
Owicki-Gries Logic
for Concurrent Programs

• Concurrency introduce non-determinism
• Scheduling strategies are intentionally under-specified
• We cannot predict the exact order of concurrent commands

• State sharing between threads makes modular proofs difficult
• Disjointness / ownership helps to split proof obligations

• Surprising discovery: locks introduce invariants about ME accessed resources
• ME — mutual exclusion
• Somewhat similar to loop invariants

Motivation

Extending Hoare Logic for Concurrency: 1976

https://en.wikipedia.org/wiki/Susan_Owicki

https://en.wikipedia.org/wiki/David_Gries

https://en.wikipedia.org/wiki/Susan_Owicki
https://en.wikipedia.org/wiki/David_Gries

Simple Language with Concurrency

• Programming language derived from Algol 60
• Syntactic notation

– – a set of variables
– – a statement
– – a boolean condition

• Parallel execution statement:

 resource ,…, :

 cobegin || … || coend

• Critical section statement:

 with r when do

𝑟
𝑆
𝐵

𝑟1 𝑟𝑚

𝑆1 𝑆𝑛

𝐵 𝑆

• Unable to proove that x is
incremented by 2 using the
existing axioms.

resource r(x): cobegin

with when true do

||
with r when true do

coend

𝑟
𝑥 ≔ 𝑥 + 1

𝑥 ≔ 𝑥 + 1

• The solution: make use of
auxiliary variables
– Auxiliary variable is a variable

which is assigned, but never used
– Removing this variable doesn’t

change the program.

resource r(x): cobegin

with when true do

||
with r when true do

coend

𝑟
𝑥 ≔ 𝑥 + 1

𝑥 ≔ 𝑥 + 1

• If:
– AV is an auxiliary variable set

for a statement .
– obtained by deleting all

assignments to variables in AV.
– is true
– and don’t refer to variable

any variables from AV.
• Then:
– is also true.

𝑆
𝑆’

{𝑃} 𝑆 {𝑄}
𝑃 𝑄

{𝑃} 𝑆′ {𝑄}

resource r(x): cobegin

with when true do

||
with r when true do

coend

𝑟
𝑥 ≔ 𝑥 + 1

𝑥 ≔ 𝑥 + 1

begin , ;

resource : cobegin

with when do

begin ; end

||

with when do

begin ; z end

coend

end

{𝑥 = 0}
𝑦 ≔ 0 𝑧 ≔ 0

{𝑦 = 0 ∧ 𝑧 = 0 ∧ 𝐼(𝑟)}
𝑟(𝑥, 𝑦, 𝑧)

{𝑦 = 0}
𝑟 𝑡𝑟𝑢𝑒

{𝑦 = 0 ∧ 𝐼(𝑟)}
𝑥 ≔ 𝑥 + 1 𝑦 ≔ 1

{𝑦 = 1 ∧ 𝐼(𝑟)}
{𝑦 = 1}

{𝑧 = 0}
𝑟 𝑡𝑟𝑢𝑒

{𝑧 = 0 ∧ 𝐼(𝑟)}
𝑥 ≔ 𝑥 + 1 ≔ 1

{𝑧 = 1 ∧ 𝐼(𝑟)}
{𝑧 = 1}

{𝑦 = 1 ∧ 𝑧 = 1 ∧ 𝐼(𝑟)}

{𝑥 = 2}
𝐼(𝑟) = {𝑥 = 𝑦 + 𝑧}

• Each statement has:
– Pre-condition
– Post-condition

• Wrote as
• We assume that sequential execution is

simple to be proven.
• y and z are auxiliary variables
• – the invariant for the resource r
– Remains true at all times outside

critical sections for r

𝑃
𝑄

{𝑃} 𝑆 {𝑄}

𝐼(𝑟)

begin , ;

resource : cobegin

with when do

begin ; end

||

with when do

begin ; z end

coend

end

{𝒙 = 𝟎}
𝑦 ≔ 0 𝑧 ≔ 0

{𝑦 = 0 ∧ 𝑧 = 0 ∧ 𝐼(𝑟)}
𝑟(𝑥, 𝑦, 𝑧)

{𝑦 = 0}
𝑟 𝑡𝑟𝑢𝑒

{𝒚 = 𝟎 ∧ 𝑰(𝒓)}
𝑥 ≔ 𝑥 + 1 𝑦 ≔ 1

{𝒚 = 𝟏 ∧ 𝑰(𝒓)}
{𝑦 = 1}

{𝑧 = 0}
𝑟 𝑡𝑟𝑢𝑒

{𝒛 = 𝟎 ∧ 𝑰(𝒓)}
𝑥 ≔ 𝑥 + 1 ≔ 1

{𝒛 = 𝟏 ∧ 𝑰(𝒓)}
{𝑧 = 1}

{𝑦 = 1 ∧ 𝑧 = 1 ∧ 𝐼(𝑟)}

{𝑥 = 2}
𝑰(𝒓) = {𝒙 = 𝒚 + 𝒛}

• Each statement has:
– Pre-condition
– Post-condition

• Wrote as
• We assume that sequential execution is

simple to be proven.
• y and z are auxiliary variables
• – the invariant for the resource r
– Remains true at all times outside

critical sections for r

𝑃
𝑄

{𝑃} 𝑆 {𝑄}

𝑰(𝒓)

begin , ;

resource : cobegin

with when do

begin ; end

||

with when do

begin ; z end

coend

end

{𝑥 = 0}
𝑦 ≔ 0 𝑧 ≔ 0

{𝑦 = 0 ∧ 𝑧 = 0 ∧ 𝐼(𝑟)}
𝑟(𝑥, 𝑦, 𝑧)

