
Owicki-Gries Logic 

for Concurrent Programs



• Concurrency introduce non-determinism

• Scheduling strategies are intentionally under-specified

• We cannot predict the exact order of concurrent commands 

• State sharing between threads makes modular proofs difficult

• Disjointness / ownership helps to split proof obligations 

• Surprising discovery: locks introduce invariants about ME accessed resources 

• ME — mutual exclusion

• Somewhat similar to loop invariants

Motivation



Extending Hoare Logic for Concurrency: 1976

https://en.wikipedia.org/wiki/Susan_Owicki 

https://en.wikipedia.org/wiki/David_Gries 

https://en.wikipedia.org/wiki/Susan_Owicki
https://en.wikipedia.org/wiki/David_Gries


Simple Language with Concurrency

• Programming language derived from Algol 60

• Syntactic notation


–  – a set of variables

–  – a statement

–  – a boolean condition


• Parallel execution statement:

 
  resource ,…, :


  cobegin  || … ||  coend 

• Critical section statement:

 
   with r when  do 

𝑟
𝑆
𝐵

𝑟1 𝑟𝑚

𝑆1 𝑆𝑛

𝐵 𝑆



• Unable to proove that x is 
incremented by 2 using the 
existing axioms.


resource r(x): cobegin 


with  when true do 


||

with r when true do 


coend

𝑟
𝑥 ≔ 𝑥 + 1

𝑥 ≔ 𝑥 + 1



• The solution: make use of 
auxiliary variables

– Auxiliary variable is a variable 

which is assigned, but never used

– Removing this variable doesn’t 

change the program.

resource r(x): cobegin 


with  when true do 


||

with r when true do 


coend

𝑟
𝑥 ≔ 𝑥 + 1

𝑥 ≔ 𝑥 + 1



• If:

– AV is an auxiliary variable set 

for a statement .

–  obtained by deleting all 

assignments to variables in AV.

–  is true

–  and  don’t refer to variable 

any variables from AV.

• Then:

–  is also true.

𝑆
𝑆’

{𝑃} 𝑆 {𝑄}
𝑃 𝑄

{𝑃} 𝑆′￼ {𝑄}

resource r(x): cobegin 


with  when true do 


||

with r when true do 


coend

𝑟
𝑥 ≔ 𝑥 + 1

𝑥 ≔ 𝑥 + 1



begin , ;


resource : cobegin


with  when  do


begin ;  end


||


with  when  do


begin ; z  end


coend


end


{𝑥 = 0}
𝑦 ≔ 0 𝑧 ≔ 0

{𝑦 = 0 ∧ 𝑧 = 0 ∧ 𝐼(𝑟)}
𝑟(𝑥, 𝑦, 𝑧)

{𝑦 = 0}
𝑟 𝑡𝑟𝑢𝑒

{𝑦 = 0 ∧ 𝐼(𝑟)}
𝑥 ≔ 𝑥 + 1 𝑦 ≔ 1

{𝑦 = 1 ∧ 𝐼(𝑟)}
{𝑦 = 1}

{𝑧 = 0}
𝑟 𝑡𝑟𝑢𝑒

{𝑧 = 0 ∧ 𝐼(𝑟)}
𝑥 ≔ 𝑥 + 1 ≔ 1

{𝑧 = 1 ∧ 𝐼(𝑟)}
{𝑧 = 1}

{𝑦 = 1 ∧ 𝑧 = 1 ∧ 𝐼(𝑟)}

{𝑥 = 2}
𝐼(𝑟) = {𝑥 = 𝑦 + 𝑧}

• Each statement has:

– Pre-condition 

– Post-condition 


• Wrote as 

• We assume that sequential execution is 

simple to be proven.

• y and z are auxiliary variables

•  – the invariant for the resource r

– Remains true at all times outside 

critical sections for r

𝑃
𝑄

{𝑃} 𝑆 {𝑄}

𝐼(𝑟)





begin , ;


resource : cobegin


with  when  do




begin ;  end





||


with  when  do




begin ; z  end





coend


end


{𝒙 = 𝟎}
𝑦 ≔ 0 𝑧 ≔ 0

{𝑦 = 0 ∧ 𝑧 = 0 ∧ 𝐼(𝑟)}
𝑟(𝑥, 𝑦, 𝑧)

{𝑦 = 0}
𝑟 𝑡𝑟𝑢𝑒

{𝒚 = 𝟎 ∧ 𝑰(𝒓)}
𝑥 ≔ 𝑥 + 1 𝑦 ≔ 1

{𝒚 = 𝟏 ∧ 𝑰(𝒓)}
{𝑦 = 1}

{𝑧 = 0}
𝑟 𝑡𝑟𝑢𝑒

{𝒛 = 𝟎 ∧ 𝑰(𝒓)}
𝑥 ≔ 𝑥 + 1 ≔ 1

{𝒛 = 𝟏 ∧ 𝑰(𝒓)}
{𝑧 = 1}

{𝑦 = 1 ∧ 𝑧 = 1 ∧ 𝐼(𝑟)}

{𝑥 = 2}
𝑰(𝒓) = {𝒙 = 𝒚 + 𝒛}

• Each statement has:

– Pre-condition 

– Post-condition 


• Wrote as 

• We assume that sequential execution is 

simple to be proven.

