
Practical Formal Methods

Formal Methods in Action

Ilya Sergey

November 2024

ilyasergey.net/PFM24

http://ilyasergey.net/PFM24

Today’s Agenda

A hands-on overview of the tools and techniques

• Using simple examples from other classes
• Not aiming to showcase all features
• Skipping almost all the theory

The goal:
quick introduction to help you choose a project

The Three Case Studies

Concurrent Readers-Writers Problem in TLA+
• A “Hello World” of concurrent interaction protocols
• Interesting safety and liveness properties
• Focus on a high-level model rather than implementation

Concurrent Readers-Writers Problem in TLA+
• A “Hello World” of concurrent interaction protocols
• Interesting safety and liveness properties
• Focus on a high-level model rather than implementation

The Three Case Studies

Using SMT solvers for verification and synthesis
• What are SAT and SMT solvers and how are they useful
• Search problems as solutions to constraint systems

Concurrent Readers-Writers Problem in TLA+
• A “Hello World” of concurrent interaction protocols
• Interesting safety and liveness properties
• Focus on a high-level model rather than implementation

The Three Case Studies

Using SMT solvers for verification and synthesis
• What are SAT and SMT solvers and how are they useful
• Search problems as solutions to constraint systems

Deductive Verification in Dafny
• Specifying programs in Hoare logics
• Proving that programs do what they should (soundly)

Part I

Specifying Complex Systems
in TLA+

Concurrent Reading and Writing

Safe concurrent programs:
Multiple concurrent reads of same memory: Not a problem
Multiple concurrent writes of same memory: Problem
Multiple concurrent read & write of same memory: Problem

So far:
If concurrent write/write or read/write might occur,  
one can use synchronisation to ensure one-thread-at-a-time

But this is unnecessarily conservative:
Could still allow multiple simultaneous readers!

Readers and Writers Problem

A variant of the mutual exclusion problem
where there are two classes of processes:

• writers which need exclusive access to resources
• readers which need not exclude each other

Concurrent Correctness

There are two types of correctness properties:

Safety properties
 The property must always be true.

Liveness properties
 The property must eventually become true.

Exercise: Designing the Protocol for
Concurrent Reading and Writing

• What are the components of the system?

• What are its safety properties?

• What about liveness?

Live Demo: Basics of TLA+

• State and variables

• Actions as relations

• Specifying safety and liveness properties

• Detecting and analyzing the violations (bugs in the design!)

https://github.com/formal-and-practical/basic-examples/

folder “tlaplus”

Part II

SAT and SMT for
Verification and Synthesis

Copyright 2020, Nadia Polikarpova, “Constraint Solvers for the Working PL Researcher”.

The SAT/SMT Revolution

hardware verification software verification software synthesis & repair

Rosette

Synquid

Sketch

Leon

network configuration synthesis biological modeling architecture

Boolean SATisfiability

(gin ∨ tonic) ∧ (minor ⇒ ¬gin) ∧ minor

Boolean SATisfiability

(gin ∨ tonic) ∧ (minor ⇒ ¬gin) ∧ minor

minor ↦ T
gin ↦ F

tonic ↦ T

Solution:

Satisfiability Modulo Theories

(gin ∨ tonic) ∧ (age < 21 ⇒ abv = 0) ∧ (age = 20) ∧ (gin ⇒ abv ≥ 40)

Satisfiability Modulo Theories

(gin ∨ tonic) ∧ (age < 21 ⇒ abv = 0) ∧ (age = 20) ∧ (gin ⇒ abv ≥ 40)

In the United States, "gin" is defined as an alcoholic

beverage of no less than 40% ABV… Wikipedia

Satisfiability Modulo Theories

(gin ∨ tonic) ∧ (age < 21 ⇒ abv = 0) ∧ (age = 20) ∧ (gin ⇒ abv ≥ 40)

In the United States, "gin" is defined as an alcoholic

beverage of no less than 40% ABV… Wikipedia

Satisfiability Modulo Theories

age ↦ 20
abv ↦ 0
gin ↦ F

tonic ↦ T

Solution:

(gin ∨ tonic) ∧ (age < 21 ⇒ abv = 0) ∧ (age = 20) ∧ (gin ⇒ abv ≥ 40)

Satisfiability Modulo Theories

age ↦ 20
abv ↦ 0
gin ↦ F

tonic ↦ T

Solution:

theory of Linear Integer Arithmetic

(gin ∨ tonic) ∧ (age < 21 ⇒ abv = 0) ∧ (age = 20) ∧ (gin ⇒ abv ≥ 40)

Popular Solvers

Boolector

.smt2 // SMTLib format

(declare-fun (Int) age)
(declare-fun (Int) abv)

Microsoft Stanford SRI JKU Linz, Austria

SMT competition: http://smtcomp.sourceforge.net

http://smtcomp.sourceforge.net/

Plan for Today

How to use Z3 for:
1. Constraint programming

2. Program verification

3. Program synthesis

Problem: Array Partitioning

Partition an array of size N evenly into P sub-ranges

Problem: Array Partitioning

Partition an array of size N evenly into P sub-ranges

N = 8

P = 4

Problem: Array Partitioning

Partition an array of size N evenly into P sub-ranges

N = 8

P = 4

sz1 sz2 sz3 sz4

Problem: Array Partitioning

Partition an array of size N evenly into P sub-ranges

P = 4

N = 10

Problem: Array Partitioning

Partition an array of size N evenly into P sub-ranges

N = 10

P = 4

sz1 sz2 sz3

Problem: Array Partitioning

Partition an array of size N evenly into P sub-ranges

P = 4

sz1 sz2 sz3 sz4

N = 10

Problem: Array Partitioning

Partition an array of size N evenly into P sub-ranges

P = 4

sz1 sz2 sz3 sz4

N = 10

Problem: Array Partitioning

Partition an array of size N evenly into P sub-ranges

P = 4

sz1 sz2 sz3 sz4

Can we always make them differ by at most 1?

N = 10

to the rescue!

Live Demo

Plan for Today

How to use Z3 for:

1. Constraint programming

2. Program verification

3. Program synthesis

Plan for Today

How to use Z3 for:

1. Constraint programming

2. Program verification

3. Program synthesis

CEGIS

synthesize verify
N0

C

verified
for all N!

wrong for N = Nk

{N0 , N1 , … , Nk}

What we have seen:

How to use Z3 for:

1. Constraint programming
2. Program verification
3. Program synthesis

https://github.com/formal-and-practical/basic-examples/

folder “smt”

Part III

Deductive Hoare-style
Program Verification in Dafny

Program specification

Meaning:
If the initial state satisfies P,
then the program c is safe to run and its final state satisfies Q.

{ P } c { Q }

precondition postcondition

x := 3{ True } { x = 3 }Example:

Symbolic execution
A method for establishing partial correctness
Independently discovered by Robert W. Floyd in 1967 and Tony Hoare in 1969

also hinted by Turing in 1949;
Also known as Hoare-style program logic, Axiomatic program semantics;
Symbolic execution allows us to abstract over specific values

e.g., instead of x being 1, 2, 3, …, we can consider input x ∈ ℕ ⋀ x > 0,
reasoning out of these assertions about x;

Specifies what a program is doing without saying how it is doing that;

specifications {P} c {Q} are sometimes called Hoare triples.

Program verification via symbolic execution

Verification is the process of ensuring that the program satisfies the specification
(i.e., pre/postconditions), ascribed to it;

For the purpose of verification, the program is decomposed into primitive and
composite statements:

Primitive statements are variable assignments and calls to external functions;

Composite statements are conditionals (if-then-else), while-loops and sequential
compositions.

Preconditions are assumed/inferred, postconditions are
obtained/checked via inference rules of symbolic execution.

Live Demo

Verifying a program in

https://github.com/formal-and-practical/basic-examples/

folder “dafny”

Summary of This Lecture

• We have seen three families of tools in action
• TLA+ for specification and model checking
• Z3 for constraint solving
• Dafny for sound logic-based verification

• In the rest of the module, we will learn to use the tools for various applications

• We will also learn about how they work internally

