
YSC2229: Introductory Data Structures
and Algorithms

Ilya Sergey

ilya.sergey@yale-nus.edu.sg
1

mailto:ilya.sergey@yale-nus.edu.sg

Some Terminology
• Data represents information

• Computations represent data processing

• An algorithm is a sequence of computational steps that transform
the input data (given) into the output data (wanted).

• A data structure is a representation of data that makes it suitable
for algorithmic treatment.

2

What this course is about?

3

Algorithms in a Nutshell

4

AlgorithmINPUT OUTPUT

Desired Guarantee:  
for every input, the algorithm must provide  
the correct output quickly.

• Searching:
finding a word in a text or an article to buy on Amazon

• Storing and retrieving data:  
representing files in you computer

• Data compression/decompression:
transferring files on the internet

• Path finding:
getting from a point A to point B in the most efficient way

• Geometric problems:
finding the closes fuel station, shape intersection

5

Solving computational problems

6

Thinking Algorithmically is Fun

Torpe
(the prosperous crab)

7

8

9

10

11

12

13

14

15

MOVE
!

16

17

Rules of the Game
• The problem: pack Torpe’s belongings into a cave (2D)
• Requirements:

• No overlapping, all within the room, at least 30% covered
• Try to find the best (maximal cost)

• Available actions:
• Moving the furniture
• Rotating the furniture

18

Q1: What Data Structures should We Use?

• Representing the cave

• Representing the furniture items

• Encoding the item costs

• Encoding the solutions

19

i.e., (4.5, 3.534635257) or (5,0). The sequence of the vertices is arranged in a way that the interior
of the polygon will stay on the left, when one “walks” from one vertex to the next one. The successor of
the last vertex in the list is the �rst vertex.

For the room and the coordinates of furniture pieces, the �rst vertex is always (0, 0). However, in
your solutions, furniture pieces are going to be moved and rotated, so the �rst coordinate may no longer
be (0, 0). The following grammar in BNF1 formally speci�es the format of the problem description:

<problem-instance> ::= <problem-identifier> ":" <room> "#" <furniture-set>
<problem-identifier> ::= <int>
<room> ::= <point-sequence>
<furniture-list> ::= <furniture> | <furniture> ";" <furniture-list>
<furniture> ::= <cost> ":" <furniture-location>
<cost> ::= <int>

<furniture-location> ::= <point-sequence>
<point-sequence> ::= <point> | <point> "," <point-sequence>
<point> ::= "(" <double> "," <double> ")"

As an example, the text below describes the problem from Figures 1, the room and three furniture
entries, in the de�ned format, numbered 1:

1: (0,0), (2,0), (2,1), (1,1), (1,2), (0,2) # 1:(0,0), (1,0), (1,1), (0,1); 2:(0,0), (2,0), (0,1); 3:(0,0), (0.5,0), (0.5,2), (0,2)

In this example, the room is encoded as a polygon with six comma-separated integer vertices (0,0),
(2,0), (0,0), (2,1), (1,1), (1,2), (0,2), which follow the problem number. After the # sign,
follow three furniture entries. The �rst one, 1: (0,0), (1,0), (1,1), (0,1), for instance, corre-
sponds to the square A from Figure 1, with unit density 1; the second one, 2: (0,0), (2,0), (0,1)
is a triangle B, whose unit density is 2, etc.

Your goal for this task is to compute, for each of the 30 RFP instances, a set of positions of furniture
items, so they would �t the room (i.e., would not intersect its boundaries), would not overlap between
each other, and would correspond to items from the list, speci�ed in the problem description. You can
use each item only once, but it is okay not to use all available items (som of them might not even �t the
room). Furniture items can be rotated and translated (i.e., moved to new positions) in order to �t the room,
whose position is �xed. A “furnishing” is considered successful if it covers 30% or more of the room
area. Solutions that cover smaller area of a room will not be accepted by the server. At the moment, let
us ignore the unit costs: they will matter for the competition, outlined in Section 2.4.

