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Arrays are references

var a := new [20]; Type of a is

al7] := "hello"; array<string>
var b := a;

assert b[7] == "hello";

b[7] := "hi";

a[8] := "greetings";

assert a[7] == "hi" && b[8] == "greetings"”;



Arrays are references

var a := new [20]; Type of a is

al7] := "hello"; array<string>
var b := a;

assert b[7] == 5

b[7] := ;

a[8] := ;

assert al[7] == && b[8] == ;

b := new [8];

b[7] := ;

assert a[7] == 5

assert a.Length == 20 && b.Length == 8;



Multi-dimensional arrays

var m := new [3,

m[@, 9] := true;
m[1l, 8] := false;
assert m.Lengtho ==

10];

3 && m.Lengthl

Type of mis
array2<bool>

10;



Sequences

Arrays are mutable and are reference types
Sequences are immutable and are value types, like and

To declare a sequence we use type constructor seq,
e.g.,, seq<bool>, seg<int>

Examples:
[ ] the empty sequence
[58] singleton integer sequence

, , ] string sequence



var s
assert
assert
assert

var p

assert
assert
assert

a .= new

© T ©

Sequences

6, 28, 496];

[2] == 496;

// length function

== 3;
+ [8128] == [6, 28, 496, 8128];

[1, 5, 12, 22, 35]
(2..4] == [12, 22];
..2] == [1, 5];

[2..] == [12, 22, 35];

[3];

a[o], a[l], a[2] := 6, 28, 496;

S, p :
assert

S

[..]) a[--2]3
== [6, 28, 496] && p == [6: 28];



Linear search

method LinearSearch<T>(a: <T>,

returns (n:

)

P: T ->

\

Predicateon T




Linear search

method LinearSearch<T>(a: <T>, P: T ->

returns (n: ) \\\

ensures O <= n <= a.lLength _
ensures n == a.Length || P(a[n]) Predicateon T




Linear search

method LinearSearch<T>(a: <T>, P: T ->
returns (n: )

ensures @ <= n <= a.lLength

ensures n == a.Length || P(a[n])
{

n := 0;

while n I= a.Length
invariant @ <= n <= a.Length



Linear search

method LinearSearch<T>(a: <T>, P: T ->
returns (n: )

ensures @ <= n <= a.lLength

ensures n == a.Length || P(a[n])
{

n := 0;

while n I= a.Length
invariant @ <= n <= a.Length

{
it P(a[n])
{ return; }  returnjumpsto end of
n :=n+ 1; method, and we need to
} prove the postcondition



Alternative implementation

method LinearSearchl<T>(a: <T>, P:T ->
returns (n: )

ensures @ <= n <= a.lLength

ensures n == a.Length || P(a[n])
{

n := a.lLength;
¥



Alternative implementation

method LinearSearchl<T>(a: <T>, P:T -> )
returns (n: )
ensures @ <= n <= a.lLength
ensures n == a.Length || P(a[n])
{
n := a.lLength;
}
To specify that no elements satisfy P, when n == a.Length we need to quantify

over the elements of a.

We can achieve the same effect by quantifying over the array positions instead:

forall 1 :: @ <=1 < a.Length ==> !P(a[i])



Strengthening the contract

method LinearSearchl<T>(a: <T>, P:T -> )
returns (n: )

ensures @ <= n <= a.Length

ensures n == a.Length || P(a[n])

ensures n == a.Length ==>

forall i :: @ <= 1 < a.Length ==> IP(a[i])

\

can leave off 1’s type
since it can be inferred




Strengthening the contract

method LinearSearchl<T>(a: <T>, P:T -> )
returns (n: )

ensures O <= n <= a.lLength

ensures n == a.Length || P(a[n])

ensures n == a.Length ==>

forall i :: @ <= i < a.Length ==> IP(a[i])

We use the “replace a constant by a variable”
loop design technique seen before:

invariant forall i :: @ <=1 < n ==> !P(a[i])



{ forall 1 :: @ <=1 <n+ 1 ==>1 P(a[i]) }
n :=n+ 1;
{ forall i :: @ <=1 < n ==> 1 P(a[i]) }



