YSC2229: Introductory Data Structures
and Algorithms

NN b

VWeek 05: Best-\Worst Complexity of Sorting

Best worst time for
comparison-based sorting

* Quicksort, Merge sort have complexity O(n log n)

» Quicksort, Insertion sort, Merge sort are all comparison-based sorting algorithms: they
compare elements pairwise;

* An “ideal” algorithm will always perform no more than t(n) comparisons, where n Is
the size of the array being sorted;

* What is then t(n)?

* A number of possible orderings of n elements is n!, and such an algorithm should find
"'the right one" by following a path In a binary tree, where each node corresponds to

comparing just two elements.

Decision tree of
a comparison-based sorting

- Example: array [A, B, C] of three elements;

» All possible orderings between A, B, and C are possible.

yes A < B?\

B < (C? B < (C?
H(n) / " YN\
comparisons
A<B<C A< (C? A< C? C<B<A
A<C<B C<A<B| [B<A<C B<C<A

3! = 6 leaves

Best-worst case complexity analysis

* By making t(n) steps in a decision tree, the algorithm should be
able to say, which ordering It Is;

he number of reachable leaves in t(n) steps i1s 2t0);

* [he number of possible orderings is n! Is, therefore

2tn) > nl

Best-worst case complexity analysis

2tn) > nl

t(n) > loga(n!)

n n
Stirling’s formula for large n: n! =~ Vv 21mn (—)
e

t(n) = N logen
= (loge2) N logen

t((n) € O(n log n)

(Can we do sorting better than
N O(n log n)!

Yes, if we don't base it on comparisons.

Quiz

- VWe want to sort n integer numbers, all in the range |...n;
* No repetitions, all numbers are present exactly once;

* What Is the worst-case complexity?

Answer: O(n)

» We know that it hasto be |, 2, ...,n-1,n, so just generate this sequence.

Bucket sort

* We want to sort an array A of n records, whose Keys are
integer numbers;

* All keys In A are In the range | .. .k;

» [here might be repeated keys, some keys might be absent;

- ldea: allocate k “buckets’” and put records into them, the
“flush” the buckets In their order.

Bucket sort

BucketSort (A[0 .. n-1], k) {
buckets := array of k empty lists; // create kempty buckets

for (1 = 0..n-1) {

key := A[1].key; // getthe nextkey
bucket := buckets[key]; // find the bucket for the key

buckets[key] := bucket ++ [A[1]]; // add the record into bucket
}

result = []

for (J = 0..k-1) { // concatenate all buckets
result := result ++ buckets[]];

}

return result;

}

Bucket Sort by Example

Keys are integer numbers, kK = 6

A= g1 2/ 3 1 5 3 5 2

Bucket Sort by Example

Keys are integer numbers, kK = 6

A= g1 2/ 3 1 5 3 5 2

I

]

S

w

] 2 3 4 ® o

Bucket Sort by Example

Keys are integer numbers, kK = 6

A= g1 2/ 3 1 5 3 5 2

]

Bucket Sort by Example

Keys are integer numbers, kK = 6

A= g1 2/ 3 1 5 3 5 2

3]

g

] 2 3 4 ® o

Bucket Sort by Example

Keys are integer numbers, kK = 6

A= g1 2/ 3 1 5 3 5 2

]

Bucket Sort by Example

Keys are integer numbers, kK = 6

A= g1 2/ 3 1 5 3 5 2

I

]

g

] 2 3 4 ® o

Bucket Sort by Example

Keys are integer numbers, kK = 6

A= g1 2/ 3 1 5 3 5 2

Bucket Sort by Example

Keys are integer numbers, kK = 6

A= 61 2 3 1|5 3

5
I

15, 5]

.
N
Qo
N
O1

@)

Bucket Sort by Example

Keys are integer numbers, kK = 6

A= g1 2/ 3 1 5 3 5 2

Bucket Sort by Example

| 2 3 4 O ¢

[1] ++ [2,2] ++ [3,3] ++ [] ++

result = [[1,2,2,3,3,5,5, 6]