For a submitted solution, the server checks that all encoded pieces of furniture at their new positions
are those from the problem statement, up to rotation and translation, but not up to permutation of the
order of the vertices in the encoding of polygons. That is if a piece of furniture with 4 vertices (A, B, C ,
D) was encoded as A,B,C,D, so that A0, B0, C 0, D0 is the encoding of its rotation/translation in your
solution, then A0 should be an image of A, B0 is an image of B, etc.

The solution for this task is a text �le. You can implement your algorithm in any program-
ming language of your preference and use any libraries you consider necessary. You do not have
to (and should not) submit the code.

1
https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form

3

R

R

A

B

C

A B C

1

2

3

20

1

2

3

21

Q2: Algorithm for Checking Solutions

• What is an acceptable solution?

• How to check it using the data types we already have?

22

• Cave size: 9
• 39 furniture pieces
• Coverage: 40%

23

• Cave size: 180
• 500 furniture pieces
• Coverage: 46%

24

Q3: Algorithm for Solving the Problem

• What are the main steps?

• How to produce an acceptable solution?

• When should we stop?

25

Some solutions

26

27

28

29

30

• You will learn:
• To understand and evaluate some classic algorithms
• How to design algorithms that are fast

• How to choose the right data structures for your problems
• How to exhaustively test your code
• A little bit about compilers and memory management

• More functional and imperative programming in OCaml
• How to be a better programmer (not just in OCaml, but any language)

• Expect this to be a very challenging, implementation-oriented course (duh!)
• Programming assignments might take up tens of hours per week…

Why take this class?

31

Workload in 2020

1DPH ��KU ��KU ��KU ��KU ��KU ��KU ��KU ��KU ��KU ��KU 0HDQ
<6&������,QWURGXFWRU\�'DWD�6WUXFWXUHV�DQG�$OJRULWKPV � � � � � � � � � � �����

&RXUVH�&RPPHQWV
$���:KDW�KHOSHG�\RX�OHDUQ�LQ�WKH�FRXUVH�RYHUDOO"��IRU�H[DPSOH��OHFWXUH��VHPLQDU�GLVFXVVLRQV��VHPLQDU
SURIHVVRU��UHDGLQJV��DVVLJQPHQWV��DQG�FRQQHFWLRQV�WR�RWKHU�FRXUVHV���%ULHIO\�H[SODLQ�ZK\�\RX�IRXQG
WKHP�KHOSIXO�
&RPPHQWV
/HFWXUHV��SHHU�WXWRULQJ�VHVVLRQV��OHFWXUH�QRWHV
/HFWXUH�QRWHV�DUH�YHU\�FRPSUHKHQVLYH�DQG�FRYHU�HYHU\WKLQJ�LQ�WKH�OHFWXUH�LI�ZH�PLVVHG�DQ\WKLQJ��/HFWXUHV�DUH�DOVR�LQ�JHQHUDO�YHU\
ZHOO±VWUXFWXUHG�DQG�H[SODLQV�HYHU\WKLQJ�FOHDUO\�
7KH�KRPHZRUN�DQG�SURMHFWV�DUH�YHU\�ZHOO±GHVLJQHG�DQG�DOZD\V�SXVK�XV�KDUGHU�WR�GR�EHWWHU��,�SDUWLFXODUO\�OLNH�WKDW�VRPH�SDUWV�RI�LW
DUH�RSHQ±HQGHG��H�J�KRZ�WR�GHVLJQ�D�JRRG�WHVW��±�LW�LV�QRW�RIWHQ�WKDW�SHRSOH�ZLOO�KDYH�WKH�H[DFW�VDPH�VROXWLRQ�
6HPLQDU��SURIHVVRU
V�OHFWXUH�QRWHV��DVVLJQPHQWV��SURIHVVRU��6HPLQDU��ERWK�SURIHVVRU�DQG�LQWHUDFWLYH�FRGLQJ�H[HUFLVHV�ZHUH�YHU\
KHOSIXO�WR�XQGHUVWDQGLQJ��/HFWXUH�QRWHV��3URIHVVRU�,O\D�6HUJH\
V�OHFWXUH�QRWHV�DUH�TXLWH�DPD]LQJ��VR�WKRURXJK�ZLWK�GHWDLOHG
H[SODQDWLRQ�DQG�H[DPSOHV��:KDWHYHU�DQ\RQH�PLVVHG�LQ�FODVV�FRXOG�HDVLO\�UHIHU�WR�WKH�OHFWXUH�QRWHV�WR�XQGHUVWDQG��$VVLJQPHQWV�
1LFH�DSSOLFDWLRQV�RI�WKH�LQ±FODVV�PDWHULDO��'HILQLWHO\�D�ELJ�SDUW�WR�PH�XQGHUVWDQGLQJ�WKH�PDWHULDO�WKURXJK�P\�RZQ�LPSOHPHQWDWLRQV�
7KH�OHFWXUHV�LQ�FODVV�DOZD\V�SURYLGHG�D�FOHDU�XQGHUVWDQGLQJ�LQWR�WKH�WRSLF�DW�KDQG��DQG�ZHUH�JHQHUDOO\�ZHOO±VWUXFWXUHG�DQG
RUJDQLVHG��7KH�VHPLQDU�SURIHVVRU�ZDV�DOVR�UHDGLO\�DYDLODEOH�WR�DGGUHVV�DQ\�TXHULHV�ZLWK�WKH�FRQFHSWV�DQG�DVVLJQPHQWV��7KH
OHFWXUH�QRWHV�DQG�FRGH�H[DPSOHV�XSORDGHG�E\�WKH�VHPLQDU�SURIHVVRU�DUH�DOVR�YHU\�FOHDU�DQG�YHU\�KHOSIXO�LQ�OHDUQLQJ�
3HHU�WXWRULQJ�ZDV�VWURQJHVW�ZD\�IRU�PH�WR�UHLQIRUFH�ZKDWHYHU�ZDV�WDXJKW�GXULQJ�OHFWXUH�
+RPHZRUN��EHFDXVH�LW�ZDV�LQGLYLGXDO�ZRUN��,�ZDV�IRUFHG�WR�XQGHUVWDQG�WKH�PDWHULDO�DQG�LPSOHPHQW�FRGLQJ�P\VHOI�
ZHHNO\�DVVLJQPHQWV
7KH�LQ±FODVV�OHFWXUHV�DQG�OHFWXUHV�QRWHV�ZHUH�YHU\�KHOSIXO�
7KH�IHHGEDFN�SURYLGHG�E\�WKH�3URIHVVRU�IRU�HDFK�DVVLJQPHQW�DQG�WKH�SRVVLELOW\�WR�UHVXEPLW�PDGH�WKH�OHDUQLQJ�SURFHVV�YHU\
LQVLJKWIXO�DQG�IUXLWIXO�
/HFWXUHV�DQG�DVVLJQPHQWV�ZHUH�JUHDW�

$���+RZ�FRXOG�WKLV�FRXUVH�FKDQJH�LQ�WKH�IXWXUH�WR�LPSURYH�VWXGHQW�OHDUQLQJ"
&RPPHQWV
7KH�ZHHNO\�H[HUFLVHV�FRXOG�EH�D�ELW�PRUH�IURP�HDVLHU�WR�WKH�KDUGHU�VWUXFWXUH��0DQ\�H[HUFLVHV�UHTXLUHG�XQGHUVWDQGLQJ�RI�WKH�IXOO
WRSLF�DQG�,�WKLQN�WKDW�LI�RXW�RI���RU���H[HUFLVHV�WKH�ILUVW�RQH�ZLOO�EH�YHU\�VLPSOH�DQG�JUDGXDOO\�LW�ZLOO�JR�KDUGHU��WKH�KRPHZRUN�ZLOO�EH
PRUH�EHQHILFLDO�
1R�VXJJHVWLRQV�IRU�QRZ��WKLV�FRXUVH�ZDV�D�YHU\�JRRG�OHDUQLQJ�H[SHULHQFH�
,�WKLQN�WKH�DVVLJQPHQWV�ZHUH�D�ELW�VSRRQIHG�VRPHWLPHV��127�LQ�',)),&8/7<��EXW�LQ�WHUPV�RI�EDVH�VWUXFWXUH�JLYHQ��,�IHHO�OLNH�E\
PDNLQJ�VWXGHQWV�EXLOG�WKH�SURJUDPV�PRUH�IURP�WKH�JURXQG�XS��WKDW�ZRXOG�IDFLOLWDWH�XQGHUVWDQGLQJ�EHWWHU��UDWKHU�MXVW�JRLQJ�VWUDLJKW
IRU�WKH�KLJK±OHYHO�LPSOHPHQWDWLRQ��7KHUH�DUH�FHUWDLQ�GDWD�VWUXFWXUHV�ZH�OHDUQW��KHDSV��JUDSKV��WKDW�,�IHHO�OLNH�,�KDYHQ
W�IXOO\�JUDVSHG
MXVW�EHFDXVH�,�VNLSSHG�EXLOGLQJ�WKH�IRXQGDWLRQ�DQG�ZHQW�VWUDLJKW�WR�EXLOGLQJ�WKH�URRI�
1,/
,�IRXQG�WKH�ODVW���ZHHNV�VLJQLILFDQWO\�PRUH�FRQIXVLQJ�WKDQ�RWKHU�ZHHNV��EXW�WKLV�OLNHO\�LV�GXH�WR�KDYLQJ�WR�VWXG\�IURP�KRPH�FRPELQHG
ZLWK�D�ORVV�RI�PRWLYDWLRQ�
&RQVLGHULQJ�KRZ�WKH�KRPHZRUN�LV�ZHHNO\�DQG�WKHUH�LV�QR�OHHZD\�VLQFH�LW�LV�DOO�LQGLYLGXDO�ZRUN��,�IHHO�OLNH�WKH�JUDGLQJ�FRXOG�EH�PDGH
PRUH��EUHDWKDEOH��IRU�WKH�VWXGHQWV��0D\EH�DOORZLQJ�WKH�VWXGHQWV�WR�GURS�RQH�RU�WZR�KRPHZRUN�DVVLJQPHQW�JUDGHV�DW�WKH�HQG�RI�WKH
VHPHVWHU�FRXOG�DFFRXQW�IRU�H[WHUQDO�FLUFXPVWDQFHV
PRUH�LQWHUDFWLYH�OHFWXUHV
0D\EH�VRPH�ZHHNO\�DVVLJQPHQWV�DUH�D�ELW�WRR�GLIILFXOW�
3HUVRQDOO\���DP�LV�D�YHU\�KDUG�WLPH�WR�FRQFHQWUDWH�
,�WKLQN�PD\EH�WKHUH�FRXOG�EH�VRPH�UHDGLQJV�EHIRUH�VRPH�OHFWXUHV��VR�WKDW�ZH�GRQ
W�VSHQG�DV�PXFK�WLPH�LQ�OHFWXUHV�JRLQJ�RYHU�VWXII
WKDW�FRXOG�KDYH�EHHQ�TXLFNO\�SLFNHG�XS�

���

(10 respondents)

What else this course is about

32

Analysis of Algorithms

33

• Algorithm Correctness

• Algorithm Termination

• Time complexity

• Worst case
• Average case
• Best Worst case

34

Aspects that we will study

• Algorithm Correctness

• Algorithm Termination

• Time complexity

• Worst case
• Average case
• Best Worst case

35

• Algorithm Correctness — Does my algorithm really do what it’s supposed to do?

