
INTRODUCTION TO SMT

Copyright: Peter Müller, ETH Zürich

(slides developed in cooperation with Christoph Matheja)

2

source code

annotated with

specifications

Automated verifier

Intermediate Verification

Language

Generation of

proof obligations

Intermediate Verification

Language

Front-end

SMT solver

feedback

Today: foundations of Dafny

We are here

3

Automating program verification

Main steps of a tool for automatically verifying

1. Compute weakest preconditions for B under S:

2. Decide → We employ an SMT solver

4

SMT solvers

1. Propositional logic and satisfiability solvers

2. Using Z3 as a SAT solver

3. First-order logic and SMT solvers

4. Using Z3 as an SMT solver

5

Propositional logic

Syntax of propositional logic

binds stronger

Syntactic sugar:

Satisfaction relation

6

Satisfiability and validity

▪ F is satisfiable iff F has some model

▪ F is unsatisfiable iff F has no model

▪ F is valid iff every interpretation is a model of F

 (F is unsatisfiable)

▪ F is not valid iff some interpretation is not a model of F

 (F is satisfiable)

7

The satisfiability problem

▪ A formula is satisfiable if it has a model

▪ Satisfiability (SAT) problem:

Given a propositional logic formula,

decide whether it is satisfiable

▪ If yes, ideally also provide a witness

8

Complexity of SAT

▪ For formulas in conjunctive normal form (CNF), SAT

is the classical NP-complete problem

- Many difficult problems can be efficiently encoded

- Every known algorithm is exponential in the formula’s size

▪ Modern SAT solvers are extremely efficient in practice

- Scale to formulas with millions of variables

- May still perform poorly on certain formulas

9

Exercise: placement of wedding guests

Model the following problem as a SAT problem:

Consider three chairs in a row: left, middle, right. Can we

assign chairs to Alice, Bob, and Charlie such that:

▪ Alice does not sit next to Charlie,

▪ Alice does not sit on the leftmost chair, and

▪ Bob does not sit to the right of Charlie?

10

Solution: placement of wedding guests

▪ Model assignment via nine boolean variables

▪ Alice does not sit next to Charlie

▪ Alice does not sit on the leftmost chair

▪ Bob does not sit to the right of Charlie

▪ Each person gets a chair

▪ Every person gets at most one chair

▪ Every chair gets at most one person

11

SMT solvers

1. Propositional logic and satisfiability solvers

2. Using Z3 as a SAT solver

3. First-order logic and SMT solvers

4. Using Z3 as an SMT solver

12

Using a SAT solver

▪ Is F satisfiable?

▪ Is F valid?

SAT solverF

sat + witness

unsat

SAT solverF

sat + witness

unsat

satisfiable unsatisfiable

valid

witness (counterexample):

interpretation that is not a model of F

satisfiable unsatisfiable

witness: model of F

13

The Z3 Satisfiability Modulo Theories solver

▪ Developed by Microsoft (under MIT license)

▪ Building block of many verification tools including Viper

▪ Various input formats and APIs

- Z3, SMTLIB-2, C, C++, Python, Java, OCaml, ...

▪ For now: Use Z3 as a SAT solver

▪ Tutorial: https://ericpony.github.io/z3py-tutorial/guide-examples.htm

14

A first example in Z3

from z3 import *

declare variables
x = Bool('x')
y = Bool('y')

define formula: x y
F = Implies(x, y)

print the formula
print(F)

find a model for F
solve(F)

find a counterexample for F
solve(Not(F))

F is satisfiable, this is a model

F is not valid, this is a counterexample

15

A valid formula example in Z3

from z3 import *

declare variables
x = Bool('x')
y = Bool('y')

define formula: (x y) x y
F = Not(And(x, y)) == Or(Not(x), Not(y))

print the formula
print(F)

find a model for F
solve(F)

find a counterexample for F
solve(Not(F))

