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Abstract

We present Velvet—a Dafny-style verifier for imperative pro-
grams embedded into Lean proof assistant. Like Dafny, Vel-
vet supports reasoning about effectful programs featuring
mutable state, loops, and non-determinism. Unlike Dafny,
Velvet seamlessly combines automated SMT-based proofs
with interactive proof mode of Lean proof assistant, to which
it is embedded, thus, allowing for multi-modal proofs. By
virtue of being implemented as a Lean library, Velvet enjoys
interaction with the rest of Lean ecosystem, in particular, its
rich library of mathematical theories. In this presentation,
we will give a tour of Velvet’s main features and outline the
techniques underlying its embedding into Lean.

1 Introduction

Modern SMT-based automated program verifiers, such as
Dafny [14], Viper [20], and Verus [12] allow their users to
enjoy “push-button” machine-checked correctness proofs of
imperative programs that are ascribed a suitable specifica-
tion and are annotated with loop invariants.

Unfortunately, SMT-based automation comes at a price:
because the modern-day solvers frequently struggle with
complex statements outside decidable fragments of first-order
logic, users often need to supply additional annotations, in
the form of assertions, lemmas, or even custom trigger in-
stantiation strategies [12], to enable the solver to discharge
the corresponding verification conditions. When a proof fails,
such automated verifiers typically offer little help in pin-
pointing the precise issue in the specification, in contrast to
interactive foundational proof assistants such as Rocq [23]
or Lean [6], which allow the user to inspect the proof con-
text, explore the available facts, and either guide the user
toward a successful proof or conclude that the desired state-
ment is false. Finally, none of the existing automated ver-
ifiers offer an easy or principled way to interact with the
rich body of formalised mathematical theories available in
the standard libraries of interactive theorem provers. As a re-
sult, verifying programs against specifications that rely on
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complex mathematical definitions becomes difficult, often
forcing users to resort to ad hoc encodings instead.

In this work, we present Velvet—a verifier for imperative
programs with effects such as mutable state, non-determinism,
and non-termination, which addresses the listed above short-
comings of existing automated program provers, built as an
instance of Loom [7], a new general framework for imple-
menting foundational multi-modal program verifiers.

Velvet is implemented as a library on top of Lean proof
assistant, so Velvet programs are Lean programs, whose se-
mantics is given by composing a number of computational
effects implemented as monad instances. Velvet is designed
to support multi-modal verification: programs in its language
can be compiled, executed, validated using property-based
testing, and formally verified within one unified environ-
ment. Velvet seamlessly integrates SMT-based automation
(as in Dafny and Verus) with interactive Lean proofs. When
automation fails, the user can complete the proof interac-
tively using standard Lean tactics. Velvet’s specification lan-
guage allows one to separately verify functional correctness
of programs and their termination. By building on a library
of monadic effects, Velvet supports mutable variables, ar-
rays, loops (including non-terminating ones), and even Dafny-
style non-deterministic choice operator, in addition to all
native data types of Lean. This makes it ideal for reason-
ing about correctness of textbook algorithms and compet-
itive programming tasks. As a Lean library, Velvet inher-
its the entire Lean ecosystem, including mathlib [18], the
world’s largest library of formalised mathematics. Our ex-
amples include verified implementations of sparse matrix
operations [11], whose proofs rely on definitions from math-
lib and theorems about them. Finally, Velvet is itself formally
verified: we have proved, in Lean, that any program verified
in Velvet satisfies its specification at runtime.

In this talk, we will provide a demonstration of Velvet’s
key features following a series of characteristic examples,
outline implementation its Lean, and conclude with a list
of possible future directions to extend Velvet for reasoning
about aricher class of program properties and specifications.
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1 method sqrt (x: N) return (res: N)
2 ensures res * res < Xx

3 ensures Vi, i 1 < x~>1 < res
4+ do

5 if x = @ then

6 return 0

7 else

8 let mut i := @

9 while i » i < x

10 invariant V j, j <i~>3j* j <x
11 do

12 i:=1+1

13 return i - 1

15 prove_correct sqrt by loom_solve

Fig. 1. Fully automated proof of a discrete square root

2 Velvet by Example

In this section, we provide a tutorial-style overview of Vel-
vet’s key features: support for SMT-based proof automation,
multi-modal proofs, runtime verification via property-based
testing, and reasoning about program termination.