Bucket Sort Worst-case Complexity

O(K) =3 buckets := array of k empty lists;

for (1 = 0..n-1) {

key := A[1].key;
O(ﬂ) > bucket := buckets[key];

buckets[key] := bucket ++ [A[i]];

}

result = []

for (J = 0..k-1) {
result := result ++ buckets[j];

O(k) =———)

return result;

Overall complexity: O(n + k)

Remarks on Bucket Sort

* Bucket sort works for any sets of keys, known in advance;

» For Instance, 1t can work with a pre-defined set of strings;

» But what If the size k of the set of keys i1s much larger than n?

* The complexity O(n + k) I1s not so good In this case.

Stability of Sorting Algorithms

A sor

Ing algo

the sa

ithm 1s stable If, when two records in the original array have

me key,

hey stay In their original order in the sorted result.

* |s Insertion sort stable!
e Yes

* What about Bucket sort!
° Yes

* Merge sort!

It depends on how we divide the list iInto two and how we merge
them, resolving situations for elements with the same key.

* Quicksort!
. .Depends on the implementation of the partition step.

Radix sort

» An enhancement of the Bucket sort's idea, for the case
when the size of key set k In the array A Is very large;

* Ildea: partition each key using its decimal representation:
+key=a+ 10b+ 100c+ 1000d + ...

- then, sort keys by each register of the decimal representation, right-to-left,
using Bucket sort

» For each internal bucket sort k = [0 (the base of decimal representation);

» £ssentially:
RadixSort (A) {

BucketSort A by a with k = 10;
BucketSort A by b with k = 10;
BucketSort A by ¢ with k = 10;

Radix sort

(In very crude pseudocode)

RadixSort(A) {
L := zip(A.keys, A);
while (some key 1in L.fst 1s non zero) {
L, := BucketSort(L[keys mod 10], 10); // sortby lastreqgister
L.fst := L.fst / 10; //shift L keys' representation to the next register
}

return L.snd; // return sorted second component

}

Radix sort by example

234 | 124 | /60 | 238 | 976 | 157 | 235 | 953
234 | 124 | 7605 | 238 | 976 | 157 | 235 | 953
234 | 124 | /60 | 238 | 9706 | 157 | 235 | 953

Radix sort by Example

238
238

157

157

976
976

765 | 235
/65 | 235

SO AP
LO | O
o | O
L | O
SO
AN | N
I
Lo | O
Yy | Y
O | ©
N~ | P~
o) | O
O | GO
SO
AN | N
L | O
O | ©
N~ | P~
< | Y
AN | N
v | Y
N | N
o D
AN | N

234 | 124

234 | 124

953

953

Radix sort by Example

233

233

197

197

970
970

235
235

/65
/65

124

124

3 || 234

95
953 || 234

| =

Radix sort by Example

97
976

/6
/65

95 | 15

953 | 157

23 | 23 | 23
234 | 235 | 238

12

124

Radix sort by Example

L 121l 23 | 23 | 23 || o5 | 15 |l 76 || 97
" 1124 || 234 235 @ 238][953 157 |l 765 || 976

o ©® © OO0
v W W W@
2 3 5 o /

» [hanks to stability of Bucket sort, values within buckets remain
sorted with respect to lower registers (e.g,, for bucket 3).

Radix sort by Example

124

234

235

233

953

197

/65

970

124

234

235

238

/65

953

976

Radix sort by example

|
l

| =

765 | 9563 | 970

234 | 235 | 233

124 | 157 || 234 | 235 | 238 903 | 9706

157

124

Complexity of Radix sort

RadixSort (A) {
O(n) =———— 1, = zlp(A.keys, A);

while (some key 1in L.fst 1s non zero) {

O(logiok) iterations, L. := BucketSort(L[keys mod 10], 10);
O(n) each L.fst := L.fst / 10;
}
return L.snd;
}

Overall complexity: O(n log k)

