YSC2229: Introductory Data Structures
and Algorithms

.
2

lya Sergey

lya.sergey@yale-nus.edu.sg

mailto:ilya.sergey@yale-nus.edu.sg

Some Terminology

Data represents information
Computations represent data processing

An algorithm is a sequence of computational steps that transform
the input data (given) into the output data (wanted).

A data structure is a representation of data that makes it suitable
for algorithmic treatment.

What this course is about”

Algoritnms In a Nutshell

INPUT Algorithm OUTPUT

Desired Guarantee:
for every input, the algorithm must provide
the correct output quickly.

Solving computational problems

Searching:
finding a word in a text or an article to buy on Amazon

Storing and retrieving data:
representing files in you computer

Data compression/decompression: Slllé

transferring files on the internet

Path finding: I'l ; [rP
getting from a point A to point B in the most efficient way I_.ial

* (Geometric problems:
finding the closes fuel station, shape intersection

5

Thinking Algorithmically Is Fun

")
R\
N

/»‘»r ZAN
«

Torpe

(the prosperous crab)

v

11

ROTATION!

Rules of the Game

* The problem: pack Torpe’s belongings into a cave (2D)

* Requirements:
 No overlapping, all within the room, at least 30% covered
* Try to find the best (maximal cost)

* Available actions:
 Moving the furniture

* Rotating the furniture

18

Q1: What Data Structures should We Use?

 Representing the cave
* Representing the furniture items
 Encoding the item costs

* Encoding the solutions

19

C
B k
1: (0,0), (2,0), (2,1), (1,1), (1,2, O,2)y#i1:(0,0), (1,0), (1,1), (0,1);12:(0,0), (2,0), (O,1)}13:(0,0), (0.5,0), (0.5,2), (0,2)

20

21

Q2: Algorithm for Checking Solutions

 \What is an acceptable solution?

 How to check it using the data types we already have”

22

* Cave size: 180

* 500 furniture pieces

e Coverage: 46%

Q3: Algorithm for Solving the Problem

 \What are the main steps”
 How to produce an acceptable solution?

* \When should we stop?

25

Some solutions

Why take this class®

* You will learn:

» o understand and evaluate some classic algorithms

* How to design algorithms that are fast

* How to choose the right data structures for your problems
* How to exhaustively test your code

* A little brt about compilers and memory management

* More functional and imperative programming in OCaml

* How to be a better programmer (not just iIn OCaml, but any language)

» Expect this to be a very challenging, implementation-oriented course (duh!)

* Programming assisnments might take up tens of hours per week...

30

Workload in 2020

(10 respondents)

B2: Please select the exact number of hours you spent on this course in a typical week, not including
scheduled seminar or lecture time.

Thr 2hr 3hr 4hr 5hr 6hr 7hr 8hr Shr 10hr

YSC2229: Introductory Data Structures and Algorithms 0 0 0 0 1 0 0 0 0 3

11hr 12hr 13hr 14hr 15hr 16hr 17hr 18hr 19hr 20hr Mean

YSC2229: Introductory Data Structures and Algorithms 1 3 1 0 0 1 0 0 0 0 11.10

31

What else this course IS apbout

Analysis of Algorithms

Aspects that we will stuady

» Algorithm Correctness
» Algorithm Termination
* [Ime complexity

* Worst case
* Average case

* Best Worst case

Aspects that we will stuady

» Algorithm Correctness — Does my algorithm really do what it's supposed to do/
» Algorithm Termination — Does my algorithm always complete its work?
* [Ime complexity — How slow is my algorithm. . .

* Worst case — ... in the worst possible case’
 Average case — ... In an average case’

» Best Worst case — ... if | do my best to optimise it/

35

Correctness

Time Complexity Storage.
Consumption

36

Algorithmic problems and Time Complexity

* possibly intractable — probably don’'t have reasonable-time
algorithmic solutions (e.g., SAT, graph isomorphism)

* practically intractable — definitely don’t have such solutions
(e.q. the Towers of Hanoi)

* non-computable — can't be solved algorithmically at all
(e.q., the halting problem)

37

Why do we care apout
Time Complexity”

=xample: Determinant of a matrix

M's element
atrow 1, (1,i)-minor of M
column i
. 1—1 1.2
Laplace expansion: ‘ZW‘ — E (—1) Z\dl z‘ N+ ‘
Y,
1=1
adi1 Q12 d13
For a 3x3 matrix: o1 A92 Q923 —
a3z1 Q32 Aa33
11 a22 dA23 1o a21 d23 + ais a21 d22 —
a32 aA33 a31 as3 a31 Q32

CL11(CL22 33 — U23 - @32) - a12(a21 - a33 — 423 - a31) + a13(a21 32 — Ad29 a31)

39

=xample: Determinant of a matrix

n

Laplace expansion: ‘M‘ — Z(—l)i_lMl,i
1=1

(in Haskell)

M

detLaplace :: Num a => Matrix a -> a

detLaplace m

| sizem == 1=m ! (1,1)
| otherwise =
sum [(-1)"(i-1) * m ! (1,i) * detLaplace (minorMatrix 1 i m) |
1 <-[1 .. ncols m]]

(demo)

40

Irangular matrices

ag; O .- 0 a1 Qa12 -+ Qlp
az1 a2z 0 0 3 0 a29 as. n
Ap,1 Un2 Un,n 0 0 Un . n

Determinant ot a triangular matrix
'S a product of its diagonal elements.

adi1 di12 413

For a 3x3 matrix; 0 aoo 423
0 0 a33

a11(azz - ass —M) - a12M —N + &13,@6@ —M = a11 * a22 - 431

41

Determinants via LU-decomposition

L U-decomposition: any square matrix M, such that its top-left
element IS non-zero can be represented in a form

M = LU

where L and U are lower- and upper-triangular matrices.

