
YSC2229: Introductory Data Structures
and Algorithms

Wrapping Up

2

• You will learn:

Why take this class?

3

• You will have learned:

• To understand and evaluate classic algorithms

• How to design algorithms that are fast

• How to choose the right data structures for your problems

• How to exhaustively test your code

• A little bit about compilers and memory management

• More functional and imperative programming in OCaml

• How to be a better programmer (not just in OCaml, but any language)

Why take this class?

• Correctness and Loop Invariants

• Time Complexity and Order Notation

• Reasoning about Recursive Algorithms

• Searching Algorithms

• InsertSort, MergeSort, QuickSort

• Best-case Sorting Complexity

• Sorting in Linear Time: BucketSort, RadixSort

• Binary Heaps, HeapSort, Priority Queues

• Abstract Data Types: Stacks, Queues

• Dynamic Memory Allocation and Reclamation

• Hash-Tables

• Equivalence Checking and Union-Find

• Bloom Filters and False Positives

• Substring Search Algorithms

• Constraint Solving and Backtracking

• Optimisation and Dynamic Programming

• Input/Output and Binary Encodings

• Data Compression and Huffman Encoding

• Representing Sets via Binary Search Trees

• Graphs, Graph Traversals, Topological Sort

• Shortest Paths, Spanning Trees

• Computational Geometry: Segments, Intersections

• Operations with Segments, Polygons, Convex Hulls

Now you know about…

• Bloom Filters and False Positives

• Substring Search Algorithms

• Constraint Solving and Backtracking

• Optimisation and Dynamic Programming

• Input/Output and Binary Encodings

• Data Compression and Huffman Encoding

• Representing Sets via Binary Search Trees

• Graphs, Graph Traversals, Topological Sort

• Shortest Paths, Spanning Trees

• Computational Geometry: Segments, Intersections

• Operations with Segments, Polygons, Convex Hulls

• Correctness and Loop Invariants

• Time Complexity and Order Notation

• Reasoning about Recursive Algorithms

• Searching Algorithms

• InsertSort, MergeSort, QuickSort

• Best-case Sorting Complexity

• Sorting in Linear Time: BucketSort, RadixSort

• Binary Heaps, HeapSort, Priority Queues

• Abstract Data Types: Stacks, Queues

• Dynamic Memory Allocation and Reclamation

• Hash-Tables

• Equivalence Checking and Union-Find

Now you know about…

6

I use functors and Bloom filters
to write tail-recursive SAT-solvers  

and compress binary files 
before breakfast

pls no more oh-caml

Before IDS&A After IDS&A

• YSC3203 Advanced Algorithms and Data Structures
• probabilistic algorithms, formal proofs of complexity

• YSC3236 Functional Programming and Proving
• formal reasoning about correctness of algorithms

• YSC3232 Software Engineering
• team work on large software projects

• YSC4231: Parallel, Concurrent and Distributed Programming
• algorithms for multiprocessor computers and distributed systems

• YSC4230: Programming Language Design and Implementation
• more on compilers, memory management, program optimisations

More DS&A in Yale-NUS MCS

Where to Go From Here

A L G O R I T H M S
I N T R O D U C T I O N T O

T H I R D E D I T I O N

T H O M A S H.

C H A R L E S E.

R O N A L D L .

C L I F F O R D S T E I N

R I V E S T

L E I S E R S O N

C O R M E N

Where to Go From Here
• Any area that uses computing deals with algorithms

• Algorithms and data structures are everywhere!

• Here are some further reading suggestions…

… if you’re into
functional programming

… if you’re into
probabilities and big data

… if you’re into
elegant math

The best programs are written

so that computing machines can perform them quickly

and so that human beings can understand them clearly.

Donald Knuth
Author of KMP, TeX, “The Art of Computer Programming”

1974 Turing Award Winner

Thanks!

The End

P. S.

Please, don’t forget to submit the module evaluation
by 23 April 2021!

