YSC2229: Introductory Data Structures and Algorithms

Week 05: Best-Worst Complexity of Sorting

- Quicksort, Merge sort have complexity O(n log n)
- compare elements *pairwise*;
- the size of the array being sorted;
 - What is then t(n)?
- comparing just two elements.

Best worst time for comparison-based sorting

• Quicksort, Insertion sort, Merge sort are all comparison-based sorting algorithms: they

• An 'ideal' algorithm will always perform no more than t(n) comparisons, where n is

• A number of possible orderings of n elements is n!, and such an algorithm should find "the right one" by following a path in a *binary tree*, where each node corresponds to

Decision tree of a comparison-based sorting

- **Example**: array [A, B, C] of three elements;
- All possible orderings between A, B, and C are possible.

- By making t(n) steps in a decision tree, the algorithm should be able to say, which ordering it is;
- The number of reachable leaves in t(n) steps is $2^{t(n)}$;
- The number of possible orderings is n! is, therefore

Best-worst case complexity analysis

2t(n) > n!

Best-worst case complexity analysis

- 2t(n) > n!
- $t(n) \ge \log_2(n!)$
- Stirling's formula for large n: $n! \approx \sqrt{2\pi n} \left(\frac{n}{c}\right)^n$
 - $t(n) \approx n \log_e n$ $= (log_e 2) n log_2 n$

 $t(n) \in O(n \log n)$

Can we do sorting better than in O(n log n)?

Yes, if we don't base it on *comparisons*.

Quiz

- We want to sort n integer numbers, all in the range 1...n;
- No repetitions, all numbers are present exactly once;
- What is the worst-case complexity?

- We know that it has to be 1, 2, ..., n-1, n, so just generate this sequence.
- Answer: O(n)

Bucket sort

- We want to sort an array / integer numbers;
- All keys in A are in the range 1...k;
- There might be repeated keys, some keys might be absent;
- Idea: allocate k "buckets" and put records into them, the "flush" the buckets in their order.

• We want to sort an array A of n records, whose keys are

Bucket sort

BucketSort (A[0 ... n-1], k) {

for (i = 0..n-1) { key := A[i].key; // get the next key }

```
result = []
for (j = 0..k-1) { // concatenate all buckets
  result := result ++ buckets[j];
return result;
```

buckets := array of k empty lists; // create k empty buckets

bucket := buckets[key]; // find the bucket for the key buckets[key] := bucket ++ [A[i]]; // add the record into bucket

	0	1	2	3	4	5	6	7
A =	6	2	3	1	5	3	5	2

3	4	5	6	7
1	5	3	5	2

3	4	5	6	7
1	5	3	5	2

3	4	5	6	7
1	5	3	5	2

	0	1	2	3	4	5	6	7
A =	6	2	3	1	5	3	5	2

	0	1	2	3	4	5	6	7
A =	6	2	3	1	5	3	5	2

	0	1	2	
A =	6	2	3	

	0	1	2	
A =	6	2	3	

	0	1	2	
A =	6	2	3	

2 1

[1] ++ [2, 2] ++ [3, 3] ++ [] ++ [5, 5] ++ [6]

result = [1, 2, 2, 3, 3, 5, 5, 6]

Bucket Sort Worst-case Complexity


```
buckets := array of k empty lists;
O(k) \longrightarrow \begin{cases} for (j = 0..k-1) \{ result := result ++ buckets[j]; \} \end{cases}
```

```
Overall complexity: O(n + k)
```

Remarks on Bucket Sort

- Bucket sort works for any sets of keys, known in advance;
- For instance, it can work with a pre-defined set of strings;
- But what if the size k of the set of keys is much larger than n?
 - The complexity O(n + k) is not so good in this case.

Stability of Sorting Algorithms

A sorting algorithm is **stable** if, when two records in the original array have the same key, they stay in their original order in the sorted result.

- Is Insertion sort stable?
 - Yes
- What about Bucket sort? • Yes
- Merge sort?
 - them, resolving situations for elements with the same key.
- Quicksort?
 - Maybe. Depends on the implementation of the partition step.

• Maybe. It depends on how we divide the list into two and how we merge

Radix sort

- An enhancement of the Bucket sort's idea, for the case when the size of key set k in the array A is very large;
- Idea: partition each key using its decimal representation: • key = a + 10b + 100c + 1000d + ...
- - then, sort keys by each register of the decimal representation, right-to-left, using Bucket sort
 - For each internal bucket sort k = 10 (the base of decimal representation);
- Essentially:
- RadixSort(A) {
 - BucketSort A by a with k = 10;
 - BucketSort A by b with k = 10;
 - BucketSort A by c with k = 10;

•••

(in very crude pseudocode)

```
RadixSort(A) {
  L := zip(A.keys, A);
  while (some key in L.fst is non zero) {
  }
  return L.snd; // return sorted second component
```

Radix sort

L := BucketSort(L[keys mod 10], 10); //sort by last register L.fst := L.fst / 10; // shift L keys' representation to the next register

	0	1	2	3	4	5	6	7
A =	234	124	765	238	976	157	235	953

234	124	765	238	976	157	235	953
234	124	765	238	976	157	235	953

238	976	157	235	953
238	976	157	235	953

76	23	97	15	23	
765	235	976	157	238	

sorted with respect to lower registers (e.g., for bucket 3).

• Thanks to stability of Bucket sort, values within buckets remain

2	2	2	
234	235	238	

2	9	1	7	9	
238	953	157	765	976	

0	1	2	3	4	5	6	7
124	157	234	235	238	765	953	976

Complexity of Radix sort

 \blacktriangleright L := zip(A.keys, A); while (some key in L.fst is non zero) { L := BucketSort(L[keys mod 10], 10); L.fst := L.fst / 10;

```
Overall complexity: O(n log k)
```