
Programming with Proofs

Verifying Distributed Protocols

Distributed Protocols

2

Define how multiple parties (nodes)
collaborate with each other

to achieve a common goal 🤝

TwoPhase Commit Adds the Minister

AnneHenry

Minister

Anne, are you prepared to commit
to this relationship?⇣⇣⇣

Two-phase commit adds the minister to help implement those state changes.
He does that by communicating with the bride and groom.

[slide 41]

Two-Phase Commit depiction from Leslie Lamport’s video course on TLA+

Distributed Protocols

3

Some nodes might fail 💥

Distributed Protocols

4

Some nodes might behave maliciously 😈

Verifying Distributed Protocols

• Safety properties: “Bad thing will not happen.”

• Liveness properties: “Good thing will eventually happen.”

5

Safety bugs can be reliably discovered with conventional black-box testing.

Google “Errors found in distributed protocols”
github.com/dranov/protocol-bugs-list

Veil

• A shallowly-embedded DSL in Lean

• Bounded model checking via SMT

• Out-of-the-box interactive proofs in Lean

• Uses external SMT solvers for proof goals in FOL

6

Interactive Proofs for
Complex (HO) Properties

Arbitrary Properties

Fast Feedback

FOL Proof Automation

✅

✅

✅

✅

A Lean Library for Verifying Transition Systems

Ring Leader Election

7

2

5

id: 1
to: 5

id: 5
to: 2

id: 2
to: 4

id: 4
to: 3

id: 3
to: 1

1

3

4

Ring Leader Election

8

1

2

3

4

5

id: 5
to: 2

id: 2
to: 4

id: 4
to: 3

id: 3
to: 1

Ring Leader Election

9

1

2

3

4

5

id: 5
to: 2

id: 2
to: 4

id: 4
to: 3

id: 3
to: 5

Ring Leader Election

10

1

2

3

4

5

id: 5
to: 2

id: 4
to: 3

id: 3
to: 5

Ring Leader Election

11

1

2

3

4

5

id: 5
to: 2

id: 4
to: 1

id: 3
to: 5

Ring Leader Election

12

1

2

3

4

5

id: 5
to: 4

id: 4
to: 1

id: 3
to: 5

Ring Leader Election

13

1

2

3

4

5

id: 5
to: 3

id: 4
to: 1

id: 3
to: 5

Ring Leader Election

14

1

2

3

4

5

id: 5
to: 3

id: 4
to: 1

Ring Leader Election

15

1

2

3

4

5

id: 5
to: 3

id: 4
to: 5

Ring Leader Election

16

1

2

3

4

5

id: 5
to: 1

id: 4
to: 5

Ring Leader Election

17

1

2

3

4

5

id: 5
to: 1

Ring Leader Election

18

1

2

3

4

5

id: 5
to: 5

Ring Leader Election

19

1

2

3

4

5 leader elected

Safety Property to Verify

20

There is at most one leader.

1

2

3

4

5

Demo

21

System Specification

action recv (id n next : node) = {
 require isNext n next
 require pending id n
 pending id n := *
 if (id = n) then
 leader n := True
 else
 if (le n id) then
 pending id next := True
}

safety [single_leader] leader L1 ∧ leader L2 → L1 = L2

invariant [leader_greatest] leader L → le N L
invariant [self_msg_only_if_greatest] pending L L → le N L
invariant [no_bypass] pending S D ∧ btw S N D → le N S

action send (n next : node) = {
 require n ≠ next ∧ ∀ Z,
 ((Z ≠ n ∧ Z ≠ next) → btw n next Z)
 pending n next := True
}

after_init {
 leader N := False
 pending M N := False
}

initial state

actions safety properties

22

resultinitial state final state

Two-State Transition Semantics

〚act〛TR : σ → ρ → σ → Prop

transition relation (TR σ ρ)

<latexit sha1_base64="YV59KfSzSGAckIEF+DYGO9V//Js=">AAACE3icbVDLSsNAFJ34rPUVdelmsAjioiQi1WXRjcsK9gFNLJPppB06jzAzEUrIP7jxV9y4UMStG3f+jdM2C209cOFwzr3ce0+UMKqN5307S8srq2vrpY3y5tb2zq67t9/SMlWYNLFkUnUipAmjgjQNNYx0EkUQjxhpR6Prid9+IEpTKe7MOCEhRwNBY4qRsVLPPQ2ktSOFMMmCZIiEkTxD88jz+yzvuRWv6k0BF4lfkAoo0Oi5X0Ff4pQTYTBDWnd9LzFhhpShmJG8HKSaJAiP0IB0LRWIEx1m059yeGyVPoylsiUMnKq/JzLEtR7zyHZyZIZ63puI/3nd1MSXYUZFkhoi8GxRnDJoJJwEBPtUEWzY2BKEFbW3QjxENiBjYyzbEPz5lxdJ66zq16q12/NK/aqIowQOwRE4AT64AHVwAxqgCTB4BM/gFbw5T86L8+58zFqXnGLmAPyB8/kD8YGfeQ==</latexit>

z}|{

23

Verification with Transition Semantics

1. ∀ s0 s. 〚after_init〛TR s0 s ⇒ Inv s

2. ∀ act s r s’. Inv s ⋀〚act〛TR s r s’ ⇒ Inv s’

3. ∀ s. Inv s ⇒ Safety s

Inv = λ (r: ρ) (s: σ). Inv s

safety [single_leader] leader L1 ∧ leader L2 → L1 = L2

invariant [leader_greatest] leader L → le N L
invariant [self_msg_only_if_greatest] pending L L → le N L
invariant [no_bypass] pending S D ∧ btw S N D → le N S

〚act〛TR : σ → ρ → σ → Prop

24

Summary of the Demo

• A protocol state in Veil consists of uninterpreted types and relations

• Actions update the relations; they are guarded with require clauses

• Reachability of states can be symbolically tested using BMC

• Invariants are verified to hold under all actions, via SMT or interactively

25