{ forall i :: @ <=1 <n || 1i==n==> IP(a[i]) }
{ forall i :: @ <=1 <n + 1 ==>1 P(a[i]) }

n :=n+ 1;

{ forall i :: @ <=1 < n ==> 1 P(a[i]) }



Linear search

forall x :: A || B ==> C
= (forall x :: A ==> C) && (forall x :: B ==> Q)
{ (forall i :: @ <= i < n ==> 1! P(a[i])) &&
(forall i :: i ==n ==> 1 P(a[i]))
¥
{ forall i :: @ <= i < n || i ==n ==> IP(a[i]) }
{ forall i :: @ <=1 <n+1==>1! P(a[i]) }
n :=n+ 1;

{ forall i :: @ <=1 < n ==> 1 P(a[i]) }



Linear search

(forall x :: X

== E ==> A) = A[X\E] (one-pointrule)

{ (forall 1 :: @ <=1 < n ==> IP(a[i])) && !'P(a[n]) }
{ (forall 1 :: @ <=1 < n ==>1 P(a[i])) &&
(forall 1 :: 1 == n ==> 1| P(a[i]))
}
{ forall i :: @ <=1 <n || 1 ==n ==> IP(a[i]) }
{ forall i :: @ <=1 <n + 1 ==>1 P(a[i]) }
n :=n+ 1;

{ forall 1 :: @6 <=1 < n ==> 1! P(a[i]) }



Linear search

holds due to invariant

\\

{ (forall 1 :: @ <=1 < n ==> IP(a[i])) && !'P(a[n]) }
{ (forall i :: @ <=1 < n ==> 1 P(a[i])) &&
(forall i :: i == n ==> 1 P(a[i]))
¥
{ forall i :: @ <=1 <n || 1 ==n==> IP(a[i]) }
{ forall 1 :: @ <=1 <n+1==>1 P(a[i]) }
n :=n+ 1;

{ forall 1 :: @ <=1 < n ==> 1 P(a[i]) }

holds after if (P(a[n])) { return; }
(i.e., now we know that !P(a[n])) holds)




{ (forall i :: @ <=1 <
{ (forall i :: @ <=1 <
(forall i :: i == n =

¥

{ forall i

{ forall i
15

{ forall i

n = n +

Linear search

> IP(a[i])) && !'P(a[n]) }
> I P(a[i])) &&
P

0@ <=1<n || i==n-== IP(a[i]) }
1@ <=1<n+1==>1!P(a[i]) }
:: @ <=1 < n==>1 P(a[i]) }

Loop body for LinearSearch works here



Full program

method LinearSearchl<T>(a: <T>, P:T -> )
returns (n: )
ensures O <= n <= a.lLength
ensures n == a.Length || P(a[n])
ensures n == a.lLength ==
forall 1 :: @ <=1 < a.Length ==> IP(a[i])

{
n := 0;
while n != a.Length
invariant © <= n <= a.lLength
invariant forall 1 :: @ <=1 < n ==> !P(a[i])
{
it P(a[n]) { return; }
n :=n+ 1;
}
}



Reading arrays in functions

If a function/predicate accesses the elements of an input array a,
its specification must include reads a

function IsZeroArray(a: <int>», lo: , hi: ) :
requires @ <= lo <= hi <= a.lLength
reads a
decreases hi - 1lo

{

lo == hi || (a[lo] == © && IsZeroArray(a, lo + 1, hi))
}



Modifying arrays

If a method modifies values accessible through reference parameters
(and stored in the heap),
its specification must identify the relevant parts of the heap using frames

method SetEndPoints(a: < >, left: , right: )
requires a.Length =0
modifies a
{
a[@] := left;
ala.Length - 1] := right;
}



modifies clause

If a method changes the elements of an input array a,
its specification must include modifies a

method Aliases(a: < >, b: <int>)
requires 100 <= a.Length
modifies a

{
al@] := 10;
var ¢ := aj;
if b == a {
b[16] := b[@] + 1; // ok since b == a
}

c[20] := a[14] + 2; // ok since c == a



old qualifier
The expression o1d (E) denotes the value of E on entry to the enclosing method

method UpdateElements(a: < >)
requires a.Length == 10
modifies a
ensures old(a[4]) < a[4]
ensures a[6] <= old(a[6])

ensures a[8] == old(a[8])

