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Course Info and Material

• All information, including the syllabus, available on website at: 
https://ilyasergey.net/PFM24/   

• Textbooks:  
- Specifying Systems by Leslie Lamport, 2002 
- Program Proofs by Rustan Leino, 2020 

• Class notes and additional reading material to be posted on the website 

• Announcements, submissions and grades on Telegram 

• Accompanying code on GitHub (send me your GH handle to get access!): 
 
          https://github.com/formal-and-practical  
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Goals of the Course

1. Learn about formal methods (FMs) in system design and software engineering 

2. Understand how FMs help produce high-quality software 

3. Learn about formal modelling and specification languages 

4. Write and understand formal requirement specifications 

5. Learn about main approaches in formal software verification 

6. Learn about underpinning for state-of-the-art verification tools 

7. Use automated and interactive tools to verify models and code
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Software Specification and Validation 
• High-level system design 
• Foundations of automated reasoning  
• Code-level design 

Main Software Validation Techniques 
Model Checking: often automatic, unsound  
Decidable Reasoning: reducing verification to known algorithmic problems 
Deductive Verification: typically semi-automatic, precise  (source code level)

Course Topics
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Software Specification and Validation 
• High-level system design 
• Foundations of automated reasoning  
• Code-level design 

Main Software Validation Techniques 
Model Checking: often automatic, unsound 
Decidable Reasoning: reducing verification to known algorithmic problems 
Deductive Verification: typically semi-automatic, precise  (source code level) 
Abstract Interpretation: automatic, correct, incomplete,  terminating

Course Topics
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Practical tools  
we will learn
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Part I: High-Level Design

Language: TLA+ 
• Lightweight modelling language for system design 
• Amenable to a fully automatic analysis 
• Aimed at expressing complex behaviour and properties of a  software system 
• Intuitive structural modelling tool based on Boolean functions 
• Automatic analyser based on bounded model checking 

Learning Outcomes 
• Design and model software systems in the TLA+ language 
• Check models and their properties with the TLC model checker 
• Understand the practical limitations of TLA+
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• Aimed at expressing complex behaviour and properties of a  software system 
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Part I: High-Level Design
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Part II: Logical Foundations 

Language: SAT and SMT formulas 
• Basic formalism for encoding systems and their properties 
• Foundation of most of existing verification techniques 
• Typically, not used explicitly but rather as a compilation target 
• Puts strict constraints on expressivity  

Learning Outcomes 
• Identify problems that can be encoded as SAT or SMT 
• Encode decidable verification and synthesis problems  
• Using state of the art solvers, such as Z3 and CVC4
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Language: SAT and SMT formulas 
• Basic formalism for encoding systems and their properties 
• Foundation of most of existing verification techniques 
• Typically, not used explicitly but rather as a compilation target 
• Puts strict constraints on expressivity  

Learning Outcomes 
• Identify problems that can be encoded in SMT 
• Encode decidable verification and synthesis problems  
• Using state of the art solvers, such as Z3 and CVC5

Part II: Logical Foundations 
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Part III: Code-level Specification

Language: Dafny 
• Programming language with specification constructs 
• Specifications embedded in source code as formal contracts 
• Tool support with sophisticated verification engines 
• Automated analysis based on theorem proving techniques 

Learning Outcomes: 
• Write formal specifications and contracts in Dafny 
• Verify functional properties of Dafny programs with automated tools 
• Understand what can and cannot be expressed in Dafny
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Assessment

Homework Assignments: 30% 
• Homework 1: TLA+: 20% 
• Homework 2: SMT: 20% 
• Homework 3: Dafny: 20% 

Research Project: 40% 
• Done in teams of one or two 
• Includes implementation, written report, and presentation 
• Part of the score is by means of self- and peer assessment
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Introduction

Copyright 2022, Cesare Tinelli, Pierre-Loïc Garoche, Reiner Hänle, Steven Miller.  
These slides incorporate, with the original authors’ permission, the copyrighted materials used in the class CS5810 from University of Iowa.
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Today’s reality 

Software has become critical to modern life 

• Communication (internet, voice, video, . . . ) 

• Transportation (air traffic control, avionics, cars, . . . ) 

• Health Care (patient monitoring, device control, . . . ) 

• Finance (automatic trading, banking, . . . ) 

• Defense (intelligence, weapons control, . . . ) 

• Manufacturing (precision milling, assembly, . . . ) 

• Process Control (oil, gas, water, . . . ) 

• . . .
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Embedded Software 
Software is now embedded everywhere Some of it is critical

Failing software costs money and life!

