YSC2229: Introductory Data Structures
and Algorithms

NN b

Week 04: Advanced Sorting Technigues

Merge sort

» |dea: split the array to be sorted into two equal (1) parts,
sort these arrays by recursive calls, and then merge them,
preserving the ordering.

MergeSort (A[0 .. n-1]) {
if (n = 1) {

return A; /[1-element array, nothing to sort
} else {
m := n/2;
L :=Aa[0, ., m-1]; split the array into Left and Right half (by copying)
R := A[m, .., n-1];

Merge (MergeSort (L), MergeSort(R), A)
return A;

/[in-place merge results into A

Merge sort by example

Recursive descent: splitting the array

> 12 8 18 3 4 ¢
2 12 8 18 3 | 4
12 18
2 8 18 3

Merge sort by example

Merging the sorted sub-arrays

0 0 0 0 0 0 0 0

] 2 12 3 18 3 4 o

Quicksort

- Invented by Tony Hoare (the same as of Hoare triples) in 1961;
- ldea: divide-and-conqguer with partially sorted sub-arrays;

* In practice, one of the fastest sorting algorithms as of today.

QuickSort (A[O0 .. n-1]) {
if (n = 1) { return A; } //nothing to sort, return A

else {
1 :=0; r := 0;
pivot := A[n-1]; // take the last array element as a “pivot”

for (1 =1 .. n-1) {
if (A[1] < pivot) then {

L[1] := A[i]; // collect all elements of A smaller than pivot in
1 :=1 + 1; /] the “left” subarray L
} else {
R[r] := A[i]; // collect all elements of A greater or equal than pivot in
r :=r + 1; // the “Right” subarray R
}
}
Concat (QuickSort (L), pivot, QuickSort(R), A) //runrecursivelyon L, R, and then
return A; concatenate (L ++ [pivot] ++ R) into A

Quicksort by example

Recursive descent. choosing pivots and constructing sub-arrays

3 4 18 1 12 3 2@

left | | DIVOL right
4 1 3|2/ 6 8 18
pivot right left pivot right
= 14 s 12 18
pIvot right

Quicksort by example

Combining sorted sub-arrays and pivots

Quicksort vs. Merge sort

* Quicksort can be seen as a complement to Merge sort In
distributing the computational complexity;

* In Merge sort, creating sub-arrays Is simply copying, whereas in
Quicksort 1t requires rearranging elements wrt. the pivot;

* In Merge sort, combining partial results i1s merging (complicated,
requires comparisons), whereas in Quicksort they are
concatenated (simple, no comparisons).

Merge sort complexity

M(n) MergeSort(A[0 .. n-1]) {
if (n = 1) {

M(1) =0 return A;
} else {
m := n/2;
copying: n/2 L := A[0, .., m=1];
copying: n/2 R := A[m, .., n-1];
merging: n comparisons Merge (
M(n/2) MergeSort (L),

MergeSort(R), A)

M(n/2) return A;

}

» [he complexity does not depend on the Input properties,
Just Its size = worst-case = average case.

Merge sort complexity

M(n)=2M(n/2) + 2n, If n > 1
M(1) =0
Change variable n » 2k: M(n)= h(k) =2 h(k-1) + 2-2k
Change of function: h(k) = 2k g(k)

By substituting h: 2kg(k) = 2:2k1g(k-1) + 2-2

g(k) = g(k-1) + 2
3y method of differences: g(k) =2k + M(1)

Merge sort complexity

M(n)=2M(n/2) + 2n, It N > 1
=0

h(k) = 2 h(k-1) + 2-2k h(k) = 2k g(K) g(k) = 2k + M(1)

= 2-2kk

M(n) = 2n logon € O(nlogan | nis a power of 2)

Since n-log n is non-decreasing for n > 1, and it is also smooth,

M(n) e O(n logn)

Worst-case complexity of Quicksort

* Worst case Is achieved when the arrays L and R are severely imbalanced;

» This happens, for instance, If the pivot Is always the smallest element in the array.

QuickSort (A[O0 .. n-1]) {
Q(0) =0 =y if (n < 1) { return A; }

(no comparisons) else {
1l := 0; r := 0;
pivot := A[n - 1];
for (1 =1 .. n-1) {
if (A[1] < pivot) then {
L[1] := A[1];
1 :=1+ 1;
(n - 1) comparisons } else {
R[r] := A[1];
r :=r + 1;
}
}

Q(|L]) + Q(|R|) == concat (QuickSort (L), pivot, QuickSort(R), A)
return A;

}

Worst-case complexity of Quicksort

* In the worst case, |[L| = n - [, so we obtain the following recurrence relation:

Q(1) =0

QN)=Qn-1) +n-1,ifn>1
H,—/
Q(IL])

By method of differences:

Z@_zl n+1) n:n(n_l)cO(HZ)

2

Sut for Quicksort, this worst case is highly improbable.

Best worst time for
comparison-based sorting

» Quicksort, Insertion sort, Merge sort are all comparison-based sorting
algorithms: they compare elements pairwise;

* An “ideal” algorithm will always perform no more than t(n)
comparisons, where n Is the size of the array being sorted;

* What is then t(n)?

* A number of possible orderings of n elements Is nl, and such an

algorithm should find "the right one" by following a path in a binary
tree, where each node corresponds to comparing just two elements.