2.1 Automated Program Verification via SMT

Fig. 1 displays a simple program written in Velvet, which
computes an integer under-approximation of the square root
of a natural number. The program is missing a precondition,
which is trivially True, but features two conjuncts in its post-
condition, each given by an individual ensures-clause. The
first states that the result of the program res, squared, is
smaller than its argument x, while the second one states that
res is the largest number to under-approximate v/x.

The body of the program at lines 5-13 computes the result.
Line 10 provides an explicit loop invariant for the while-
loop at lines 9-12, which is required to prove the postcon-
dition. Line 15 constitutes the proof of the program w.r.t.
the ascribed specification. It is achieved by Velvet comput-
ing the verification conditions (VC) for the program and
the specification by implementing a version of the weakest-
precondition calculus, producing a Lean statement, whose
validity must be proven in order to show that the program is
correct. The proof is done by the tactic loom_solve that pro-
duces the required VCs and discharges them using an exter-
nal SMT solver. The interaction between Lean and the SMT
solver is done by using the lean-auto library [22] that com-
piles Lean statements to SMT-LIB queries and sends them
to one of the supported SMT solvers; Velvet currently uses
cve5 [2] as the default one. In this example, all VCs pro-
duced by Velvet could be proven by an SMT solver fully au-
tomatically. As of now, the outcome of SMT is trusted, yet
proof term reconstruction is possible in principle by using
LeanSMT library as an alternative to LeanAuto, as done in
some other Lean-based project that rely on SMT solvers [19].
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method cbrt (x: N) return (res: N)

1

2 ensures res * res * res < X

3 ensures Vi, i x1*x1<x~>1 < res
4+ do

5 if x = 0 then

6 return @

7 else

8 let mut i := @

9 while i » i *x i < x

10 invariant V j, j<i~>j*xj=*j<x
11 do

12 i=1+1

13 return i - 1

15 prove_correct cbrt by
16 loom_solve -- SMT left one unsolved goal
17 assumption

Fig. 2. Multi-modal proof of a discrete cube root

2.2 Combining Automated and Interactive Proofs

Fig. 2 shows a modified version of the program from Fig. 1,
which computes an integer cube root of a natural number.
Even though it is very similar to the previous example, cvc5
fails to discharge all its VCs automatically, leaving one un-
solved, which Velvet displays as a Lean proof goal:

x : N

if_neg : =-x = 0

i: N
invariant_6 : V j<i, j*xj*xj<x
if_neg_1 : =i 1 %1 < x

FVY j<i, j*3j*3j<x

As common in Lean, the proof context with the available
variables and assumptions is shown above the F symbol,
while the remaining goal to prove (V j < i, j x j * j <x)
is displayed right after it at the last line. An observant reader
might find it quite surprising that the goal could not be
proven automatically, as its statement coincides with one
of the assumptions inferred from the program annotations,
namely invariant_6 (Velvet assigns names to hypotheses
automatically based on their location and designation). The
proof can be now finished interactively by using a standard
Lean tactic assumption (line 17), which simply looks through
the proof context, identifies a hypothesis that matches the
conclusion of the goal, and uses it to complete the proof.
The demonstrated example highlights a crucial difference
between Velvet and automated verification tools such as Dafny
and Verus. While the latter tools put the main automation
burden on the SMT solvers, reducing the user’s involvement
into the proof process to proving helper lemmas and provid-
ing additional assertions, in Velvet, an SMT solver is just one
of the available ways to automate proofs of the generated
verification conditions. That is, if an SMT solver fails to dis-
charge a certain VC, e.g., due to the VC being outside of its
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1 method insertionSort (mut a: arrInt) return (u: Unit)
2 require 1 < size a