17



Embedded Software 
Software is now embedded everywhere Some of it is critical

Failing software costs money and life!

18



Embedded Software 
Software is now embedded everywhere Some of it is critical

Failing software costs money and life!

19



Software Systems are Growing Very Large
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Automotive Software 

A typical 2022 car model contains >100M lines of code  

How do you verify that? 

Current cars admit hundreds of onboard functions  

How do you cover their combination?

Software Systems are Growing Very Large
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Failing Software Costs Money

Expensive recalls of products with embedded software 

Lawsuits for loss of life or property damage 
• Car crashes (e.g., Toyota Camry 2005) 

Thousands of dollars for each minute of down-time 
• (e.g., Denver Airport Luggage Handling System) 

Huge losses of monetary and intellectual investment 
• Rocket boost failure (e.g., Ariane 5) 

Business failures associated with buggy software 
• (e.g., Ashton-Tate dBase, Ethereum DAO, CrowdStrike outage 2024)
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Failing Software Costs Lives

Potential problems are obvious: 

• Software used to control nuclear power plants 

• Air-traffic control systems 

• Spacecraft launch vehicle control 

• Embedded software in cars 

A well-known and tragic example: Therac-25 X-ray machine failures

https://en.wikipedia.org/wiki/Therac-25
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The Peculiarity of Software Systems

Software seems particularly prone to faults 

Tiny faults can have catastrophic consequences 
• Ariane 5 

• Mars Climate Orbiter, Mars Sojourner 

• Pentium-Bug 

• . . . 

Rare bugs can occur 
• avg. lifetime of a passenger plane: 30 years 

• avg. lifetime of a car: < 10 years, but > 1.4B cars in 2022 

Logic and implementation errors represent security exploits 
• (too many to mention)
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The Peculiarity of Software Systems

Software seems particularly prone to faults 

Tiny faults can have catastrophic consequences 
• Ariane 5 

• Mars Climate Orbiter, Mars Sojourner 

• Pentium-Bug 

• . . . 

Rare bugs can occur 
• avg. lifetime of a passenger plane: 30 years 

• avg. lifetime of a car: < 10 years, but > 1.4B cars in 2022 

Logic and implementation errors represent security exploits 
• Meltdown, Spectre, 
• (too many others to mention)
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Observation

• You’ll be developing systems in the context above 

• Given the increasing importance of software, 
• you may be liable for errors 
• your job may depend on your ability to produce reliable systems

What are the challenges in building  
reliable and secure software?

Building software is what most of you will do 
after graduation
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Achieving Reliability in Engineering

Some well-known strategies from civil/mechanical engineering: 

• Precise calculations/estimations of forces, stress, etc. 

• Hardware redundancy (“make it a bit stronger than necessary”) 

• Robust design (single fault not catastrophic) 

• Clear separation of subsystems (any airplane flies with dozens of known and  
minor defects) 

• Design follows patterns that are proven to work
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Achieving Reliability in Engineering

Some well-known strategies from civil/mechanical engineering: 

• Precise calculations/estimations of forces, stress, etc. 

• Hardware redundancy (“make it a bit stronger than necessary”) 

• Robust design (single fault not catastrophic) 

• Clear separation of subsystems  
(any airplane flies with dozens of known and  minor defects) 

• Design follows patterns that are proven to work
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Why This Does Not Work For Software

• Software systems compute non-continuous functions 
Single bit-flip may change behaviour completely 

• Redundancy as replication doesn’t help against logical errors 
Redundant SW development only viable in extreme cases 

• No physical or modal separation of subsystems 
Local failures often affect whole system 

• Software designs have very high logic complexity 

• Most SW engineers are untrained in correctness 

• Cost efficiency more important than reliability 

• Design practice for reliable software is not yet mature
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Testing against external faults 
1. Inject faults (memory, communication) by simulation or radiation 
2. Check that the system’s performance degrades gracefully

How to Ensure Software Correctness?