{
al[4], a[8] := a[4] + 3, a[8] + 1;
a[7], a[8] := 516, a[8] - 1;



old qualifier

o 1ld affects only the heap dereferences in its argument

For example, in

method 0ldVsParameters(a: < >, 1i: )
returns (y: )

requires @ <= 1 < a.Length

modifies a

ensures old(a[i] + y) == 25

only a isinterpreted in the pre-state of the method (but not y)



New arrays

A method is allowed to allocate a new array and change its elements
without mentioning the array in the modifies clause

method NewArray() returns (a: <int>)
ensures a.Length == 20
{
a = new [20];
var b := new [30];
a[6] := 216;
b[7] := 343;



Fresh arrays

method Caller()
{

var a := NewArray();
a[8] := 512;
}

To fix error, strengthen specification of NewArray to

method NewArray() returns (a: < >)
ensures fresh(a)
ensures a.Length == 20



Initializing arrays

method InitArray<T>(a: <T>, d: T)

modifies a

ensures forall 1 :: @ <=1 < a.Length ==> a[i] ==
{

var n := 0,

while n I= a.Length

invariant @ <= n <= a.lLength

invariant forall i :: @ <=1 < n ==> a[i] ==
{

aln] := d;

n :=n+ 1;



Incrementing the values in an array

method IncrementArray(a: <int>)

modifies a

ensures forall 1 :: @ <= 1 < a.Length ==> a[i] == old(a[i]) + 1
{

var n := 09;

while n != a.Length
invariant @ <= n <= a.lLength
invariant forall 1 :: 0 <=1 < n ==> a[i] == old(a[i]) + 1

{
a[ln] := a[n] + 1;
n := n+ 1;
}
}



Incrementing the values in an array

method IncrementArray(a: <int>)

modifies a

ensures forall 1 :: @ <=1 < a.Length ==> a[i] == old(a[i]) + 1
{

var n := 09;

while n != a.Length
invariant @ <= n <= a.lLength

invariant forall 1 :: 0 <=1 < n ==> a[i] == old(a[i]) + 1

invariant forall 1 :: n <=1 < a.Length ==> a[i] == old(a[i]) // needed
{

a[ln] := a[n] + 1;

n := n+ 1;
}

¥

We need to add the invariant that elements not yet visited maintain the old value



Copying arrays

method CopyArray<T>(a: array<T>, b: array<T>)
requires a.Length == b.Length
modifies b
ensures forall 1 :: @ <= 1 < a.Length ==> b[i] == old(a[i])

var n := 9;
while n I= a.Length
invariant @ <= n <= a.Length
invariant forall 1 :: @ <=1 < n ==> b[i] == old(a[i])
invariant forall i ::
9 <= 1 < a.Length ==> a[i] == old(a[i])
{ b[n] := a[n];
n :=n+ 1;
}
}



Minimum

* See the code Min.dfy



Selection sort

* See the code SelectionSort.dfy

1 T

n mindex m  a.Length

o —



QuickSort

e See the code QuickSort.dfy



Reasoning about Objects



Checksum Objects

An object is an instance of a class, and like arrays, has a reference type

class ChecksumMachine { is shorthand
var data: < —

for seg<char>

constructor ()
ensures data ==

method Append(d: )
modifies this
ensures data == old(data) + d

function Checksum():
reads this
ensures Checksum() == Hash(data)



Checksum Objects

function Hash(s: ) : {
SumChars(s) % 137
}
function SumChars(s: ) : {
if |s| == @ then @ else
var last := |s| - 1;

SumChars(s[..last]) + s[last] as
} \

converts char to int



Test client

method Main() {
var m := new ChecksumMachine();
m.Append("green ");
m.Append("“grass");
var ¢ := m.Checksum();
print "Checksum is ", c, "\n";

¥

A method is allowed to allocate new arrays and objects and change their
state (that is, the elements of the arrays and the fields of the objects)
without mentioning these arrays and objects in the modifies clause



Class Invariant

To write efficient implementation, want to keep track of checksum so far:

var cs.