3 ensures V 1 j, i < j < size a » aNew[i] < aNew[j]
4 ensures toMultiset a = toMultiset aNewdo

5 let ap := a

6 let mut n := 1

7 while n # size a

8 invariant n < size a

9 dnvariant V i j, i < j <n > al[i] < a[j]

10 invariant toMultiset a = toMultiset ap

11 decreasing size ay - n do

12 let mut mind := n

13 while mind # @

14 invariant mind < n

15 invariant V i j, i < j < n A j # mind » ali] < a[j]
16 invariant toMultiset a = toMultiset ag

17 decreasing mind do

18 if a[mind] < almind - 1] then

19 swap a (mind - 1) mind

20 mind := mind - 1

21 n:=n+1

22 prove_correct insertionSort by loom_solve

Fig. 3. Velvet code and proof of insertion sort

supported theories, the user can proceed to prove it in an in-
teractive mode or by using any means of automation avail-
able in Lean, such as the Aesop tactic [17]. Furthermore, one
can also simplify an unsolved VC (as it’s just a Lean goal) to
the point it fits into one of SMT-supported first-order the-
ories, at which point an SMT solver can be invoked via a
dedicated Lean tactic, such as auto [22].

Finally, Velvet allows for a more traditional SMT-centered
verification mode, in which the user can include additional
facts proven as ordinary Lean theorems, into the database
of theories available to SMT, by marking the respective the-
orems with the @[solverHint] annotation, so they can be
used when performing an automated proof.

2.3 Testing Programs against Their Specifications

In addition to proof automation, Velvet provides facilities
that facilitate testing programs against their specifications.
This process, known as property-based testing (PBT) [5], has
proven to be useful for exposing issues, either in the pro-
gram or in the specification, in practice [8].

We illustrate how PBT is done in Velvet through an im-
plementation of insertion sort shown in Fig. 3.! The input a
is ascribed the type arrInt, which can be considered as an
abstraction of integer arrays, instantiated at runtime with
the concrete type of integer arrays in Lean, Array Int. No-
tably, a is marked as mut since its content is mutated during
the program execution. The value of a at the end of the exe-
cution is referred to as aNew in the ensures clauses.

To test insertionSort and its specification, the user may
first run the following commands in sequence:

IFor now, let us ignore the decreases annotations in grey boxes at lines 11
and 17; they are necessary for proving program termination, but not safety.
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def testWrapper (rounds : Nat) : IO Unit := do
let g : Gen (Array Int x Bool) := do
-- Sample an integer array
let arr < SampleableExt.interpSample (Array Int)
-- Run the tester with the sampled array
let passed? := insertionSortTester arr
pure (arr, passed?)
-- Control the size of sampled array and integer
let exampleSize := 10
-- Test for multiple rounds
for _ in [1: rounds] do
let (arr, passed?) <« Gen.run g exampleSize
if !passed? then
-- Report the counterexample

I0.println s!"postcondition violated, input: {arr}

break

Fig. 4. A harness for randomised testing of insertionSort

extract_program_for insertionSort
prove_precondition_decidable_for insertionSort
prove_postcondition_decidable_for insertionSort by

(exact (decidable_by_nat [(size arr), (size arr)l))
derive_tester_for insertionSort

The command extract_program_for invokes Loom’s extrac-
tion mechanism to determinise a Velvet program, producing
a directly executable functional program. In this case, since
insertionSort has no non-deterministic choice, the extrac-
tion guarantees that its determinised version runs exactly
the same code. The prove_precondition_decidable_for com-
mand attempts to construct a Decidable instance of the pre-
condition (i.e., the conjunction of require clauses). This in-
stance, when given a concrete input (e.g., a), can be used
for deciding whether the precondition holds. The command
prove_postcondition_decidable_for serves a similar purpose
for the postcondition (i.e., the conjunction of ensures clauses)
and takes both the input and the post-state (e.g., aNew) as ar-
guments. For simple pre- and postconditions, Lean can au-
tomatically infer the corresponding Decidable instance. In
other cases, the user can assist by applying tactics in a trail-
ing by block. For example, here the decidable_by_nat tactic
provided by Velvet is used to help produce the Decidable in-
stance for the post-condition of insertionSort. Finally, the
derive_tester_for command puts together the definitions
produced by the previous commands to construct an end-to-
end tester function. Given a specific input, it returns a Bool
indicating whether the implication from “the input meets
the precondition” to “the post-state of the determinised tar-
get Velvet program satisfies the postcondition” holds.

