YSC2229: Introductory Data Structures and Algorithms

Week 05: Best-Worst Complexity of Sorting

Best worst time for comparison-based sorting

- Quicksort, Merge sort have complexity $O(n \log n)$
- Quicksort, Insertion sort, Merge sort are all comparison-based sorting algorithms: they compare elements pairwise;
- An "ideal" algorithm will always perform no more than $\mathrm{t}(\mathrm{n})$ comparisons, where n is the size of the array being sorted;
-What is then $t(n)$?
- A number of possible orderings of n elements is $n!$, and such an algorithm should find "the right one" by following a path in a binary tree, where each node corresponds to comparing just two elements.

Decision tree of a comparison-based sorting

- Example: array [A, B, C] of three elements;
- All possible orderings between A, B, and C are possible.

Best-worst case complexity analysis

- By making $\mathrm{t}(\mathrm{n})$ steps in a decision tree, the algorithm should be able to say, which ordering it is;
- The number of reachable leaves in $t(n)$ steps is $2(\mathrm{n})$;
- The number of possible orderings is n ! is, therefore

$$
2^{t(n)} \geq n!
$$

Best-worst case complexity analysis

$$
\begin{gathered}
2^{t(n)} \geq n! \\
t(n) \geq \log _{2}(n!)
\end{gathered}
$$

Stirling's formula for large $\mathrm{n}: \quad n!\approx \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}$

$$
\begin{aligned}
t(n) & \approx n \log _{e} n \\
& =\left(\log _{e} 2\right) n \log _{2} n
\end{aligned}
$$

$t(n) \in O(n \log n)$

Can we do sorting better than in $O(n \log n)$?

Yes, if we don't base it on comparisons.

Quiz

- We want to sort n integer numbers, all in the range $1 . . . \mathrm{n}$;
- No repetitions, all numbers are present exactly once;
-What is the worst-case complexity?

Answer: O(n)

- We know that it has to be $I, 2, \ldots, n-I, n$, so just generate this sequence.

Bucket sort

- We want to sort an array A of n records, whose keys are integer numbers;
- All keys in A are in the range I....k;
- There might be repeated keys, some keys might be absent;
- Idea: allocate k "buckets" and put records into them, the "flush" the buckets in their order.

Bucket sort

```
BucketSort (A[0 ... n-1], k) {
    buckets := array of k empty lists; // create kempty buckets
    for (i = 0..n-1) {
        key := A[i].key; // get the next key
        bucket := buckets[key]; // find the bucket for the key
        buckets[key] := bucket ++ [A[i]]; // add the record into bucket
    }
    result = []
    for (j = 0..k-1) { // concatenate all buckets
        result := result ++ buckets[j];
    }
    return result;
}
```


Bucket Sort by Example

Keys are integer numbers, $\mathrm{k}=6$

$A=$| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 6 | 2 | 3 | 1 | 5 | 3 | 5 | 2 |

$\longrightarrow_{1}^{[]}$

Bucket Sort by Example

Keys are integer numbers, $\mathrm{k}=6$

Bucket Sort by Example

Keys are integer numbers, $k=6$

$$
A=
$$

$[2]$
2

Bucket Sort by Example

Keys are integer numbers, $k=6$

$A=$| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | 2 | 3 | 1 | 5 | 3 | 5 | 2 |
| \uparrow | | | | | | | |

[2]

Bucket Sort by Example

Keys are integer numbers, $k=6$

$A=$| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6 | 2 | 3 | 1 | 5 | 3 | 5 | 2 |
| \uparrow | | | | | | | |

Bucket Sort by Example

Keys are integer numbers, $k=6$

$A=$| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 6 | 2 | 3 | 1 | 5 | 3 | 5 | 2 |

Bucket Sort by Example

Keys are integer numbers, $k=6$

$A=$| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 6 | 2 | 3 | 1 | 5 | 3 | 5 | 2 |