F is satisfiable, all interpretations are models

F is valid, no interpretation is a counterexample

16

A more complex example in Z3

from z3 import *

declare multiple variables
x, y = Bools('x y’)

create a solver instance
s = Solver()

add conjuncts
s.add(Implies(x, y))
s.add(Implies(y, x))

check satisfiability
print(s.check())
print(s.model())

s.add(x)
s.add(Not(y))

check satisfiability
print(s.check())

The first two conjuncts are satisfiable,

we get a model

All four conjuncts together are unsatifiable

17

Exercise: placement of wedding guests in Z3

▪ Model assignment via nine boolean variables

▪ Alice does not sit next to Charlie

▪ Alice does not sit on the leftmost chair

▪ Bob does not sit to the right of Charlie

▪ Each person gets a chair

▪ Every person gets at most one chair

▪ Every chair gets at most one person

Encode the placement of wedding guests in Z3.

20

Using a SAT solver to verify a program

{ true }
// Check that this entailment is valid (negation is unsatisfiable)
{ (a (b (true (a b))) (b (false (a b)))) (a (true (a b)) }
if (a) {
{ (b (true (a b))) (b (false (a b))) }
 if (b) {
{ true (a b) }
 res := true
{ res (a b) }
 } else {
{ false (a b) }
 res := false
{ res (a b) }
 }
{ res (a b) }
} else {
{ true (a b) }
 res := true
{ res (a b) }
}
{ res (a b) }

21

Propositional logic is not enough!

▪ What about this entailment?

▪ Entailment is not in propositional logic

- Real-valued variables (a, b, c) and numeric constants

- Arithmetic operations (+, -, *, /, 2, √) and comparisons (=, <,)

▪ Logic must support at least the expressions appearing in programs

- It is also useful to support quantifiers (e.g., for array algorithms)

▪ General framework: first-order predicate logic (FO) over suitable theories

{ a = 1 0 b*b – 4*c }
// Check that this entailment is valid
{ b*b – 4*a*c < 0 false

 (b*b – 4*a*c < 0) a*((-b + b∗b – 4∗a∗c) / 2)2 + b*((-b + b∗b – 4∗a∗c) / 2) + c = 0 }

22

SMT solvers

1. Propositional logic and satisfiability solvers

2. Using Z3 as a SAT solver

3. First-order logic and SMT solvers

4. Using Z3 as an SMT solver

23

First-order (FO) predicate logic

FO logic is a framework with three syntactical ingredients:

1. Logical symbols

2. Theory symbols

variables, constant symbols, function symbols

3. Predicate symbols

bridge from theories to logic

A signature collects all constants, functions, and predicates

 assumption: contains at least one sort

Terms are constructed from theory symbols

Constraints lift terms to the logical level via predicates

A is a logical formula over constraints

Special case: a sort identifies a non-empty set S with a

unary predicate symbol interpreted as membership in S

24

Exercise: satisfiability of FO formulas

Is satisfiable?

25

Solution: satisfiability of FO formulas

Is satisfiable?

Yes, if

▪ the theory symbols have the

usual interpretation

No, if

▪ 1 actually means 2, or

▪ addition is interpreted as maximum

Satisfiability of FO formulas depends on the admissible interpretations of theory symbols

determined by “theories” determined by “structures”

26

Semantics of FO

A interprets the theory symbols in by mapping:

▪ each free variable (those not bound by a quantifier) to an element in

▪ each constant to an element in

▪ each -ary function symbol to a function of type

▪ each -ary predicate symbol to a predicate of type

27

Satisfiability Modulo Theories

▪ A sentence is a formula without free variables

▪ An axiomatic system AX is a set of -sentences

▪ The -theory given by AX is the set of all -sentences inferable from AX

A is -satisfiable iff

there exists a such that

▪ , and

▪ holds for every sentence .

A is -valid iff

for all ,

 (for all ,)

 implies .

28

Exercise: satisfiability and validity

Is F -satisfiable? Is F -valid?