• Algorithm Termination — Does my algorithm always complete its work?

• Time complexity — How slow is my algorithm…

• Worst case — … in the worst possible case?

• Average case — … in an average case?

• Best Worst case — … if I do my best to optimise it?

Aspects that we will study

36

Correctness

Time Complexity Storage
Consumption

• tractable problems — admit solutions that run in “reasonable” time
(e.g., sorting, searching, compression/decompression)

•possibly intractable — probably don’t have reasonable-time
algorithmic solutions (e.g., SAT, graph isomorphism)

•practically intractable — definitely don’t have such solutions
(e.g. the Towers of Hanoi)

•non-computable — can’t be solved algorithmically at all
(e.g., the halting problem)

37

Algorithmic problems and Time Complexity

Why do we care about
Time Complexity?

|M | =
nX

i=1

(�1)i�1M1,i|M1,i|
������

a11 a12 a13
a21 a22 a23
a31 a32 a33

������
For a 3x3 matrix: =

a11

����
a22 a23
a32 a33

���� a12

����
a21 a23
a31 a33

����- + a13

����
a21 a22
a31 a32

����

a11(a22 · a33 � a23 · a32) - a12(a21 · a33 � a23 · a31) + a13(a21 · a32 � a22 · a31)

=

Laplace expansion:

z }| {

M’s element
at row 1,
column i z }| {

(1,i)-minor of M

39

Example: Determinant of a matrix

detLaplace :: Num a => Matrix a -> a  

detLaplace m
 | size m == 1 = m ! (1,1)
 | otherwise =  
 sum [(-1)^(i-1) * m ! (1,i) * detLaplace (minorMatrix 1 i m) |  
 i <- [1 .. ncols m]]

(in Haskell)

(demo)

|M | =
nX

i=1

(�1)i�1M1,i|M1,i|Laplace expansion:

40

Example: Determinant of a matrix

Determinant of a triangular matrix
is a product of its diagonal elements.

0

BBB@

a1,1 0 · · · 0
a2,1 a2,2 0 0
...

...
. . .

...
an,1 an,2 · · · an,n

1

CCCAL = U =

0

BBB@

a1,1 a1,2 · · · a1,n
0 a2,2 · · · a2,n
...

...
. . .

...
0 0 · · · an,n

1

CCCA

For a 3x3 matrix: =

- +

������

a11 a12 a13
0 a22 a23
0 0 a33

������

a11(a22 · a33 � a23 · 0) a12(0 · a33 � a23 · 0) a13(0 · a32 � a220) = a11 · a22 · a31

41

Triangular matrices

LU-decomposition: any square matrix M, such that its top-left
element is non-zero can be represented in a form

where L and U are lower- and upper-triangular matrices.

(demo)

M = LU

|M | = |L| · |U |Therefore,

detLU :: Num a => Matrix a -> a
detLU m = case luDecomp m of
 (l, u) -> diagProd l * diagProd u

42

Determinants via LU-decomposition

Determinant via
Laplace expansion

Determinant via
LU-decomposition

8 9 10

0.04

0.32

Time (s)

Size (n)

Time (s)

Size (n)8 9 10

3.17

≈0.00

11

0.01
⇡ const · n3

⇡ const · n!

43

Running time as a function of size

Problem size
Function

http://en.wikipedia.org/wiki/Googol

10 102 103 104

log2 n 3.3 6.6 10 13.3

n 10 100 1000 104

n log2 n 33 700 104 1.3⇥ 105

n2 100 104 106 108

n3 1000 106 109 1012

2n 1024 1.3⇥ 1030 > 10100 > 10100

n! 3⇥ 106 > 10100 > 10100 > 10100

44

Time demand depends on problem size

Problem Input size, n

sorting number of items to be sorted

searching size of the set to query

determinant calculation number of rows and columns
in the matrix

finding a shortest path number of “checkpoints” to choose from

“Sizes” of different problems

46

• Empirical — repeatedly run algorithm with different inputs to get some idea
of behaviour on different inputs

• was our selection of inputs representative?