The user can then freely use the tester with any existing
PBT library. The code in Fig. 4 illustrates one such usage,
where Gen is a monad and SampleableExt.interpSample is
a Gen monadic computation that samples a value of a given
type. Both are from Lean’s Plausible PBT framework [13].

"
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¥ case «size ao - n»

: Type
: TArray Z arriInt

:arrint

1 sizea=1

:arrint
: size a_1 = size a
1 1 = size a_1
PV (1ij:N), i<j-3<1-a_lli]l = a_1I[j]
: toMultiset a_1 = toMultiset a

: -1 = size a_1
:arrint
HELY

1 size a_2 = size a
:mind = 1
YV (1jiN),i<j-3]s=
a_2[i] = a_2[j]
: toMultiset a_2 = toMultiset a
: —-mind = @
size a - 1 < sizea -1

1- -j =mind -

Fig. 5. Lean InfoView for a failed termination proof

Property-based testing comes useful, for instance, in the
following possible scenario: the user changes the postcondi-
tion at theline 3 of Fig. 3intoV i j, i < j < size a » aNew[i]

< aNew[j1.By running testWrapper with a sufficiently large
rounds (e.g., 500), the user will obtain a counterexample such
as [1, -3, 11, and then know something has gone wrong.

2.4 Reasoning about Termination

As a default mode, Velvet allows on to verify partial correct-
ness of programs: unlike Dafny, it is not required for Vel-
vet programs to terminate in order to satisfy an ascribed
specification. In fact, removing or commenting out line 21
at Fig. 3 will not prevent the proof at line 22 from successd-
ing: indeed, this way, the while-loop at lines 7-21 will never
terminate, hence the program will trivially satisfy any post-
condition, even False. Luckily, Velvet allows for different
treatment of non-termination: as a success or as a failure.
Switching to the latter mode is as easy as adding a line

open TotalCorrectness

before the code of the program in question. We omit the
discussion of the theoretical foundations needed to support
both kinds of correctness reasoning, total and partial, as
they are described in Sec. 5 of the work [7].

In the latter case, the user is expected to provide explicit
termination measures by supplying the respective decrease-
clauses to each while-loop, as highlighted by the grey boxes
at lines 11 and 17 of Fig. 3. With these annotations pro-
vided and the code at line 21 commented out, the VC gener-
ator will produce, amongst others, the Lean goal shown in
Fig. 5, which cannot be proven automatically (or even inter-
actively), but provides a useful insight into why the proof
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has failed. In particular, in indicates that the termination
measure size ap - n provided at line 11 does not, in fact,
decrease with each iteration of the outer while-loop.

2.5 Other Features

Amongst other features of Velvet are (a) the support for
Dafny-style let-such-that operator : | (also known as Hilbert’s
epsilon operator) [15], which is useful for modelling non-
deterministic choice, and (b) an ability to combine reason-
ing about pure Lean data types and mathematical theories
with program verification.

Our case studies include a large-scale verification effort
that makes use of both these features: proving correctness of
a parallel sparse tensor multiplication procedure [11], which
manipulates several compressed matrices implemented as
collections of arrays with bespoke encodings. The proof is
completed following a so-called two-layered paradigm [1].
That is, the actual implementation is (1) first shown to refine
a pure Lean function f, which performs manipulation with
the algebraic representation of compressed matrices, and
then (2) f is proven to correctly implement matrix multipli-
cation. The first part of the proof is achieved in Velvet via an
SMT solver, provided a number of facts about f, which are
proven as ordinary Lean theorems, so the proof can treat f
as an uninterpreted function. The second part of the proof
is done interactively in Lean; pleasantly, it does not involve
any reasoning about effectful code whatsoever.

