝑆
𝑆’

{𝑃} 𝑆 {𝑄}
𝑃 𝑄

{𝑃} 𝑆′  {𝑄}

resource r(x): cobegin  

with  when true do  

|| 
with r when true do  

coend

𝑟
𝑥 ≔ 𝑥 + 1

𝑥 ≔ 𝑥 + 1



begin , ; 

resource : cobegin 

with  when  do 

begin ;  end 

|| 

with  when  do 

begin ; z  end 

coend 

end 

{𝑥 = 0}
𝑦 ≔ 0 𝑧 ≔ 0

{𝑦 = 0 ∧ 𝑧 = 0 ∧ 𝐼(𝑟)}
𝑟(𝑥, 𝑦, 𝑧)

{𝑦 = 0}
𝑟 𝑡𝑟𝑢𝑒

{𝑦 = 0 ∧ 𝐼(𝑟)}
𝑥 ≔ 𝑥 + 1 𝑦 ≔ 1

{𝑦 = 1 ∧ 𝐼(𝑟)}
{𝑦 = 1}

{𝑧 = 0}
𝑟 𝑡𝑟𝑢𝑒

{𝑧 = 0 ∧ 𝐼(𝑟)}
𝑥 ≔ 𝑥 + 1 ≔ 1

{𝑧 = 1 ∧ 𝐼(𝑟)}
{𝑧 = 1}

{𝑦 = 1 ∧ 𝑧 = 1 ∧ 𝐼(𝑟)}

{𝑥 = 2}
𝐼(𝑟) = {𝑥 = 𝑦 + 𝑧}

• Each statement has: 
– Pre-condition  
– Post-condition  

• Wrote as  
• We assume that sequential execution is 

simple to be proven. 
• y and z are auxiliary variables 
•  – the invariant for the resource r 
– Remains true at all times outside 

critical sections for r

𝑃
𝑄

{𝑃} 𝑆 {𝑄}

𝐼(𝑟)



 
begin , ; 

resource : cobegin 

with  when  do 
 

begin ;  end 

 

|| 

with  when  do 
 

begin ; z  end 

 

coend 

end 

{𝒙 = 𝟎}
𝑦 ≔ 0 𝑧 ≔ 0

{𝑦 = 0 ∧ 𝑧 = 0 ∧ 𝐼(𝑟)}
𝑟(𝑥, 𝑦, 𝑧)

{𝑦 = 0}
𝑟 𝑡𝑟𝑢𝑒

{𝒚 = 𝟎 ∧ 𝑰(𝒓)}
𝑥 ≔ 𝑥 + 1 𝑦 ≔ 1

{𝒚 = 𝟏 ∧ 𝑰(𝒓)}
{𝑦 = 1}

{𝑧 = 0}
𝑟 𝑡𝑟𝑢𝑒

{𝒛 = 𝟎 ∧ 𝑰(𝒓)}
𝑥 ≔ 𝑥 + 1 ≔ 1

{𝒛 = 𝟏 ∧ 𝑰(𝒓)}
{𝑧 = 1}

{𝑦 = 1 ∧ 𝑧 = 1 ∧ 𝐼(𝑟)}

{𝑥 = 2}
𝑰(𝒓) = {𝒙 = 𝒚 + 𝒛}

• Each statement has: 
– Pre-condition  
– Post-condition  

• Wrote as  
• We assume that sequential execution is 

simple to be proven. 
• y and z are auxiliary variables 
•  – the invariant for the resource r 
– Remains true at all times outside 

critical sections for r

𝑃
𝑄

{𝑃} 𝑆 {𝑄}

𝑰(𝒓)



begin , ; 

resource : cobegin 
 

with  when  do 

begin ;  end 

 
|| 

 
with  when  do 

begin ; z  end 

 
coend 

end 

{𝑥 = 0}
𝑦 ≔ 0 𝑧 ≔ 0

{𝑦 = 0 ∧ 𝑧 = 0 ∧ 𝐼(𝑟)}
𝑟(𝑥, 𝑦, 𝑧)

{𝒚 = 𝟎}
𝑟 𝑡𝑟𝑢𝑒

{𝑦 = 0 ∧ 𝐼(𝑟)}
𝑥 ≔ 𝑥 + 1 𝑦 ≔ 1

{𝑦 = 1 ∧ 𝐼(𝑟)}
{𝒚 = 𝟏}

{𝒛 = 𝟎}
𝑟 𝑡𝑟𝑢𝑒

{𝑧 = 0 ∧ 𝐼(𝑟)}
𝑥 ≔ 𝑥 + 1 ≔ 1

{𝑧 = 1 ∧ 𝐼(𝑟)}
{𝒛 = 𝟏}

{𝑦 = 1 ∧ 𝑧 = 1 ∧ 𝐼(𝑟)}

{𝑥 = 2}
𝐼(𝑟) = {𝑥 = 𝑦 + 𝑧}

• The critical section axiom: 
– If: 
•  
•  is the invariant from the cobegin statement 
• No variable free in P or Q is changed in another thread 