• this consumes the very resource (time) we are trying to conserve!

• Theoretical — analysis of a “paper” version of the algorithm

• can deal with all cases (even impractically large input instances);

• machine-independent.

Two ways to analyse algorithms

• Correctness and Invariants

• Time Complexity and Order Notation

• Reasoning about Recursive Algorithms

• Searching Algorithms

• InsertSort, MergeSort, QuickSort

• Sorting in Linear Time

• Binary Heaps and HeapSort

• Abstract Data Types: Stacks, Queues

• Hash-Tables

• Memory Allocation

• Randomised Structures and False Positives

• Substring Search Algorithms

• Constraint Solving and Backtracking

• Optimisation and Dynamic Programming

• Input/Output and Binary Encodings

• Data Compression and Huffman Encoding

• Union-Find

• Representing Sets, Binary Search Trees

• Representing Graphs

• Shortest Paths, Spanning Trees

• Basics of Computational Geometry

• Convex Hulls

What we will learn about

The Textbook

48

A L G O R I T H M S
I N T R O D U C T I O N T O

T H I R D E D I T I O N

T H O M A S H.

C H A R L E S E.

R O N A L D L .

C L I F F O R D S T E I N

R I V E S T

L E I S E R S O N

C O R M E N

Lecture Notes

49

ilyasergey.net/YSC2229

Code from Lectures

50

github.com/ysc2229/ysc2229-2021

every week is a new branch

http://github.com/ysc2229/ysc2229-2021

Working Tools
• OCaml

• Emacs/Aquamacs
• https://ilyasergey.net/YSC2229/prerequisites.html

• GitHub for homework assignments
• Make sure to make yourself an account (it’s free)
• Also, ask for students benefits (also free)

51

https://ilyasergey.net/YSC2229/prerequisites.html

Assessment

• 65% — homework exercises (10 assignments)

• 15% — mid-term project (12 code, 3 report)

• 15% — final project (12 code, 3 report)

• 5% class participation (attendance, questions)

52

Homework

53

• Two types: theoretical and programming assignments

• To be completed individually

• Deliverables:
• a GitHub release with an OCaml project (programming)
• a PDF with typeset answers (theory)

• Each assignment is graded out of 20 points

• Coding assignments that don’t compile will get 0 points

Collaboration

• Permitted:

Talking about the homework problems with other students; using other
textbooks; using the Internet to improve understanding of the problems.

• Not permitted:

Obtaining the answer directly from anyone or anything else in any form.

54

Homework Policies
• Work submitted before the deadline and receiving less than 18 points can

be resubmitted within one week after the grades are posted on Canvas.

• The amended grade will not be higher than 18

• Late submissions will be penalised by subtracting
(full days after deadline + 2) points from the maximal score (20).

• Late submissions cannot be resubmitted.

55

Mid-term and Final Projects

56

• Done in teams of two
(possibly one team of three, with some extra tasks)

• Graded out of 15 points (each counts towards 15% of final score)

• Deliverables:

• GitHub release

• PDF report, submitted individually by each member of the team.

Getting Help

57

• Office Hours (#RC3-01-03E, Cendana):
Wednesdays 17:00-19:00
Please, email me upfront!

• E-mail policy: questions about homework assignments sent less than
24 hours before submission deadline won’t be answered.

• Exception: bug reports.

Peer Tutors

gabrielphoenixpetrov@u.yale-nus.edu.sg

Thursdays, 6pm-8pm, Location: CR20

Gabriel Petrov
tram.hoang@u.yale-nus.edu.sg

Wednesdays, 7pm-9pm, Location: CR20

Tram Hoang

General Advice

• Friday afternoon class, many of you will be tired. Try to make class
livelier by asking questions and participating in discussions.

• Lecture notes will contain exercises. Please, please try these! No
better practice than actually solving problems.

59

Time for a short break