29

Solution: satisfiability and validity

Is F -satisfiable? Is F -valid?

after adding an axiom

30

Some important theories

▪ Arithmetic (with canonical axioms)

- Presburger arithmetic:

- Peano arithmetic:

- Real arithmetic:

▪ Equality logic with uninterpreted functions (EUF)

-

- arbitrary universe U (no specific sort)

- axioms ensure that is an equivalence relation (reflexive, symmetric, transitive)

- arbitrary number of uninterpreted function symbols of any arity

▪ We typically need a combination of multiple theories

- Example: Presburger arithmetic + uninterpreted functions

- Program verification: theories for modeling different data types

undecidable

decidable

decidable

decidable

31

SMT solvers

1. Propositional logic and satisfiability solvers

2. Using Z3 as a SAT solver

3. First-order logic and SMT solvers

4. Using Z3 as an SMT solver

32

Using theories

▪ Sorts (beyond Bool)

- Int, Real, BitVec(precision)

- DeclareSort(name)
(uninterpreted)

▪ Variables are syntactic sugar

for uninterpreted constants

- Const(name, sort)

▪ Uninterpreted functions are

declared with parameter and

result types

▪ We will discuss quantifiers later

from z3 import *

Pair = DeclareSort('Pair')

null = Const('null', Pair)

cons = Function('cons', IntSort(), IntSort(), Pair)
first = Function('first', Pair, IntSort())

ax1 = (null == cons(0, 0))
x, y = Ints('x y')
ax2 = ForAll([x, y], first(cons(x, y)) == x)

s = Solver()
s.add(ax1)
s.add(ax2)

F = first(null) == 0

check validity
s.add(Not(F))
print(s.check())

33

Using an SMT solver to verify a program

{ a = 1 0 b*b – 4*c }
// Check that this entailment is valid (its negation is unsatisfiable)
{ b*b – 4*a*c < 0 false

 (b*b – 4*a*c < 0) a*((-b + b∗b – 4∗a∗c) / 2)2 + b*((-b + b∗b – 4∗a∗c) / 2) + c = 0 }

from z3 import *

a, b, c = Reals('a b c')
d = b*b - 4*a*c

PO = Implies(
 And(a == 1, 0 <= b*b - 4*c),
 Or(And(d < 0, False),
 And(Not(d < 0),
 a*((-b + Sqrt(d))/2)*((-b + Sqrt(d))/2) + b*((-b + Sqrt(d))/2) + c == 0
)))

check validity
s = Solver()
s.add(Not(PO)); print(s.check())

34

Some important theories

Linear integer/real arithmetic ▪ (Unbounded) arithmetic is often used to approximate int and float

▪ Multiplication by constants is supported

▪ To encode data types such as arrays

Equality logic with uninterpreted functions ▪ Universal mechanism to encode operations not natively

supported by a theory

Array theory

Fixed-size bitvector arithmetic ▪ To encode bit-level operations

▪ To perform bit-precise reasoning, e.g., floats

Non-linear integer/real arithmetic ▪ Useful for programs that perform multiplication and division, e.g.,

crypto libraries

35

Example: encoding hard problems to SMT

https://xkcd.com/287/

How do we model this as an SMT query?

39

Theory reasoning

▪ Z3 selects theories based on the features appearing in formulas

- Most verification problems require a combination of many theories

▪ Some theories are decideable, e.g., quantifier-free linear arithmetic

- SMT solver will terminate and report either “sat” or “unsat”

▪ Some theories are undecideable, e.g., nonlinear integer arithmetic

- Especially in combination with quantifiers

- SMT solver uses heuristics and may not terminate or return “unknown”

- Results can be flaky, e.g., depend on order of declarations or random seeds

Quantifier-free linear integer arithmetic with uninterpreted functions

40

Working with quantifiers is non-trivial

from z3 import *
s = Solver()

x = Real('x')
f = Function('f', RealSort(), RealSort())

s.add(
ForAll(x, Implies(x >= 0, f(x) * f(x) == x))

)

s.add(x > 0)
s.add(Sqrt(x) == f(x))

print(s.check())

$ python ...
unknown

41

Exercise: the N-queens problem

The N-queens problem is to place N-queens on an N x N chess

board such that no two queens threaten each other.

Let’s use Z3 to compute a solution to the N-queens problem for

any given N.