• y and z are auxiliary variables

•  – the invariant for the resource r

– Remains true at all times outside 

critical sections for r

𝑃
𝑄

{𝑃} 𝑆 {𝑄}

𝑰(𝒓)



begin , ;


resource : cobegin




with  when  do


begin ;  end




||




with  when  do


begin ; z  end




coend


end


{𝑥 = 0}
𝑦 ≔ 0 𝑧 ≔ 0

{𝑦 = 0 ∧ 𝑧 = 0 ∧ 𝐼(𝑟)}
𝑟(𝑥, 𝑦, 𝑧)

{𝒚 = 𝟎}
𝑟 𝑡𝑟𝑢𝑒

{𝑦 = 0 ∧ 𝐼(𝑟)}
𝑥 ≔ 𝑥 + 1 𝑦 ≔ 1

{𝑦 = 1 ∧ 𝐼(𝑟)}
{𝒚 = 𝟏}

{𝒛 = 𝟎}
𝑟 𝑡𝑟𝑢𝑒

{𝑧 = 0 ∧ 𝐼(𝑟)}
𝑥 ≔ 𝑥 + 1 ≔ 1

{𝑧 = 1 ∧ 𝐼(𝑟)}
{𝒛 = 𝟏}

{𝑦 = 1 ∧ 𝑧 = 1 ∧ 𝐼(𝑟)}

{𝑥 = 2}
𝐼(𝑟) = {𝑥 = 𝑦 + 𝑧}

• The critical section axiom:

– If:

• 

•  is the invariant from the cobegin statement

• No variable free in P or Q is changed in another thread


– Then:

•  with  when  do 


• For example, set:

– 

– 

–

{𝐼(𝑟) ∧ 𝑃 ∧ 𝐵} 𝑆 {𝐼(𝑟) ∧ 𝑄}
𝐼(𝑟)

{𝑃} 𝑟 𝐵 𝑆 {𝑄}

𝑃 = "y = 0"
𝑄 = "𝑦 = 1"
𝐵 = 𝑡𝑟𝑢𝑒



begin , ;




resource : cobegin


with  when  do


begin ;  end


||


with  when  do


begin ; z  end


coend




end


{𝑥 = 0}
𝑦 ≔ 0 𝑧 ≔ 0

{𝒚 = 𝟎 ∧ 𝒛 = 𝟎 ∧ 𝑰(𝒓)}
𝑟(𝑥, 𝑦, 𝑧)

{𝑦 = 0}
𝑟 𝑡𝑟𝑢𝑒

{𝑦 = 0 ∧ 𝐼(𝑟)}
𝑥 ≔ 𝑥 + 1 𝑦 ≔ 1

{𝑦 = 1 ∧ 𝐼(𝑟)}
{𝑦 = 1}

{𝑧 = 0}
𝑟 𝑡𝑟𝑢𝑒

{𝑧 = 0 ∧ 𝐼(𝑟)}
𝑥 ≔ 𝑥 + 1 ≔ 1

{𝑧 = 1 ∧ 𝐼(𝑟)}
{𝑧 = 1}

{𝒚 = 𝟏 ∧ 𝒛 = 𝟏 ∧ 𝑰(𝒓)}

{𝑥 = 2}
𝐼(𝑟) = {𝑥 = 𝑦 + 𝑧}

• The parallel execution axiom:

– If:

•  … 
• No variable free in  or  is changed in  ) 

• All variables in  belong to resource 


– Then:

•   

resource : cobegin  coend 

• For example, set:

–
–
–
–

{𝑃1} 𝑆1 {𝑄1} {𝑃𝑛} 𝑆𝑛 {𝑄𝑛}
𝑃𝑖 𝑄𝑖 𝑆𝑗 (𝑖 ≠ 𝑗

𝐼(𝑟) 𝑟

{𝑃1 ∧ … ∧ 𝑃𝑛 ∧ 𝐼(𝑟)}
𝑟 𝑆1//…//𝑆𝑛 {𝑄1 ∧ … ∧ 𝑄𝑛 ∧ 𝐼(𝑟)}

𝑃1 = "𝑦 = 0"
𝑃2 = "𝑧 = 0“
𝑄1 = "𝑦 = 1"
𝑄2 = "𝑧 = 1"



begin , ;


resource : cobegin


with  when  do


begin ;  end


||


with  when  do


begin ; z  end


coend


end





{𝑥 = 0}
𝑦 ≔ 0 𝑧 ≔ 0

{𝑦 = 0 ∧ 𝑧 = 0 ∧ 𝐼(𝑟)}
𝑟(𝑥, 𝑦, 𝑧)

{𝑦 = 0}
𝑟 𝑡𝑟𝑢𝑒

{𝑦 = 0 ∧ 𝐼(𝑟)}
𝑥 ≔ 𝑥 + 1 𝑦 ≔ 1

{𝑦 = 1 ∧ 𝐼(𝑟)}
{𝑦 = 1}

{𝑧 = 0}
𝑟 𝑡𝑟𝑢𝑒

{𝑧 = 0 ∧ 𝐼(𝑟)}
𝑥 ≔ 𝑥 + 1 ≔ 1

{𝑧 = 1 ∧ 𝐼(𝑟)}
{𝑧 = 1}

{𝑦 = 1 ∧ 𝑧 = 1 ∧ 𝐼(𝑟)}

{𝒙 = 𝟐}
𝐼(𝑟) = {𝑥 = 𝑦 + 𝑧}

• Using the invariant I(r),  
we have the result:


𝒙 = 𝟐