{𝒚 = 𝟎}
𝑟 𝑡𝑟𝑢𝑒

{𝑦 = 0 ∧ 𝐼(𝑟)}
𝑥 ≔ 𝑥 + 1 𝑦 ≔ 1

{𝑦 = 1 ∧ 𝐼(𝑟)}
{𝒚 = 𝟏}

{𝒛 = 𝟎}
𝑟 𝑡𝑟𝑢𝑒

{𝑧 = 0 ∧ 𝐼(𝑟)}
𝑥 ≔ 𝑥 + 1 ≔ 1

{𝑧 = 1 ∧ 𝐼(𝑟)}
{𝒛 = 𝟏}

{𝑦 = 1 ∧ 𝑧 = 1 ∧ 𝐼(𝑟)}

{𝑥 = 2}
𝐼(𝑟) = {𝑥 = 𝑦 + 𝑧}

• The critical section axiom:
– If:
•
• is the invariant from the cobegin statement
• No variable free in P or Q is changed in another thread

– Then:
• with when do

• For example, set:
–
–
–

{𝐼(𝑟) ∧ 𝑃 ∧ 𝐵} 𝑆 {𝐼(𝑟) ∧ 𝑄}
𝐼(𝑟)

{𝑃} 𝑟 𝐵 𝑆 {𝑄}

𝑃 = "y = 0"
𝑄 = "𝑦 = 1"
𝐵 = 𝑡𝑟𝑢𝑒

begin , ;

resource : cobegin

with when do

begin ; end

||

with when do

begin ; z end

coend

end

{𝑥 = 0}
𝑦 ≔ 0 𝑧 ≔ 0

{𝒚 = 𝟎 ∧ 𝒛 = 𝟎 ∧ 𝑰(𝒓)}
𝑟(𝑥, 𝑦, 𝑧)

{𝑦 = 0}
𝑟 𝑡𝑟𝑢𝑒

{𝑦 = 0 ∧ 𝐼(𝑟)}
𝑥 ≔ 𝑥 + 1 𝑦 ≔ 1

{𝑦 = 1 ∧ 𝐼(𝑟)}
{𝑦 = 1}

{𝑧 = 0}
𝑟 𝑡𝑟𝑢𝑒

{𝑧 = 0 ∧ 𝐼(𝑟)}
𝑥 ≔ 𝑥 + 1 ≔ 1

{𝑧 = 1 ∧ 𝐼(𝑟)}
{𝑧 = 1}

{𝒚 = 𝟏 ∧ 𝒛 = 𝟏 ∧ 𝑰(𝒓)}

{𝑥 = 2}
𝐼(𝑟) = {𝑥 = 𝑦 + 𝑧}

• The parallel execution axiom:
– If:
• …
• No variable free in or is changed in)
• All variables in belong to resource

– Then:
•

resource : cobegin coend

• For example, set:
–
–
–
–

{𝑃1} 𝑆1 {𝑄1} {𝑃𝑛} 𝑆𝑛 {𝑄𝑛}
𝑃𝑖 𝑄𝑖 𝑆𝑗 (𝑖 ≠ 𝑗

𝐼(𝑟) 𝑟

{𝑃1 ∧ … ∧ 𝑃𝑛 ∧ 𝐼(𝑟)}
𝑟 𝑆1//…//𝑆𝑛 {𝑄1 ∧ … ∧ 𝑄𝑛 ∧ 𝐼(𝑟)}

𝑃1 = "𝑦 = 0"
𝑃2 = "𝑧 = 0“
𝑄1 = "𝑦 = 1"
𝑄2 = "𝑧 = 1"

begin , ;

resource : cobegin

with when do

begin ; end

||

with when do

begin ; z end

coend

end

{𝑥 = 0}
𝑦 ≔ 0 𝑧 ≔ 0

{𝑦 = 0 ∧ 𝑧 = 0 ∧ 𝐼(𝑟)}
𝑟(𝑥, 𝑦, 𝑧)

{𝑦 = 0}
𝑟 𝑡𝑟𝑢𝑒

{𝑦 = 0 ∧ 𝐼(𝑟)}
𝑥 ≔ 𝑥 + 1 𝑦 ≔ 1

{𝑦 = 1 ∧ 𝐼(𝑟)}
{𝑦 = 1}

{𝑧 = 0}
𝑟 𝑡𝑟𝑢𝑒

{𝑧 = 0 ∧ 𝐼(𝑟)}
𝑥 ≔ 𝑥 + 1 ≔ 1

{𝑧 = 1 ∧ 𝐼(𝑟)}
{𝑧 = 1}

{𝑦 = 1 ∧ 𝑧 = 1 ∧ 𝐼(𝑟)}

{𝒙 = 𝟐}
𝐼(𝑟) = {𝑥 = 𝑦 + 𝑧}

• Using the invariant I(r),
we have the result:

𝒙 = 𝟐