We want to use data in specifications, but not in compiled program:

ghost var data:

predicate Valid(d) A predicate is a

reads this Boolean function
{ ¢s == Hash(d) }

If a function accesses the fields of an object o, its specification must include
reads o



Class Invariant

class ChecksumMachine {
ghost var data: string

predicate Valid()
reads this

constructor ()
ensures Valid(data) && data == ""

method Append(d: string)
requires Valid(data)
modifies this
ensures Valid data && data == old(data) + d

function method Checksum(): int
requires Valid(data)
reads this
ensures Checksum() == Hash(data)



Implementation

method Append(d: string)
requires Valid(data)
modifies this
ensures Valid(data)

ensures data == old(data) + d
{

var 1 := 0;

while i != |d|

invariant 0 <= i <= |d|
invariant Valid(data)
invariant data == old(data) + d[..1i]

cs := (cs + d[1i] as int) % 137;
data := data + [d[i]];
i =1+ 1;
}
}



Implementation

constructor ()

ensures Valid(data) && data == ""
{ cs := 0;

data := ""
}

A constructor is allowed to assign to the fields of the object being
constructed, this, without mentioning this in the modifies clause

function method Checksum(): int
requires Valid(data)
reads this
ensures CheckSum() == Hash(data)

{ cs }



Summary

* Verification Dafny works by means of computing weakest
preconditions and discharging proof obligations via SMT

* Loops require explicit invariants and termination measures
(aka variants, ranking functions)

* Object invariants should be preserved by each method



Abstracting Object State via Ghost Fields



Coffee maker components

class Grinder { class WaterTank { class Cup {
var HasBeans: bool var Level: nat constructor ()
predicate Valid() predicate Valid() }
reads this reads this
constructor () constructor ()
ensures Valid() ensures Valid()
method AddBeans() method Fill()
requires Valid() requires Valid()
modifies this modifies this
ensures Valid() && HasBeans ensures Valid() && Level == 10
method Grind() method Use()
requires Valid() && HasBeans requires Valid() && Level != 0
modifies this modifies this
ensures Valid() ensures Valid() && Level == old(Level) - 1

¥ }



Coffee maker version O

class CoffeeMaker {
predicate Valid() reads this

constructor () ensures Valid()

predicate method Ready()
requires Valid()
reads this

method Restock()
requires Valid()
modifies this
ensures Valid() && Ready()

method Dispense(double: bool) returns (c: Cup)
requires Valid() && Ready()
modifies this
ensures Valid()



Coffee maker version O

State:

var g: Grinder
var w: WaterTank

predicate Valid()
reads this
{ g.Valid() && w.Valid() } // error: insufficient
// reads clause

Require:
predicate Valid()
reads this, g, w

Similar change also needed for reads of Ready () and modifies
clauses of Restock and Dispense



Representation sets

The expanded modifies and reads clauses violate the principles of
information hiding.

Therefore, we abstract the state of an object to a representation set.

For this implementation of the coffee maker, the representation set is
{0, 0.8, O.w}

but the coffee maker may also be implemented in terms of different
objects.



Coffee maker version 1

Add new variable to state:
ghost var Repr: set<object>

Change modifies clauses of Restock and Dispense to
modifies Repr

Change read clauses of Valid and Ready to
reads Repr

Add the following to the body of Valid
this in Repr && Typically specify

g in Repr && g.Valid() &%& lower bound on

w in Repr && w.Valid() objects in Repr



Coffee maker version 1

In Valid:
reads Repr // error: insufficient reads clause

This is because this is not in Repr unless Valid's predicate holds
(and Valid may return true or false).