Hints:

▪ Represent the board as a list of N integers:
IntVector(‘board’, N). board[i] gives the row of the

queen in column i.

▪ Distinct(l) is a Z3-constraint that expresses that all

elements in list l are disjoint.

▪ You can easily check the diagonals by shifting the queens

vertically and then checking the rows.

Extend your encoding to find all solutions. How many are there?

[2, 4, 6, 8, 3, 1, 7, 5]

43

More background on SAT solvers

▪ DPLL: Davis-Putnam-Logemann-Loveland Algorithm
- A machine program for theorem-proving. Martin Davis, George Logemann,

and Donald Loveland. 1962.

▪ CDCL: Conflict-Driven Clause Learning Algorithm
- GRASP – A New Search Algorithm for Satisfiability. João P. Marques Silva

and Karem A. Sakallah. 1996.

▪ Further developments
- Chaff: engineering an efficient SAT solver. Matthew W. Moskewicz,

Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. 2001.

- SAT-solving in practice. Koen Claessen, Niklas Een, Mary Sheeran,

Niklas Sörensson. 2008.

▪ Annual SAT competition:
- http://www.satcompetition.org/

https://dl.acm.org/doi/abs/10.1145/368273.368557
https://link.springer.com/chapter/10.1007/978-1-4615-0292-0_7
https://dl.acm.org/doi/abs/10.1145/378239.379017
https://ieeexplore.ieee.org/abstract/document/4605923
http://www.satcompetition.org/

44

More background on SMT solvers

▪ http://www.decision-procedures.org/ (website of book)

▪ Programming Z3, Nikolaj Bjørner, Leonardo de Moura,

Lev Nachmanson, Christoph M. Wintersteiger, 2018

▪ SMT-LIB standard

▪ Other teaching material

- SMT solvers: Theory and Implementation. Leonardo de Moura

- SMT Solvers: Theory and Practice. Clark Barrett

- Satisfiability Checking, Erika Ábrahám

http://www.decision-procedures.org/
https://theory.stanford.edu/~nikolaj/programmingz3.html
http://smtlib.cs.uiowa.edu/

	2 Satisfiability Modulo Theories
	Slide 1: Introduction to SMT
	Slide 2: Today: foundations of Dafny
	Slide 3: Automating program verification

	2.1 Propositional Logic & Satisfiability Solvers
	Slide 4: SMT solvers
	Slide 5: Propositional logic
	Slide 6: Satisfiability and validity
	Slide 7: The satisfiability problem
	Slide 8: Complexity of SAT
	Slide 9: Exercise: placement of wedding guests
	Slide 10: Solution: placement of wedding guests

	2.2 Using Z3 as a SAT solver
	Slide 11: SMT solvers
	Slide 12: Using a SAT solver
	Slide 13: The Z3 Satisfiability Modulo Theories solver
	Slide 14: A first example in Z3
	Slide 15: A valid formula example in Z3
	Slide 16: A more complex example in Z3
	Slide 17: Exercise: placement of wedding guests in Z3
	Slide 20: Using a SAT solver to verify a program
	Slide 21: Propositional logic is not enough!

	2.3 First-order Logic & SMT Solvers
	Slide 22: SMT solvers
	Slide 23: First-order (FO) predicate logic
	Slide 24: Exercise: satisfiability of FO formulas
	Slide 25: Solution: satisfiability of FO formulas
	Slide 26: Semantics of FO
	Slide 27: Satisfiability Modulo Theories
	Slide 28: Exercise: satisfiability and validity
	Slide 29: Solution: satisfiability and validity
	Slide 30: Some important theories

	2.4 Using Z3 as an SMT solver
	Slide 31: SMT solvers
	Slide 32: Using theories
	Slide 33: Using an SMT solver to verify a program
	Slide 34: Some important theories
	Slide 35: Example: encoding hard problems to SMT
	Slide 39: Theory reasoning
	Slide 40: Working with quantifiers is non-trivial
	Slide 41: Exercise: the N-queens problem

	References
	Slide 43: More background on SAT solvers
	Slide 44: More background on SMT solvers