3 Implementing Velvet in Loom

Velvet is built as an instance of Loom [7]—a general and ver-
satile Lean library for implementing provably correct multi-
modal verifiers on top of Lean by means of a monadic shal-
low embedding. In this section, we briefly outline the spe-
cific components of Velvet that allow for its characteristic
non-trivial features: intrinsic verification, executable non-
deterministic choice operator, an ability to switch between
reasoning about partial and total correctness, and first-order
abstractions of common data structures.

3.1 Annotations for Intrinsic Program Verification

Under the hood, Velvet programs are ordinary Lean compu-
tations in the VelvetM monad (see the next subsection), en-
riched with specification annotations: require/ensures clauses,
assertions, loop invariants, and termination measures. These
annotations are verification-only: they do not change the
executable behavior of the code. At the top level, Velvet col-
lects the conjunction of all require and ensures clauses into
the pre/post pair of a Hoare-style correctness statement for
the program. Likewise, loop invariant annotations are com-
piled into hints that the verification condition generator (VC-
Gen) can recognise. Concretely, a loop invariant is inserted
via a no-op combinator invGadget:

def invGadget (inv : Prop) : VelvetM Unit

:= pure ()
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At runtime, this expands to an idle Lean computation, but
the VCGen works over the program’s encoding and, hence,
can take advantage of the first argument of invGadget to
generate appropriate verification conditions for the loop.

3.2 Non-Deterministic Choice Operator

As we have mentioned before, Velvet programs are compu-
tations inside the VelvetM monad. This monad supports a
non-deterministic choice operator and divergent computa-
tions, allowing one to reason about partial correctness. In
this subsection, we will discuss the first component. The
general form of non-deterministic choice operator is:

def pickSuchThat {7z} (p : 7 -> Prop): VelvetM 7 := ...

This operator chooses an arbitrary value of the type 7 that
satisfies the predicate p. Following Dafny-style notation, in
program code, it is written as let x :| p x.

The weakest precondition semantics for this operator de-
pends on the verification style user is interested in and can
be controlled. For example, if user wants to prove that spec-
ification holds for all possible choices of pickSuchThat, the
weakest precondition should be a conjunction of all postcon-
ditions for the values that satisfy the predicate p:

wp (pickSuchThat p) post = /\ post x (1)

X€Ep

Such choice operator is called “demonic” [3] and can be en-
abled by simply opening a corresponding semantics names-
pace open DemonicChoice. At the same time, the user might
be interested in proving a reachability property for the pro-
gram, i.e., proving that the specification holds for some choice
of pickSuchThat. In this case, the weakest precondition should
be a disjunction of all post-conditions for the values that sat-
isfy the predicate and can be enabled by open AngelicChoice.
Executing a non-deterministic choice operator is more
subtle. The problem is that pickSuchThat on its own does
not provide a way to actually choose a value from the type ¢
that satisfies p. To execute computation x of type VelvetM a,
Velvet implements a VelvetM. run function which automati-
cally tries to infer a witness of a Findable type class for each
predicate p in each non-deterministic choice in x. Such type
class provides a recipe how to find value t : r, satisfying p.
In practice, instantiating Findable is rarely a problem. For
example, if p is a decidable predicate and 7 is Encodable (i.e.,
countable) such instance will be inferred automatically.

3.3 Proofs about Non-Terminating Programs

Unlike vanilla Lean, where every recursive definition must
carry an explicit termination argument, Velvet decouples
functional correctness from the termination argument: a ter-
mination measure (the decreasing annotation) is required
only when establishing total correctness. At the same time,
for partial correctness, no such measure is needed—the pro-
gram may diverge, and proofs assert only that, if it termi-
nates, the postcondition holds. The user selects the intended
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proof mode and the semantics of divergence—by opening
the corresponding semantic namespace, choosing between
open TotalCorrectness to work with total correctness and
open PartialCorrectness for partial correctness.