A Central Strategy: Testing 
(others: SW processes, reviews, libraries, . . . ) 

Testing against inherent SW errors (“bugs”) 
1. Design test configurations that hopefully are representative 
2. Check that the system behaves as intended on them
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Limitations of Testing
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Limitations of Testing

Testing can show the presence of errors, but not their absence 

Exhaustive testing viable only for trivial systems

Representativeness of test cases/injected faults is subjective 

How to test for the unexpected? Rare cases? 

Testing is labor intensive, hence expensive
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Complementing Testing: Formal Verification

A Sorting Program: 

i n t * sort( i n t * a) { 
... 

}

Testing sort:

• sort({3, 2, 5}) == {2, 3, 5}
√

• sort({}) == {}
√

• sort({17}) == {17}
√
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√ • isPermutation(sort(a), a)   ⊠

Complementing Testing: Formal Verification

A Sorting Program: 

i n t * sort( i n t * a) { 
... 

}

Testing sort:

√
√

Typically missed test cases 

• sort({2, 1, 2}) == {1, 2, 2} ⊠ 

• sort(null) == exception ⊠

• sort({3, 2, 5}) == {2, 3, 5}
• sort({}) == {}

• sort({17}) == {17}
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Complementing Testing: Formal Verification

A Sorting Program: 

i n t * sort( i n t * a) { 
... 

}

Testing sort:

• sort({3, 2, 5}) == {2, 3, 5}
• sort({}) == {}

• sort({17}) == {17}

Typically missed test cases 

• sort({2, 1, 2}) == {1, 2, 2} ⊠ 

• sort(null) == exception ⊠ 

• isPermutation(sort(a), a)   ⊠√

√
√
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Formal Verification as Theorem Proving

55

Theorem (Correctness of sort)  

For any given non-null int array a, calling  the program sort(a) returns an int 
array that is sorted wrt ≤  and is a  permutation of a. 

However, methodology differs from mathematics: 
1. Formalise the expected property in a logical language 
2. Prove the property with the help of an (semi-)automated tool
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Contrasting Testing with Formal Verification
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Formal Methods

A suite of methods and techniques  
for producing provably correct programs  

by employing a mix of  
algorithmic and deductive logical reasoning.

• A formal specification capturing the intended behaviour of the program  
is assumed to be provided by a human developer.

• The program is then checked against the formal specification, and if  
it is proved to satisfy the ascribed specification, it is deemed “correct”.



Formal Methods

Rigorous techniques and tools for the development and analysis of  
computational (hardware/software) systems 

• Applied at various stages of the development cycle 

• Also used in reverse engineering to model and analyze existing systems 

• Based on mathematics and symbolic logic (formal)
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1. System requirements 
2. System implementation

Formal methods rely on 
a. some formal specification of (1) 

b. some formal execution model of (2) 

They use tools to verify mechanically that implementation satisfies (a)  
according to (b)

63

Main Artefacts in Formal Methods



64

Main Artefacts in Formal Methods

1. System requirements 
2. System implementation 

Formal methods rely on 
a. some formal specification of (1) 
b. some formal execution model of (2) 

They use tools to verify mechanically that  
implementation satisfies (a)   
according to (b)



1. System requirements 
2. System implementation 

Formal methods rely on 
a. some formal specification of (1) 
b. some formal execution model of (2) 

They use tools to verify mechanically that  
implementation satisfies (a)   
according to (b)

65

Main Artefacts in Formal Methods



Example:

Specifying a Compiler
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Specifying a Compiler
Program in C Program in Arm Assembly

compile

67
67



Program P in C Program compile(P) in Arm Assembly

compile

interpret-as-C interpret-as-x86

Result(P, input) = Rc Rarm = Result(compile(P), input)=

68
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For any program P, and any input,  
the result of interpreting P with input in C is the same as  
the result of executing compilation of P with input in Arm Assembly.

Compiler Specification:

Correctness Theorem:

or, equivalently

∀  P, input, interpretC(P, input)  =  executearm(compile(P, input))

69
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Correctness Theorem:

Proof:  ??? 