Bucket Sort by Example

Keys are integer numbers, $k=6$

Bucket Sort by Example

Keys are integer numbers, $k=6$

Bucket Sort by Example

1

3
$3 \quad 4$
5
6
$[1]++[2,2]++[3,3]++[]++[5,5]++[6]$

$$
\text { result }=[1,2,2,3,3,5,5,6]
$$

Bucket Sort Worst-case Complexity

$\mathrm{O}(\mathrm{k}) \longrightarrow$ buckets $:=$ array of k empty lists;

$\mathrm{O}(\mathrm{k}) \longrightarrow \begin{aligned} & \text { result }=[] \\ & \begin{array}{l}\text { for }(j=0 . . \mathrm{k}-1)\{ \\ \text { result }:=\text { result }++ \text { buckets }[j] ; \\ \} \\ \text { return result; }\end{array}\end{aligned}$

Overall complexity: $O(n+k)$

Remarks on Bucket Sort

- Bucket sort works for any sets of keys, known in advance;
- For instance, it can work with a pre-defined set of strings;
- But what if the size k of the set of keys is much larger than n ?
- The complexity $\mathrm{O}(\mathrm{n}+\mathrm{k})$ is not so good in this case.

Stability of Sorting Algorithms

A sorting algorithm is stable if, when two records in the original array have the same key, they stay in their original order in the sorted result.

- Is Insertion sort stable?
- Yes
- What about Bucket sort?
- Yes
- Merge sort?
- Maybe. It depends on how we divide the list into two and how we merge them, resolving situations for elements with the same key.
- Quicksort?
- Maybe. Depends on the implementation of the partition step.

Radix sort

- An enhancement of the Bucket sort's idea, for the case when the size of key set k in the array A is very large;
- Idea: partition each key using its decimal representation:
- key $=a+10 b+100 c+1000 d+\ldots$
- then, sort keys by each register of the decimal representation, right-to-left, using Bucket sort
- For each internal bucket sort $k=10$ (the base of decimal representation);
- Essentially:

```
RadixSort(A) {
    BucketSort A by a with k = 10;
    BucketSort A by b with k = 10;
    BucketSort A by c with k = 10;
}
```


Radix sort

(in very crude pseudocode)

```
RadixSort(A) {
    L := zip(A.keys, A);
    while (some key in L.fst is non zero) {
        L := BucketSort(L[keys mod 10], 10); // sort by lastregister
        L.fst := L.fst / 10; // shift L keys'representation to the next register
    }
    return L.snd; // return sorted second component
}
```


Radix sort by Example

$A=$| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 234 | 124 | 765 | 238 | 976 | 157 | 235 | 953 |

$L=$| 234 | 124 | 765 | 238 | 976 | 157 | 235 | 953 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 234 | 124 | 765 | 238 | 976 | 157 | 235 | 953 |

Radix sort by Example

$L=$| 234 | 124 | 765 | 238 | 976 | 157 | 235 | 953 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 234 | 124 | 765 | 238 | 976 | 157 | 235 | 953 |

Radix sort by Example

$L=$	953	234	124	765	235	976	157	238
	953	234	124	765	235	976	157	238

Radix sort by Example

$L=$| 95 | 23 | 12 | 76 | 23 | 97 | 15 | 23 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 953 | 234 | 124 | 765 | 235 | 976 | 157 | 238 |

12
124

2

23	23	23
234	235	238

3

95	15
953	157

5

6

7

Radix sort by Example

- Thanks to stability of Bucket sort, values within buckets remain sorted with respect to lower registers (e.g., for bucket 3).

Radix sort by Example

$L=$| 1 | 2 | 2 | 2 | 9 | 1 | 7 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 124 | 234 | 235 | 238 | 953 | 157 | 765 | 976 |

1

2	2	2
234	235	238

2

7

9	9
953	976

9

Radix sort by Example

0	1	2	3	4	5	6	7
124	157	234	235	238	765	953	976

Complexity of Radix sort

Overall complexity: O(n log k)