– Then: 
•  with  when  do  

• For example, set: 
–  
–  
–

{𝐼(𝑟) ∧ 𝑃 ∧ 𝐵} 𝑆 {𝐼(𝑟) ∧ 𝑄}
𝐼(𝑟)

{𝑃} 𝑟 𝐵 𝑆 {𝑄}

𝑃 = "y = 0"
𝑄 = "𝑦 = 1"
𝐵 = 𝑡𝑟𝑢𝑒



begin , ; 

 
resource : cobegin 

with  when  do 

begin ;  end 

|| 

with  when  do 

begin ; z  end 

coend 

 
end 

{𝑥 = 0}
𝑦 ≔ 0 𝑧 ≔ 0

{𝒚 = 𝟎 ∧ 𝒛 = 𝟎 ∧ 𝑰(𝒓)}
𝑟(𝑥, 𝑦, 𝑧)

{𝑦 = 0}
𝑟 𝑡𝑟𝑢𝑒

{𝑦 = 0 ∧ 𝐼(𝑟)}
𝑥 ≔ 𝑥 + 1 𝑦 ≔ 1

{𝑦 = 1 ∧ 𝐼(𝑟)}
{𝑦 = 1}

{𝑧 = 0}
𝑟 𝑡𝑟𝑢𝑒

{𝑧 = 0 ∧ 𝐼(𝑟)}
𝑥 ≔ 𝑥 + 1 ≔ 1

{𝑧 = 1 ∧ 𝐼(𝑟)}
{𝑧 = 1}

{𝒚 = 𝟏 ∧ 𝒛 = 𝟏 ∧ 𝑰(𝒓)}

{𝑥 = 2}
𝐼(𝑟) = {𝑥 = 𝑦 + 𝑧}

• The parallel execution axiom: 
– If: 
•  … 
• No variable free in  or  is changed in  )  
• All variables in  belong to resource  

– Then: 
•   

resource : cobegin  coend 

• For example, set: 
–
–
–
–

{𝑃1} 𝑆1 {𝑄1} {𝑃𝑛} 𝑆𝑛 {𝑄𝑛}
𝑃𝑖 𝑄𝑖 𝑆𝑗 (𝑖 ≠ 𝑗

𝐼(𝑟) 𝑟

{𝑃1 ∧ … ∧ 𝑃𝑛 ∧ 𝐼(𝑟)}
𝑟 𝑆1//…//𝑆𝑛 {𝑄1 ∧ … ∧ 𝑄𝑛 ∧ 𝐼(𝑟)}

𝑃1 = "𝑦 = 0"
𝑃2 = "𝑧 = 0“
𝑄1 = "𝑦 = 1"
𝑄2 = "𝑧 = 1"



begin , ; 

resource : cobegin 

with  when  do 

begin ;  end 

|| 

with  when  do 

begin ; z  end 

coend 

end 

 

{𝑥 = 0}
𝑦 ≔ 0 𝑧 ≔ 0

{𝑦 = 0 ∧ 𝑧 = 0 ∧ 𝐼(𝑟)}
𝑟(𝑥, 𝑦, 𝑧)

{𝑦 = 0}
𝑟 𝑡𝑟𝑢𝑒

{𝑦 = 0 ∧ 𝐼(𝑟)}
𝑥 ≔ 𝑥 + 1 𝑦 ≔ 1

{𝑦 = 1 ∧ 𝐼(𝑟)}
{𝑦 = 1}

{𝑧 = 0}
𝑟 𝑡𝑟𝑢𝑒

{𝑧 = 0 ∧ 𝐼(𝑟)}
𝑥 ≔ 𝑥 + 1 ≔ 1

{𝑧 = 1 ∧ 𝐼(𝑟)}
{𝑧 = 1}

{𝑦 = 1 ∧ 𝑧 = 1 ∧ 𝐼(𝑟)}

{𝒙 = 𝟐}
𝐼(𝑟) = {𝑥 = 𝑦 + 𝑧}

• Using the invariant I(r),  
we have the result: 

𝒙 = 𝟐