We require:
predicate Valid()
reads this, Repr
{
this in Repr &&
g in Repr && g.Valid() &&
w in Repr && w.Valid()

¥



Class implementation

constructor ()
ensures Valid()

{
g := new Grinder();
w := new WaterTank();
Repr := {this, g, w};
}

predicate method Ready()
requires Valid()
reads Repr

{
¥

g.HasBeans && 2 <= w.lLevel



Class implementation

method Restock()
requires Valid()
modifies Repr
ensures Valid() && Ready()
{ g.AddBeans(); w.Fill();

¥

method Dispense(double: bool) returns (c: Cup)
requires Valid() && Ready()
modifies Repr
ensures Valid()

g.Grind();
if double { w.Use(); w.Use(); } else { w.Use(); }
c := new Cup();



Test harness

method CoffeeTestHarness() {

var cm := new CoffeeMaker();
cm.Restock(); // modifies clause violated
var ¢ := cm.Dispense(true); // modifies clause violated

The test harness has no modifies clause and so is only allowed to
modify the fields of fresh objects

Our specification of the coffee maker didn't specify that created
objects were fresh



Coffee maker version 2

Add to constructor:
ensures fresh(Repr)

This removes error with Restock, but not Dispense.

Add to Restock and Dispense:
ensures Repr == old(Repr)

Alternatively, make Repr immutable by declaring it as
ghost const Repr: set<object>



Changing Repr

What if implementation needs to change Repr, e.g., a method of the
coffee maker needs to change the grinder?

Third (and preferred) alternative for ensures clauses of methods which

mutate Repr:
ensures fresh(Repr - old(Repr))

That is, any new objects added to Repr are fresh



Less common situations

method ChangeGrinder()
requires Valid()

modifies Repr
ensures Valid() && fresh(Repr - old(Repr))

g := new Grinder();
Repr := Repr + {g};
}

Old grinder is still in Repr, but is no longer referenced

The run-time system will eventually reclaim the storage for
this object



Less common situations

method InstallCustomGrinder(grinder: Grinder)
requires Valid() && grinder.Valid()

modifies Repr
ensures Valid() && fresh(Repr - old(Repr) - {grinder})

g := grinder;
Repr := Repr + {g};
}

Since Repr can dynamically change, this approach to specification is
referred to as dynamic frames

Dafny is a permutation of certain letters in Dyn3mic frgmes



Summary

* Object often can be specified using ghost fields

* freshness (aka ownership) needs to be ensured to work with
objects without modifies-permissions



Conclusion



What Have We Learned

State-Transition Systems
State Machines as Relations
Safety Properties

Temporal Formulas
Fairness and Liveness
Model Checking with TLA+
Constraint Programming

Satisfiability, Validity

Basics of SMT

Hoare Logic

Weakest Preconditions

Loop Invariants

Specifications in Dafny

Proofs about Arrays and Objects



What’s Next

e Research Project:

— Formalising a Distributed Protocol in TLA+
— Reducing Search Problem to SMT
— Verifying an Algorithm in Dafny

* For inspiration:
— Some ideas: https://ilyasergey.net/PFM24/projects.html

— Past projects: https://ilyasergey.net/CS5232/
— I’'m happy to discuss project ideas!



https://ilyasergey.net/PFM24/projects.html
https://ilyasergey.net/CS5232/

And then what?

* Books to read next:
— The Hitchhiker’s Guide to Logical Verification (2023)
— Software Foundations (2008)
— Decision Procedures: An Algorithmic Point of View (2017)

 Conferences to check out: POPL, PLDI, SPLASH, CAV
— PLMW: https://www.sigplan.org/Conferences/PLMW/
— VMW: https://i-cav.org/2024/workshops/mentoring/

* Researchers to follow (very incomplete list):

— Isil Dillig, Peter Muller, Arie Gurfinkel, Sharon Shoham, Peter O’Hearn,
Byron Cook, Leonardo de Moura, Rustan Leino, Kenneth McMiillan,
Ranjit Jhala, Thomas Wies, Rajeev Alur, Marta Kwiatkowska, Derek Dreyer

Thanks!


https://www.sigplan.org/Conferences/PLMW/
https://i-cav.org/2024/workshops/mentoring/
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