Therefore, |M| = |L| - |U]

detLU :: Num a => Matrix a -> a
detLU m = case luDecomp m of
(L, u) -> diagProd 1 * diagProd u

(demo)

42

Running time as a function of size

Time ()

3.17

~ const - n!

0.32

0.04

8 9 10 Size (n)

Determinant via Determinant via
Laplace expansion L U-decomposition

43

T1me demand depends on problem size

Problem size

Function 10 10° 107 10*
log, n 3.3 6.6 10 13.3
n 10 100 1000 10*
nlog, n 33 700 10% 1.3 x 10°
n? 100 10* 10° 10°
n> 1000 10° 10? 1012
AL 1024 | 1.3 x10%° > 101 > 10t
n! 3x10°% | >10'Y > 10'% > 1010

http://en.wikipedia.org/wiki/Googol
44

‘Sizes” of different problems

Problem Input size, n

sorting number of items to be sorted

searching size of the set to query

number of rows and columns

determinant calculation . .
IN the matrix

finding a shortest path number of “checkpoints” to choose from

Iwo ways to analyse algorithms

e Empirical — repeatedly run algorithm with different inputs to get some idea
of behaviour on different inputs

® \Was our selection of inputs representative”?

e this consumes the very resource (time) we are trying to conserve!

e Theoretical — analysis of a “paper” version of the algorithm
e can deal with all cases (even impractically large input instances);

e machine-independent.

46

What we will learn about

Correctness and Invariants

Time Complexity and Order Notation

Reasoning about Recursive Algorithms
Searching Algorithms
InsertSort, MergeSort, QuickSort

Sorting in Linear Time

Binary Heaps and HeapSort

Abstract Data Types: Stacks, Queues
Hash-Tables

Memory Allocation

Randomised Structures and False Positives

Substring Search Algorithms

Constraint Solving and

Optimisation and

Input/Output and

Union-Find

Representing Sets,

Sinary

Representing Graphs

BSacktracking

Dynamic Programming

—-ncodings

Data Compression and Huffman Encoding

Binary Search Trees

Shortest Paths, Spanning Trees

Convex Hulls

Basics of Computational Geometry

The Textbook

y

-
o

Y

INTRODUCTION TO

THOMAS H.

CHARLES E.

RONALD L.

CLIFFORD

W

CORMEN

LEISERSON

RIVEST

STEIN

ALGORITHMS

THIRD EDITION

48

| ecture Notes

lyasergey.net/YSC2229

Code from Lectures

githulb.com/ysc2229/ysc2229-2021

every week Is a new pbranch

http://github.com/ysc2229/ysc2229-2021

Working Tools

e OCaml

/\

OCaml o https://ilyasergey.net/YSC2229/prerequisites.html

 Emacs/Aguamacs

o (GitHub for homework assignments
 Make sure to make yourself an account (it's free)

o Also, ask for students benefits (also free)

51

https://ilyasergey.net/YSC2229/prerequisites.html

Assessment

65% — homework exercises (10 assignments)

15% — mid-term project (12 code, 3 report)

15% — final project (12 code, 3 report)

—

5% class participation (attendance, questions)

52

HOomework

Two types: theoretical and programming assignments
lo be completed individually

Deliverables:
* a GitHub release with an OCaml project (programming)

* a PDF with typeset answers (theory)
Each assignment is graded out of 20 points

Coding assignments that don’t compile will get O points

53

Collaboration

e Permitted:

Talking about the homework problems with other students; using other
textbooks; using the Internet to improve understanding of the problems.

* Not permittea:

Obtaining the answer directly from anyone or anything else in any form.

54

Homework Policies

Work submitted before the deadline and receiving less than 18 points can
be resubmitted within one week atter the grades are posted on Canvas.

The amended grade will not be higher than 18

Late submissions will be penalised by subtracting
(full days after deadline + 2) points from the maximal score (20).

L ate submissions cannot be resubmitted.

55

Mid-term and rinal Projects

 Done in teams of two
(possibly one team of three, with some extra tasks)

 (Graded out of 15 points (each counts towards 15% of tfinal score)

e Dellverables:

e GitHub release

 PDF report, submitted individually by each member of the team.

56

Getting Help

o Office Hours (#RC3-01-03E, Cendana):
Wednesdays 17:00-19:00
Please, email me upfront!

 E-mail policy: questions about homework assignments sent less than
24 hours before submission deadline won't be answered.

o EXxception: bug reports.

57

Peer lutors

Tram Hoang Gabriel Petrov
tram.hoang@u.yale-nus.edu.sg gabrielphoenixpetrov@u.yale-nus.edu.sg

Wednesdays, 7pm-9pm, Location: CR20 hursdays, 6pm-8pm, Location: CR20

General Advice

e Friday afternoon class, many of you will be tired. Try to make class
Iivelier by asking questions and participating in discussions.

o | ecture notes will contain exercises. Please, please try these! No
petter practice than actually solving problems.

59

Time tor a short break