Velvet makes it possible to decouple proofs of partial and
total correctness. This can be done by defining two identical
versions of a program, one without termination related an-
notations (highlighted in grey in Fig. 3) and another without
functional correctness-specific ones. The proof of the former
constitutes partial correctness, and the latter proves termi-
nation. One can then use the following Velvet theorem to
prove the program’s total correctness:
lemma partial_total_split {a} : V (c1 cy :

triplePartial P ¢ Q ~»

(P : Prop) (Q : a« » Prop), eraseEq cy ¢z =

tripleTotal P ¢z (A _, True) = tripleTotal P c; Q

VelvetM «a)

3.4 First-Order Abstractions of Data Structures

To make VCs amendable to SMT solvers, Velvet uses first-
order (FO) representations of Lean data structures (such as
Lean arrays). The reason is that SMT solvers are more ef-
fective on quantifier-light, algebraic interfaces than on rich,
higher-order APIs. For example, in the insertion sort imple-
mentation from Fig. 3 we model arrays by the array FO the-
ory rather than by Lean ’s concrete implementation. Such
an array theory is encoded via the TArray type class:
class TArray (a : outParam Type) (x: Type) where

get : Nat » k > «a

set : Nat > o > k = «

get_set (idx; idxp val arr) :

idx; < size arr -> get idxy; (set idxy val arr) =
if idx; = idxp then val else get idx; arr
. —- other array theory operations and axioms

That is, instead of implementing insertion sort taking an
array a of type Array Int, it receives a of type arrlInt, for
which we assume an instance of TArray Int arrlInt. This
way, we hide the concrete implementation details from the
SMT solver: it only gets to see the abstract interface TArray
where set and get will be translated into uninterpreted func-
tions satisfying the array theory axioms such as get_set.

Finally, to execute programs manipulating with such ar-
ray abstractions Velvet provides a TArray « (Array a) in-
stance for arbitrary «. It means that user can pass regular
Lean integer arrays anywhere arrInt is expected.

4 Future Directions

We believe, our development of Velvet—the first foundational
multi-modal Dafny-style verifier on top of Lean—opens av-
enues for several lines of exciting future work. In particular,
we envision its following extensions and application, which
we are planning to explore in the future.

First, we are going to apply Velvet for specifying and ver-
ifying computational complexity results for textbook algo-
rithms. We believe, in many cases, this can be achieved by
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enhancing the VelvetM monad with a layer of the state monad
transformer StateT, which is supported natively by Loom [7],
and using it to updated a counter for “computational cred-
its”, treating it as ghost state. We expect that in some cases,
e.g., when reasoning about amortised complexity, we will
have to extend Velvet with reasoning principles similar to
that of Separation Logic with time credits [4]. We are con-
fident that this can be achieved by implementing and speci-
fying a set of custom operations on top of the state monad.

Another direction we are going to explore is introducing
a type system with linear capabilities on top of Velvet, thus,
allowing it to generate more SMT-friendly verification con-
ditions, similarly to what is achieved in tools such as Linear
Dafny [16] and Verus [12] by means of relying on a bespoke
linear type system or by exploiting the guarantees provided
by the rustc Rust compiler. An advantage of implementing
this approach on top of Velvet is that the soundness claims
similar to those of Linear Dafny and Verus can be mechan-
ically verified within the proof assistant, thus reducing the
trusted code base of the verifier to that of Lean.

Finally, we are planning to tackle large-scale systems ver-
ification efforts in the style of IronFleet [10] by making use
of multiple foundational multi-modal verifiers implemented
on top of Loom. For instance, by verifying in Velvet that
an implementation of a distributed system refines its model
defined in Veil [21], another verifier built on top of Loom,
we can establish that all properties of the model—safety and
liveness—provably transfer to the executable implementa-
tion. Furthermore, conducting such verification efforts in
Lean will make it possible to extend the state-of-the-art in
trustworthy systems to a larger class of their specifications,
including information-theoretic and security properties [9].
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