
YSC2229: Introductory Data Structures
and Algorithms

Week 05: Best-Worst Complexity of Sorting

Best worst time for
comparison-based sorting

• Quicksort, Merge sort have complexity O(n log n)
• Quicksort, Insertion sort, Merge sort are all comparison-based sorting algorithms: they

compare elements pairwise;
• An “ideal” algorithm will always perform no more than t(n) comparisons, where n is

the size of the array being sorted;
• What is then t(n)?

• A number of possible orderings of n elements is n!, and such an algorithm should find
"the right one" by following a path in a binary tree, where each node corresponds to
comparing just two elements.

Decision tree of
a comparison-based sorting

• Example: array [A, B, C] of three elements;
• All possible orderings between A, B, and C are possible.

A < B?

B < C?

A < C?

B < C?

A < C?A<B<C

A<C<B

C<B<A

B<C<AB<A<CC<A<B| {z }
3! = 6 leaves

|
{z

}

t(n)
comparisons

yes

yes

yes yes

yes

no

no

no

no

no

Best-worst case complexity analysis

• By making t(n) steps in a decision tree, the algorithm should be
able to say, which ordering it is;

• The number of reachable leaves in t(n) steps is 2t(n);
• The number of possible orderings is n! is, therefore

2t(n) ≥ n!

2t(n) ≥ n!

t(n) ≥ log2(n!)

Stirling’s formula for large n: n! ⇡
p
2⇡n

⇣n
e

⌘n

t(n) ≈ n logen
 = (loge2) n log2n

t(n) ∈ O(n log n)

Best-worst case complexity analysis

Can we do sorting better than
in O(n log n)?

Yes, if we don’t base it on comparisons.

Quiz

Answer: O(n)

• We know that it has to be 1, 2, …, n-1, n, so just generate this sequence.

• We want to sort n integer numbers, all in the range 1…n;
• No repetitions, all numbers are present exactly once;
• What is the worst-case complexity?

Bucket sort

• We want to sort an array A of n records, whose keys are
integer numbers;

• All keys in A are in the range 1…k;
• There might be repeated keys, some keys might be absent;
• Idea: allocate k “buckets” and put records into them, the
“flush” the buckets in their order.

Bucket sort
BucketSort (A[0 … n-1], k) {
 buckets := array of k empty lists;

 for (i = 0..n-1) {
 key := A[i].key;
 bucket := buckets[key];
 buckets[key] := bucket ++ [A[i]];
 }

 result = []
 for (j = 0..k-1) {
 result := result ++ buckets[j];
 }
 return result;
}

// create k empty buckets

// find the bucket for the key
// add the record into bucket

// get the next key

// concatenate all buckets

Bucket Sort by Example
Keys are integer numbers, k = 6

1 2 3 4 5 6

[] [] [] [] [] []

A =
0 1 2 3 4 5 6 7

6 2 3 1 5 3 5 2

Bucket Sort by Example
Keys are integer numbers, k = 6

A =

1 2 3 4 5 6

[] [] [] [] [] [6]

0 1 2 3 4 5 6 7

6 2 3 1 5 3 5 2

Bucket Sort by Example
Keys are integer numbers, k = 6

A =

1 2 3 4 5 6

[] [2] [] [] [] [6]

0 1 2 3 4 5 6 7

6 2 3 1 5 3 5 2

Bucket Sort by Example
Keys are integer numbers, k = 6

A =

1 2 3 4 5 6

[] [2] [3] [] [] [6]

0 1 2 3 4 5 6 7

6 2 3 1 5 3 5 2

Bucket Sort by Example
Keys are integer numbers, k = 6

A =

1 2 3 4 5 6

[1] [2] [3] [] [] [6]

0 1 2 3 4 5 6 7

6 2 3 1 5 3 5 2

Bucket Sort by Example
Keys are integer numbers, k = 6

A =

1 2 3 4 5 6

[1] [2] [3] [] [5] [6]

0 1 2 3 4 5 6 7

6 2 3 1 5 3 5 2

Bucket Sort by Example
Keys are integer numbers, k = 6

0 1 2 3 4 5 6 7

6 2 3 1 5 3 5 2A =

1 2 3 4 5 6

[1] [2] [3, 3] [] [5] [6]

Bucket Sort by Example
Keys are integer numbers, k = 6

0 1 2 3 4 5 6 7

6 2 3 1 5 3 5 2A =

1 2 3 4 5 6

[1] [2] [3, 3] [] [5, 5] [6]