∀  P, input, interpretC(P, input)  =  executearm(compile(P, input))interpretC executearm compile

70
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• Meaningful definition of interpretC is given and fixed 

• Meaningful definition of executearm is given and fixed 

• Specific implementation of compile is given and fixed 

• Considered programs P is are valid and written in C 

Correctness Theorem:

Proof:  ??? 

∀  P, in, interpretC(P, in)  =  executearm(compile(P, in))

Assumptions: } must be trusted

(i.e., better be “sane”)

} once proven,

does not have 

to be trusted
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Why Use Formal Methods

1. Contribute to the overall quality of the final product  
thanks to  mathematical modelling and formal analysis 

2. Increase confidence in the correctness/robustness/security of a system 

3. Find more flaws and earlier  
(i.e., during specification and design vs. testing  and maintenance)
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Formal Methods: The Vision

• Complement other analysis and design methods 

• Help find bugs in code and specification 

• Reduce development, and testing, cost 

• Ensure certain properties of the formal system model 

• Should be highly automated (perhaps with AI in the future)
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A Warning

• The effectiveness of FMs is still debated 

• There are persistent myths about their practicality and cost 

• FMs are not yet as widespread in industry as they could be 

• They are mostly used in the development of safety-, business-, or  mission-critical 
software, where the cost of faults is high

74



The Main Point of Formal Methods is Not

• To show “correctness” of entire systems 
• What is correctness? Go for specific properties! 

• To replace testing entirely 
• FMs typically do not go below byte code level 
• Some properties are not (easily) formalisable 

• To replace good design practices 

There is no silver bullet! 

No correct system w/o clear requirements & good design
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Overall Benefits of Using Formal Methods

1. Forces developers to think systematically about issues 

2. Improves the quality of specifications, even without formal verification 

3. Leads to better design 

4. Provides a precise reference to check requirements against 

5. Provides rigorous documentation within a team of developers 

6. Gives direction to later development phases 

7. Provides a basis for reuse via specification matching 

8. Can replace (infinitely) many test cases 

9. Facilitates automatic test case generation
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Specifications: What the system should do

• Individual properties 
• Safety properties: something bad will never happen 
• Liveness properties: something good will happen eventually 
• Non-functional properties: runtime, memory, usability, . . . 

• “Complete” behaviour specification 
• Equivalence check 
• Refinement 
• Data consistency 
• . . .
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Formal Specification

The expression in some formal language and  
at some  level of abstraction  
of a collection of properties that some  system should satisfy  
 
[Axel van Lamsweerde]
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Formal Specification
The expression in some formal language and at some level of abstraction of  
a collection of properties that some system should satisfy [van Lamsweerde] 

formal language: 
• syntax can be mechanically processed and checked 
• semantics is defined unambiguously by mathematical means 

abstraction: 
• above the level of source code 
• several levels possible 

properties: 
• expressed in some formal logic 
• have a well-defined semantics 

satisfaction: 
• ideally (but not always) decided mechanically 
• based on automated deduction and/or model checking techniques
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Formalization Helps to Find Bugs in Specs!

• Well-formedness and consistency of formal specs are machine-checkable 

• Fixed signature (set of behaviours) helps spot incomplete specs 

• Failed verification of implementation against specs provides feedback on  errors 
• in the implementation or 
• in the (formalisation of the) spec
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A Fundamental Fact

Formalizing system requirements is hard
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Difficulties in Creating Formal Models

Real World

Formal  
Execution Model

Formal  
Requirements  
Specification

Abstraction

wrong assumption

e.g., zero delay

misunderstood problem

e.g., wrong integer model
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Another Fundamental Fact

Proving properties of systems can be hard
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Level of System Description

High level (modelling) 
• Abstract clean semantics 
• Easier to program 
• Automatic proofs (sometimes) are possible

..

Low level (implementation level) 
• Realistic programming language 
• Often can be directly executed 
• Automatic proofs are (mostly) impossible
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Summary So Far

• Software is becoming pervasive and very complex 

• Current development techniques are inadequate 

• Formal methods . . . 
• are not a panacea, but will be increasingly necessary 
• are (more and more) used in practice 
• can shorten development time 
• can push the limits of feasible complexity 
• can increase product quality 
• can improve system security 

• We will learn to use several different formal methods, for different  development stages

Next: formal methods in action!
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