Bucket Sort by Example
Keys are integer numbers, k = 6

0 1 2 3 4 5 6 7

6 2 3 1 5 3 5 2A =

1 2 3 4 5 6

[1] [2, 2] [3, 3] [] [5, 5] [6]

Bucket Sort by Example
1 2 3 4 5 6

[1] [2, 2] [3, 3] [] [5, 5] [6]++ ++++++++

[1, 2, 2, 3, 3, 5, 5, 6]result =

Bucket Sort Worst-case Complexity
 buckets := array of k empty lists;

 for (i = 0..n-1) {
 key := A[i].key;
 bucket := buckets[key];
 buckets[key] := bucket ++ [A[i]];
 }

 result = []
 for (j = 0..k-1) {
 result := result ++ buckets[j];
 }
 return result;

O(k)

|
{z

}

O(n)

O(k)

|{z}

Overall complexity: O(n + k)

• Bucket sort works for any sets of keys, known in advance;
• For instance, it can work with a pre-defined set of strings;
• But what if the size k of the set of keys is much larger than n?

• The complexity O(n + k) is not so good in this case.

Remarks on Bucket Sort

Stability of Sorting Algorithms

• Is Insertion sort stable?
• Yes

• What about Bucket sort?
• Yes

• Merge sort?
• Maybe. It depends on how we divide the list into two and how we merge

them, resolving situations for elements with the same key.
• Quicksort?

• Maybe. Depends on the implementation of the partition step.

A sorting algorithm is stable if, when two records in the original array have
the same key, they stay in their original order in the sorted result.

Radix sort
• An enhancement of the Bucket sort’s idea, for the case

when the size of key set k in the array A is very large;
• Idea: partition each key using its decimal representation:

• key = a + 10 b + 100 c + 1000 d + …

• then, sort keys by each register of the decimal representation, right-to-left,
using Bucket sort

• For each internal bucket sort k = 10 (the base of decimal representation);

• Essentially:
RadixSort(A) {
 BucketSort A by a with k = 10;
 BucketSort A by b with k = 10;
 BucketSort A by c with k = 10;
 …
}

Radix sort

RadixSort(A) {
 L := zip(A.keys, A);
 while (some key in L.fst is non zero) {
 L := BucketSort(L[keys mod 10], 10);
 L.fst := L.fst / 10;
 }
 return L.snd;
}

(in very crude pseudocode)

// sort by last register
// shift L keys’ representation to the next register

// return sorted second component

Radix sort by Example

0 1 2 3 4 5 6 7

234 124 765 238 976 157 235 953A =

L =
234 124 765 238 976 157 235 953

234 124 765 238 976 157 235 953

Radix sort by Example

L =
234 124 765 238 976 157 235 953

234 124 765 238 976 157 235 953

3 4 5 6 7 8

234

234

124

124

765

765

238

238

976

976

157

157

235

235

953

953

Radix sort by Example

L =
953 234 124 765 235 976 157 238

953 234 124 765 235 976 157 238

3 4 5 6 7 8

Radix sort by Example

L =
95 23 12 76 23 97 15 23

953 234 124 765 235 976 157 238

2 3 5 6 7

95

953

15

157

12

124

76

765

23

234

23

235

97

976

23

238

Radix sort by Example

L =
12 23 23 23 95 15 76 97

124 234 235 238 953 157 765 976

2 3 5 6 7

• Thanks to stability of Bucket sort, values within buckets remain
sorted with respect to lower registers (e.g., for bucket 3).

Radix sort by Example

L =
1 2 2 2 9 1 7 9

124 234 235 238 953 157 765 976

1 2 7 9

1

124

1

157

2

234

2

235

2

238

7

765

9

953

9

976

Radix sort by Example

L =
- - - - - - - -

124 157 234 235 238 765 953 976

1 2 7 9

0 1 2 3 4 5 6 7

124 157 234 235 238 765 953 976

Complexity of Radix sort

RadixSort(A) {
 L := zip(A.keys, A);
 while (some key in L.fst is non zero) {
 L := BucketSort(L[keys mod 10], 10);
 L.fst := L.fst / 10;
 }
 return L.snd;
}

O(n)

O(log10k) iterations,
O(n) each

|
{z

}

Overall complexity: O(n log k)

